
New Surprises from Self-Reducibility

Eric Allender

Department of Computer Science, Rutgers University, Piscataway, NJ 08855,
allender@cs.rutgers.edu

Abstract. Self-reducibility continues to give us new angles on attacking some of
the fundamental questions about computation and complexity.

1 Introduction

Perhaps the most surprising thing aboutSelf-Reducibilityis its longevity. Who would
have suspected that this simple idea would continue to play a key role in important
developments in our evolving understanding of computation and complexity over a span
of four decades? Yet recent developments demonstrate that self-reducibility is still able
to lead us to new insights, both in computability theory and in complexity theory.

Trakhtenbrot introduced the notion of autoreducibility in a paper published forty
years ago [28]. Briefly, a setA is autoreducibleif A is accepted by an oracle Turing
machineM that hasA as an oracle, with the restriction thatM , on inputx, does not
ask its oracle aboutx. Already in his 1970 paper, Trakhtenbrot studied autoreducibil-
ity in the context of resource-bounded computation, although in early years the notion
was studied primarily in the context of computability [23, 20]. Polynomial-time au-
toreducibility per seseems to have been studied first by Ambos-Spies [5], although
some types of polynomial-timeself-reducibility(corresponding to restricted versions of
autoreducibility) had been studied earlier (most notably in the work of Karp and Lip-
ton [21]). Balcázar was among the first to give a systematic study of different types
of polynomial-time self-reducibility [6]; a setA is said to belength-decreasing self-
reducible(or “downward self-reducible”) if it is polynomial-time autoreducible via a
reduction that, on inputx, asks only questions of length less than|x|.

This lecture will not attempt to survey 40 years of work on this topic. Fortunately,
there are a number of excellent surveys to which I am happy to refer the reader. The
Masters Thesis of Selke gives a comprehensive and systematic overview of most of this
work [27], including a summary of the results of Balc´azar, Mayordomo, Merkle and
others, clarifying the relationship between different notions of genericity and random-
ness, and variants of autoreducibility [7, 24, 12].

A particularly exciting line of research on autoreducibility was introduced by Buhr-
man, Fortnow, van Melkebeek, and Torenvliet [8]. They showed that for “large” com-

plexity classes containing DSPACE(22nO(1)

), notall≤p
T -complete sets are polynomial-

time autoreducible, while also giving a non-relativizing proof that all≤p
T -complete sets

for EXP are polynomial-time autoreducible. Even more intriguingly, they showed that

for “intermediate” classes (such as EXPSPACE and DTIME(22nO(1)

)), any resolution
of the question about autoreducibility of complete sets would result in solving some



long-standing open questions in complexity theory; if they are autoreducible, then NL
6= NP; if not, then EXP is not equal to the polynomial hierarchy. There has been quite a
bit of additional progress regarding the self-reducibility properties of complete sets for
various complexity classes; for example, see these excellent surveys: [10, 9, 17, 16].

The following two sections describe some aspects of self-reducibility that are not
discussed by the aforementioned surveys, but that may be of interest to participants in
this conference.

2 Circuit Size Lower Bounds

A recent development presents a way in which self-reducibility might point to a path
around a daunting obstacle to provingcircuit sizelower bounds. TC0 is a well-studied
circuit complexity class, consisting of those problems that can be solved by polynomial-
sizethreshold circuitsof constant-depth. (That is, there is some constantd such that, for
every input length, there is a depth-d circuit of (negated and non-negated) MAJORITY

gates solving the problem.) Although it is widely believed that many problems in P
lie outside of TC0, it remains unknown whether NEXP is contained in TC0! Razborov
and Rudich, in their work on “Natural Proofs,” explained our current inability to prove
lower bounds against TC0 by showing that any lower bound argument that adheres to
a certain “natural” approach is doomed to failure, if there are pseudorandom function
generators computable in TC0 [26]. (If popular conjectures regarding the cryptographic
complexity of factoring are true, then therearecryptographically secure pseudorandom
function generators computable in TC0 [25].)

The connection to self-reducibility involves a type of “strong” downward self-redu-
cibility that was originally defined by Goldwasseret al. [18]. A setA is strongly down-
ward self-reducible if, for all input lengthsn, there is a constant-depthoracle circuit
of polynomial-size forA, where the oracle isA, and all queries arevery short(say, of
size

√
n). (A related notion, defined in terms of polynomial-time computation instead

of constant-depth circuits, has also been considered [13, Theorem 3.3].) It turns out that
several well-studied problems (such as the problem of evaluating a Boolean formula)
are strongly downward self-reducible vialinear-sizereductions [4], and furthermore, if
any such problem lies in TC0, then it has TC0 circuits ofnearly linearsize. The sig-
nificance of this is that, in order to prove that such a problem lies outside of TC0, it
suffices to give a “natural” proof of a modest size lower bound (such as sizen1.0001,
and then this would yield a “non-natural” lower bound, showing that P does not lie in
TC0 [4]. (For a very different line of attack, showing how modest lower bounds would
yield “non-natural” lower bounds for non-linear logarithmic-depth circuits, see [11].)

3 Random Self-Reducibility and Kolmogorov Complexity

A set A is random self-reducibleif there is a probabilistic oracle machine accepting
A, usingA as an oracle, where queries to the oracle are made “at random”. (For a
more satisfactory definition, see, e.g., [27].) Random self-reducible sets have found
wide application in complexity theory. For instance, Fortnow and Santhanam [15] were
able to give an improved time hierarchy theorem for probabilistic computation, showing



that BPTime(nk)/1 6= BPTime(nk′
)/1 if k < k′, by making crucial use of the fact that

there is a problem that is complete for PSPACE that is both downward self-reducible
and random self-reducible [29]. (Random self-reducibility is usually considered to be a
property of quite complex sets such as PSPACE-complete sets; it is unlikely that there
are NP-complete sets that are random self-reducible [14]. Note however that there are
someregularsets that are both random self-reducible and downward self-reducible, and
this has been used to show that if Boolean formula evaluation requires TC0 circuits of
sizen1.0001, then probabilistic TC0 circuits can be simulated in subexponential time
[1].)

The promised connection to Kolmogorov complexity is indirect, and is tied up with
the following inclusion [3]:

PSPACE⊆ PRC

whereRC is the set of Kolmogorov-random strings:RC = {x : C(x) ≥ |x|}. What is
special about PSPACE? Iseverydecidable set efficiently reducible toRC? Is the halting
problem efficiently reducible toRC? Kummer does show that the halting problem is
reducible toRC in some computable time bound [22], but for the type of reduction that
he gives (a disjunctive truth-table reduction) it is known that at least exponential time is
required [2].

The main reason why PSPACE is the largest class known to be efficiently reducible
to RC is this: No larger class can have a complete problem that is downward self-
reducible. The reduction showing that PSPACE can be reduced toRC exploits the prop-
erties of a pseudorandom generatorGf that Impagliazzo and Wigderson show how to
construct from any functionf that is both downward and random self-reducible [19]
(and, as we have mentioned above, such problems exist that are complete for PSPACE).
The output of this generator can be distinguished from truly random strings, usingRC

as an oracle. Impagliazzo and Wigderson show that this allows one to useRC to effi-
ciently computef . For details, see [3].

Although this proof relies heavily on downward self-reducibility, it would be good
to know if this is essential. One intriguing possibility is that it could be possible to
characterizecertain complexity classes in terms of efficient reductions to the non-
computable setRC; some preliminary steps in this direction have already been taken
[2]. It is tempting (albeit premature) to speculate about what the implications would be,
of adding such an unlikely avenue to apply the techniques of computability theory to
questions of complexity.
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