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	46	

Abstract	47	

Background:	Taxonomic	classification	of	marker-gene	sequences	 is	an	 important	 step	 in	48	

microbiome	 analysis.	 Results:	 We	 present	 q2-feature-classifier	49	

(https://github.com/qiime2/q2-feature-classifier),	 a	 QIIME	 2	 plugin	 containing	 several	50	

novel	machine-learning	and	alignment-based	taxonomy	classifiers	that	meet	or	exceed	the	51	

accuracy	 of	 existing	 methods	 for	 marker-gene	 amplicon	 sequence	 classification.	 We	52	

evaluated	and	optimized	 several	 commonly	used	 taxonomic	 classification	methods	 (RDP,	53	

BLAST,	 UCLUST)	 and	 several	 new	methods	 (a	 scikit-learn	 naive	 Bayes	machine-learning	54	

classifier,	 and	 alignment-based	 taxonomy	 consensus	methods	 of	 VSEARCH,	 BLAST+,	 and	55	

SortMeRNA)	 for	 classification	of	marker-gene	amplicon	sequence	data.	Conclusions:	Our	56	
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results	illustrate	the	importance	of	parameter	tuning	for	optimizing	classifier	performance,	57	

and	 we	 make	 recommendations	 regarding	 parameter	 choices	 for	 a	 range	 of	 standard	58	

operating	 conditions.	 q2-feature-classifier	 and	 our	 evaluation	 framework,	 tax-credit,	 are	59	

both	free,	open-source,	BSD-licensed	packages	available	on	GitHub.		60	

	61	

Background	62	

High-throughput	 sequencing	 technologies	 have	 transformed	our	 ability	 to	 explore	63	

complex	microbial	 communities,	offering	 insight	 into	microbial	 impacts	on	human	health	64	

[1]	 and	 global	 ecosystems	 [2].	 This	 is	 achieved	 most	 commonly	 by	 sequencing	 short,	65	

conserved	marker	genes	amplified	with	 ‘universal’	PCR	primers,	such	as	16S	rRNA	genes	66	

for	bacteria	 and	archaea,	 or	 internal	 transcribed	 spacer	 (ITS)	 regions	 for	 fungi.	Targeted	67	

marker-gene	primers	can	also	be	used	to	profile	specific	taxa	or	functional	groups,	such	as	68	

nifH	 genes	 [3].	 These	 sequences	 often	 are	 compared	 against	 an	 annotated	 reference	69	

sequence	database	to	determine	the	likely	taxonomic	origin	of	each	sequence	with	as	much	70	

specificity	as	possible.	Accurate	and	specific	taxonomic	information	is	a	crucial	component	71	

of	many	experimental	designs.	72	

Challenges	in	this	process	include	the	short	length	of	typical	sequencing	reads	with	73	

current	technology,	sequencing	and	PCR	errors	[4],	selection	of	appropriate	marker	genes	74	

that	 contain	 sufficient	 heterogeneity	 to	 differentiate	 target	 species	 but	 that	 are	75	
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homogeneous	 enough	 in	 some	 regions	 to	 design	 broad-spectrum	 primers,	 quality	 of	76	

reference	sequence	annotations	[5],	and	selection	of	a	method	that	accurately	predicts	the	77	

taxonomic	 affiliation	 of	 millions	 of	 sequences	 at	 low	 computational	 cost.	 Numerous	78	

methods	have	been	developed	for	taxonomy	classification	of	DNA	sequences,	but	few	have	79	

been	directly	compared	in	the	specific	case	of	short	marker-gene	sequences.		80	

We	 introduce	 q2-feature-classifier,	 a	 QIIME	 2	 (https://qiime2.org/)	 plugin	 for	81	

taxonomy	classification	of	marker-gene	sequences.	QIIME	2	 is	 the	successor	to	the	QIIME	82	

[6]	microbiome	 analysis	 package.	 The	 q2-feature-classifier	 plugin	 supports	 use	 of	 any	 of	83	

the	numerous	machine-learning	classifiers	available	in	scikit-learn	[7][8]	for	marker	gene	84	

taxonomy	classification,	and	currently	provides	two	alignment-based	taxonomy	consensus	85	

classifiers	based	on	BLAST+	[9]	and	vsearch	[10].	We	evaluate	the	latter	two	methods	and	86	

the	 scikit-learn	multinomial	 naive	 Bayes	 classifier	 (labelled	 “Naive	 Bayes”	 in	 the	 Results	87	

section)	 for	 the	 first	 time.	We	 show	 that	 the	 classifiers	 provided	 in	 q2-feature-classifier	88	

match	 or	 outperform	 the	 classification	 accuracy	 of	 several	 widely-used	 methods	 for	89	

sequence	 classification,	 and	 that	 performance	 of	 the	 naive	 Bayes	 classifier	 can	 be	90	

significantly	 increased	 by	 providing	 it	 with	 information	 regarding	 expected	 taxonomic	91	

composition.	92	

We	 also	 developed	 tax-credit	 (https://github.com/caporaso-lab/tax-credit-code/	93	

and	 https://github.com/caporaso-lab/tax-credit-data/),	 an	 	 extensible	 computational	94	

framework	 for	 evaluating	 taxonomy	 classification	 accuracy.	 This	 framework	 streamlines	95	

the	 process	 of	 methods	 benchmarking	 by	 compiling	 multiple	 different	 test	 data	 sets,	96	

including	mock	communities	[11]	and	simulated	sequence	reads.	It	additionally	stores	pre-97	
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computed	results	from	previously	evaluated	methods,	including	the	results	presented	here,	98	

and	 provides	 a	 framework	 for	 parameter	 sweeps	 and	 method	 optimization.	 tax-credit	99	

could	be	used	as	an	evaluation	framework	by	other	research	groups	in	the	future,	or	its	raw	100	

data	could	be	easily	extracted	for	integration	in	another	evaluation	framework.		101	

	102	

Results	103	

We	 used	 tax-credit	 to	 optimize	 and	 compare	 multiple	 marker-gene	 sequence	104	

taxonomy	 classifiers.	 We	 evaluated	 two	 commonly	 used	 classifiers	 that	 are	 wrapped	 in	105	

QIIME	1	(RDP	Classifier	(version	2.2)	[12],	legacy	BLAST	(version	2.2.22)	[13]),	two	QIIME	106	

1	alignment-based	consensus	taxonomy	classifiers	(the	default	UCLUST	classifier	available	107	

in	 QIIME	 1	 (based	 on	 version	 1.2.22q)	 [14],	 and	 SortMeRNA	 (version	 2.0	 29/11/2014)		108	

[15]),	 two	alignment-based	consensus	 taxonomy	classifiers	newly	released	 in	q2-feature-109	

classifier	(based	on	BLAST+	(version	2.6.0)	[9]	and	vsearch	(version	2.0.3)	[10]),	and	a	new	110	

multinomial	naive	Bayes	machine-learning	classifier	in	q2-feature-classifier	(see	Materials	111	

and	 Methods	 for	 information	 about	 q2-feature-classifier	 methods	 and	 source	 code	112	

availability).	 We	 performed	 parameter	 sweeps	 to	 determine	 optimal	 parameter	113	

configurations	for	each	method.	114	
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Mock	community	evaluations	115	

We	 first	 benchmarked	 classifier	 performance	 on	 mock	 communities,	 which	 are	116	

artificially	constructed	mixtures	of	microbial	cells	or	DNA	combined	at	known	ratios	[11].	117	

We	 utilized	 15	 bacterial	 16S	 rRNA	 gene	 mock	 communities	 and	 4	 fungal	 internal	118	

transcribed	 spacer	 (ITS)	mock	 communities	 (Table	 1)	 sourced	 from	mockrobiota	 [11],	 a	119	

public	 repository	 for	 mock	 community	 data.	 Mock	 communities	 are	 useful	 for	 method	120	

benchmarking	 because:	 1)	 unlike	 for	 simulated	 communities,	 they	 allow	 quantitative	121	

assessments	of	method	performance	under	actual	operating	conditions,	 i.e.,	 incorporating	122	

real	sequencing	errors	that	can	be	difficult	 to	model	accurately;	and	2)	unlike	 for	natural	123	

community	 samples,	 the	 actual	 composition	 of	 a	mock	 community	 is	 known	 in	 advance,	124	

allowing	quantitative	assessments	of	community	profiling	accuracy.	125	

An	additional	priority	was	to	test	the	effect	of	setting	class	weights	on	classification	126	

accuracy	 for	 the	 naive	 Bayes	 classifier	 implemented	 in	 q2-feature-classifier.	 In	 machine	127	

learning,	 class	 weights	 or	 prior	 probabilities	 are	 vectors	 of	 weights	 that	 specify	 the	128	

frequency	 at	 which	 each	 class	 is	 expected	 to	 be	 observed	 (and	 should	 be	 distinguished	129	

from	the	use	of	this	term	under	Bayesian	inference	as	a	probability	distribution	of	weights	130	

vectors).	An	alternative	 to	setting	class	weights	 is	 to	assume	that	each	query	sequence	 is	131	

equally	 likely	 to	 belong	 to	 any	 of	 the	 taxa	 that	 are	 present	 in	 the	 reference	 sequence	132	

database.	This	assumption,	known	as	uniform	class	priors	 in	the	context	of	a	naive	Bayes	133	

classifier,	 is	made	by	the	RDP	classifier	[12],	and	its	 impact	on	marker-gene	classification	134	

accuracy	 has	 yet	 to	 be	 validated.	 Making	 either	 assumption,	 that	 the	 class	 weights	 are	135	
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uniform	 or	 known	 to	 some	 extent,	 will	 affect	 results	 and	 cannot	 be	 avoided.	 The	 mock	136	

communities	 have	 taxonomic	 abundances	 that	 are	 far	 from	 uniform	 over	 the	 set	 of	137	

reference	taxonomies,	as	any	real	data	set	must.	We	can	therefore	use	them	to	assess	the	138	

impact	 of	 making	 assumptions	 regarding	 class	 weights.	 Where	 we	 have	 set	 the	 class	139	

weights	 to	 the	 known	 taxonomic	 composition	 of	 a	 sample,	 we	 have	 labelled	 the	 results	140	

“bespoke”.	141	

We	 evaluated	 classifier	 performance	 accuracy	 on	 mock	 community	 sequences	142	

classified	at	taxonomic	levels	from	class	through	species.	Mock	community	sequences	were	143	

classified	 using	 the	 Greengenes	 99%	 OTUs	 16S	 rRNA	 gene	 or	 UNITE	 99%	 OTUs	 ITS	144	

reference	sequences	for	bacterial	and	fungal	mock	communities,	respectively.	As	expected,	145	

classification	accuracy	decreased	as	classification	depth	 increased,	and	all	methods	could	146	

predict	the	taxonomic	affiliation	of	mock	community	sequences	down	to	genus	level	with	147	

median	 F-measures	 exceeding	 0.8	 across	 all	 parameter	 sets	 (minimum:	 UCLUST	 F=0.81,	148	

maximum:	 Naive	 Bayes	 Bespoke	 F=1.00)	 (Figure	 1A).	 However,	 species	 affiliation	 was	149	

predicted	 with	 much	 lower	 and	 more	 variable	 accuracy	 among	 method	 configurations	150	

(median	F-measure	minimum:	UCLUST	F=0.42,	maximum:	Naive	Bayes	Bespoke	F=0.95),	151	

highlighting	 the	 importance	of	 parameter	 optimization	 (discussed	 in	more	detail	 below).	152	

Figure	1A	illustrates	line	plots	of	mean	F-measure	at	each	taxonomic	level,	averaged	across	153	

all	 classifier	 configurations;	 hence,	 classifier	 performance	 is	 underestimated	 for	 some	154	

classifiers	 that	 are	 strongly	 affected	 by	 parameter	 configurations	 or	 for	 which	 a	 wider	155	

range	of	 parameters	were	 tested	 (e.g.,	Naive	Bayes).	 Comparing	only	 optimized	methods	156	

(i.e.,	the	top-performing	parameter	configurations	for	each	method),	Naive	Bayes	Bespoke	157	
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achieved	significantly	higher	F-measure	 (paired	 t-test	P	<	0.05)	 (Figure	1B),	 recall,	 taxon	158	

detection	rate,	taxon	accuracy	rate	(Figure	1C),	and	lower	Bray-Curtis	dissimilarity	than	all	159	

other	methods	(Figure	1D).		160	

Mock	 communities	 are	 necessarily	 simplistic,	 and	 cannot	 assess	 method	161	

performance	 across	 a	 diverse	 range	 of	 taxa.	 Sequences	 matching	 the	 expected	 mock	162	

community	sequences	are	not	removed	from	the	reference	database	prior	to	classification,	163	

in	 order	 to	 replicate	 normal	 operating	 conditions	 and	 assess	 recovery	 of	 expected	164	

sequences.	However,	this	approach	may	implicitly	bias	toward	methods	that	find	an	exact	165	

match	to	the	query	sequences,	and	does	not	approximate	natural	microbial	communities	in	166	

which	 few	 or	 no	 detected	 sequences	 exactly	 match	 the	 reference	 sequences.	 Hence,	 we	167	

performed	 simulated	 sequence	 read	 classifications	 (described	 below)	 to	 further	 test	168	

classifier	performance.	169	

Cross-validated	taxonomy	classification	170	

Simulated	 sequence	 reads,	 derived	 from	 reference	 databases,	 allow	 us	 to	 assess	171	

method	performance	across	a	greater	diversity	of	sequences	than	a	single	mock	community	172	

generally	 	 encompasses.	We	 first	 evaluated	 classifier	 performance	 using	 stratified	 k-fold	173	

cross-validation	of		taxonomy	classification	to	simulated	reads.	The	k-fold	cross-validation	174	

strategy	 is	 modified	 slightly	 to	 account	 for	 the	 hierarchical	 nature	 of	 taxonomic	175	

classifications,	which	all	of	the	classifiers	in	this	study	(with	the	exception	of	legacy	BLAST)	176	

handle	by	assigning	the	lowest	(i.e.,	most	specific)	taxonomic	level	where	the	classification	177	

surpasses	 some	 user-defined	 “confidence”	 or	 “consensus”	 threshold	 (see	 materials	 and	178	
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methods).	 The	modification	 is	 to	 truncate	 any	 expected	 taxonomy	 in	 each	 test	 set	 to	 the	179	

maximum	level	at	which	an	instance	of	that	taxonomy	exists	in	the	training	set.	Simulated	180	

reads	were	generated	from	Greengenes	99%	OTUs	16S	rRNA	gene	or	UNITE	99%	OTUs	ITS	181	

reference	sequences	with	species-level	annotations.	Greengenes	16S	rRNA	gene	simulated	182	

reads	 were	 generated	 from	 full-length	 16S	 rRNA	 genes	 (primers	 27F/1492R)	 and	 V4	183	

(primers	515F/806R)	and	V1-3	sub-domains	(primers	27F/534R).	The	simulated	reads	do	184	

not	incorporate	artificial	sequencing	errors	(see	materials	and	methods	for	more	details).	185	

In	this	set	of	tests	and	below	for	novel	taxa,	the	“bespoke”	classifier	had	prior	probabilities	186	

that	were	inferred	from	the	training	set	each	time	it	was	trained.	187	

	 Classification	 of	 cross-validated	 reads	 performed	 better	 at	 coarser	 levels	 of	188	

classification	 (Figure	 2A),	 similar	 to	 the	 trend	 observed	 in	mock	 community	 results.	 For	189	

bacterial	 sequences,	 average	 classification	 accuracy	 for	 all	 methods	 declined	 from	 near-190	

perfect	 scores	 at	 family	 level	 (V4	 domain	median	 F-measure	minimum:	 BLAST+	 F=0.92,	191	

maximum:	legacy	BLAST	F=0.99),	but	still	retained	accurate	scores	at	species	level	(median	192	

minimum:	 BLAST+	 F=0.76,	 maximum:	 SortMeRNA	 F=0.84),	 relative	 to	 some	 mock	193	

community	 data	 sets	 (Figure	 2A).	 Fungal	 sequences	 exhibited	 similar	 performance,	with	194	

the	 exception	 that	 mean	 BLAST+	 and	 vsearch	 performance	 was	 markedly	 lower	 at	 all	195	

taxonomic	levels,	indicating	high	sensitivity	to	parameter	configurations,	and	species-level	196	

F-measures	were	 in	 general	much	 lower	 (median	minimum:	 BLAST+	 F=0.17,	maximum:	197	

UCLUST	F=0.45)	than	those	of	bacterial	sequence	classifications	(Figure	2A).		198	

Species-level	classifications	of	16S	rRNA	gene	simulated	sequences	were	best	with	199	

optimized	 UCLUST	 and	 SortMeRNA	 configurations	 for	 V4	 domain,	 and	 Naive	 Bayes	 and	200	
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RDP	 for	 V1-3	 domain	 and	 full-length	 16S	 rRNA	 gene	 sequences	 (Figure	 2B).	 	 UCLUST	201	

achieved	 the	 highest	 F-measure	 for	 ITS	 classification	 (F	 =	 0.51).	 However,	 all	 optimized	202	

classifiers	achieved	similar	F-measure	ranges,	with	the	exception	of	 legacy	BLAST	for	 ITS	203	

sequences	(Figure	2B).	204	

Species-level	 classification	 performance	 of	 16S	 rRNA	 gene	 simulated	 reads	 was	205	

significantly	 correlated	 between	 each	 sub-domain	 and	 the	 full-length	 gene	 sequences	206	

(Figure	2C).	In	our	tests,	full-length	sequences	exhibited	slightly	lower	accuracy	than	V1-3	207	

and	 V4	 sub-domains.	 The	 relative	 performance	 of	 full-length	 16S	 rRNA	 genes	 versus	208	

hypervariable	 sub-domain	 reads	 is	 variable	 in	 the	 literature	 [12,	16–21],	 and	our	 results	209	

add	another	data	point	to	the	ongoing	discussion	of	this	topic.	Nevertheless,	species-level	210	

classifications	yielded	strong	correlation	between	method	configurations	(Figure	2C)	and	211	

optimized	 method	 performance	 (Figure	 2B),	 suggesting	 that	 primer	 choice	 impacts	212	

classification	accuracy	uniformly	across	all	methods.	Hence,	we	focused	on	V4	sub-domain	213	

reads	for	downstream	analyses.	214	

	215	

Novel	taxon	classification	evaluation	216	

	 Novel	taxon	classification	offers	a	unique	perspective	on	classifier	behavior,	217	

assessing	how	classifiers	perform	when	challenged	with	a	“novel”	clade	that	is	not	218	

represented	in	the	reference	database	[22–25].	An	ideal	classifier	should	identify	the	219	

nearest	taxonomic	lineage	to	which	this	taxon	belongs,	but	no	further.	In	this	evaluation,	a	220	

reference	database	is	subsampled	k	times	to	generate	query	and	reference	sequence	sets,	221	
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as	for	cross-validated	classification,	but	two	important	distinctions	exist:		1)	the	reference	222	

database	used	for	classification	excludes	any	sequence	that	matches	the	taxonomic	223	

affiliation	of	the	query	sequences	at	taxonomic	level	L,	the	taxonomic	rank	at	which	224	

classification	is	being	attempted;	and	2)	this	is	performed	at	each	taxonomic	level,	in	order	225	

to	assess	classification	performance	when	each	method	encounters	a	“novel”	species,	226	

genus,	family,	etc.	227	

Due	to	these	differences,	interpretation	of	novel	taxon	classification	results	is	228	

different	from	that	of	mock	community	and	cross-validated	classifications.	For	the	latter,	229	

classification	accuracy	may	be	assessed	at	each	taxonomic	level	for	each	classification	230	

result:	mean	classification	accuracy	at	family	level	and	species	level	evaluate	the	same	231	

results	but	focus	on	different	taxonomic	levels	of	classification.	For	novel	taxa,	however,	232	

different	query	and	reference	sequences	are	compiled	for	classification	at	each	taxonomic	233	

level	and	separate	classifications	are	performed	for	each.	Hence,	classifications	at	family	234	

and	species	level	are	independent	events	—	one	assesses	how	accurately	each	method	235	

performs	when	it	encounters	a	“novel”	family	that	is	not	represented	in	the	reference	236	

database,	the	other	when	a	“novel”	species	is	encountered.		237	

Novel	taxon	evaluations	employ	a	suite	of	modified	metrics,	to	provide	more	238	

information	on	what	types	of	classification	errors	occur.	Precision,	recall,	and	F-measure	239	

calculations	at	each	taxonomic	level	L	assess	whether	an	accurate	taxonomy	classification	240	

was	made	at	level	L-1:	for	example,	a	“novel”	species	should	be	assigned	a	genus,	because	241	

the	correct	species	class	is	not	represented	within	the	reference	database.	Any	species-242	

level	classification	in	this	scenario	is	an	overclassification	(affecting	both	recall	and	243	
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precision)	[25].	Overclassification	is	one	of	the	key	metrics	for	novel	taxa	evaluation,	244	

indicating	the	degree	to	which	novel	sequences	will	be	interpreted	as	known	organisms.	245	

This	overclassification	is	often	highly	undesirable	because	it	leads,	for	example,	to	the	246	

incorrect	classification	of	unknown	but	harmless	environmental	sequences	as	known	247	

pathogens.	Novel	sequences	that	are	classified	within	the	correct	clade,	but	to	a	less	specific	248	

level	than	L,	are	underclassified	(affecting	recall	but	not	precision)	[25].	Sequences	that	are	249	

classified	into	a	completely	different	clade	are	misclassified	(affecting	both	recall	and	250	

precision)	[25].	251	

Precision,	recall,	and	F-measure	all	gradually	increase	from	average	scores	near	0.0	252	

at	class	level,	reaching	peak	scores	at	genus	level	for	bacteria	and	species	level	for	fungi	253	

(Figure	3A-C).	These	trends	are	paired	with	gradual	decreases	in	underclassification	and	254	

misclassification	rates	for	all	classification	methods,	indicating	that	all	classifiers	perform	255	

poorly	when	they	encounter	sequences	with	no	known	match	at	the	class,	order,	or	family	256	

levels	(Figure	3D-F).	At	species	level,	UCLUST,	BLAST+,	and	vsearch	achieved	significantly	257	

better	F-measures	than	all	other	methods	for	16S	rRNA	gene	classifications	(P	<	0.05)	258	

(Figure	3G).	UCLUST	achieved	significantly	better	F-measures	than	all	other	methods	for	259	

ITS	classifications	(Figure	3G).	Over-,	under-,	and	misclassification	scores	are	less	260	

informative	for	optimizing	classifiers	for	real	use	cases,	as	most	methods	could	be	261	

optimized	to	yield	near-zero	scores	for	each	of	these	metrics	separately,	but	only	through	262	

extreme	configurations,	leading	to	F-measures	that	would	be	unacceptable	under	any	263	

scenario.	Note	that	all	comparisons	were	made	between	methods	optimized	to	maximize	264	

(or	minimize)	a	single	metric,	and	hence	the	configurations	that	maximize	precision	are	265	
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frequently	different	from	those	that	maximize	recall	or	other	metrics.	This	trade-off	266	

between	different	metrics	is	discussed	in	more	detail	below.		267	

The	novel	taxon	evaluation	provides	an	estimate	of	classifier	performance	given	a	268	

specific	reference	database,	but	its	generalization	is	limited	by	the	quality	of	the	reference	269	

databases	available	and	by	the	label-based	approach	used	for	partitioning	and	evaluation.	270	

Mislabeled	and	polyphyletic	clades	in	the	database,	e.g.	Clostridium	group,	increase	the	271	

probability	of	misclassification.	A	complementary	analysis	based	on	sequence	similarity	272	

between	a	novel	query	and	top	reference	hit	could	mitigate	this	issue.	However,	we	choose	273	

to	apply	a	label-based	approach,	as	it	better	reflects	the	biological	problem	that	users	can	274	

expect	to	encounter;	i.e.,	using	a	particular	reference	sequence	database	(which	will	275	

contain	some	quantity	of	mislabeled	and	polyphyletic	taxa	inherent	to	currently	available	276	

resources),	how	likely	is	a	classifier	to	misclassify	a	taxonomic	label?	277	

	278	

Multi-evaluation	method	optimization	279	

The	mock	community	and	cross-validation	classification	evaluations	yielded	similar	trends	280	

in	configuration	performance,	but	optimizing	parameters	choices	for	the	novel	taxa	281	

generally	lead	to	suboptimal	choices	for	the	mock	community	and	cross-validation	tests	282	

(Figure	4).	We	sought	to	determine	the	relationship	between	method	configuration	283	

performance	for	each	evaluation,	and	use	this	information	to	select	configurations	that	284	

perform	best	across	all	evaluations.	For	16S	rRNA	gene	sequence	species-level	285	

classification,	method	configurations	that	achieve	maximum	F-measures	for	mock	and	286	
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cross-validated	sequences	perform	poorly	for	novel	taxon	classification	(Figure	4B).	287	

Optimization	is	more	straightforward	for	genus-level	classification	of	16S	rRNA	gene	288	

sequences	(Figure	4A)	and	for	fungal	sequences	(Figure	4C-D),	for	which	configuration	289	

performance	(measured	as	mean	F-measure)	is	maximized	by	similar	configurations	290	

among	all	three	evaluations.		291	

To	identify	optimal	method	configurations,	we	set	accuracy	score	minimum	292	

thresholds	for	each	evaluation	by	identifying	natural	breaks	in	the	range	of	quality	scores,	293	

selecting	methods	and	parameter	ranges	that	met	these	criteria.	Table	2	lists	method	294	

configurations	that	maximize	species-level	classification	accuracy	scores	for	mock	295	

community,	cross-validated,	and	novel	taxon	evaluations	under	several	common	operating	296	

conditions.	“Balanced”	configurations	are	recommended	for	general	use,	and	are	methods	297	

that	maximize	F-measure	scores.	“Precision”	and	“Recall”	configurations	maximize	298	

precision	and	recall	scores,	respectively,	for	mock,	cross-validated,	and	novel-taxa	299	

classifications	(Table	2).	“Novel”	configurations	optimize	F-measure	scores	for	novel	taxon	300	

classification,	and	secondarily	for	mock	and	cross-validated	performance	(Table	2).	These	301	

configurations	are	recommended	for	use	with	sample	types	that	are	expected	to	contain	302	

large	proportions	of	unidentified	species,	for	which	overclassification	can	be	excessive.	303	

However,	these	configurations	may	not	perform	optimally	for	classification	of	known	304	

species	(i.e.,	underclassification	rates	will	be	higher).	For	fungi,	the	same	configurations	305	

recommended	for	“Precision”	perform	well	for	novel	taxon	classification	(Table	2).	For	16S	306	

rRNA	gene	sequences,	BLAST+,	UCLUST,	and	vsearch	consensus	classifiers	perform	best	for	307	

novel	taxon	classification	(Table	2).	308	
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	309	

Computational	runtime		310	

High-throughput	sequencing	platforms	(and	experiments)	continue	to	yield	increasing	311	

sequence	counts,	which	—	even	after	quality	filtering	and	dereplication	or	operational	312	

taxonomic	unit	clustering	steps	common	to	most	microbiome	analysis	pipelines	—	may	313	

exceed	thousands	of	unique	sequences	that	need	classification.	Increasing	numbers	of	314	

query	sequences	and	references	sequences	may	lead	to	unacceptable	runtimes,	and	under	315	

some	experimental	conditions	the	top-performing	method	(based	on	precision,	recall,	or	316	

some	other	metric)	may	be	insufficient	to	handle	large	numbers	of	sequences	within	an	317	

acceptable	time	frame.	For	example,	quick	turnarounds	may	be	vital	under	clinical	318	

scenarios	as	microbiome	evaluation	becomes	common	clinical	practice,	or	commercial	319	

scenarios,	when	large	sample	volumes	and	client	expectations	may	constrain	turnaround	320	

times	and	method	selection.	321	

	 We	assessed	computational	runtime	as	a	linear	function	of	1)	the	number	of	query	322	

sequences	and	2)	the	number	of	reference	sequences.	Linear	dependence	is	empirically	323	

evident	in	Figure	5.	For	both	of	these	metrics,	the	slope	is	the	most	important	measure	of	324	

performance.	The	intercept	may	include	the	amount	of	time	taken	to	train	the	classifier,	325	

preprocess	the	reference	sequences,	load	preprocessed	data,	or	other	“setup”	steps	that	326	

will	diminish	in	significance	as	sequence	counts	grow,	and	hence	is	negligible.	327	

	 UCLUST	(0.000028	s/sequence),	vsearch	(0.000072	s/sequence),	BLAST+	328	

(0.000080	s/sequence),	and	legacy	BLAST	(0.000100	s/sequence)	all	exhibit	shallow	329	
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slopes	with	increasing	numbers	of	reference	sequences.	Naive	Bayes	(0.000483	330	

s/sequence)	and	SortMeRNA	(0.000543	s/sequence)	yield	moderately	higher	slopes,	and	331	

RDP	(0.001696	s/sequence)	demonstrates	the	steepest	slope	(Figure	5A).	For	runtime	as	a	332	

function	of	query	sequence	count,	UCLUST	(0.002248	s/sequence),	RDP	(0.002920	333	

s/sequence),	and	SortMeRNA	(0.003819	s/sequence)	have	relatively	shallow	slopes	334	

(Figure	5B).		Naive	Bayes	(0.022984	s/sequence),	BLAST+	(0.026222s/sequence)	,	and	335	

vsearch	(0.030190	s/sequence)	exhibit	greater	slopes.	Legacy	BLAST	(0.133292	336	

s/sequence)	yielded	a	slope	magnitudes	higher	than	other	methods,	rendering	this	method	337	

impractical	for	large	data	sets.		338	

	339	

	340	

Discussion	341	

We	have	developed	and	validated	several	machine-learning	and	alignment-based	342	

classifiers	provided	in	q2-feature-classifier	and	benchmarked	these	classifiers,	as	well	as	343	

other	common	classification	methods,	to		evaluate	their	strengths	and	weaknesses	for	344	

marker-gene	amplicon	sequence	classification	across	a	range	of	parameter	settings	for	345	

each	(Table	2).	346	

Each	classifier	required	some	degree	of	optimization	to	define	top-performing	347	

parameter	configurations,	with	the	sole	exception	of	QIIME	1’s	legacy	BLAST	wrapper,	348	

which	was	unaffected	by	its	only	user-defined	parameter,	e-value,	over	a	range	of	10-10	to	349	
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1000.	For	all	other	methods,	performance	varied	widely	depending	on	parameter	settings,	350	

and	a	single	method	could	achieve	among	the	worst	performance	with	one	configuration	351	

but	among	the	best	performance	with	another.	Configurations	greatly	affected	accuracy	352	

with	mock	community,	cross-validated,	and	novel	taxon	evaluations,	indicating	that	353	

optimization	is	necessary	under	a	variety	of	performance	conditions,	and	optimization	for	354	

one	condition	may	not	necessarily	translate	to	another.	Mock	community	and	cross-355	

validated	evaluations	exhibited	similar	results,	but	novel	taxon	evaluations	selected	356	

different	optimal	configurations	for	most	methods	(Figure	4),	indicating	that	configurations	357	

optimized	to	one	condition,	e.g.,	high-recall	classification	of	known	sequences,	may	be	less	358	

suited	for	other	conditions,	e.g.,	classification	of	novel	sequences.	Table	2	lists	the	top-359	

performing	configuration	for	each	method	for	several	standard	performance	conditions.	360	

Optimal	configurations	also	varied	among	different	evaluation	metrics.	Precision	361	

and	recall,	in	particular,	exhibited	some	mutual	opposition,	such	that	methods	increasing	362	

precision	reduced	recall.	For	this	reason,	F-measure,	the	harmonic	mean	of	precision	and	363	

recall,	is	a	useful	metric	for	choosing	configurations	that	are	well	balanced	for	average	364	

performance.	“Balanced”	method	configurations	—	which	maximize	F-measure	scores	for	365	

mock,	cross-validated,	and	novel	taxon	evaluations	(Table	2)	—	are	best	suited	for	a	wide	366	

range	of	user	conditions.	The	naive	Bayes	classifier	with	k-mer	lengths	of	6	or	7	and	367	

confidence	=	0.7	(or	confidence	≥	0.9	if	using	bespoke	class	weights),	RDP	with	confidence	368	

=	0.6-0.7,	and	UCLUST	(minimum	consensus	=	0.51,	minimum	similarity	=	0.9,	max	accepts	369	

=	3)	perform	best	under	these	conditions	(Table	2).	Performance	is	dramatically	improved	370	

using	bespoke	class	weights	for	16S	rRNA	sequences	(Figure	4A-B),	though	this	approach	is	371	
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developmental	and	only	applicable	when	the	expected	composition	of	samples	is	known	in	372	

advance	(a	scenario	that	is	becoming	increasingly	common	with	the	increasing	quantity	of	373	

public	microbiome	data,	and	which	could	be	aided	by	microbiome	data	sharing	resources	374	

such	as	Qiita	(http://qiita.microbio.me)).	For	ITS	sequences,	the	naive	Bayes	classifier	with	375	

k-mer	lengths	of	6	or	7	and	confidence	≥	0.9,	or	RDP	with	confidence	=	0.7-0.9,	perform	376	

best,	and	the	effects	of	bespoke	class	weights	are	less	pronounced	(Figure	4C-D).		377	

However,	some	users	may	require	high-precision	classifiers	when	false-positives	378	

may	be	more	damaging	to	the	outcome,	e.g.,	for	detection	of	pathogens	in	a	sample.	379	

Precision	scores	are	maximized	by	naive	Bayes	and	RDP	classifiers	with	high	confidence	380	

settings	(Table	2).	Optimizing	for	precision	will	significantly	damage	recall	by	yielding	a	381	

high	number	of	false	negatives.	382	

Other	users	may	require	high-recall	classifiers	when	false-negatives	and	383	

underclassification	hinder	interpretation,	but	false	positives	(mostly	overclassification	to	a	384	

closely	related	species)	are	less	damaging.	For	example,	in	environments	with	high	385	

numbers	of	unidentified	species,	a	high-precision	classifier	may	yield	large	numbers	of	386	

unclassified	sequences;	in	such	cases,	a	second	pass	with	a	high-recall	configuration	(Table	387	

2)	may	provide	useful	inference	of	what	taxa	are	most	similar	to	these	unclassified	388	

sequences.	When	recall	is	optimized,	precision	tends	to	suffer	slightly	(leading	to	similar	F-389	

measure	scores	to	“balanced”	configurations)	but	novel	taxon	classification	accuracy	is	390	

minimized,	as	these	configurations	tend	to	overclassify	(Table	2).	Any	user	prioritizing	391	

recall	ought	to	be	aware	of	and	acknowledge	these	risks,	e.g.,	when	sharing	or	publishing	392	

their	results,	and	understand	that	many	of	the	species-level	classifications	may	be	wrong,	393	
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particularly	if	the	samples	are	expected	to	contain	many	uncharacterized	species.	For	16S	394	

rRNA	gene	sequences,	naive	Bayes	bespoke	classifiers	with	k-mer	lengths	between	12-32	395	

and	confidence	=	0.5	yield	maximal	recall	scores,	but	RDP	(confidence	=	0.5)	and	naive	396	

Bayes	(uniform	class	weights,	confidence	=	0.5,	k-mer	length	=	11,	12,	or	18)	also	perform	397	

well	(Table	2).	Fungal	recall	scores	are	maximized	by	the	same	configurations	398	

recommended	for	“Balanced”	classification,	i.e.,	naive	Bayes	classifiers	with	k-mer	lengths	399	

between	6-7	and	confidence	between	0.92-0.98,	or	RDP	with	confidence	between	0.7-0.9	400	

(Table	2).	401	

Runtime	requirements	may	also	be	the	chief	concern	dictating	method	selection	for	402	

some	users.	QIIME	1’s	UCLUST	wrapper	provides	the	fastest	runtime	while	still	achieving	403	

reasonably	good	performance	for	most	evaluations;	Naive	Bayes,	RDP,	and	BLAST+	also	404	

delivered	reasonably	low	runtime	requirements,	and	outperform	UCLUST	on	most	other	405	

evaluation	metrics.		406	

	 This	study	did	not	compare	methods	for	classification	of	shotgun	metagenome	407	

sequencing	data	sets,	which	present	a	series	of	unique	challenges	that	do	not	exist	for	408	

marker-gene	amplicon	sequence	data.	These	include	much	higher	unique	sequence	counts	409	

(making	runtime	a	greater	priority),	the	use	of	fully	sequenced	genomes	as	reference	410	

sequences,	and	different	analysis	and	quality	control	protocols.	Metagenome	sequences	411	

also	exhibit	heterogenous	coverage	and	length,	unlike	marker-gene	amplicon	sequences,	412	

which	typically	have	uniform	start	sites	and	read	lengths	within	a	single	sequencing	run.	A	413	

recent	benchmark	of	metagenome	taxonomic	profiling	methods	describes	similar	results	to	414	

our	benchmark	of	marker-gene	sequence	classifiers:	most	profilers	perform	well	from	415	
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phylum	to	family	level	but	performance	degrades	at	genus	and	species	levels;	different	416	

methods	display	superior	performance	according	to	different	performance	metrics;	and	417	

parameter	configuration	dramatically	impacts	performance	[26].	In	the	current	study	we	418	

focused	on	benchmarking	and	optimizing	classifiers	for	marker-gene	amplicon	sequence	419	

data,	in	light	of	the	distinct	needs	of	metagenome	and	marker-gene	sequence	datasets.	420	

Conclusions	421	

The	classification	methods	provided	in	q2-feature-classifier	will	support	improved	422	

taxonomy	classification	of	marker-gene	amplicon	sequences,	and	are	released	as	a	free,	423	

open-source	plugin	for	use	with	QIIME	2.	We	demonstrate	that	these	methods	perform	as	424	

well	as	or	better	than	other	leading	taxonomy	classification	methods	on	a	number	of	425	

performance	metrics.	The	naive	Bayes,	vsearch,	and	BLAST+	consensus	classifiers	426	

described	here	are	released	for	the	first	time	in	QIIME	2,	with	optimized	“balanced”	427	

configurations	(Table	2)	set	as	defaults.	428	

We	also	present	the	results	of	a	benchmark	of	several	widely	used	taxonomy	429	

classifiers	for	marker-gene	amplicon	sequences,	and	recommend	the	top-performing	430	

methods	and	configurations	for	the	most	common	user	scenarios.	Our	recommendations	431	

for	“balanced”	methods	(Table	2)	will	be	appropriate	for	most	users	who	are	classifying	432	

16S	rRNA	gene	or	fungal	ITS	sequences,	but	other	users	may	prioritize	high-precision	(low	433	

false-positive)	or	high-recall	(low	false-negative)	methods.	434	
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We	have	also	shown	that	great	potential	exists	for	improving	the	accuracy	of	435	

taxonomy	classifications	by	appropriately	setting	class	weights	for	the	machine	learning	436	

classifiers.	Currently,	no	tools	exist	that	allow	users	to	generate	appropriate	values	for	437	

these	class	weights	in	real	applications.	Compiling	appropriate	class	weights	for	different	438	

sample	types	could	be	a	promising	approach	to	further	improve	taxonomic	classification	of	439	

marker	gene	sequence	reads.	440	

	441	

Methods	442	

Mock	communities	443	

All	 mock	 communities	 were	 sourced	 from	 mockrobiota	 [11].	 Raw	 fastq	 files	 were	444	

demultiplexed	 and	 processed	 using	 tools	 available	 in	 QIIME	 2	 (version	 2017.4)	445	

(https://qiime2.org/).	 Reads	 were	 demultiplexed	 with	 q2-demux	446	

(https://github.com/qiime2/q2-demux)	 and	 quality	 filtered	 and	 dereplicated	 with	 q2-447	

dada2	 [4].	 Representative	 sequence	 sets	 for	 each	 dada2	 sequence	 variant	were	 used	 for	448	

taxonomy	classification	with	each	classification	method.	449	

The	 inclusion	 of	 multiple	 mock	 community	 samples	 is	 important	 to	 avoid	 overfitting;	450	

optimizing	method	 performance	 to	 a	 small	 set	 of	 data	 could	 result	 in	 overfitting	 to	 the	451	
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specific	 community	 compositions	 or	 conditions	 under	which	 those	 data	were	 generated,	452	

which	reduces	the	robustness	of	the	classifier.	453	

Cross-validated	simulated	reads	454	

The	 simulated	 reads	 used	 here	 were	 derived	 from	 the	 reference	 databases	 using	 the	455	

“Cross-validated	 classification	 performance”	 notebooks	 in	 our	 project	 repository.	 The	456	

reference	 databases	 were	 either	 Greengenes	 or	 UNITE	 (99%	 OTUs)	 that	 were	 cleaned	457	

according	 to	 taxonomic	 label	 to	 remove	 sequences	 with	 ambiguous	 or	 null	 labels.		458	

Reference	sequences	were	trimmed	to	simulate	amplification	using	standard	PCR	primers	459	

and	 slice	 out	 the	 first	 250	 bases	 downstream	 (3’)	 of	 the	 forward	 primer.	 The	 bacterial	460	

primers	 used	 were	 27F/1492R	 [27]	 to	 simulate	 full-length	 16S	 rRNA	 gene	 sequences,	461	

515F/806R	[28]	to	simulate	16S	rRNA	gene	V4	domain	sequences,	and	27F/534R	[29]	to	462	

simulate	 16S	 rRNA	 gene	 V1-3	 domain	 sequences;	 the	 fungal	 primers	 used	 were	463	

BITSf/B58S3r	[30]	to	simulate	ITS1	internal	transcribed	spacer	DNA	sequences.	The	exact	464	

sequences	were	used	for	cross	validation,	and	were	not	altered	to	simulate	any	sequencing	465	

error;	 thus,	 our	 benchmarks	 simulate	 denoised	 sequence	 data	 [4]	 and	 isolate	 classifier	466	

performance	 from	 impacts	 from	 sequencing	 errors.	 Each	 database	 was	 stratified	 by	467	

taxonomy	and	10-fold	randomised	cross-validation	data	sets	were	generated	using	scikit-468	

learn’s	 library	functions.	Where	a	taxonomic	label	had	less	than	10	instances,	taxonomies	469	

were	amalgamated	to	make	sufficiently	large	strata.	If,	as	a	result,	a	taxonomy	in	any	test	470	

set	was	 not	 present	 in	 the	 corresponding	 training	 set,	 the	 expected	 taxonomy	 label	was	471	

truncated	 to	 the	 nearest	 common	 taxonomic	 rank	 observed	 in	 the	 training	 set	 (e.g.,	472	
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Lactobacillus	 casei	would	 become	Lactobacillus).	 	 The	 notebook	 detailing	 simulated	 read	473	

generation	 (for	 both	 cross-validated	 and	 novel	 taxon	 reads)	 prior	 to	 taxonomy	474	

classification	 is	 available	 at	 https://github.com/caporaso-lab/tax-credit-475	

data/blob/0.1.0/ipynb/novel-taxa/dataset-generation.ipynb.	476	

Classification	 performance	 was	 also	 slightly	modified	 from	 a	 standard	machine-learning	477	

scenario	 as	 the	 classifiers	 in	 this	 study	 are	 able	 to	 refuse	 classification	 if	 they	 are	 not	478	

confident	 above	 a	 taxonomic	 level	 for	 a	 given	 sample.	 This	 also	 accommodates	 the	479	

taxonomy	truncation	that	we	performed	for	this	test.	The	methodology	was	consistent	with	480	

that	 used	 below	 for	 novel	 taxon	 evaluations,	 but	 we	 defer	 this	 description	 to	 the	 next	481	

section.	482	

“Novel	taxon”	simulation	analysis	483	

“Novel	 taxon”	classification	analysis	was	performed	 to	 test	 the	performance	of	 classifiers	484	

when	assigning	 taxonomy	to	sequences	 that	are	not	represented	 in	a	reference	database,	485	

e.g.,	as	a	simulation	of	what	occurs	when	a	method	encounters	an	undocumented	species	486	

[22–25].	In	this	analysis,	simulated	amplicons	were	filtered	from	those	used	for	the	cross-487	

validation	analysis.		For	all	sequences	present	in	each	test	set,	sequences	sharing	taxonomic	488	

affiliation	at	a	given	taxonomic	level	L	(e.g.,	to	species	level)	in	the	corresponding	training	489	

set	were	removed.	Taxa	are	stratified	among	query	and	test	sets	such	that	for	each	query	490	

taxonomy	 at	 level	 L,	 no	 reference	 sequences	 match	 that	 taxonomy,	 but	 at	 least	 one	491	

reference	 sequence	 will	 match	 the	 taxonomic	 lineage	 at	 level	 L-1	 (e.g.,	 same	 genus	 but	492	

different	 species).	 An	 ideal	 classifier	 would	 assign	 taxonomy	 to	 the	 nearest	 common	493	
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taxonomic	 lineage	 (e.g.,	 genus),	but	would	not	 “overclassify”	 [25]	 to	near	neighbors	 (e.g.,	494	

assign	 species-level	 taxonomy	when	 species	 X	 is	 removed	 from	 the	 reference	 database).	495	

For	 example,	 a	 “novel”	 sequence	 representing	 the	 species	 Lactobacillus	 brevis	 should	 be	496	

classified	as	“Lactobacillus”,	without	species-level	annotation,	 in	order	 to	be	considered	a	497	

true	positive	in	this	analysis.	As	described	above	for	cross-validated	reads,	these	novel	taxa	498	

simulated	communities	were	also	tested	in	both	bacterial	(B)	and	fungal	(F)	databases	on	499	

simulated	amplicons	trimmed	to	simulate	250-nt	sequencing	reads.	500	

Novel	 taxon	 classification	 performance	 is	 evaluated	 using	 precision,	 recall,	 F-501	

measure,	overclassification	rates,	underclassification	rates,	and	misclassification	rates	[25]	502	

for	each	taxonomic	level	(phylum	to	species),	computed	with	the	following	definitions	(see	503	

below,	Performance	analyses	using	simulated	reads,	 for	full	description	of	precision,	recall,	504	

and	F-measure	calculations):	505	

1) A	true	positive	is	considered	the	nearest	correct	lineage	contained	in	the	reference	506	

database.	 For	 example,	 if	 Lactobacillus	 brevis	 is	 removed	 from	 the	 reference	507	

database	 and	 used	 as	 a	 query	 sequence,	 the	 only	 correct	 taxonomy	 classification	508	

would	be	“Lactobacillus”,	without	species-level	classification.	509	

2) A	 false	positive	would	be	either	a	classification	 to	a	different	Lactobacillus	 species	510	

(Overclassification),	or	any	genus	other	than	Lactobacillus	(Misclassification).		511	

3) A	false	negative	occurs	if	an	expected	taxonomy	classification	(e.g.,	“Lactobacillus”)	512	

is	not	observed	in	the	results.	Note	that	this	will	be	the	modified	taxonomy	expected	513	

when	using	a	naive	reference	database,	and	 is	not	 the	same	as	 the	true	taxonomic	514	

affiliation	 of	 a	 query	 sequence	 in	 the	 novel	 taxa	 analysis.	 A	 false	 negative	 results	515	
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from	 misclassification,	 overclassification,	 or	 when	 the	 classification	 contains	 the	516	

correct	 basal	 lineage,	 but	 does	 not	 assign	 a	 taxonomy	 label	 at	 level	 L	517	

(Underclassification).	 E.g.,	 classification	 as	 “Lactobacillaceae”,	 but	 no	 genus-level	518	

classification. 519	

Taxonomy	classification	520	

Representative	 sequences	 for	 all	 analyses	 (mock	 community,	 cross-validated,	 and	 novel	521	

taxa)	 were	 classified	 taxonomically	 using	 the	 following	 taxonomy	 classifiers	 and	 setting	522	

sweeps:	523	

1. q2-feature-classifier	multinomial	naive	Bayes	classifier.	Varied	k-mer	length	524	

in	{4,	6,	7,	8,	9,	10,	11,	12,	14,	16,	18,	32}	and	confidence	threshold	in	{0,	0.5,	0.7,	0.9,	525	

0.92,	0.94,	0.96,	0.98,	1}. 526	

2. BLAST+	 [9]	 local	 sequence	 alignment,	 followed	 by	 consensus	 taxonomy	527	

classification	 implemented	 in	q2-feature-classifier.	Varied	max	accepts	 from	1	 to	100;	528	

percent	 identity	 from	 0.80	 to	 0.99;	 and	 minimum	 consensus	 from	 0.51	 to	 0.99.	 See	529	

description	below.	530	

3. vsearch	 [10]	 global	 sequence	 alignment,	 followed	 by	 consensus	 taxonomy	531	

classification	 implemented	 in	 q2-feature-classifier.	 Varied	 max	 accepts	 from	 1	 to	532	

100;	percent	identity	from	0.80	to	0.99;	and	minimum	consensus	from	0.51	to	0.99.	533	

See	description	below.	534	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3208v2 | CC BY 4.0 Open Access | rec: 17 Jan 2018, publ: 17 Jan 2018



	

26	
	

	

4. Ribosomal	 Database	 Project	 (RDP)	 naïve	 Bayesian	 classifier	 [12]	 (QIIME1	535	

wrapper),	with	confidence	thresholds	between	0.0	to	1.0	in	steps	of	0.1. 536	

5. Legacy	BLAST	[13]	(QIIME1	wrapper)	varying	e-value	thresholds	from	1e-9	537	

to	1000. 538	

6. SortMeRNA	 [15]	 (QIIME1	 wrapper)	 varying	 minimum	 consensus	 fraction	539	

from	0.51	 to	0.99;	 similarity	 from	0.8	 to	0.9;	max	accepts	 from	1	 to	10;	and	coverage	540	

from	0.8	to	0.9. 541	

7. UCLUST	 [14]	 (QIIME1	wrapper)	 varying	minimum	consensus	 fraction	 from	542	

0.51	to	0.99;	similarity	from	0.8	to	0.9;	and	max	accepts	from	1	to	10.	543	

	544	

With	the	exception	of	the	UCLUST	classifier,	we	have	only	benchmarked	the	performance	of	545	

open-source,	 free,	marker-gene-agnostic	 classifiers,	 i.e.,	 those	 that	 can	be	 trained/aligned	546	

on	a	reference	database	of	any	marker	gene.	Hence,	we	excluded	classifiers	 that	can	only	547	

assign	 taxonomy	 to	 a	 particular	 marker	 gene	 (e.g.,	 only	 bacterial	 16S	 rRNA	 genes)	 and	548	

those	that	rely	on	specialized	or	unavailable	reference	databases	and	cannot	be	trained	on	549	

other	 databases,	 effectively	 restricting	 their	 use	 for	 other	 marker	 genes	 and	 custom	550	

databases.	551	

Classification	 of	 bacterial/archaeal	 16S	 rRNA	 gene	 sequences	 was	 made	 using	 the	552	

Greengenes	(13_8	release)	 [5]	reference	sequence	database	preclustered	at	99%	ID,	with	553	

amplicons	for	the	domain	of	interest	extracted	using	primers	27F/1492R	[27],	515F/806R	554	

[28],	or	27F/534R	[29]	with	q2-feature-classifier’s	extract_reads	method.	Classification	of	555	

fungal	 ITS	 sequences	was	made	using	 the	UNITE	database	 (version	7.1	QIIME	developer	556	
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release)	 [31]	 preclustered	 at	 99%	 ID.	 	 For	 the	 cross	 validation	 and	 novel	 taxon	557	

classification	 tests	 we	 prefiltered	 to	 remove	 sequences	 with	 incomplete	 or	 ambiguous	558	

taxonomies	(containing	the	substrings	 ‘unknown’,	 ‘unidentified’,	or	 ‘_sp’	or	terminating	at	559	

any	level	with	‘__’).	560	

	561	

The	notebooks	detailing	taxonomy	classification	sweeps	of	mock	communities	are	available	562	

at	 https://github.com/caporaso-lab/tax-credit-data/tree/0.1.0/ipynb/mock-community.	563	

Cross-validated	 read	 classification	 sweeps	 are	 available	 at	 https://github.com/caporaso-564	

lab/tax-credit-data/blob/0.1.0/ipynb/cross-validated/taxonomy-assignment.ipynb.	 Novel	565	

taxon	 classification	 sweeps	 are	 available	 at	 https://github.com/caporaso-lab/tax-credit-566	

data/blob/0.1.0/ipynb/novel-taxa/taxonomy-assignment.ipynb.	567	

	568	

Runtime	analyses	569	

The	 tax-credit	 framework	employs	 two	different	 runtime	metrics:	 as	a	 function	of	1)	 the	570	

number	of	query	sequences	or	2)	the	number	of	reference	sequences.	Taxonomy	classifier	571	

runtimes	 were	 logged	 while	 performing	 classifications	 of	 pseudorandom	 subsets	 of	 1,	572	

2,000,	4,000,	6,000,	8,000,	and	10,000	sequences	from	the	Greengenes	99%	OTU	database.	573	

Each	subset	was	drawn	once	then	used	for	all	of	the	tests	as	appropriate.	All	runtimes	were	574	

computed	on	the	same	Linux	workstation	(Ubuntu	16.04.2	LTS,	Intel	Xeon	CPU	E7-4850	v3	575	

@	2.20GHz,	1TB	memory).	The	exact	commands	used	for	runtime	analysis	are	presented	in	576	
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the	“Runtime	analyses”	notebook	in	the	project	repository	(https://github.com/caporaso-577	

lab/tax-credit-data/blob/0.1.0/ipynb/runtime/analysis.ipynb).	578	

Performance	analyses	using	simulated	reads	579	

Cross-validated	and	novel	taxa	reads	are	evaluated	using	the	classic	precision,	recall,	and	F-580	

measure	metrics	[5]	(novel	taxa	use	the	standard	calculations	as	described	below,	but	581	

modified	definitions	for	true	positive	(TP),	false	positive	(FP),	and	false	negative	(FN),	as	582	

described	above	for	novel	taxon	classification	analysis).		583	

Precision,	recall,	and	F-measure	are	calculated	as	follows:	584	
○ Precision	=	TP/(TP+FP)	or	the	fraction	of	sequences	that	were	classified	correctly	at	585	

level	L.	586	

○ Recall	 =	 TP/(TP+FN)	 or	 the	 fraction	 of	 expected	 taxonomic	 labels	 that	 were	587	

predicted	at	level	L.	588	

○ F-measure	=	2	×	Precision	×	Recall	/	(Precision	+	Recall),	or	the	harmonic	mean	of	589	

precision	and	recall.	590	

The	 Jupyter	 notebook	 detailing	 commands	 used	 for	 evaluation	 of	 cross-validated	 read	591	

classifications	 is	 available	 at	 https://github.com/caporaso-lab/tax-credit-592	

data/blob/0.1.0/ipynb/cross-validated/evaluate-classification.ipynb.	 The	 notebook	 for	593	

evaluation	 of	 novel	 taxon	 classifications	 is	 available	 at	 https://github.com/caporaso-594	

lab/tax-credit-data/blob/0.1.0/ipynb/novel-taxa/evaluate-classification.ipynb.	595	
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Performance	analyses	using	mock	communities	596	

The	 Jupyter	 notebook	 detailing	 commands	 used	 for	 evaluation	 of	 mock	 communities,	597	

including	 the	 three	 evaluation	 types	 described	 below,	 is	 available	 at	598	

https://github.com/caporaso-lab/tax-credit-data/blob/0.1.0/ipynb/mock-599	

community/evaluate-classification-accuracy.ipynb.	600	

Precision	and	Recall	601	

Classic	 precision,	 recall,	 and	 F-measure	 are	 used	 to	 calculate	 mock	 community	602	

classification	accuracy,	using	the	definitions	given	above	for	simulated	reads.	These	metrics	603	

require	 knowing	 the	 expected	 classification	 of	 each	 sequence,	 which	 we	 determine	 by	604	

performing	 a	 gapless	 alignment	 between	 each	 representative	 sequence	 in	 the	 mock	605	

community	 and	 the	marker-gene	 sequences	 of	 each	microbial	 strain	 added	 to	 the	mock	606	

community.	 These	 “expected	 sequences”	 are	 provided	 for	 the	 mock	 communities	 in	607	

mockrobiota	 [11].	 Representative	 sequences	 are	 assigned	 the	 taxonomy	 of	 the	 best	608	

alignment,	and	any	representative	sequence	with	more	than	3	mismatches	to	the	expected	609	

sequences	 are	 excluded	 from	 precision/recall	 calculations.	 If	 a	 representative	 sequence	610	

aligns	 to	more	 than	 one	 expected	 sequence	 equally	well,	 all	 top	 hits	 are	 accepted	 as	 the	611	

“correct”	 classification.	 This	 scenario	 is	 rare	 and	 typically	 only	 occurred	 when	 different	612	

strains	 of	 the	 same	 species	 were	 added	 to	 the	 same	 mock	 community	 to	 intentionally	613	

produce	 this	 challenge	 (e.g.,	 for	 mock-12	 as	 described	 by	 [4]).	 Precision,	 recall,	 and	 F-614	

measure	 are	 then	 calculated	 by	 comparing	 the	 “expected”	 classification	 for	 each	 mock	615	
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community	sequence	to	the	classifications	predicted	by	each	taxonomy	classifier	using	the	616	

full	reference	databases,	as	described	above.	617	

Taxon	accuracy	rate	and	taxon	detection	rate	618	

Taxon	 accuracy	 rate	 (TAR)	 and	 taxon	 detection	 rate	 (TDR)	 are	 used	 for	 qualitative	619	

compositional	 analyses	 of	 mock	 communities.	 As	 the	 true	 taxonomy	 labels	 for	 each	620	

sequence	in	a	mock	community	are	not	known	with	absolute	certainty,	TAR	and	TDR	are	621	

useful	 alternatives	 to	 precision	 and	 recall	 that	 instead	 rely	 on	 the	 presence/absence	 of	622	

expected	 taxa,	 or	 microbiota	 that	 are	 intentionally	 added	 to	 the	 mock	 community.	 In	623	

practice,	 TAR/TDR	 are	 complementary	 metrics	 to	 precision/recall	 and	 should	 provide	624	

similar	 results	 if	 the	 expected	 classifications	 for	 mock	 community	 representative	625	

sequences	are	accurate.	626	

At	a	given	taxonomic	level,	a	classification	is	a:	627	

○ true	positive	(TP),	if	that	taxon	is	both	observed	and	expected.	628	

○ false	positive	(FP),	if	that	taxon	is	observed	but	not	expected.	629	

○ false	negative	(FN),	if	a	taxon	is	expected	but	not	observed.	630	

These	are	used	to	calculate	TAR	and	TDR	as:	631	

○ TAR	=	TP/(TP+FP)	or	the	fraction	of	observed	taxa	that	were	expected	at	level	L.		632	

○ TDR	=	TP/(TP+FN)	or	the	fraction	of	expected	taxa	that	are	observed	at	level	L.	633	

	634	
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Bray-Curtis	Dissimilarity	635	

Bray-Curtis	dissimilarity	[32]	 is	used	to	measure	the	degree	of	dissimilarity	between	two	636	

samples	 as	 a	 function	 of	 the	 abundance	 of	 each	 species	 label	 present	 in	 each	 sample,	637	

treating	 each	 species	 as	 equally	 related.	 This	 is	 a	 useful	 metric	 for	 evaluating	 classifier	638	

performance	by	assessing	 the	relative	distance	between	each	predicted	mock	community	639	

composition	(abundance	of	taxa	in	a	sample	based	on	results	of	a	single	classifier)	and	the	640	

expected	composition	of	that	sample.	For	each	classifier,	Bray-Curtis	distances	between	the	641	

expected	 and	 observed	 taxonomic	 compositions	 are	 calculated	 for	 each	 sample	 in	 each	642	

mock	 community	 dataset;	 this	 yields	 a	 single	 expected-observed	 distance	 for	 each	643	

individual	 observation.	 The	 distance	 distributions	 for	 each	 method	 are	 then	 compared	644	

statistically	 using	 paired	 or	 unpaired	 t-tests	 to	 assess	 whether	 one	 method	 (or	645	

configuration)	performs	consistently	better	than	another.	646	

New	taxonomy	classifiers	647	

We	describe	q2-feature-classifier	(https://github.com/qiime2/q2-feature-classifier),	a	648	

plugin	for	QIIME	2	(https://qiime2.org/)	that	performs	multi-class	taxonomy	classification	649	

of	marker-gene	sequence	reads.	In	this	work	we	compare	the	consensus	BLAST+	and	650	

vsearch	methods	and	the	naive	Bayes	scikit-learn	classifier.	The	software	is	free	and	open-651	

source.	652	
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Machine	learning	taxonomy	classifiers	653	

The	q2-feature-classifier	plugin	allows	users	to	apply	any	of	the	suite	of	machine	learning	654	

classifiers	available	in	scikit-learn	(http://scikit-learn.org)	to	the	problem	of	taxonomy	655	

classification	of	marker-gene	sequences.	It	functions	as	a	lightweight	wrapper	that	656	

transforms	the	problem	into	a	standard	document	classification	problem.	Advanced	users	657	

can	input	any	appropriate	scikit-learn	classifier	pipeline,	which	can	include	a	range	of	658	

feature	extraction	and	transformation	steps	as	well	as	specifying	a	machine	learning	659	

algorithm.	660	

	661	

The	plugin	provides	a	default	method	which	is	to	extract	k-mer	counts	from	reference	662	

sequences	and	train	the	scikit-learn	multinomial	naive	Bayes	classifier,	and	it	is	this	663	

method	that	we	test	extensively	here.	Specifically,	the	pipeline	consists	of	a	664	

sklearn.feature_extraction.text.HashingVectorizer	feature	extraction	step	followed	by	a	665	

sklearn.naive_bayes.MultinomialNB	classification	step.	The	use	of	a	hashing	feature	666	

extractor	allows	the	use	of	significantly	longer	k-mers	than	the	8-mers	that	are	used	by	667	

RDP	Classifier,	and	we	tested	up	to	32-mers.	Like	most	scikit-learn	classifiers,	we	are	able	668	

to	set	class	weights	when	training	the	multinomial	naive	Bayes	classifiers.	In	the	naive	669	

Bayes	setting,	setting	class	weights	means	that	class	priors	are	not	derived	from	the	670	

training	data	or	set	to	be	uniform,	as	they	are	for	the	RDP	Classifier.	For	more	detail	on	how	671	

class	weights	enter	the	calculations	please	refer	to	the	scikit-learn	User	Guide	672	

(http://scikit-learn.org).	673	
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	674	

In	most	settings,	it	is	highly	unlikely	that	the	assumption	of	uniform	weights	is	correct.	That	675	

assumption	is	that	each	of	the	taxa	in	the	reference	database	is	equally	likely	to	appear	in	676	

each	sample.	Setting	class	weights	to	more	realistic	values	can	greatly	aid	the	classifier	in	677	

making	more	accurate	predictions,	as	we	show	in	this	work.	When	testing	the	mock	678	

communities	we	made	use	of	the	fact	that	the	sequence	compositions	were	known	a	priori	679	

for	the	bespoke	classifier.	For	the	simulated	reads	studies,	we	allowed	the	classifier	to	set	680	

the	class	weights	from	the	class	frequencies	observed	in	each	training	set	for	the	bespoke	681	

classifier.	682	

	683	

For	this	study,	we	performed	two	parameter	sweeps	on	the	mock	communities:	an	initial	684	

broad	sweep	to	optimize	feature	extraction	parameters	and	then	a	more	focussed	sweep	to	685	

optimise	k-mer	length	and	confidence	parameter	settings.	These	sweeps	included	varying	686	

the	assumptions	regarding	class	weights.	The	focussed	sweeps	were	also	performed	for	the	687	

cross-validated	and	novel	taxa	evaluations,	but	only	for	the	assumption	of	uniform	class	688	

priors.	The	results	for	the	focussed	sweeps	across	all	data	sets	are	those	which	are	689	

compared	against	the	other	classifiers	in	this	work.	690	

	691	

The	broad	sweeps	used	a	modified	scikit-learn	pipeline	which	consisted	of	the	692	

sklearn.feature_extraction.text.HashingVectorizer,	followed	by	the	693	

sklearn.feature_extraction.text.TfidfTransformer,	then	the	694	

sklearn.naive_bayes.MultinomialNB.	We	performed	a	full	grid	search	over	the	parameters	695	
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shown	in	Table	3.	The	conclusion	from	the	initial	sweep	was	that	the	TfidfTransformer	step	696	

did	not	significantly	improve	classification,	that	n_features	should	be	set	to	8192,	feature	697	

vectors	should	be	normalised	using	L2	normalisation	and	that	the	alpha	parameter	for	the	698	

naive	Bayes	classifier	should	be	set	to	0.001.	Please	see	https://github.com/caporaso-699	

lab/tax-credit-data/blob/0.1.0/ipynb/mock-community/evaluate-classification-accuracy-700	

nb-extra.ipynb	for	details.	701	

Consensus	taxonomy	alignment-based	classifiers	702	

	703	

Two	new	classifiers	implemented	in	q2-feature-classifier	perform	consensus	taxonomy	704	

classification	based	on	alignment	of	a	query	sequence	to	a	reference	sequence.	The	705	

methods	classify_consensus_vsearch	and	classify_consensus_blast	use	the	global	aligner	706	

vsearch	[10]	or	the	local	aligner	BLAST+	[9],	respectively,	to	return	up	to	maxaccepts	707	

reference	sequences	that	align	to	the	query	with	at	least	perc_identity	similarity.	A	708	

consensus	taxonomy	is	then	assigned	to	the	query	sequence	by	determining	the	taxonomic	709	

lineage	on	which	at	least	min_consensus	of	the	aligned	sequences	agree.	This	consensus	710	

taxonomy	is	truncated	at	the	taxonomic	level	at	which	less	than	min_consensus	of	711	

taxonomies	agree.	For	example,	if	a	query	sequence	is	classified	with	maxaccepts=3,	712	

min_consensus=0.51,	and	the	following	top	hits:	713	

	714	

k__Bacteria;	p__Firmicutes;	c__Bacilli;	o__Lactobacillales;	f__Lactobacillaceae;	715	

g__Lactobacillus;	s__brevis	716	
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k__Bacteria;	p__Firmicutes;	c__Bacilli;	o__Lactobacillales;	f__Lactobacillaceae;	717	

g__Lactobacillus;	s__brevis	718	

k__Bacteria;	p__Firmicutes;	c__Bacilli;	o__Lactobacillales;	f__Lactobacillaceae;	719	

g__Lactobacillus;	s__delbrueckii	720	

	721	

The	taxonomy	label	assigned	will	be	k__Bacteria;	p__Firmicutes;	c__Bacilli;	722	

o__Lactobacillales;	f__Lactobacillaceae;	g__Lactobacillus;	s__brevis.	However,	if	723	

min_consensus=0.99,	the	taxonomy	label	assigned	will	be	k__Bacteria;	p__Firmicutes;	724	

c__Bacilli;	o__Lactobacillales;	f__Lactobacillaceae;	g__Lactobacillus.	725	

	726	

	727	
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Availability	of	data	and	materials	733	

Mock	community	sequence	data	used	in	this	study	are	publicly	available	in	mockrobiota	734	
[11]	under	the	study	identities	listed	in	Table	1.	All	other	data	generated	in	this	study,	and	735	
all	new	software,	is	available	in	our	GitHub	repositories	under	the	BSD	license.	The	tax-736	
credit	repository	can	be	found	at:	https://github.com/caporaso-lab/tax-credit,	and	static	737	
versions	of	all	analysis	notebooks,	which	contain	all	code	and	analysis	results,	can	be	738	
viewed	there.	The	q2-feature-classifier	repository	can	be	accessed	at	739	
https://github.com/qiime2/q2-feature-classifier;	as	a	QIIME2	core	plugin,	it	is	740	
automatically	installed	any	time	QIIME2	(https://qiime2.org/)	is	installed.		741	
	742	
Project	name:	q2-feature-classifier	743	
Project	home	page:	https://github.com/qiime2/q2-feature-classifier	744	
Operating	system(s):	macOS,	Linux	745	
Programming	language:	Python	746	
Other	requirements:	QIIME2	747	
License:	BSD-3-Clause	748	
Any	restrictions	to	use	by	non-academics:	None	749	
	750	
Project	name:	tax-credit	751	
Project	home	page:	https://github.com/caporaso-lab/tax-credit	752	
Operating	system(s):	macOS,	Linux	753	
Programming	language:	Python	754	
Other	requirements:	None	(QIIME2	required	for	some	optional	functions)	755	
License:	BSD-3-Clause	756	
Any	restrictions	to	use	by	non-academics:	None	757	
	758	
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Study ID* Target gene** Platform Species Strains Citation 
mock-1 16S HiSeq 46 48 [33] 
mock-2 16S MiSeq 46 48 [33] 
mock-3 16S MiSeq 21 21 [33] 
mock-4 16S MiSeq 21 21 [33] 
mock-5 16S MiSeq 21 21 [33] 

mock-7 16S HiSeq 67 67 [34] 
mock-8 16S HiSeq 67 67 [11] 

mock-9 ITS HiSeq 13 16 [11] 

mock-10 ITS HiSeq 13 16 [11] 

mock-12 16S MiSeq 26 27 [4] 

mock-16 16S MiSeq 56 59 [35] 

mock-18 16S MiSeq 15 15 [36] 

mock-19 16S MiSeq 15 27 [36] 

mock-20 16S MiSeq 20 20 [37] 

mock-21 16S MiSeq 20 20 [37] 

mock-22 16S MiSeq 20 20 [37] 

mock-23 16S MiSeq 20 20 [37] 

mock-24 ITS MiSeq 8 8 [38] 

mock-26 ITS FLX Titanium 11 11 [39] 
*All studies are available on mockrobiota [11] at https://github.com/caporaso-781	

lab/mockrobiota/tree/master/data/[studyID] 782	

**Abbreviations: 16S = 16S rRNA gene; HiSeq = Illumina HiSeq; MiSeq = Illumina MiSeq. 783	

 784	

Table	2.	Optimized	methods	configurations	for	standard	operating	conditions.	785	

    Mock Cross-validated Novel taxa  

Target Condition Method Parameters F P R F P R F P R Threshold 

Balanced NB-bespoke [6,6]:0.9 0.705 0.98 0.582 0.827 0.931 0.744 0.165 0.243 0.125 F = (0.49, 0.8, 0.1) 

  [6,6]:0.92 0.705 0.98 0.581 0.825 0.936 0.737 0.165 0.251 0.123 F = (0.7, 0.8, 0.15) 

  [6,6]:0.94 0.703 0.98 0.579 0.822 0.942 0.729 0.162 0.259 0.118  

16S 
rRNA 
gene 

  [7,7]:0.92 0.712 0.978 0.592 0.831 0.931 0.751 0.151 0.221 0.115  
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  [7,7]:0.94 0.708 0.978 0.586 0.829 0.936 0.743 0.157 0.239 0.117  

 naive-bayes [7,7]:0.7 0.495 0.797 0.38 0.819 0.886 0.761 0.115 0.138 0.099  

 rdp 0.6 0.564 0.798 0.457 0.815 0.868 0.768 0.102 0.128 0.084  

  0.7 0.55 0.799 0.438 0.812 0.892 0.746 0.124 0.173 0.096  

 uclust 0.51:0.9:3 0.498 0.746 0.392 0.846 0.876 0.817 0.154 0.201 0.126  

Precision NB-bespoke [6,6]:0.98 0.676 0.987 0.537 0.803 0.956 0.692 0.163 0.303 0.111 P = (0.94, 0.95, 0.25) 

  [7,7]:0.98 0.687 0.98 0.551 0.815 0.951 0.713 0.164 0.283 0.115  

 rdp 1 0.239 0.941 0.16 0.632 0.968 0.469 0.12 0.457 0.069  

Recall NB-bespoke [12,12]:0.5 0.754 0.8 0.721 0.815 0.83 0.801 0.053 0.058 0.049 R = (0.47, 0.75, 0.04) 

  [14,14]:0.5 0.758 0.802 0.726 0.811 0.826 0.797 0.052 0.057 0.048 R = (0.7, 0.75, 0.04) 

  [16,16]:0.5 0.755 0.785 0.732 0.808 0.825 0.792 0.052 0.058 0.047  

  [18,18]:0.5 0.772 0.803 0.748 0.805 0.823 0.789 0.055 0.061 0.05  

  [32,32]:0.5 0.937 0.966 0.913 0.788 0.818 0.76 0.054 0.067 0.045  

 naive-bayes [11,11]:0.5 0.567 0.77 0.479 0.793 0.82 0.768 0.059 0.065 0.055  

 

  [12,12]:0.5 0.567 0.769 0.479 0.79 0.816 0.765 0.059 0.064 0.055  

   [18,18]:0.5 0.564 0.764 0.477 0.779 0.807 0.753 0.057 0.063 0.051  

  rdp 0.5 0.577 0.791 0.48 0.816 0.848 0.787 0.068 0.079 0.06  

 Novel blast+ 10:0.51:0.8 0.436 0.723 0.325 0.816 0.896 0.749 0.225 0.332 0.171 F = (0.4, 0.8, 0.2) 

  uclust 0.76:0.9:5 0.467 0.775 0.348 0.84 0.938 0.76 0.219 0.358 0.158  

  vsearch 10:0.51:0.8 0.45 0.74 0.342 0.814 0.891 0.75 0.226 0.333 0.171  

   10:0.51:0.9 0.45 0.74 0.342 0.82 0.896 0.755 0.219 0.338 0.162  

Fungi Balanced naive-bayes [6,6]:0.94 0.874 0.935 0.827 0.481 0.57 0.416 0.374 0.438 0.327 F = (0.85, 0.45, 0.37) 

   [6,6]:0.96 0.874 0.935 0.827 0.495 0.597 0.423 0.399 0.473 0.344  

   [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361  

   [7,7]:0.98 0.874 0.935 0.827 0.485 0.596 0.409 0.388 0.47 0.33  

  NB-bespoke [6,6]:0.94 0.928 0.968 0.915 0.48 0.567 0.416 0.371 0.433 0.325  

   [6,6]:0.96 0.928 0.968 0.915 0.491 0.59 0.42 0.393 0.466 0.34  

   [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358  

   [7,7]:0.98 0.935 0.97 0.921 0.487 0.596 0.412 0.386 0.466 0.329  

  rdp 0.7 0.929 0.939 0.922 0.479 0.572 0.413 0.382 0.451 0.332  

   0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366  

   0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379  

 Precision naive-bayes [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361 P = (0.92, 0.6, 0.3) 

  NB-bespoke [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358  
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  rdp 0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366  

   0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379  

   1 0.821 0.943 0.742 0.461 0.81 0.322 0.459 0.774 0.327  

 Recall NB-bespoke [6,6]:0.92 0.938 0.971 0.924 0.467 0.544 0.409 0.353 0.407 0.312 R = (0.9, 0.4, 0.3) 

   [6,6]:0.94 0.928 0.968 0.915 0.48 0.567 0.416 0.371 0.433 0.325  

   [6,6]:0.96 0.928 0.968 0.915 0.491 0.59 0.42 0.393 0.466 0.34  

   [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358  

   [7,7]:0.96 0.935 0.969 0.921 0.47 0.56 0.404 0.357 0.422 0.31  

   [7,7]:0.98 0.935 0.97 0.921 0.487 0.596 0.412 0.386 0.466 0.329  

  rdp 0.7 0.929 0.939 0.922 0.479 0.572 0.413 0.382 0.451 0.332  

   0.8 0.924 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366  

   0.9 0.922 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379  

 Novel naive-bayes [6,6]:0.98 0.874 0.935 0.827 0.505 0.629 0.423 0.426 0.52 0.361 F = (0.85, 0.45, 0.4) 

  NB-bespoke [6,6]:0.98 0.927 0.97 0.913 0.504 0.624 0.422 0.421 0.512 0.358  

  rdp 0.8 0.923 0.939 0.915 0.507 0.633 0.422 0.434 0.534 0.366  

   0.9 0.921 0.937 0.913 0.517 0.698 0.411 0.47 0.617 0.379  

	786	

aF	=	F-measure,	P	=	precision,	R	=	recall	787	
bNaive	Bayes	parameters:	k-mer	range,	confidence	788	
cRDP	parameters:	confidence	789	
dBLAST+/vsearch	parameters:	max	accepts,	minimum	consensus,	minimum	percent	790	
identity	791	
eUCLUST	parameters:	minimum	consensus,	similarity,	max	accepts	792	
fThreshold	describes	the	score	cutoffs	used	to	define	optimal	method	ranges,	in	the	format:	793	
[metric	=	(mock	score,	cross-validated	score,	novel-taxa	score)].	If	two	cutoffs	are	given,	794	
the	second	indicates	a	higher	cutoff	used	to	select	parameters	for	the	developmental	NB-795	
bespoke	method,	and	the	configurations	listed	are	the	union	of	the	two	cutoffs:	the	second	796	
cutoff	for	selecting	NB-bespoke,	the	first	for	selecting	all	other	methods.	797	
	798	

	799	

Table	3.	Naive	Bayes	broad	grid	search	parameters	800	

Step Parameter Values 

sklearn.feature_extraction.text.HashingVectorizer n_features 1024, 8192, 65536 

 ngram_range [4,4], [8, 8], [16, 16], [4,16] 
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sklearn.feature_extraction.text.TfidfTransformer norm l1, l2, None 

 usd_idf True, False 

sklearn.naive_bayes.MultinomialNB alpha 0.001, 0.01, 0.1 

 class_prior None, array of class weights 

post processing confidence 0, 0.2, 0.4, 0.6, 0.8 

	801	

	802	

	803	

	804	
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	805	

Figure	1.	Classifier	performance	on	mock	community	datasets	for	16S	rRNA	gene	806	

sequences	(left	column)	and	fungal	ITS	sequences	(right	column).	A,	Average	F-measure	for	807	
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each	taxonomy	classification	method	(averaged	across	all	configurations	and	all	mock	808	

community	datasets)	from	class	to	species	level.	Error	bars	=	95%	confidence	intervals.	B,	809	

Average	F-measure	for	each	optimized	classifier	(averaged	across	all	mock	communities)	at	810	

species	level.	C,	Average	taxon	accuracy	rate	for	each	optimized	classifier	(averaged	across	811	

all	mock	communities)	at	species	level.	D,	Average	Bray-Curtis	distance	between	the	812	

expected	mock	community	composition	and	its	composition	as	predicted	by	each	813	

optimized	classifier	(averaged	across	all	mock	communities)	at	species	level.	Violin	plots	814	

show	median	(white	point),	quartiles	(black	bars),	and	kernel	density	estimation	(violin)	815	

for	each	score	distribution.	Violins	with	different	lower-case	letters	have	significantly	816	

different	means	(paired	t-test	false	detection	rate-corrected	P	<	0.05).	817	

	818	
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	819	
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Figure	2.	Classifier	performance	on	cross-validated	sequence	datasets.	Classification	820	

accuracy	of	16S	rRNA	gene	V4	sub-domain	(first	row),	V1-3	sub-domain	(second	row),	full-821	

length	16S	rRNA	gene	(third	tow),	and	fungal	ITS	sequences	(fourth	row).	A,	Average	F-822	

measure	for	each	taxonomy	classification	method	(averaged	across	all	configurations	and	823	

all	cross-validated	sequence	datasets)	from	class	to	species	level.	Error	bars	=	95%	824	

confidence	intervals.	B,	Average	F-measure	for	each	optimized	classifier	(averaged	across	825	

all	cross-validated	sequence	datasets)	at	species	level.	Violins	with	different	lower-case	826	

letters	have	significantly	different	means	(paired	t-test	false	detection	rate-corrected	P	<	827	

0.05).	C,	correlation	between	F-measure	performance	for	each	method/configuration	828	

classification	of	V4	sub-domain	(x-axis),	V1-3	sub-domain	(y-axis),	and	full-length	16S	829	

rRNA	gene	sequences	(z-axis).	Inset	lists	the	pearson	R2	value	for	each	pairwise	830	

correlation;	each	correlation	is	significant	(P	<	0.001).	831	

	832	
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	833	
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Figure	3.	Classifier	performance	on	novel-taxa	simulated	sequence	datasets	for	16S	rRNA	834	

gene	sequences	(left	column)	and	fungal	ITS	sequences	(right	column).	A-F,	Average	F-835	

measure	(A),	precision	(B),	recall	(C),	overclassification	(D),	underclassification	(E),	and	836	

misclassification	(F)	for	each	taxonomy	classification	method	(averaged	across	all	837	

configurations	and	all	novel	taxa	sequence	datasets)	from	phylum	to	species	level.	Error	838	

bars	=	95%	confidence	intervals.	B,	Average	F-measure	for	each	optimized	classifier	839	

(averaged	across	all	novel	taxa	sequence	datasets)	at	species	level.	Violins	with	different	840	

lower-case	letters	have	significantly	different	means	(paired	t-test	false	detection	rate-841	

corrected	P	<	0.05).	842	

	843	
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	844	

Figure	4.	Classification	accuracy	comparison	between	mock	community,	cross-validated,	845	

and	novel	taxa	evaluations.	Scatterplots	show	mean	F-measure	scores	for	each	method	846	

configuration,	averaged	across	all	samples,	for	classification	of	16S	rRNA	genes	at	genus	847	

level	(A)	and	species	level	(B),	and	fungal	ITS	sequences	at	genus	level	(C)	and	species	level	848	

(D).	849	

	850	

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3208v2 | CC BY 4.0 Open Access | rec: 17 Jan 2018, publ: 17 Jan 2018



	

49	
	

	

	851	

Figure	5.	Runtime	performance	comparison	of	taxonomy	classifiers.	Runtime	(s)	for	each	852	

taxonomy	classifier	either	varying	the	number	of	query	sequences	and	keeping	a	constant	853	

10000	reference	sequences	(A)	or	varying	the	number	of	reference	sequences	and	keeping	854	

a	constant	1	query	sequence	(B).		855	

	856	

	857	
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