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ABSTRACT

Task scheduling helps to improve the resource efficiency and the user satisfaction for
Device-Edge-Cloud Cooperative Computing (DE3C), by properly mapping requested
tasks to hybrid device-edge-cloud resources. In this paper, we focused on the task
scheduling problem for optimizing the Service-Level Agreement (SLA) satisfaction
and the resource efficiency in DE3C environments. Existing works only focused on
one or two of three sub-problems (offloading decision, task assignment and task
ordering), leading to a sub-optimal solution. To address this issue, we first formulated
the problem as a binary nonlinear programming, and proposed an integer particle
swarm optimization method (IPSO) to solve the problem in a reasonable time. With
integer coding of task assignment to computing cores, our proposed method exploited
IPSO to jointly solve the problems of offloading decision and task assignment, and
integrated earliest deadline first scheme into the IPSO to solve the task ordering problem
for each core. Extensive experimental results showed that our method achieved upto
953% and 964% better performance than that of several classical and state-of-the-art
task scheduling methods in SLA satisfaction and resource efficiency, respectively.

Subjects Computer Architecture, Distributed and Parallel Computing
Keywords Edge cloud, Particle swarm optimization, Task offloading, Task scheduling

INTRODUCTION

Smart devices, e.g., Internet of Things (IoT) devices, smartphones, have been commonplace
nowadays. “There were 8.8 billion global mobile devices and connections in 2018, which
will grow to 13.1 billion by 2023 at a CAGR of 8 percent”, as shown in the Cisco Annual
Internet Report (Cisco, 2020). But most of the time, users’ requirements cannot be satisfied
by their respective devices. This is because user devices usually have limited capacity of
both resource and energy (Wu et al., 2019). Device-Edge-Cloud Cooperative Computing
(DE3C) (Wang et al., 2020) is one of the most promising ways to address the problem.
DE3C extends the capacity of user devices by jointly exploiting the edge resources with low
network latency and the cloud with abundant computing resources.

Task scheduling helps to improve the resource efficiency and satisfy user requirements
in DE3C, by properly mapping requested tasks to hybrid device-edge-cloud resources. The
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goal of task scheduling is to decide whether each task is offloaded from user device to an
edge or a cloud (offloading decision), which computing node an offloaded task is assigned
to (task assignment), and the execution order of tasks in each computing node (task
ordering) (Wang et al., 2020). To obtain a global optimal solution, these three decision
problems must be concerned jointly when designing task scheduling. Unfortunately, to the
best of our knowledge, there is no work that has jointly addressed all of these three decision
problems. Therefore, in this paper, we try to address this issue for DE3C.

As the task scheduling problem is NP-Hard (Du ¢ Leung, 1989), several works exploited
heuristic methods (Meng et al., 2019; Meng et al., 2020; Wang et al., 2019b; Yang et al.,
20205 Liu et al., 2019) and meta-heuristic algorithms, such as swarm intelligence (Xie
et al., 2019; Adhikari, Srirama ¢ Amgoth, 2020) and evolutionary algorithms (Aburukba
et al., 20205 Sun et al., 2018), to solve the problem within a reasonable time. Inspired by a
natural behaviour, a meta-heuristic algorithm has the capability of searching the optimal
solution by combining a random optimization method and a generalized search strategy.
meta-heuristic algorithms can have a better performance than heuristic methods, mainly
due to their global search ability (Houssein et al., 2021b). Thus, in this paper, we design task
scheduling for DE3C by exploiting Particle Swarm Optimization (PSO) which is one of the
most representative meta-heuristics based on swarm intelligence, due to its ability to fast
convergence and powerful ability of global optimization as well as its easy implementation
(Wang, Tan & Liu, 2018).

In this paper, we focus on the task scheduling problem for DE3C to improve the
satisfaction of Service Level Agreements (SLA) and the resource efficiency. The SLA
satisfaction strongly affects the income and the reputation (Serrano et al., 2016; Zhao et al.,
2021) and the resource efficiency can determine the cost at a large extent for service
providers (Gujarati et al., 2017; Wang et al., 2016). We first present a formulation for the
problem, and then propose a task scheduling method based on PSO with integer coding to
solve the problem in a reasonable time complexity. In our proposed method, we encode the
assignment of tasks to computing cores into the position of a particle, and exploit earliest
deadline first (EDF) approach to decide the execution order of tasks assigned to one core.
This encoding approach has two advantages: (1) it has much less solution space than binary
encoding, and thus has more possibility of achieving optimal solution; (2) compared with
encoding the assignment of tasks to computing servers (Xie et al., 2019; Adhikari, Srirama
& Amgoth, 2020) (or a coarser resource granularity), our approach makes more use of the
global searching ability of PSO. In addition, we use the modulus operation to restrict the
range of the value in each particle position dimension. This can make boundary values have
a same possibilities to other values for each particle position dimension, and thus maintain
the diversity of particles. In brief, the contributions of this paper are as followings.

e We formulate the task scheduling problem in DE3C into a binary nonlinear
programming with two objectives. The major objective is to maximize the SLA
satisfaction, i.e., the number of completed tasks. The second one is maximizing the
resource utilization, one of the most common quantification approach for the resource
efficiency.
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e We propose an Integer PSO based task scheduling method (IPSO). The method exploits
the integer coding of the joint solution of offloading decision and task assignment, and
integrates EDF into IPSO to address the task ordering problem. Besides, the proposed
method only restricts the range of particle positions by the modulus operation to
maintain the particle diversity.

e We conduct simulated experiments where parameters are set referring to recent related
works and the reality, to evaluate our proposed heuristic method. Experiment results
show that IPSO has 24.8%-953% better performance than heuristic methods, binary
PSO, and genetic algorithm (GA) which is a representative meta-heuristics based on
evolution theory, in SLA satisfaction optimization.

In the rest of this paper, ‘Problem Formulation’ formulates the task offloading problem
we concerned. ‘TPSO Based Task Scheduling’ presents the task scheduling approach based
on IPSO. ‘Performance Evaluation’ evaluates scheduling approach presented in ‘TIPSO
Based Task Scheduling’ by simulated experiments. ‘Discussion’ discusses some findings
from experimental results. ‘Related Works’ illustrates related works and ‘Conclusion’
concludes this paper.

PROBLEM FORMULATION

In this paper, we focus on the DE3C environment, which is composed of the device tier,
the edge tier, and the cloud tier, as shown in Fig. 1. In the device tier, a user launches
one or more request tasks on its device, and processes these tasks locally if the device
has available computing resources. Otherwise, it offloads tasks to an edge or a cloud. In
the edge tier, there are multiple edge computing centres (edges for short). Each edge has
network connections with several user devices and consists of a very few number of servers
for processing some offloaded tasks. In the cloud tier, there are various types of cloud
servers, usually in form of virtual machine (VM). The DE3C service provider, i.e., a cloud
user, can rent some instances with any of VM types for processing some offloaded tasks.
The cloud usually has a poor network performance.

Resource and task model
For our problem formulation, we consider the DE3C environment with M user devices, E
edge servers, and V cloud VMs. Without loss of generality, we use n;, i € [1,M +E+ V] to
represent these computing nodes, where #; represent a device, an edge server, and a cloud
VM respectively whenie [1,M],ie [M+1,M+E],andie [M+E+1,M+E+V]. The
node n; has C; computing cores for processing tasks, and each core has g; computing capacity
which can be quantified by such as Hz, FLOPS, or any other computing performance metric.
The network bandwidth is b; ; (i € [1,M], j € [M +1,M +E + V) for transmitting data
from device n; to node #;, which can be easily calculated according to the transmission
channel state data (Du et al., 2019). If a device is not covered by an edge, i.e., there is no
network connection between them, the corresponding bandwidth is set as 0.

In the DE3C environment, there are T tasks, t1,t,...,tT, requested by users for
processing. We use binary constants x, ;, Yo € [1, T], Vi € [1, M ], to represent the ownership
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Figure 1 The architecture of device-edge-cloud cooperative computing.
Full-size Gal DOTI: 10.7717/peerjcs.893/fig-1

relationships between tasks and devices, as defined in Eq. (1), which is known.

'In this paper, we focus on hard deadline 1. ift. is launched bv n:
tasks, and leave soft deadline tasks as a Xo,i = ’ ? v ,Yoe[1,T], Vie [1,M]. (1)
future consideration. 0, else

Task ¢, has r, computing length for processing its input data with size a,, and requires
that it must be finished within the deadline d,'. Without loss of generality, we assume
that d) <d, <... <dr. To make our approach universal applicable, we assume there is no
relationship between the computing length and the input data size for each task.

Task execution model
When ¢, is processed locally, there is no data transmission for the task, and thus, its
execution time is

M
ro=Z<xo,i§),vOe [LT]. 2)

i=1 !

In this paper, we consider that each task exhausts only one core during its execution, as
done in many published articles. This makes our approach more universal because it is
applicable to the situation that each task can exhaust all resources of a computing node by
seeing the node as a core. For tasks with elastic degree of parallelism, we recommend to
referring our previous work (Wang et al., 2019a) which is complementary to this work.
Due to EDF scheme providing the optimal solution for SLA satisfaction maximization
in each core (Pinedo, 2016), we can assume all tasks assigned to each core are processed in
the ascending order of deadlines when establishing the optimization model. With this in
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mind, the finish time of task #, when it processed locally can be calculated by

fto—ZZ()/ozq Z(J/qu Tw)) Yoe[l,T], (3)
i=1 g=1

where y, ; ; indicates whether task t, is assigned to the gth core of node #;, which is defined

in Eq. (4). va_:ll (Vw.i.q - Tw) is the accumulated sum of execution time of tasks which are

assigned to gth core of m; and have earlier deadline than t,, which is the start time of t,

when it is assigned to the core. Thus, Y, (J.i,q- Tw) is the finish time when , is assigned

to gth core of n; (i€ [1,M]).

1, ift, is assigned to gth core of n;
,0

Yo,ig = €[, Tlie[l, M+E+V],q€[1,CG]. (4)

0, else

As each task cannot be executed by any device which doesn’t launch it,
Ci

> Yoiq <Xoi-Yoe[1,T].Vie[1,M]. (5)
q=1

When a task is offloaded to the edge or the cloud tier, it starts to be executed only when
both its input data and the core it is assigned are ready. Based on the EDF scheme, the
ready time of input data for each task assigned to a core in an edge server or a VM can be
calculated as

M+E+V G

rty = Z Z(}’otq Z(ywzq bT )) Yoe([l,T], (6)

i=M+1 g=1

where 71, is the ready time of input data for task #, when the task is offloaded to an edge
server or a cloud VM, respectively. For ease of our problem formulation, we use boT’ ; to
respectively represent the network bandwidths of transferring the input data from the
device launching ¢, to n; (i€ [M 4+ 1,M + E + V]). That is to say, b Zk 1 (Xo.k b j)-
Then the transmission time of the input data for ¢, is a,/ bT when itis ofﬂoaded to n;). With
the EDF scheme, the ready time of the input data for an ofﬂoaded task is the accumulated
transmission time of all input data of the offloaded task and other tasks which are assigned
to the same core and have earlier deadline than the offloaded task, i.e., > 7 _; (yu.i, q 4w/ b£7 ;)
for task ¢, when it is offloaded to gth core in n; (ie [M+1,M +E+V]).

In this paper, we don’t consider employing the task redundant execution for the
performance improvement. Thus, each task can be executed by only one core, i.e.,

M G

3 Yoiq<LYoe[LT]. 7)

i=1 g=1
We use z, to indicate whether ¢, is assigned to a core for its execution, where z, = 1
means yes and z, =0 means no. Then we have

M C
zo:ZZyo,i,q,Voe [1,T]. "

i=1 g=1
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And the total number of tasks which are assigned to computing cores for executions is

Z= Zzg. (9)

We use ft(fff to respectively represent the finish times of #, when it is offloaded to the
edge or cloud tier. For f, assigned to a core, the core is available when all tasks that are
assigned to the core and have earlier deadline than the task are finished. And thus, the ready
time of the core for executing ¢, is the latest finish time of these tasks, which respectively

are
M+E+V G

reo= Y Z(}/o,i,q'$2§{YW,i,q'ftxﬁ}),V0€ [1,T]. (10)
i=M+1 g=1

The ready time of a task to be executed by the core it assigned to is the latter of the input
data ready time and the core available time. The finish time of the task is its ready time
plus its execution time. Thus, finish times of offloaded tasks are respectively

M+E+V C;

f —max{rto,rco}—i- Z Z(J/W”I )Voe [1,T]. (11)

i=M+1 g=1

Noticing that when a task is assigned to a tier, finish times of the task in other two tiers
2In this paper, to avoid the negative effects
on task execution performance, we don’t
consider to use dynamic frequency scaling ~ as

technologies for computing energy saving.

are both 0, as shown in Eqs. (3), and (11). Thus, the deadline constraints can be formulated

fo+ i <d, Voe[1,T]. (12)

As the occupied time of each computing node is the latest usage time of its cores’,
and the usage time of a core is the latest finish time of tasks assigned to it. Therefore, the
occupied times of computing nodes are respectively

ot = én[laé]{ag[lax {)’blq fto}} Vie[l,M], (13)
otj= max { max {y,q4- fto WYie M+1,M+E+V]. (14)

qel1,C;] o€[1,T]

Then the total amount of occupied computing resources for task processing is

M+E+V

> (ot Civgi). (15)

And the overall computing resource utilization of the DE3C system is
Z Zzl ()’o : 1’0)
® b

where the numerator is the accumulated computing length of executed tasks, i.e., the

U= (16)

amount of computing resource consumed for the task execution.
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Problem model
Based on above formulations, we can model the task scheduling problem for DE3C as

Maximizing Z + U (17)
subject to
(2)—(16), (18)

where the objective Eq. (17) is maximizing the number of finished tasks (Z), which

is considered as the quantifiable indicator of the SLA satisfaction in this paper, and
maximizing the overall computing resource utilization (U) when the finished task number
cannot be improved (noticing that the resource utilization is no more than 1). The decision
variables include y, ;4 (€ [1,Cl, i€ [1,M +E+ V], 0€[1,T]). This problem is binary
nonlinear programming (BNLP), which can be solved by existing tools, e.g., Ip_solve
(Berkelaar et al., 2020). But these tools are not applicable to large-scale problems, as they
are implemented based on branch and bound. Therefore, we propose a task scheduling
method based on an integer PSO algorithm to solve the problem in a reasonable time in
the next section.

IPSO BASED TASK SCHEDULING

In this section, we present our integer PSO algorithm (IPSO) based task scheduling method
in DE3C environments to improve the SLA satisfaction and the resource efficiency. Our
proposed method, outlined in Algorithm 1, first employs IPSO to achieve the particle
position providing the global best fitness value in Algorithm 3, where the position of each
particle is the code of the assignment of tasks to cores. Then our IPSO based method can
provide a task scheduling solution according to the task assignment get from the previous
step by exploiting EDF scheme for task ordering in each core, as shown in Algorithm 2. In
our IPSO, to quantify the quality of particles, we define the fitness function as the objective
(Eq. 17) of the problem we concerned,

fm=Z+U, (19)

where Z is the number of finished tasks, and U is the overall computing resource utilization.
In the followings, we will present the integer encoding and decoding approach exploited
by the IPSO in ‘Integer Encoding and Decoding’, and the detail of IPSO in ‘TPSO’.

Algorithm 1 IPSO based task scheduling

Input: The information of tasks and resources in the DE3C system; the integer encoding and decoding
method.
Output: A task scheduling solution.
1: achieving the global best particle position by IPSO (see Algorithm 3);
2: decoding the position into a task scheduling solution by Algorithm 2;
3: return the task scheduling solution;

Integer encoding and decoding
Our IPSO exploits the integer encoding method to convert a task assignment to cores into
the position information of a particle. We first respectively assign sequence numbers to tasks

Wang et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.893 7122


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.893

PeerJ Computer Science

Algorithm 2 Converting a particle position to a task scheduling solution

Input: The particle position, [gb;, gb,, ..

Output: The task scheduhng[foluflon an§ the fitness.
1: decoding the position to the assignment of tasks to computing cores;
2: for each core do
3:  sorting the task execution order in the descending on the deadline;
4: calculating the fitness using Eq. (19);
5: return the task scheduling solution and the fitness;

and cores, both starting from one, where the task number is corresponding to a dimension
of a particle position, and the value of a dimension of a particle position is corresponding
to the core the corresponding task assigned to. For cloud VMs, we only number one
core for each VM type as all VM instances with a type have identical price-performance
ratio in real world, e.g., al.* in Amazon EC2 (https:/aws.amazon.com/). For each task, the
number of cores which it can be assigned to is the accumulated core number of the device
launching it and the edge servers having connections with the device plus the number of
VM types. Thus, for each dimension in each particle position, the minimal value (p;”i”) is
one representing the task assigned to the first core of the device launching the task, and the
maximal value (p//*) is

M M+E

Z(xd, CI+Y . Y > (xaiC)+NV, (20)

i=1j=M+1b;;>0

where NV is the number of cloud VM types. The subscript d represents the dimension in
each particle position. The dth dimension is corresponding to the dth task, ;.

For example, as shown in Fig. 2, assuming a DE3C consisting of two user devices, one
edge server, and one cloud VM type. Each of these two devices and the edge server has
two computing cores, respectively represented as dc;; and dcj, for the first device, dcy;
and dc,; for the second device, and ec; and ec, for the edge server. Both devices have
network connections with the edge, that is to say, tasks launched by these two devices can
be offloaded to the edge for processing. Then for each task, there are five cores that the task

can be assigned to, i.e., pi/™* =

=5 for all d. Each device launches three tasks, where the first
three tasks, t;, t,, and t3, are launched by the first device, and the last three tasks, t4, 5, and
ts, are launched by the second device. Then we numbered two cores of each device as 1 and
2, respectively. Two cores of the edge server are numbered as 3 and 4, respectively. And
the VM type is numbered as 5. By this time, the particle position [2,3,2,1,4, 5] represents
1) is assigned to dcy, 1, is assigned to ecy, 3 is assigned to dcyy, 4 is assigned to dcyi, t5 is
assigned to ec,, and t¢ is assigned to the cloud.

Given a particle position, we use the following steps to convert it to a task scheduling
solution, as outlined in Algorithm 2: (i) we decode the position to the task assignment
to cores based on the correspondence between them, illustrated above; (ii) with the task
assignment, we conduct EDF for ordering the task execution on each core, which rejects
tasks whose deadline cannot be satisfied by the core, as shown in lines 2-3 of Algorithm 2.
By now, we achieve a task scheduling solution according to the particle position. After
this, we can calculate the number of tasks whose deadlines are satisfied, and the overall
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Figure 2 An example for illustrating the integer coding method.
Full-size tal DOI: 10.7717/peerjcs.893/fig-2

utilization using Eqs. (13)—(16). And then, we can achieve the fitness of the particle using

Eq. (19).

IPSO

The IPSO, exploited by our method to achieve the best particle position providing the

global best fitness, consists of the following steps, as shown in Algorithm 3.

1) Initializing the position and the fly velocity for each particle randomly, and calculating
its fitness.

2) Setting the local best position and fitness as the current position and fitness for each
particle, respectively.

3) Finding the particle providing the best fitness, and setting the global best position and
fitness as its position and fitness.

4) If the number of iterations don’t reach the maximum predefined, repeat step (5)—(7)
for each particle.

5) For the particle, updating its velocity and position respectively using Eqs. (21) and (22),
and calculating its fitness. Where v; 4 and p; 4 are representing the velocity and the
position of ith particle in dth dimension. Ib; 4 is the local best position for ith particle in
dth dimension. gb, isthe global best position in dth dimension. w is the inertia weight of
particles. We exploit linearly decreasing inertia weight in this paper, due to its simplicity
and good performance (Han et al., 2010). a; and a, are the acceleration coefficients,
which push the particle toward local and global best positions, respectively. r; and r,
are two random values in the range of [0, 1]. To rationalize the updated position in dth

dimension, we perform rounding operation and modulo p*™ plus 1 on it.
Vid=w-Vi(g —+ay-r - (lbi,d — Ui,d) +ay-r- (gbd — Ui,d)a (21)
pia=[pia+vial mod p/™ +1. (22)

The inertia weight update strategy and the values of various parameters (e.g., a; and a;)
have influences on the performance of PSO, which is one of our future works. One is
advised to read related latest works, e.g., (Houssein et al., 2021a; Nabi ¢ Ahmed, 2021),
if interested to follow the details.
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6) For the particle, comparing its current fitness and local best fitness, and updating the
local best fitness and position respectively as the greater one and the corresponding
position.

7) Comparing the local best fitness with the global best fitness, and updating the global
best fitness and position respectively as the greater one and the corresponding position.

Algorithm 3 IPSO

Input: the parameters of the IPSO.
Output: The global best particle position.
: generating the position and the velocity of each particle randomly;
calculating the fitness of each particle by Algorithm 2;
initializing the local best solution as the current position and the fitness for each particle;
initializing the global best solution as the local best solution of the particle providing the best fitness;
while the iterative number don’t reach the maximum do
for each particle do
updating the position using Eq. (21) and (22);
calculating the fitness of each particle by Algorithm 2;
updating the local best solution;
updating the global best solution;
return the global best solution;

IR BRI S 4T

—_

For updating particle positions, we only discretize them and limit them to reasonable
space, which is helpful for preserving the diversity of particles. Existing discrete PSO
methods limit both positions and velocity for particles, and exploit the interception
operator for the limiting, which sets a value as the minimum and the maximum when it
is less than the minimum and greater than the maximum, respectively. This makes the
possibilities of the minimum and the maximum for particle positions are much greater
than that of other possible values, and thus reduces the particle diversity, which can reduce
the performance of PSO.

Complexity analysis

As shown in Algorithm 3, there are two layers loop, which has O(ITR - NP) time
complexity, where ITR and NP are the numbers of the iteration and particles,
respectively. Within the loop, the most complicated part is calling Algorithm 2 which

is O(NC - (T /NC)?) = O(T?/NC) in time complexity on average, as shown in its lines 2-3,
where NC is the number of cores in the DE3C system. T /NC is the average number of
tasks assigned to each core, and O((T/NC)?) is the time complexity of EDF for each core
on average. Thus, the time complexity of our IPSO based method is O(ITR- NP - T?/NC)
on average, which is quadratically increased with the number of tasks.

For PSO or GA with binary encoding method, they have similar procedures to IPSO, and
thus their time complexities are also O(ITR- NP - T?/NC). Referring to Bays (1977); B.V.
& Guddeti (2018); Benoit, Elghazi & Robert (2021); Liu et al. (2019); Meng et al. (2020);
Mahmud et al. (2020), time complexity of First Fit (FF) is O(T %« NC), and that of First Fit
Decreasing (FFD), Earliest Deadline First (EDF), Earliest Finish Time First (EFTF), Least
Average Completion Time (LACT), and Least Slack Time First (LSTF) are O(T?*NC). In
general, the numbers of the iteration and particles are constants, and all of above methods
except FF exhibit quadratic complexity with the number of tasks.
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PERFORMANCE EVALUATION

In this section, we conduct extensive experiments in a DE3C environment simulated
referring to published articles and the reality, to evaluate the performance of our method
in SLA satisfaction and resource efficiency. In the simulated environment, there are 20
devices, 2 edges, and one cloud VM type, and each device is randomly connected with one
edge. For each edge, the number of servers are randomly generated in the range of [1,4].
The computing capacity of each core is randomly set in the ranges of [1,2] GHz, [2,3]
GHz, and [2, 3] GHz, respectively, for each device, each edge server, and the VM type. The
number of tasks launched by each device is generated randomly in the range of [1, 100],
which results in about 1,000 total tasks on average in the system. The length, the input
data size, and the deadline of each task is generated randomly in the ranges of [100,2000]
GHz, [20,500] MB and [100, 1000] seconds, respectively. For network connections, the
bandwidths for transmitting data from a device to an edge and the cloud are randomly set
in ranges of [10, 100] Mbps and [1, 10] Mbps, respectively.

There are several parameters should be set when implementing our IPSO. Referring to
Kumar, Mahato ¢ Bhunia (2020), we set the maximum iteration number and the particle
number as 200 and 50, respectively. Both acceleration coefficients, a; and a5, are set as
2.0, referring to Wang, Zhang & Zhou (2021). The w inertia weight is linearly decreased
with the iterative time in the range of [0.0, 1.4], referring to Yu ef al. (2021). The effect of
parameter settings on the performance of our method will be studied in the future.

We compare our method with the following classical and recently published methods.

e First Fit (Bays, 1977), FF, iteratively schedules a task to the first computing core satisfying
its deadline.

e First Fit Decreasing (B.V. ¢ Guddeti, 2018), FED, iteratively schedules the task with
maximal computing length to the first computing core satisfying its deadline.

e Farliest Deadline First (Benoit, Elghazi ¢ Robert, 2021), EDF, iteratively schedules the
task with earliest deadline to the first computing core satisfying its deadline, which is a
classical heuristic method concerning the deadline constraint.

e FEarliest Finish Time First, EFTF, iteratively schedules a task to the computing core
providing the earliest finish time and satisfying its deadline, which is the basic idea
exploited in the work proposed by Liu et al. (2019).

e Least Average Completion Time, LACT, iteratively schedules a task to the computing
core satisfying its deadline, such that the average completion time of scheduled tasks is
minimal, which is the basic idea exploited by Dedas (Meng et al., 2020).

e Least Slack Time First, LSTF, iteratively schedules a task to the computing core satisfying
its deadline and providing the least slack time for the task, which is the basic idea exploited
in the work proposed by Mahmud et al. (2020).

e Genetic Algorithm, GA, which simulates the population evolution by crossover,
mutation and selection operators, where a chromosome represents a task assignment
to cores, and a gene is a bit representing the assignment of a task to a core. This is the
basic idea used in the work of Aburukba et al. (2020). The number of population and the
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maximum generation are set as 1,000 in our experiments. EDF is used for task ordering
in each core.

e PSO_srv, employ PSO with the integer coding of the task assignment to computing
nodes, which is the basic idea exploited by existing PSO based task scheduling for DE3C,
such as Xie et al. (2019). Parameters have same settings to our IPSO method in the
experiment. The assignment of tasks to cores in each computing node and the task
ordering in each core are solved by EDF.

e BPSO, employ PSO with the binary coding that is similar to GA. Parameter values are
set as our IPSO method in the experiment. EDF is used to order the task execution in
each core.

We compare the performance of these task scheduling method in the following aspects.

e SLA satisfaction is quantified by the number, the accumulated computing length, and
the processed data size of completed tasks.

e Resource efficiency is quantified by the resource utilization for the overall system, and
the cost efficiency for cloud VMs. The price of a VM instance is $0.1 per hour.

e Processing efficiency is quantified by the executed computing length and the processed
data size of tasks per unit processing time, which are the ratios of completed computing
length and processed data size to the makespan, respectively.

For each group of experiments, we repeat it ten times, and report the median result in
the followings. For each metric value achieved by each task scheduling method, we scale
it by that of FF to display the relative difference between these methods more clearly. The
details of experiment results are shown as followings. Our method is abbreviated to IPSO
in the followings.

SLA satisfaction

Figure 3 shows the performance of various task scheduling methods in maximizing the
accumulated number, computing length, and processed data size of finished tasks. As
shown in the figure, our method has about 36%, 46%, and 55% better performance
than these heuristic methods, FF, FFD, EDF, EFTF, LACT, and LSTF, in these three SLA
satisfaction metrics, respectively. This illustrates that meta-heuristic methods can achieve
a much better performance than heuristic methods, due to their randomness for global
searching ability. While, the performance of GA, PSO_srv, and BPSO are much worse than
that of these heuristic methods, such as, our method achieves 953%, 115%, and 322% than
GA, PSO_srv, and BPSO, respectively, more completed task number. This suggests us that
meta-heuristic approaches must be carefully designed for a good performance.

Of these heuristic methods, EDF has the best performance in SLA satisfaction, as shown
in Fig. 3, due to its aware of the task deadline, which is the reason why we exploit it for task
ordering in each core.

Compared with BPSO, IPSO has 322%, 523%, and 313% better performance in three
SLA satisfaction metrics, respectively. This provides experimental evidence that our integer
coding method significantly improves the performance of PSO for task scheduling in
DE3C. The main reason is that the searching space BPSO is much larger than IPSO due to
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their different represents to the same problem. For example, if there are 6 candidate cores,
e.g., two device cores, four edge server cores, and one cloud VM type, for processing every
task in a DE3C, then considering there are 10 tasks, the search space includes 619 solutions
for IPSO, while 2% for BPSO. Thus, in this case, the search space of BPSO is more than 330
million times larger than that of IPSO, and this multiple exponentially increases with the
numbers of tasks and candidate cores of each task. Therefore, for an optimization problem,
IPSO has much probability of searching a local or global best solution than BPSO. This is
also the main reason why GA has much worse performance than IPSO, as shown in Fig. 3.

PSO_srv has smaller search space while worse performance than IPSO. As shown in
Fig. 3, IPSO has 115%, 166%, and 108% better performance than PSO_srv in three SLA
satisfaction metrics, respectively. This is mainly because the coding of the task assignment
to a coarse-grained resource cannot take full advantage of the global searching ability of
PSO. Google’s previous work has verified that fine-grained resource allocation helps to
improve the resource efficiency (Tirmazi et al., 2020), thus our IPSO uses the core as the
granularity of resources during the searching process, which results in a better performance
in SLA satisfaction optimization compared with other methods.

Resource efficiency

Figures 4A and 4B respectively show the overall resource utilization and the cost efficiency
when using various task scheduling methods in the simulated DE3C environment. As
shown in the figure, our method has the best performance in optimizing both resource
efficiency metric values, where our method has 36.9%-964% higher resource utilization
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and 5.6%—143% greater cost efficiency, compared with other methods (GA has zero cost
efficiency as its solution does not offload any task to the cloud). This is mainly because
the resource utilization is our second optimization objective (see Eqs. (17) or (19)), which
results in that the solution having a higher utilization has a greater fitness in all of the
solution with same number of finished tasks.

EDF has a worse cost efficiency than other heuristic methods. This may be because
EDF offloads more tasks to the cloud, which leads to a greater ratio of the data transfer
time and the computing time in the cloud, and thus results in a poor cost efficiency. The
idea of offloading tasks with small input data size to the cloud helps to improve the cost
efficiency, which is one of our consideration for designing heuristics or hybrid heuristics
with high effectiveness. This is the main reason why EFTF has the best cost efficiency in
all of these heuristics, because EFTF iteratively assigns the task with minimal finish time,
which usually having small input data size, when making the offloading and assignment
decisions in the cloud.

Processing efficiency

Figure 5 respectively show the values of the two processing efficiency metrics when applying
various task scheduling methods. As shown in the figure, these two processing efficiency
metric values respectively have a similar relative performance to the corresponding SLA
satisfaction metric values for these scheduling methods, as shown in Figs. 35 and 3C. This
is because all of these methods have comparable performance in the makespan. Thus, our
method also has the best performance in processing efficiency.

DISCUSSION

Meta-heuristics, typified by PSO, can achieve better performance than heuristics. This
achievement is mainly due to their global search ability which is implemented by the
randomness and the converging to the global solution during their iteratively search. But
the meta-heuristic based method must be designed carefully, otherwise, it may have worse
performance than heuristics, such GA, PSO_srv and BPSO, as presented in experimental
results.
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The main difference between IPSO and BPSO is the search space size for a specific
problem. This inspires us that more efficient encoding method with short code length
helps to reduce the size of search space, and thus improve the probability of finding the
global best solution.

One of the main advantages of heuristics is that they are specifically designed for
targeted problems. This produces efficient local search strategies. Thus, in some times,
heuristics have better performance than meta-heuristics, such as EDF vs. BPSO. Therefore,
a promising research direction is integrating a local search strategy into a meta-heuristic
algorithm to cover its shortage caused by its purpose of solving general problem. While,
different combining of heuristic local searches and global search strategies should result in
various performance improvements, which is one of our future studies.

RELATED WORKS

As DE3C is one of the most effective ways to solve the problem of insufficient resources
of smart devices and task scheduling is a promising technology to improve the resource
efficiency, several researchers have focused on the design of efficient task scheduling
methods in various DE3C environments (Warng et al., 2020).

To improve the response time of tasks, the method proposed by Apat et al. (2019)
iteratively assigned the task with the least slack time to the edge server closest to the
user. Tasks are assigned to the cloud when they cannot be finished by edges. Their
work didn’t consider the task scheduling on each server. OnDisc, proposed by Han et al.
(2019), heuristically dispatched a task to the server providing the shortest additional total
weighted response time (WRT), and sees the cloud as a server, to improve overall WRT. For
minimizing the deadline violation, the heuristic method proposed by Stavrinides ¢ Karatza
(2019) used EDF and earliest finish time first for selecting the task and the resource in each
iteration, respectively. When a task’s input data was not ready, the proposed method tried
to fill a subsequent task before it.

Above research focused on the performance optimization for task execution, while didn’t
concern the cost of used resources. In general, a task requires more resources for a better
performance, and thus there is a trade-off between the task performance and the resource
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cost. Therefore, several works concerned the optimization of the resource cost or the profit
for service providers. For example, Chen et al. (2020) presented a task scheduling method
to optimize the profit, where the value of a task was proportional to the resource amounts
and the time it took, and resources were provided in the form of VM. Their proposed
method first classified tasks based on the amount of its required resources by K-means.
Then, for profit maximization, their method allocated the VM class to the closest task class,
and used Kuhn-Munkres method to solve the optimal matching of tasks and VMs. In their
work, all VMs were seen as one VM class. This work ignored the heterogeneity between
edge and cloud resources, which may lead to resource inefficiency (Kumar et al., 2019). Li,
Wang & Luo (2020) proposed a hybrid method employing simulated annealing to improve
artificial fish swarm algorithm for offloading decision making, and used best fit for task
assignment. This work focused on media delivery applications, and thus assumed every
task was formed by same-sized subtasks. This assumption limited the application scope.
Mahmud et al. (2020) proposed a method which used edge resources first, and assigned
the offloaded task to the first computing node with minimal profit merit value, where the
profit merit was the profit divided by the slack time.

All of the aforementioned methods employed only edge and cloud resources for task
processing, even though most of user devices have been equipped with various computing
resources (Wu ef al., 2019) which have zero transmission latency for users’ data. To exploit
all the advantages of the local, edge and cloud resources, some works are proposed to address
the task scheduling problem for DE3C. The method presented in Lakhan ¢ Li (2019) first
tried several existed task order method, e.g., EDF, EFTF, and LSTF, and selected the result
with the best performance for task order. Then, the method used existed pair-wise decision
methods, TOPSIS (Liang ¢~ Xu, 2017) and AHP (Saaty, 2008), to decide the position for
each task’s execution, and applied a local search method exploiting random searching
for the edge/cloud. For improving the delay, the approach presented in Miao et al. (2020)
first decided the amounts of data that is to be processed by the device and an edge/cloud
computing node, assuming each task can be divided into two subtasks with any data size.
Then they considered to migrate some subtasks between computing nodes to further
improve the delay, for each task. The method proposed in Zhang et al. (2019) iteratively
assigned the task required minimal resources to the nearest edge server that can satisfy all
of its requirements. Ma et al. (2022) proposed a load balance method for improving the
revenue for edge computing. The proposed method allocated the computing resources
of the edge node with the most available cores and the smallest move-up energy to the
new arrived task. To improve the total energy consumption for executing deep neural
networks in DE3C with deadline constraints, Chen et al. (2022) proposed a particle swarm
optimization algorithm using mutation and crossover operators for population update.
Wang et al. (in press) leveraged reinforcement learning with sequence-to sequence neural
network for improving the latency and the device energy in DE3C. Machine learning-based
or metaheuristic-based approaches may achieve a better performance than heuristics, but
in general, they consume hundreds to tens of thousands more time, which makes them not
applicable to make online scheduling decisions.
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Different from these above works, in this paper, we design an Integer PSO based hybrid
heuristic method for DE3C systems. Our work is aiming at optimizing SLA satisfaction
and resource efficiency, and trying to jointly address the problems of offloading decision,
task assignment, and task ordering.

CONCLUSION

In this paper, we study on the optimization of the SLA satisfaction and the resource
efficiency in DE3C environments by task scheduling. We formulate the concerned
optimization problem as a BNLP, and propose an integer PSO based task scheduling
method to solve the problem with a reasonable time. Different from existing PSO based
methods, our method exploits the integer coding of the task assignment to cores, and
rationalizes the position of each particle by rounding and modulo operation to preserve
the particle diversity. Simulated experiment results show that our method has better
performance in both SLA satisfaction and resource efficiency compared with nine classical
and recently published methods.

The main advantages of our method are the efficient encoding method and the
integration of meta-heuristic and heuristic. In the future, we will continue to study
on more effective encoding methods and try to design hybrid methods by hybridizing
meta-heuristic and heuristic search strategy for a better performance.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their valuable comments
and suggestions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The research was supported by the Key Scientific and Technological Projects of Henan
Province (Grant No. 202102210174, 212102210096, 202102210383, 212102210410,
202102210149, 212102210382, 212102210104, 212102210424, 212102210418), the Key
Scientific Research Projects of Henan Higher School (Grant No. 20B520039, 21A520050),
the National Natural Science Foundation of China (Grant No. 61872043, 61975187,
62072414), the Qin Xin Talents Cultivation Program, Beijing Information Science and
Technology University (No. QXTCP B201904), and the fund of the Beijing Key Laboratory
of Internet Culture and Digital Dissemination Research (Grant No. ICDDXNO004). The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

The Key Scientific and Technological Projects of Henan Province: 202102210174,
212102210096, 202102210383, 212102210410, 202102210149, 212102210382,
212102210104, 212102210424, 212102210418.

Wang et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.893 17/22


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.893

PeerJ Computer Science

The Key Scientific Research Projects of Henan Higher School: 20B520039, 21A520050.
The National Natural Science Foundation of China: 61872043, 61975187, 62072414.
Qin Xin Talents Cultivation Program.

Beijing Information Science and Technology University: QXTCP B201904.

The Beijing Key Laboratory of Internet Culture and Digital Dissemination Research:
ICDDXNO004.

Competing Interests
Jungiang Cheng is employed by Europe-Aisa Hi-tech and Digital Technology Company
Limited.

Author Contributions

e Bo Wang conceived and designed the experiments, performed the experiments,
performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.

e Jungiang Cheng performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.

e Jie Cao conceived and designed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.

e Changhai Wang analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

e Wanwei Huang conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

Data Deposition
The following information was supplied regarding data availability:

The implementation of task scheduling methods in C is available in the Supplementary
File.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.893#supplemental-information.

REFERENCES

Aburukba RO, AliKarrar M, Landolsi T, El-Fakih K. 2020. Scheduling Internet of
Things requests to minimize latency in hybrid Fog-Cloud computing. Future
Generation Computer Systems 111:539-551 DOI 10.1016/j.future.2019.09.039.

Adhikari M, Srirama SN, Amgoth T. 2020. Application offloading strategy for hierarchi-
cal fog environment through swarm optimization. IEEE Internet of Things Journal
7(5):4317-4328.

Apat HK, s. Compt B, Bhaisare K, Maiti P. 2019. An optimal task scheduling towards
minimized cost and response time in fog computing infrastructure. In: 2019
international conference on information technology (ICIT). 160-165.

Wang et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.893 18/22


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.893#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.893#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.893#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.893#supplemental-information
http://dx.doi.org/10.1016/j.future.2019.09.039
http://dx.doi.org/10.7717/peerj-cs.893

PeerJ Computer Science

Bays C. 1977. A comparison of next-fit, first-fit, and best-fit. Communications of the ACM
20(3):191192 DOIT 10.1145/359436.359453,

Benoit A, Flghazi R, Robert Y. 2021. Max-stretch minimization on an edge-cloud
platform. In: 2021 IEEE international parallel and distributed processing symposium
(IPDPS). Piscataway: IEEE, 766—775 DOI 10.1109/IPDPS49936.2021.00086.

Berkelaar M, Dirks J, Eikland K, Notebaert P, Ebert J, Gourvest H. 2020. Ipsolve: a
mixed integer linear programming (MILP) solver. Available at http://sourceforge.net/
projects/lpsolve.

BV N, Guddeti RMR. 2018. Heuristic-Based [oT application modules placement in the
fog-cloud computing environment. In: 2018 IEEE/ACM international conference on
utility and cloud computing companion (UCC Companion). Piscataway: IEEE, 24-25
DOI 10.1109/UCC-Companion.2018.00027.

Chen L, Guo K, Fan G, Wang C, Song S. 2020. Resource constrained profit optimization
method for task scheduling in edge cloud. IEEE Access 8:118638-118652.

Chen X, Zhang J, Lin B, Chen Z, Wolter K, Min G. 2022. Energy-efficient offloading for
DNN-based smart IoT systems in cloud-edge environments. IEEE Transactions on
Parallel and Distributed Systems 33(3):683—-697 DOI 10.1109/TPDS.2021.3100298.

Cisco. 2020. Cisco annual internet report (2018-2023). Available at https://www.cisco.
com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html.

Du J, Leung JY-T. 1989. Complexity of scheduling parallel task systems. STAM Journal on
Discrete Mathematics 2(4):473—487.

Du], Zhao L, Chu X, Yu FR, Feng J, I CL. 2019. Enabling low-latency applications in
LTE-A based mixed fog/cloud computing systems. IEEE Transactions on Vehicular
Technology 68(2):1757-1771 DOT 10.1109/TVT.2018.2882991.

Gujarati A, Elnikety S, He Y, McKinley KS, Brandenburg BB. 2017. Swayam: distributed
autoscaling to meet slas of machine learning inference services with resource
efficiency. In: Proceedings of the 18th ACM/IFIP/USENIX middleware conference. New
York: ACM, 109-120.

Han W, Yang P, Ren H, Sun J. 2010. Comparison study of several kinds of inertia
weights for PSO. In: 2010 IEEE international conference on progress in informatics and
computing, volume 1. 280-284 DOIT 10.1109/P1C.2010.5687447.

Han Z, Tan H, Li X, Jiang SH, Li Y, Lau FCM. 2019. OnDisc: online latency-sensitive job
dispatching and scheduling in heterogeneous edge-clouds. IEEE/ACM Transactions
on Networking 27(6):2472-2485 DOI 10.1109/TNET.2019.2953806.

Houssein EH, Gad AG, Hussain K, Suganthan PN. 2021a. Major advances in particle
swarm optimization: theory, analysis, and application. Swarm and Evolutionary
Computation 63:100868 DOI 10.1016/j.swevo.2021.100868.

Houssein EH, Gad AG, Wazery YM, Suganthan PN. 2021b. Task scheduling in
cloud computing based on meta-heuristics: review, taxonomy, open chal-
lenges, and future trends. Swarm and Evolutionary Computation 62:100841
DOI 10.1016/j.swev0.2021.100841.

Wang et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.893 19/22


https://peerj.com
http://dx.doi.org/10.1145/359436.359453
http://dx.doi.org/10.1109/IPDPS49936.2021.00086
http://sourceforge.net/projects/lpsolve
http://sourceforge.net/projects/lpsolve
http://dx.doi.org/10.1109/UCC-Companion.2018.00027
http://dx.doi.org/10.1109/TPDS.2021.3100298
https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
http://dx.doi.org/10.1109/TVT.2018.2882991
http://dx.doi.org/10.1109/PIC.2010.5687447
http://dx.doi.org/10.1109/TNET.2019.2953806
http://dx.doi.org/10.1016/j.swevo.2021.100868
http://dx.doi.org/10.1016/j.swevo.2021.100841
http://dx.doi.org/10.7717/peerj-cs.893

PeerJ Computer Science

Kumar M, Sharma S, Goel A, Singh S. 2019. A comprehensive survey for scheduling
techniques in cloud computing. Journal of Network and Computer Applications
143:1-33 DOI 10.1016/j.jnca.2019.06.006.

Kumar N, Mahato SK, Bhunia AK. 2020. A new QPSO based hybrid algorithm for
constrained optimization problems via tournamenting process. Soft Computing
24(15):1136511379 DOI 10.1007/s00500-019-04601-3.

Lakhan A, Li X. 2019. Content aware task scheduling framework for mobile workflow
applications in heterogeneous mobile-edge-cloud paradigms: cATSA framework.

In: 2019 IEEE Intl conf on parallel distributed processing with applications, big data
cloud computing, sustainable computing communications, social computing networking
(ISPA/BDCloud/SocialCom/SustainCom). Piscataway: IEEE, 242-249.

Li C, Wang C, Luo Y. 2020. An efficient scheduling optimization strategy for improving
consistency maintenance in edge cloud environment. The Journal of Supercomputing
76:6941-6968 DOI 10.1007/s11227-019-03133-9.

Liang D, Xu Z. 2017. The new extension of TOPSIS method for multiple criteria decision
making with hesitant Pythagorean fuzzy sets. Applied Soft Computing 60:167-179
DOI10.1016/j.as0¢.2017.06.034.

Liu L, Tan H, Jiang SH-C, Han Z, Li X-Y, Huang H. 2019. Dependent task placement
and scheduling with function configuration in edge computing. In: Proceedings of
the international symposium on quality of service, IWQoS’19. New York, NY, USA:
Association for Computing Machinery, 1-10
DOI 10.1145/3326285.33290559781450367783.

Ma Z, Zhang S, Chen Z, Han T, Qian Z, Xiao M, Chen N, WuJ, Lu S. 2022. To-
wards revenue-driven multi-user online task offloading in edge comput-
ing. IEEE Transactions on Parallel and Distributed Systems 33(5):1185-1198
DOI10.1109/TPDS.2021.3105325.

Mahmud R, Srirama SN, Ramamohanarao K, Buyya R. 2020. Profit-aware application
placement for integrated FogCloud computing environments. Journal of Parallel and
Distributed Computing 135:177-190 DOI 10.1016/.jpdc.2019.10.001.

Meng J, Tan H, Li X, Han Z, Li B. 2020. Online deadline-aware task dispatching and
scheduling in edge computing. IEEE Transactions on Parallel and Distributed Systems
31(6):1270-1286 DOI 10.1109/TPDS.2019.2961905.

MengJ, Tan H, Xu C, Cao W, Liu L, Li B. 2019. Dedas: online task dispatching and
scheduling with bandwidth constraint in edge computing. In: IEEE INFOCOM
2019 - IEEE conference on computer communications. Piscataway: IEEE, 2287-2295
DOI 10.1109/INFOCOM.2019.8737577.

Miao Y, Wu G, Li M, Ghoneim A, Al-Rakhami M, Hossain MS. 2020. Intelligent task
prediction and computation offloading based on mobile-edge cloud computing.
Future Generation Computer Systems 102:925-931 DOI 10.1016/j.future.2019.09.035.

Nabi S, Ahmed M. 2021. PSORDAL: particle swarm optimizationbased resource and
deadlineaware dynamic load balancer for deadline constrained cloud tasks. The Jour-
nal of Supercomputing Epub ahead of print Sep 6 2021 DOI 10.1007/s11227-021-04062-2.

Wang et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.893 20/22


https://peerj.com
http://dx.doi.org/10.1016/j.jnca.2019.06.006
http://dx.doi.org/10.1007/s00500-019-04601-3
http://dx.doi.org/10.1007/s11227-019-03133-9
http://dx.doi.org/10.1016/j.asoc.2017.06.034
http://dx.doi.org/10.1145/3326285.33290559781450367783
http://dx.doi.org/10.1109/TPDS.2021.3105325
http://dx.doi.org/10.1016/j.jpdc.2019.10.001
http://dx.doi.org/10.1109/TPDS.2019.2961905
http://dx.doi.org/10.1109/INFOCOM.2019.8737577
http://dx.doi.org/10.1016/j.future.2019.09.035
http://dx.doi.org/10.1007/s11227-021-04062-2
http://dx.doi.org/10.7717/peerj-cs.893

PeerJ Computer Science

Pinedo ML. 2016. Scheduling: theory, algorithms, and systems. 5th edition. Cham,
Switzerland: Springer, 13-32.

Saaty TL. 2008. Decision making with the analytic hierarchy process. International
Journal of Services Sciences 1(1):83—98 DOI 10.1504/1]S5¢i.2008.01759.

Serrano D, Bouchenak S, Kouki Y, de Oliveira Jr FA, Ledoux T, Lejeune J, Sopena
J, Arantes L, Sens P. 2016. SLA guarantees for cloud services. Future Generation
Computer Systems 54:233—-246 DOI 10.1016/j.tuture.2015.03.018.

Stavrinides GL, Karatza HD. 2019. A hybrid approach to scheduling real-time IoT
workflows in fog and cloud environments. Multimedia Tools and Applications
78(17):24639-24655.

Sun F, Hou F, Cheng N, Wang M, Zhou H, Gui L, Shen X. 2018. Cooperative task
scheduling for computation offloading in vehicular cloud. IEEE Transactions on
Vehicular Technology 67(11):11049-11061 DOI 10.1109/TVT.2018.2868013.

Tirmazi M, Barker A, Deng N, Haque ME, Qin ZG, Hand S, Harchol-Balter M, Wilkes
J. 2020. In: Borg: the next generation, EuroSys *20. New York, NY, USA: Association
for Computing Machinery, DOI 10.1145/3342195.3387517.

Wang J, HuJ, Min G, Zhan W, Zomaya A, Georgalas N. 2021. Dependent task offload-
ing for edge computing based on deep reinforcement learning. IEEE Transactions on
Computers 1-13 In Press DOI 10.1109/TC.2021.3131040.

Wang Q, Guo S, LiuJ, Yang Y. 2019b. Energy-efficient computation offloading and re-
source allocation for delay-sensitive mobile edge computing. Sustainable Computing:
Informatics and Systems 21:154-164 DOI 10.1016/j.suscom.2019.01.007.

Wang B, Song Y, Cao J, Cui X, Zhang L. 2019a. Improving task scheduling with paral-
lelism awareness in heterogeneous computational environments. Future Generation
Computer Systems 94:419—429.

Wang B, Song Y, Sun Y, Liu J. 2016. Managing deadline-constrained bag-of-tasks jobs on
hybrid clouds with closest deadline first scheduling. KSII Transactions on Internet and
Information Systems 10(7):2952-2971 DOI 10.3837/tiis.2016.07.005.

Wang D, Tan D, Liu L. 2018. Particle swarm optimization algorithm: an overview. Soft
Computing 22(2):387—408.

Wang B, Wang C, Huang W, Song Y, Qin X. 2020. A survey and taxonomy on task
offloading for Edge-cloud computing. IEEE Access 8:186080-186101.

Wang F, Zhang H, Zhou A. 2021. A particle swarm optimization algorithm for mixed-
variable optimization problems. Swarm and Evolutionary Computation 60:100808
DOI 10.1016/j.swevo.2020.100808.

Wu C-J, Brooks D, Chen K, Chen D, Choudhury S, Dukhan M, Hazelwood K, Isaac E,
JiaY, Jia B, Leyvand T, Lu H, Lu Y, Qiao L, Reagen B, Spisak J, Sun F, Tulloch A,
Vajda P, Wang X, Wang Y, Wasti B, Wu Y, Xian R, Yoo S, Zhang P. 2019. Machine
learning at facebook: understanding inference at the edge. In: 2019 IEEE international
symposium on high performance computer architecture (HPCA). 331-344.

Xie Y, Zhu Y, Wang Y, Cheng Y, Xu R, Sani AS, Yuan D, Yang Y. 2019. A novel
directional and non-local-convergent particle swarm optimization based workflow

Wang et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.893 21/22


https://peerj.com
http://dx.doi.org/10.1504/IJSSci.2008.01759
http://dx.doi.org/10.1016/j.future.2015.03.018
http://dx.doi.org/10.1109/TVT.2018.2868013
http://dx.doi.org/10.1145/3342195.3387517
http://dx.doi.org/10.1109/TC.2021.3131040
http://dx.doi.org/10.1016/j.suscom.2019.01.007
http://dx.doi.org/10.3837/tiis.2016.07.005
http://dx.doi.org/10.1016/j.swevo.2020.100808
http://dx.doi.org/10.7717/peerj-cs.893

PeerJ Computer Science

scheduling in cloud-edge environment. Future Generation Computer Systems
97:351-378 DOI 10.1016/j.future.2019.03.005.

Yang T, Feng H, Gao S, Jiang Z, Qin M, Cheng N, Bai L. 2020. Two-stage offloading
optimization for energylatency tradeoff with mobile edge computing in maritime
internet of things. IEEE Internet of Things Journal 7(7):5954-5963.

Yu G, Zhao Y, Cui Z, Zuo Y. 2021. A QPSO algorithm based on hierarchical weight
and its application in cloud computing task scheduling. Computer Science and
Information Systems 18(1):189212 DOI 10.2298/CS1S200223033Y.

Zhang C, DuH, Ye Q, Liu C, Yuan H. 2019. DMRA: a decentralized resource allocation
scheme for multi-SP mobile edge computing. In: 2019 IEEE 39th international
conference on distributed computing systems (ICDCS). Piscataway: IEEE, 390-398
DOI 10.1109/ICDCS.2019.00046.

Zhao Y, Calheiros R, Gange G, Bailey J, Sinnott R. 2021. SLA-based profit optimization
resource scheduling for big data analytics-as-a-service platforms in cloud com-
puting environments. IEEE Transactions on Cloud Computing 9(3):1236—1253
DOI 10.1109/TCC.2018.2889956.

Wang et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.893 22/22


https://peerj.com
http://dx.doi.org/10.1016/j.future.2019.03.005
http://dx.doi.org/10.2298/CSIS200223033Y
http://dx.doi.org/10.1109/ICDCS.2019.00046
http://dx.doi.org/10.1109/TCC.2018.2889956
http://dx.doi.org/10.7717/peerj-cs.893

