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Abstract—Given an evolving network and a set of user-
specified keywords, how to discover and maintain the active
events specified by the keywords? In this paper, we study
the problem of event pattern discovery by keywords in graph
streams. (1) We propose a class of event patterns to capture
events relevant to user-specified keywords, by integrating
(approximate) topological and value bindings from keywords.
We also introduce an activeness measure, to balance the pattern
expressiveness and the cost of pattern discovery. (2) We develop
both from-scratch and incremental algorithms to discover and
maintain active events in graph streams. Using real-world
graph streams, we experimentally verify the effectiveness of
the event pattern model and the efficiency of our from-scratch
and incremental algorithms.

I. INTRODUCTION

Event detection is a critical task for decision making over

evolving networks such as social networks , communication

networks [15], and brain connectomes [2]. Conventional

methods discover events from item or tuple streams [8], [12].

Complex network events and their occurrences are, never-

theless, usually characterized by graph patterns [3], [15]

and their matches, which contain heterogeneous entities and

temporal interactions. On the other hand, keyword queries

are routinely used to access and understand graph data.

Given a (possibly infinite) graph stream GT ={G0, G1, . . .},
where each Gi is a snapshot, and a set of keywords K
that specifies user’s interest, the event pattern discovery by
keywords is to discover event patterns Σ from GT that are

active and relevant to keywords K.

The need for discovering event patterns is evident. Con-

sider the following examples from real-world applications.

Cyber attack detection. Recent studies suggest that the

Distributed Denial of Service (DDoS) attacks coincide with

“more than 45% (resp. 32%) of malware incidents (resp.

network intrusions)” [7], and are frequently used as a decoy

to distract IT defense effort. Such a “masked attack” consists

of two event patterns illustrated in Fig. 1. (1) Pattern P1

describes the DDoS attack, where an attacker performs mul-

tiple port scans to find vulnerable bot servers (edge attacker,
bot), and controls them to create massive requests to victim

host x (edge bot, x). (2) Pattern P2 describes information

exfiltration, where victim x takes commands from bot (edge

x, bot) and exchanges data with compromised websites that

lead to data breach. Detecting frequent occurrences of P1

and P2 at servers that match “host” can suggest active

Figure 1: Real-world active events

masked attacks. The servers that match node x of both P1

and P2 can be suggested as victims of masked attacks.

Activity analysis. The Offshore dataset1 contains entities

and their financial activities. An active pattern P3, relevant

to keywords “Asia”, “Active”, and “Company”, identifies

“jurisdiction area (a tax haven) selected by many active
Asian companies since 1965” as “British Virgin Island”.

Although desirable, discovering graph patterns is more

challenging than its counterparts over item streams [8], [12].

(1) Conventional graph patterns and frequency measures

should be extended to quantify the activeness of events

specified by keywords in graph streams. (2) It requires

fast pattern mining against graph streams, which is already

expensive over their static counterpart [4].

We propose to extend conventional graph patterns to event
patterns to support event detection with keywords. We show

that event pattern discovery by keywords is feasible over

large graph streams by developing a from-scratch algorithm,

which discovers events from scratch, and an incremental al-

gorithm, which dynamically maintains the discovered events.

Given event patterns Σ computed by a from-scratch algo-

rithm A, it incrementally updates Σ with a cost determined

by a bounded number of pattern verifications.

Related work. We categorize the related work as follows.

Event detection. Event detection has been studied over item

and tuple streams. Events are modeled as consecutive oc-

currences of items, e.g., episodes [12]. Top-k monitoring

aims to answer top-k queries over a single multidimensional

(tuple) stream. A general approach [8] assumes a monotone

function on attributes with sorted access, and maintains k-

skyband (tuples dominated by at most k − 1 others) to find

top-k tuples. In contrast, (1) We study event patterns as

general graph patterns, which is more involved than itemsets

and tuples; (2) The activeness measures for events are not

1https://offshoreleaks.icij.org/pages/database
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Figure 2: Social graph stream and events

necessarily monotone functions; as in [8] over graph streams.

Incremental event discovery is also not addressed.

Temporal graph mining. Temporal models have been stud-

ied for mining dynamic networks. These include subgraph

isomorphism [3], [16], and quasi-cliques [14]. By contrast,

(1) similar to [11], we adopt approximate pattern matching

to capture meaningful event occurrences, instead of using

strict subgraph isomorphism [3], [16]. This also reduces

verification cost, paving the way to feasible pattern mining

over large graph streams. (2) We introduce incremental

mining with bounded cost.

Incremental computation. Incremental querying are studied

in [5] for path and pattern queries. An incremental algorithm

A is bounded if it incurs a cost that is determined by

the size of query Q, the changes of the input ΔG, and

results ΔQ(G). This paper makes the first effort to study

incremental boundedness in the context of pattern mining.

II. PRELIMINARIES

Graph stream. A graph stream GT is a sequence of (pos-

sibly infinite) snapshots, where a snapshot Gi at time i is

a directed graph (Vi, Ei, L) that contains a node set Vi and

edge set Ei ⊆ Vi×Vi. Each node v ∈ Vi (resp. edge e ∈ Ei)

has a label L(v) (resp. L(e)) that describes its content (e.g.,
name, type, attribute values, relation).

Equivalently, GT can be represented as a sequence of

batch updates, where (1) an update is either an insertion

(denoted as e+) or deletion (denoted as e−) of an edge e,

and (2) edge updates ΔEi yields snapshot Gi when applied

to its previous snapshot Gi−1.

Example 1: Fig. 2 illustrates a fraction of a social network

stream GT with four snapshots {G0, . . . , G3}. Each snap-

shot contains entities with labels user (e.g., x1, y1), sport
club (s1, s2), and bar (b1, b2), as well as their temporal

interactions (retweet, check in, via e.g., Facebook Place) and

geographical information (nearby).
�

Event patterns. An event pattern P is a connected graph

(VP , EP , LP ), with a set of pattern nodes VP , pattern edges

EP , and a function LP that assigns a label LP (vp) (resp.

LP (ep)) to each pattern node vp ∈ VP (resp. ep ∈ EP ).

Moreover, P pertains to a set of keywords K={k1, . . . , kn},
if there exists a set of keyword nodes VK={u1, . . . , un} ⊆
VP such that LP (ui) = ki (i ∈ [1, n]).

As not every keyword node in P indicates entities of in-

terest (e.g., keyword “Active” simply specifies status values

of companies in P3), P also carries a set of designated focus
nodes x̄ ⊆ VK , which tracks entities of users’ interest.

Example 2: Consider patterns P4 and P5 by keywords

“user” and “bar” illustrated in Fig. 2 that capture a user x
influenced by another user y via temporal social influence,

which states that “if users x and y who checked in at a bar
retweet each other, and x checks in at a nearby sport club,

then he may visit the same bar.” While both x and y in P5

are keyword nodes for “user”, one can specify x as a focus

to recommend potential customers for the bar. �

Event occurrence. We extend dual simulation [6], [9],

[15], an established model, to capture occurrences of event

patterns with keyword nodes.

Given an event pattern P=(VP , EP , LP ) with focus x̄,

and a snapshot Gi=(Vi, Ei, L) in a graph stream GT ,

(1) A node v ∈ Vi is a candidate of a node u ∈ VP if

LP (u)=L(v). An edge e = (v, v′) ∈ Ei is a candidate of

edge e′ = (u, u′) ∈ EP if v and v′ are candidates of u and

u′, respectively, and LP (e)=L(e).

(2) Event pattern P occurs in GT at timestamp i if there

exists a nonempty relation R(P,Gi) ⊆ VP × Vi such that

• for each (u, v) ∈ R(P,Gi), v is a candidate of u; and

• for each u ∈ VP , there exists a match v ∈ Vi

such that (a) (u, v) ∈ R(P,Gi); (b) for each edge

(u, u′) ∈ EP , there is an edge match (v, v′) ∈ Ei with

(u′, v′) ∈ R(P,Gi); and, moreover, (c) for each edge

(u′′, u) ∈ EP , there is an edge match (v′′, v) ∈ Ei with

(u′′, v′′) ∈ R(P,Gi).

We use the following notions. (1) The occurrence of P
at time i in GT , denoted as occ(P,Gi), is the subgraph of

Gi induced by all the node and edge matches in R(P,Gi).
(2) The focus occurrence (denoted as occ(P (x̄), Gi)) is the

match set {v|(u, v) ∈ R(P,Gi), u ∈ x̄}.
It has been shown that a unique, maximum dual simu-

lation can be computed in O((|VP | + |V |)(|EP | + |E|))
time [6], [10]. The tractable results carry over to compute the

occurrences of P , in contrast to its intractable counterparts

in terms of subgraph isomorphism [3], [16].

III. EVENT DISCOVERY IN GRAPH STREAMS

To discover active events in GT as meaningful regularities,

we introduce an activeness measure. Let {G0, . . . , GT }
specifies a finite sequence of the snapshots that are already

seen, where timestamp T denotes the “current” time.
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Active events. Given event pattern P and graph stream GT
= {G0, . . . , GT }, the activeness of P in GT is defined as:

Act(P,GT ) =
∑

i∈[0,T ]

αT−i |occ(P (x̄), Gi)|
|Vi|

where (a) occ(P (x̄), Gi) is the focus occurrence of P at

time i (specified by keywords), normalized with |Vi| of

the snapshot Gi, and (b) α ∈ (0, 1] refers to a “forgetting

factor”. That is, Act(·) favors events with more accumulated

focus occurrences and more “recent” occurrences. An event

is active over GT w.r.t. a threshold θ if Act(P,GT ) ≥ θ.

Otherwise, it is inactive.

Active events can be of no interests if (1) they are too

small, e.g., routine TCP connections as a single-edge event;

or (2) they contain pattern nodes that always match the

same set of nodes in GT . To balance the informativeness

and conciseness, we introduce canonical event patterns.

Ordering of patterns. An event pattern P1 with focus x̄1

={u1, . . . , un} is embedded in another event pattern P2 with

the same set of focus renamed as x̄2={u′
1, . . . , u

′
n}, denoted

as P1 � P2, if (1) there exists a dual simulation R from P1

to P2, and (2) (ui, u
′
i) ∈ R for i ∈ [1, n]. P1 and P2 are

equivalent (denoted as P1 ∼ P2), if P1 � P2 and P2 � P1.

The result below verifies that event patterns with focus

preserve anti-monotonicity in terms of their ordering.

Lemma 1: For any graph stream GT and two events P1

and P2, (a) Act(P2,GT ) ≤ Act(P1,GT ) if P1 � P2; and (b)
Act(P1,GT ) = Act(P2,GT ) if P1 ∼ P2. �

We present the detailed proof in [1].

Canonical patterns. Consider a “self” matching RP from

event pattern P to itself. Two nodes u and u′ in P (x̄) are

equivalent if (u, u′) ∈ RP and (u′, u) ∈ RP . We say P
is canonical, if there exists no equivalent node pair in P .

Indeed, equivalent pattern nodes always specify the same set

of matches for any GT , thus should be avoided.

Maximal patterns. A canonical pattern P is maximal w.r.t.
a threshold θ, if there exists no canonical event pattern P ′

(|P ′|>|P |) that pertains to the same focus and is obtained

by adding edges to P , such that P ′ is active w.r.t. θ. It is a

b-maximal pattern if P has at most b edges.

We prefer active patterns that are both canonical and

maximal, which are both concise and informative.

Example 3: Consider event patterns P4-P6 in Fig. 2. One

may verify the following. (1) P4 and P5 are canonical

patterns. (2) P6 is not canonical. (3) P4 ∼ P6; and P4

is a “minimal” representation of P6. �

From-scratch discovery problem. Given a graph stream GT ,

an activeness threshold θ ∈ [0, 1], user-specified keywords K
and a size bound b (b ≥ |K|−1), compute all the b-maximal

canonical event patterns Σ w.r.t. θ over GT .

Incremental discovery problem. Given GT and a set of active

event patterns Σi−1 at time i-1, and a newly arrived snapshot

Gi at time i, incrementally update Σi−1 to Σi without

computing from scratch, and report Σi on request by a user.

IV. FROM-SCRATCH DISCOVERY

We first present an algorithm, denoted as BDis, to discover

event patterns from scratch. Underlying the algorithm BDis
is the maintenance of a pattern lattice T that controls the

generation of patterns. Each pattern is associated with its

activeness and candidates in the latest snapshot GT of GT .

From-scratch algorithm. We outline algorithm BDis below.

(1) Given GT and keywords K, BDis initializes T with all

events that pertain to K (a set of independent keyword nodes)

and verifies their activeness in GT and updates T .

(2) At each level j of lattice T , (a) BDis spawns a set of

new patterns at level j + 1, where each new pattern P ′(x̄)
is obtained by adding a single pattern edge eP =(u′, u) to a

verified pattern P (x̄), with either u′ or u in P (x̄), and (b) it

verifies if P ′ is a canonical b-maximal pattern by invoking

a procedure Verify. Once all level-j + 1 events patterns are

verified, it finds the maximal canonical ones at level-j by

definition, and updates Σ when necessary.

The algorithm BDis stops spawning from maximal canon-

ical event patterns or inactive ones (Lemma 1). It returns Σ
if no new patterns can be spawned.

Pattern verification. We “plug-in” an operator Verify to the

level-wise mining framework. Given an event pattern P ,

Verify performs two steps.

(1) It computes the self matching RP by invoking the pattern

matching algorithm in [6], and checks if P is canonical

by definition (Section III). This operation subsumes the

validation of whether P is connected.

(2) If P is canonical, it then invokes the algorithm in [6] to

compute the focus occurrences of P in each snapshot Gi of

GT . The overall activeness Act(P,GT ) and the matches of

P is then aggregated.

Example 4: Fig. 3 illustrates a fraction of event lattice T 1

over G1 ={G0, G1} in Fig. 2. Given the size bound b =

3, BDis discovers P4, P5 in T 1, which are two of verified

maximal canonical events w.r.t. θ=0.11. �

V. INCREMENTAL DISCOVERY

Recomputing event patterns Σ each time a new snapshot

arrives with BDis is not practical for large GT . We present

an incremental algorithm that correctly updates Σ by (1)

only accessing two snapshots, and (2) incurring a bounded

cost determined by necessary computation. These justify its

feasibility in space and time.

Necessary computation. We start with a characterization of

“necessary” computation cost, using BDis as a “yardstick”

from-scratch algorithm. To this end, we associate auxiliary

structure to the data structures used by BDis.

(1) Recall the pattern lattice T . Each event pattern P has a

status, which encodes (a) its activeness, (b) its candidates



985

Figure 3: Event pattern lattice and affected area

and matches in the latest seen snapshot in GT , and (c) one

of the three values below: inactive or unverified (encoded as

’I’), if P has activeness smaller than θ or unknown; active
and not maximal (’A’), and maximal (’M’). These structures

are constructed only when needed.

(2) Each node v (resp. edge e) in GT has a status matrix

v.M (resp. e.M), where each entry v.M[P ][u](e.M[P ][eP ])
is a flag that indicates whether it is a match, candidate or

irrelevant (with a different label) of node u (edge eP ) in a

pattern P . These status matrices are only used to characterize

the cost, and are not physically constructed.

Affected mining area. We consider the behavior of BDis at

two consecutive timestamps i− 1 and i. (1) At time i− 1,

BDis mines active event patterns Σi−1 over graph stream

Gi−1={G0, . . . , Gi−1} and terminates with pattern lattice

T i−1. (2) At time i, BDis mines Σi from scratch over

updated stream Gi = Gi−1 ∪ {Gi}, and yields lattice T i.

The affected mining area, denoted as AFF, characterizes

the total “changes” of the data inspected by BDis between

time i− 1 and i, and is defined as:

AFF = AFFT ∪ AFFG

where (1) AFFT is a set of affected patterns with their status

updated (including those newly introduced) in T i; and (2)

AFFG includes all the nodes and edges with status updated

(including those newly introduced) in Gi.

The affected mining area AFF indicates a “mandatory”

fraction of data that must be inspected, i.e., the changes of

data and structures inspected by a from-scratch counterpart.

To characterize such cost, we use extended size of AFF,

and denote as ‖AFFT ‖r (resp. ‖AFFG‖r) the number of

of patterns in AFFT (resp. number of nodes and edges in

AFFG) and their r-hop neighbors in T i (resp. Gi).

Theorem 2: Given pattern size bound b, threshold θ, ac-
tive event pattern Σ and a new snapshot Gi, there is an
incremental mining algorithm that correctly updates Σ in
O(‖AFFT ‖1(b2 + b‖AFFG‖b + ‖AFFG‖2b)) time, by only
accessing two snapshots Gi and Gi−1, at any time i. �

That is, the incremental algorithm incurs bounded cost

determined by the affected area and size bound b only. To

prove Theorem 2, we next introduce an incremental mining

algorithm, denoted as IncDis, with the bounded cost.

Bounded incremental mining. Not knowing exact AFFT
and AFFG , the algorithm IncDis maintains a set of affected

patterns AFF′
T , and a set of affected nodes and edges AFF′

G

in Gi−1, as “over-estimated” AFFT and AFFG , respectively.

It only updates the activeness of the patterns in AFF′
T , and

for each pattern, it only visits a fraction of Gi−1 up to AFF′
G .

To see Theorem 2, it suffices to guarantee the following

two invariants: (I1): |AFF′
T | is in O(‖AFFT ‖), and (I2):

|AFF′
G | is in O(‖AFFG‖b). Indeed, given the invariants,

the total cost is O(|AFF′
T |(b + ‖AFFG‖b)2), where O(b +

‖AFFG‖b)2) is the verification cost (guaranteed by dual

simulation matching; see Section III). This is bounded by

O(‖AFFT ‖(b2 + b‖AFFG‖b + ‖AFFG‖2b)).
Identifying affected patterns. The operator findAFF an-

swers the question “what are the patterns that need to be
verified to update Σ, given newly verified patterns P over
Gi? ” Given P , it updates Σ with P , and “propagates” AFF′

T
with a set of new patterns P ′ to be verified by incVerify.

More specifically, for each newly verified pattern P ∈ P ,

it propagates AFF′
T by taking two actions below.

Downward propagation: If Act(P,Gi) ≥ θ (i.e., with status

‘A’), it updates AFF′
T := AFF′

T ∪ P+, where P+ refers

to the patterns obtained by adding an edge to P within size

bound b, i.e., the “children” of P in T i. That is, it explores

larger event patterns in T i as P remains to be active.

Upward propagation: If Act(P,Gi) < θ (i.e., with status

changed to ‘I’), it updates AFF′
T := AFF′

T ∪ P−, where

P− refers to the “parents” of P in T i, obtained by removing

an edge from P . That is, it explores smaller event patterns

that may later become new b-maximal ones, due to that P
becomes an inactive pattern.

Using T i−1, both P+ and P− can be constructed without

reconstructing T i. The operator findAFF terminates down-

ward (resp. upward) propagation at pattern P if P+ (resp.

P−) is ∅ due to size bound or inactiveness of its children.

It inserts P to Σ as a newly discovered b-maximal pattern.

Coping with new patterns. Both propagation actions guar-

antee that any new pattern not in T i in the propagation is

included to AFF′
T . Note that such patterns must be in AFFT .

Lemma 3: When IncDis terminates, (1) AFFT ⊆ AFF′
T ,

and (2) |AFF′
T | is in O(‖AFFT ‖1). �

Thus, findAFF guarantees invariant I1 (see [1] for proof).

Incremental verification. Operator incVerify updates the

activeness of patterns P ′ by identifying and accessing AFF′
G

only. It initializes AFF′
G as ‖ΔEi‖b, i.e., the set of edges

ΔEi and their b-hop neighbors in Gi. If P ′ is ∅, it initializes

P ′ as a set of patterns in Σ, which have candidates inserted

or matches removed in ΔE. Note that this also initializes

AFF′
T as P ′ when findAFF takes over.

It then copes with two cases for each pattern P ∈ P ′.
(1) If P has no edge candidate in AFF′

G (i.e., b-hop neighbors

of the updated edges ΔE), then occ(P,Gi−1) = occ(P,Gi).

(2) Otherwise, incVerify solves an incremental query pro-
cessing problem to update occ(P,Gi) by only accessing

necessary part of AFF′
G . (a) It performs necessary canonical
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Algorithm IncDis
Input: latest snapshot Gi−1, new snapshot Gi,

b-maximal events Σi−1, lattice T i−1, b, and threshold θ,

Output: updated event patterns Σi.

1. initialize Σi:=Σi−1, T i=T i−1, set AFF′G=∅; set AFF′T =∅;
2. initializes AFF′G and P with incVerify;
3. while P is not ∅ do

/* finding affected patterns */

4. P := findAFF (P , T i, Σi);
5. AFF′T := AFF′T ∪ P ;

/* incremental verification */
6. incVerify (P , AFF′G); update Σi;

7. return Σi;

Figure 4: Algorithm IncDis

checking of P as in its batch counterpart Verify (Sec-

tion IV). (b) For canonical pattern P , it induces a fraction

‖ΔE(P )‖b ⊆ AFF′
G , where ΔE(P ) includes insertions of

P ’s candidates, and deletions of its matches in Gi (ΔE(P )
⊆ ΔEi). (c) It then recomputes the matches of P against

‖ΔE(P )‖b (instead of Gi) by removing invalid matches and

inserting new occurrences, as in its from-scratch counterpart.

It finally updates Act(P,GT ∪ {Gi}).
Lemma 4: When IncDis terminates, (1) AFFG ⊆ AFF′

G , and
(2) |AFF′

G | is in O(‖AFFG‖b). �

incVerify guarantees Invariant I2 (detailed proof in [1]).

Algorithm IncDis. Upon receiving snapshot Gi, IncDis
(Fig. 4) first invokes incVerify to initialize AFF′

G and P
(line 2). It then interleaves operators findAFF and incVerify
in a “superstep” (lines 3-6) to track and update the activeness

of the affected patterns AFF′
T and updates Σ only when

necessary. The interaction step repeats until no new affected

patterns can be identified (P is ∅; line 3), i.e., all the affected

patterns are inspected. It then returns the updated Σi.

We present the detailed algorithms in [1].

VI. EXPERIMENTAL EVALUATION

Using real-world graph streams, we experimentally eval-

uate (1) the performance of the algorithms BDis and IncDis,
and (2) a case study of real-world event patterns.

Experimental Setting. We used the following setting.

Datasets. We use three real-world datasets. (1) Citation2 is

a citation network of 4.3M entities (e.g., papers, authors,

publication venues), 21.7M edges (e.g., citation, published

at), and 273 labels (e.g., keywords, research domains), with

timestamps corresponding to publication dates. (2) IDS [13]

records daily intrusion activities over a cybernetwork. We

induced a graph stream with 12 snapshots, where each snap-

shot contains 3.7M entities (e.g., alert, host, logs) and 5.6M

relations (e.g., application, protocol), with 34 labels. (3)

Offshore (Section I) contains in total 839K offshore entities

(e.g., companies, countries, people), 3.6M relationships (e.g.,

2https://aminer.org/citation

establish, close) and 433 labels, with 12 snapshots covering

40 years of offshore entities and financial activities.

We extracted keywords randomly from node labels and

properties with a proper candidate size (300-1000).

Algorithms. We have implemented the algorithms below in

Java: (1) Algorithm BDis (including operator Verify, Sec-

tion IV), (2) Algorithm IncDis (including operator incVerify,

Section V), compared with: (a) IncDisn, its counterpart that

processes ΔEi in multiple batches of a tunable buffer size

n; and (b) IncSub, a counterpart of IncDis that mines event

patterns as frequent subgraphs (by replacing incVerify with

VF2, a subgraph matching algorithm);

We ran all our tests 3 times on a Linux machine powered

by an Intel 2.30 GHz CPU with 64 GB of memory.

Experimental results. We report the details of our findings.

Exp-1: Performance of BDis. Our first observation is that it

is quite feasible to discover active event patterns over large

graph streams. Over Offshore, Citation and IDS with in total

2.5M , 17.3M and 9.3M nodes and edges, it takes BDis
less than 6.5, 3.1 and 1.4 minutes to find all 5-maximal

active event patterns. It takes more time over denser and

more diversified graphs, as expected. In contrast, even the

incremental version of subgraph mining IncSub takes more

than 1000 seconds over the smallest snapshot of Offshore
with |ΔE| = 10K, and does not run to completion in other

datasets. We hence omit the performance of IncSub.

Exp-2: Performance of IncDis. We evaluate the perfor-

mance of IncDis, compared to BDis, IncDisn and IncSub.

Varying ΔE. We report the impact of |ΔE| to IncDis
over Citation, Offshore, and IDS, in Fig 5(a)-Fig. 5(c),

respectively. We set buffer size n=1K for IncDisn.

For Citation, we start with G0=(4.3M, 13M), and vary

the size of ΔE0 from 10K to 70K. Fig. 5(a) tells us the

following. (1) IncDis and IncDisn further improve BDis by

21.1 and 14.62 times, respectively. Indeed, both explore a

bounded affected area. (2) IncDis is feasible over large graph

streams. It takes 7.0 seconds to maintain active patterns over

40K updates. (3) Both IncDis and IncDisn take more time

with larger |ΔE| due to larger affected mining area. IncDis
is on average 1.44 times faster. This is due to more patterns

can be pruned when more updates are “foreseen” for IncDis.

Fig. 5(b) (resp. Fig. 5(c)) tells us that IncDis is on average

12.55 and 1.71 (resp. 8.04 and 3.19) times faster than BDis
and IncDisn, respectively, over Offshore (resp. IDS). IncDis
improves BDis better for Citation than Offshore and IDS.

This is because from-scratch computation is relatively more

expensive over denser and more heterogeneous graphs.

Varying b. We next evaluate the impact of the size bound b.
Fixing |ΔE| = 40K, we vary b from 3 to 7 over Citation.

As shown in Fig. 5(d), all the algorithms take more time with

larger b, due to more event patterns need to be verified. On

the other hand, both IncDis and IncDisn are less sensitive
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Figure 5: Performance evaluation

Figure 6: Real-life event patterns (Offshore & IDS)

compared to BDis, due to that they only verify affected

patterns rather than all the possible ones.

Varying θ. Fixing |ΔE|=40K, we vary θ from 0.1 to 0.35.

As shown in Fig. 5(e), all the algorithms take less time with

larger θ, since more patterns can be pruned. Again, IncDis
and IncDisn are less sensitive compared to BDis, due to that

the affected patterns are less sensitive to the change of θ.

Exp-3: Effectiveness. We inspected the top active event

patterns and their matches discovered by IncDis.

Real-world events. We report 3 active event patterns (Fig. 6).

(1) Event P9 (Offshore) pertains to keywords “Bearer share”

and “Company” (focus) along with its matches reveals a

significant move of active bearer shares companies (which

are not required to register owner’s name) in 2005 from tax

heaven “British Virgin Islands” to “Panama”, due to that the

former cracked down on bearer shares.

(2) Event patterns P10 and P11 capture two active commu-

nication patterns in IDS. P10 pertains to keyword and focus

“IP” with x and y as focus indicates frequent communication

via internet relay chat, as indicated by the edge labeled IRC.

P11 carries keywords and focus “IP” and “WebServer” finds

potential attack net flows.

Event analysis. By issuing online query supported by IncDis,
we show the activeness of patterns P10 and P11 over a stream

of 80 snapshots with 5-minutes interval in Fig. 7. We found

that the peaks of their activeness trace back to active upload

of IRC softwares to targeted hosts (P10) by attackers, and

a trend of DDoS attacks (P11) that takes advantage of IRC

botnets [13]. Interestingly, larger α (hence more weights on

recent events) helps to “amplify” such trend. This suggests

practical applications of our methods in event analysis.

VII. CONCLUSIONS

We have introduced a class of event patterns to capture ap-

proximate occurrence of events over graph streams. We have

developed both from-scratch and incremental algorithms to

�

�

�

�

Figure 7: Activeness of P10 (IRC) and P11 (DDos) in IDS over
5-minutes (80 snapshots)

discover event patterns. We have shown that the incremental

algorithm incurs a bounded cost determined by necessary

amount of computation. Our experimental study has verified

the efficiency and effectiveness of the algorithms.
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