
Asymptotic Expansions of Ratios of Coefficients of Orthogonal Polynomials with
Exponential Weights

Attila Máté; Paul Nevai; Thomas Zaslavsky

Transactions of the American Mathematical Society, Vol. 287, No. 2. (Feb., 1985), pp. 495-505.

Stable URL:

http://links.jstor.org/sici?sici=0002-9947%28198502%29287%3A2%3C495%3AAEOROC%3E2.0.CO%3B2-7

Transactions of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Mon Mar 31 16:45:55 2008

http://links.jstor.org/sici?sici=0002-9947%28198502%29287%3A2%3C495%3AAEOROC%3E2.0.CO%3B2-7
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/ams.html


TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 287, Number 2. February 1985 

ASYMPTOTIC EXPANSIONS OF RATIOS 
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BY 
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ABSTRACT.Let p,(x) = ynxn+ . . . denote the nth polynomial orthonormal with 
respect to the weight exp(-x8//3) where /3 > 0 is an even integer. G. Freud 
conjectured and Al. Magnus proved that, writing a, = y,- ,/y,, the expression 
~ , n - ' / ~has a limit as n + w.  It is shown that this expression has an asymptotic 
expansion in terms of negative even powers of n .  In the course of this, a combina- 
torial enumeration problem concerning one-dimensional lattice walk is solved and its 
relationship to a combinatonal identity of J. L. W. V. Jensen is explored. 

Consider the polynomials p, that are orthonormal with respect to the weight 
function exp(-lxlP/P) on the real line, where P is a positive real number. Denoting 
by yn the leading coefficient of p, (n 2 0) and writing a, = yn-,/y, for n > 1 and 
a, = 0 for n < 0, G. Freud conjectured that 

P - 1  -'/P 
lim an/nl/P = 

n + m  

holds for every positive even P (see [3, Conjecture, p. 51; his conjecture has a slightly 
different form, as he considered the weight function lxlPexp(-lxlP) rather than the 
one above). He also entertained the possibility that thls conjecture is valid for all 
positive real p. In case /3 > 0 is even, he proved that if the limit on the left exists 
then it must have the value on the right-hand side (see [3, Theorem 1on p. 4]), and 
he established the conjecture for P = 2,4,  and 6 (see [3, pp. 5-61). He accomplished 
these by extracting information from the formula 
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valid for all n > 0, which he obtained in a somewhat more general setting in [2, 
Lemma 1, p. 931. Thls formula is established via integrating by parts the right-hand 
side of the equation 

Conjecture (1) for positive even values of /3 was established by Al. Magnus in 
December 1983; his proof will appear in [19]. Previous important works related to 
Freud's conjecture are Mhaskar-Saff [12] and Rahmanov [16]. In particular, they 
establish the weaker result 

holds for every real P > 0 (cf. [12, formula (3.11) in Theorem 3.31 and the last 
formula of Theorem 1in [16,§4, p. 1831). 

The aim of the present paper is to extract additional information from (2) so as to 
establish 

THEOREM1. Let /3 > 0 be an even integer. Then a,/nl/P has an asymptotic 
expansion 

In other words, 
m 

for every integer m 0 as n + a. 

A detailed discussion of asymptotic expansions can be found e.g. in P. Henrici [6, 
Chapter 11, pp. 351 ff]. We do not know whether or not there is a value of n for 
whch the series on the right of (3) converges. Theorem 1 is known in the special 
cases p = 2,4,6, which are exactly the cases in which Freud [3, pp. 5-61 established 
the validity of (1). In case P = 2,  thep,(x/ a)are the Hermite polynomials (save 
for a constant factor depending on n), and it is easy to see that a, = 6 (cf. (8) 
below). For P = 4, Theorem 1was proved by J. S. Lew and D. A. Quarles, Jr. [lo], 
and for p = 6, it was established in Mate-Nevai [ l l ] .  The polynomials p, for /3 = 4 
were discussed by Nevai in [14 and 151. The latter paper uses the asymptotic 
expansion given in (3) to derive asymptotic properties of the polynomials p, in case 
p = 4. 

From now on throughout t h s  paper, we will assume that /3 is a positive even 
integer, and we will write 
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Then (2) becomes 

which is easier to handle than (2) is in general because of the absence of the absolute 
value signs. By using the recurrence formula 

(7) XP,(X) = ' n+lPn+l(~)+ 'nPn-l(~) (-00 < n < 00) 


repeatedly (see e.g. [I, formula (2.4), p. 171-the a, there is not the same as our 

a,-or [17, formulas (3.2.1) and (3.2.2), p. 421; note that p, does not occur on the 
right-hand side of (7), as the weight function is even), it is possible to express the 
right-hand side of (6) as a homogeneous polynomial of degree 2k + 1 of the 
variables a,+, for certain small values of j (in fact, I jl g k, as we will see). 

This polynomial can be described as follows. Imagine an elevator that can travel 
between floors numbered by integers between -w and + w which stops at every 
floor and then continues either in the same direction or in the opposite direction (or 
stops altogether). Each passage between adjacent floors, briefly called a passage, 
takes a unit length of time. The length of a trip is the number of passages it consists 
of. The polynomial in question can be described as the sum of terms corresponding 
to all trips of length 2k + 1from floor 0 to floor -1 in the following way. For such a 
trip, the corresponding term will be the product of factors a,+, for each passage 
between floors j and j - 1in either direction (i.e. up or down). 

It is not difficult to verify that thls is indeed a correct description of the 
polynomial obtained on the right-hand side of (6). In fact, applying (7) repeatedly to 
the expression X ~ ~ + ' P , ( X )  on the right-hand side of (7), each application decreases 
the exponent of x. After 2k + 1 applications, the expression obtained will be a 
linear combination of p,+,(x) for 111 g 2k + 1, with polynomials of a,+, as coeffi- 
cients. In view of the orthogonality relations, the coefficient of p,-,(x) will be the 
value of the integral on the right of (6). After t applications of (7) to x ~ ~ + ' ~ , ( x ) ,  we 
will have a linear combination of x ~ ~ + ' - ' ~ , + , ( x )  for 111 g t, the coefficient of this 
polynomial being the sum of terms corresponding, in the way described above, to all 
trips of length t from floor 0 to floor I.  This can be easily proved by induction on t .  
The case t = 2k + 1 and I = -1 gives the polynomial described in the preceding 
paragraph. (The formula expressing xjp,(x) as a linear combination of p,+,(x) for 
111 < j ,  obtained by repeated applications of recurrence equation (7) as described 
above, is discussed in Nevai [13, Lemma 12, p. 451 in the more general case when 
p,(x) itself occurs also on the right-hand side of the recurrence equation). 

Thus, (6) becomes 

(8) n/an = ~ ( a , + , :1 j l< k) .  


where P is the polynomial described above; note that P does not depend on n 

directly. (Now it is clear why no a,+, for I jl > k occurs on the right-hand side of (8): 

because the floors k + 1or -k - 2 can not be reached on the trips mentioned in the 
description of P.) (8) can also be written as 

n = a , ~ ( a , + , :  I j 4 k) .  



i t  will be easy to derive Theorem 1with the aid of the results of Mate-Nevai [ll] 
from 

THEOREM = 1. Then 2. Let z be an arbitrary complex number with lzl 

holds provided x, = 1for 1 jl 6 k. 

In order to prove this theorem, we will calculate the first order partial derivatives 
of P at xj  = 1, I jl G k: 

LEMMA1. We have 

for 111 6 k and x j  = 1(Ijl G k). 

In light of the description of the polynomial P above, it is easy to give a 
description of the value of the partial derivative on the left-hand side of (10). It is the 
number of all passages between floors I and I - 1 (up or down) summed over all 
trips of length 2k + 1from floor 0 to floor -1. 

We will discuss the following, more general situation. Let L, h, p, q be integers 
such that L > 0 and Ip - ql = 1. Let RL,,(p, q) be the number of passages from 
floor p to floor q (in this direction) summed over all trips of length L from floor 0 to 
floor h. Then 

for all x j  = 1(Ijl 6 k)  according to the description of the left-hand side given in the 
preceding paragraph. Thus Lemma 1will be an easy consequence of 

LEMMA2. Let L, p, q, h be integers such that L > 0 and Ip - ql = 1. In order that 
R ,,,(p, q) > 0 it is necessary that 

(12) L =  h (mod2). 
Provided that this is satisfied, we have 

( i fd  < 0 this sum is taken to be 0), where d is defined by the equation 

(I4) = d L , h ( ~ ,9 )  = (' - ( I P I  + + l h  - q)) /2 '  

PROOF. The necessity of (12) for RL,,(p, q)  > 0 is obvious. Assume (12) from 
now on. It then follows that d as defined by (14) is an integer, since h and 
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have the same parity. On account of this equality, (14) can be written as 

whlch will be useful later. To prove (13), observe that RL,,(p, q) satisfies the 
following equations: 

Indeed, (i) corresponds to reversing the entire run of the elevator, i.e., for a given 
trip, of length L from floor 0 to floor h, replacing each passage up with a passage 
down, and each passage down with a passage up. The resulting trip will be of length 
L, will start at floor 0 and stop at floor -h. (ii) corresponds to reversing the run of 
the elevator after it reaches floor p for the first time during its trip, and (iii) 
corresponds to reversing its run after it reaches floor q the last time during its trip. It 
is easy to see from (14) or (15) that dL,,(p, q) satisfies the analogous equations. 
Thus the right-hand side of (13) also satisfies the analogous equations. 

Therefore, it is sufficient to establish (13) in case 

(17) O < p < q < h .  

Indeed, (16)(i) allows one to assume that p > 0, (16)(ii), that q > p, and (16)(iii), that 
h q. Assume (17) from now on; then we have 

according to (15). We can now prove (13) by induction on L. 
To this end, observe first that (13) is valid in case L < h, since both sides are 0 

(there is no way to reach floor h from floor 0 in L steps, and the sum on the right of 
(13) is empty). Assuming L > h (and (17)), we have 

(I9) R L , h ( ~ ,q) = R L - l , h - l ( ~ ,  q)  + RL-l , I I+l (~ ,q) + 'qhNL-1,h-1, 

where a,, = 1if q = h and 0 otherwise, and NL-,,,-, is the number of all trips from 
floor 0 to floor h - 1in L - 1steps, that is (assuming (17)), 

The first equality here holds in view of the fact that a trip of length L - 1from floor 
0 to floor h - 1 consists of (L + h - 2)/2 passages up and ( L  - h)/2 passages 
down, arranged in an arbitrary order, and the second equality holds in view of (18). 
Equation (19) is simply saying that the last passage of each trip from floor 0 to floor 
h is a passage either from floor h - 1to floor h, or from floor h + 1to floor h, and 
the last term adds the number of passages from floor p to q that takes place as the 
last passage of the trip. This number is NL-,,,-, if q = h (asp = h - 1in this case 
according to (17)), and otherwise it is 0. 

Assume now that L > h and (13) holds for every quadruple ( L  - 1, h', p', q') 
replacing (L, h ,p ,  q) . (The latter is assumed to satisfy (17), but the former is not 



required to satisfy the analogue of (17), as in view of (16) this restriction is not 
necessary). We distinguish two cases (a) h > q, and (b) h = q. In both cases, 

d L - l , h + l (  P ,  4) = d - 1 (=  d L , h (  P ,  4) - 11, 

and 

in case (a), 
d L - l , h - l ( p ,  4) = i dd - 1 in case (b). 

Thus, according to the induction hypothesis, (19) becomes 

in case (a) (we use the convention 

thus it does not matter whether the lower limit of the sums is j = 0 or j = -co,but 
the latter choice is technically more convenient), and 

in case (b) (the last term on the right is explained by (20)). Hence (13) follows. This 
completes the proof of the lemma. 

An alternative proof of Lemma 2 is based on 

LEMMA3. The identity 

holds for all reals x and y and euey integer n. 

According to (21), the limits of the sums on both sides could just as well be taken 
to be 0 and n.  We will give a direct proof of this identity and discuss its relationship 
to an identity of J. L. W. V. Jensen after the 

ALTERNATIVE 2. We will describe another way to derive (13) PROOFOF LEMMA 
from (12) and (17); the justification for the assumption of (17) was given in the first 
proof of Lemma 2. 

Assume (12) and (17). We will count the number of passages from floor p to floor 
q that take place in the time interval [ p + 2j, p + 2j + 11, where -co < j < m. 

The number of ways to reach floor p from floor 0 in p + 2j passages is 

by p + j passages up and j passages down arranged in an arbitrary order (the case 
j < 0, whle absurd, causes no trouble in view of (21)). The number of ways to reach 
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floor h at time L, starting at floor q at timep + 2j + 1 = q + 2j (cf. (17)) is 

by h - q + (L - h)/2 -j passages up and ( L  - h)/2 -j passages down. (These 
numbers are integers in view of (12)). It is important to notice that 

in view of (17), so the fact that either of these numbers might be negative causes no 
trouble, since the above binomial coefficient is 0 in this case according to (21) (in the 
absence of this inequality, it might happen that the left-hand side is negative, while 
the right-hand side is not; in this case the above binomial coefficient need not be 0, 
and thls would cause errors in the calculation). The number of passages from floor p 
to floor q in the above time interval is the product of the above binomial coefficients. 
Summing for j ,  we obtain (in case (17) holds) that 

where the second equality holds according to Lemma 3 (note that p + ( L  - q) + 1 
= L in view of (17)). In virtue of (18), this is identical to (13) in case (17) holds. 
Thus the second proof of Lemma 2 is complete. 

PROOFOF LEMMA3. We will outline two ways identity (22) can be obtained. The 
shorter one is to derive it, from an identity of J. L. W. V. Jensen saying that 

i ( x  Jjtj(:~:j = = o ( ~+ Y  - j  
j = O  n - j  

holds for every complex x, y, and t, and every integer n 2 0 (cf. [7, p. 313; 4; 5 ,  p. 
246; 9, Problem 28 in 51.2.6 (p. 28; solution p. 485)], plus some papers quoted in 
[5]) . To derive (22) from this, apply the transformation (;) = (-I)'(-'+;-') to all 
three binomial coefficients occurring in (22); the resulting identity will be a special 
case of (24) with t = -1 (cf. (21)). 

Another way to prove identity (22) avoids the appeal to (24). To outline thls 
proof, first notice that, both sides of (22) being polynomials of degree < n in x and 
y, it is sufficient to prove (22) in case x + y is an integer -1. Writing I(x,  y, n) 
for the formula in (22), it is easy to show by an application of the identity 
(;I:) + ('7') = ( 5 )  that I(x, y - 1, n - 1) and I(x,  y - 1, n) imply I(x,  y, n). 
Therefore, to complete a proof by induction, we have to show only that I(x, y, 0) 
and I(x,  -x - 1, n) (n > 0) are valid. The former is obvious, and the latter can be 
written as 

where P ( j )  = n;=,(x + j + 1). The sum on the left-hand side, however, equals the 
nth difference ( E  - l)"P(O) of P(x)  at x = 0 (here E is the forward shft  operator: 
Ef (x )  = f (x  + 1)) according to the binomial theorem. Thus, the left-hand side of 



(25) equals the leading coefficient of P; thus (25) is verified (cf. e.g. [8, pp. 131-1321 
or formula (35) in [9,p. 631). The proof of Lemma 3 is complete. 

Above, we used Lemma 3 to give an alternative proof of Lemma 2. Another way 
of loolung at the two proofs of Lemma 3 is that they establish the second equality in 
(23) for all integers L > 0 and p ,  q, h satisfying (12) and (17) (the first proof giving 
the third expression in (23) and the second one giving the second expression). As 
these restrictions allow n = ( L  - h)/2 to be any integer, and x = p and y = L - q 
to be any integers x > 0 and y > L - h = 2n, respectively, one obtains a purely 
combinatorial proof of (22) in this way in all those cases when (22) can be expected 
to express a combinatorial fact. 

We are now in a position to give the 
PROOFOF LEMMA1. Using (11) and (13) one obtains (10). In case I = 0 in ( l l ) ,  

one obtains 
k - l  

z(2k; j +jo(2k;
j = o  

but this is easily seen to be equal to the expression given on the right-hand side of 
(10). In case I + 0, one obtains the right-hand side of (10) directly. The proof of 
Lemma 1is complete. 

Theorem 1will be a simple corollary of 

LEMMA4. Let A,, 0 < I < k + 2 ( k  > 0), be a strictly convex sequence of real 
numbers, i.e. such that 

( A  is the forward difference operator, i.e. Az, = z,+,- z,), and assume 
A k + l  = A k + 2  = 0. 

Then the equation 

has no roots of absolute value 1. 

PROOF.Assuming 1 z 1 = 1, we may write z = e '" for real x. Then z' + z -'= 2 cos Ix; 
dividing equation (27) by 2 and performing summation by parts (i.e. Abel rearrange- 
ment) on the left-hand side twice, we obtain 

k 

(28) z( I  + I )K , (X)A~A,= 0 ,  
I = O  

where K, is the Ith Fejer kernel, i.e. 
I 

(1 + l ) K , ( x )  = /1/2 + 1cos rx 1 = (1/2)(sin((l+ l)x/2)/sin(x/2))' 

(interpret the right-hand side as its limit at points where the denominator is 0; cf. 
e.g. [18, Vol. I, p. 881). It is seen from here that K,(x) > 0; moreover, K,(x) = 1/2 
(> 0) for every x. Thus (28) is impossible in view of (26). The proof is complete. 



503 ASYMPTOTIC EXPANSION OF RATIOS 

Note that only A2X, > 0 was used in most cases instead of the full force of (26). 
We need to assume strict inequality either only in case I = 0 or else, for example, in 
case I = r and 1 = s for some r, s with 0 < r < s < k that are relatively prime (this 
latter is sufficient, since, as is easily seen, K,(x) = K,(x) = 0 cannot happen for any 

XI. 
We are now able to present the 

PROOFOF THEOREM
2. Observe that we have 

for the polynomial P discussed in (8)-(10). Indeed, for xJ = 1 ( 1  jl < k) all terms of 
P being 1, this is just the number of terms in P, i.e. the number of trips of length 
2k + 1from floor 0 to floor -1 (k passages up and k + 1passages down, arranged 
in an arbitrary order). Thus, in view of (10) (and the product rule for differentiation), 
(9) becomes 

k 

(29) X o  + C X1(zl+ z-I) Z 0, 
I =  1 

where 

(cf. (21)) and 

Comparison with the former formula shows that the latter formula is valid even in 
case 1 = 0. Putting A,+, = A,+, = 0 (whch, again, is in harmony with the latter 
formula), it is seen that 

2k + 1 ) > o  ( 0 4 1 4 k ) .
k - l  

Therefore Lemma 4 shows that (29) must hold for IzI = 1. This establishes (9), 
completing the ,proof of Theorem 2. 

Finally, we will show how Theorem 2 and the results of Mate-Nevai [ll]can be 
put together to give the 

PROOFOF THEOREM1.Writing 

we have 

(30) lirn yn = 1 
n-+m 

in view of (1) being valid with /3 = 2k + 2 (cf. (5)). Putting 



(8) becomes 

that is 

with 

Now, according to the main theorem proved in Mate-Nevai [ l l ] ,  (30), (31), and the 
condition that 

for x, = 1 (I jl 4 k) ,  x k + ,  = 0, and for any z with JzI= 1 ensure that y, has an 
asymptotic expansion 

provided that H is a Cw function in a neighborhood of the point xj = 1 (I j (  4 k) ,  
x , + ,  = 0. Given that (32) is satisfied, since it is equivalent to (9), the existence of 
expansion (33) follows. (The quoted theorem in [ l l ]  gives the expansion of y n P kin 
terms of n-', i.e. the expansion of y, is obtained in terms of 

Expansion (33) can then be derived by using the binomial expansion for (1 + k/n)-'; 
cf. the remark after (27) in [ l l ] . )One can show that 

c, = 0 for odd I 

in exactly the same way as (28) of [ll]was proved in that paper, by using the 
obvious relation 

The proof of Theorem 1 is complete. 
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