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ABSTRACT
Background. Next-generation sequencing technology can now be used to sequence
historical specimens from natural history collections, an approach referred to as
museomics. The museomics allows obtaining molecular data from old museum-
preserved specimens, a resource of biomolecules largely underexploited despite the
fact that these specimens are often unique samples of nomenclatural types that can
be crucial for resolving scientific questions. Despite recent technical progress, cricket
mitogenomes are still scarce in the databases, with only a handful of new ones generated
each year from freshly collected material.
Methods. In this study, we used the genome skimming method to sequence and
assemble three new complete mitogenomes representing two tribes of the cricket
subfamily Eneopterinae: two were obtained from old, historical type material of
Xenogryllus lamottei (68 years old) and X. maniema (80 years old), the third one
from a freshly collected specimen of Nisitrus vittatus. We compared their genome
organization and base composition, and reconstructed the molecular phylogeny of the
family Gryllidae.
Results. Our study not only confirmed that the genome skimmingmethod used by next
generation sequencing allows us to efficiently obtain the whole mitogenome from dry-
pinned historical specimens, but we also confirmed how promising it is for large-scale
comparative studies of mitogenomes using resources from natural history collections.
Used in a phylogenetic context the new mitogenomes attest that the mitogenomic data
contain valuable information and also strongly support phylogenetic relationships at
multiple time scales.
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INTRODUCTION
True crickets (superfamily Grylloidea Laicharting, 1781) is one of the most diverse lineages
in Orthoptera (Song et al., 2015) and is well known for acoustic signals produced in the
contexts of courtship and mate recognition (Desutter, 1988; Gerhardt & Huber, 2002).
Based on recent phylogenetic studies (Chintauan-Marquier et al., 2016; de Campos et al.,
2022), five extant families corresponding to monophyletic clades are currently recognized
in the superfamily Grylloidea: Gryllidae Laicharting, 1781, Mogoplistidae Costa, 1855,
Oecanthidae Blanchard, 1845, Phalangopsidae Blanchard, 1845, and Trigonidiidae
Saussure, 1874. Within the family Gryllidae, the subfamily Eneopterinae Saussure,
1874 comprises five monophyletic tribes (Tan et al., 2021). Eneopterinae is a diversified
clade distributed around the world in most tropical areas (e.g., Robillard & Desutter-
Grandcolas, 2004; Vicente et al., 2017) and characterized by diverse shapes and original
features related to acoustic communication, including complex acoustic behaviors and
structures (Desutter-Grandcolas, 1998; Robillard & Desutter-Grandcolas, 2006; Robillard &
Desutter-Grandcolas, 2011; Tan et al., 2021), the use of high-frequency songs in males and
vibrational response in females (e.g., Benavides-Lopez, Hofstede & Robillard, 2020; Robillard
& Desutter-Grandcolas, 2004; Robillard et al., 2013; Robillard et al., 2015; ter Hofstede et al.,
2015). Recent studies investigated their diversity through phylogenetic and biogeographical
studies (Dong et al., 2018; Nattier et al., 2011; Vicente et al., 2017), but the lack of historical
material resulted in specific key taxa being excluded from the otherwise well-sampled
data. To better understand the origin and evolution of the unique features of these
species, we need a robust phylogenetic framework in the context of the phylogenetic
reconstruction of the family Gryllidae. In comparison to single/multi-locus mitochondrial
DNA (mtDNA) markers, the use of complete mitochondrial genomic data (mitogenome)
is a good compromise to sampling both a large amount of data and a large number of
species, including some with very few specimens available, to reconstruct the phylogenetic
backbone of the group under study (e.g., Nie et al., 2020).

The insectmitogenome is a compact circularmolecule (15–18 k bp) encoding a conserved
set of 13 protein-coding genes (PCGs), 22 tRNA genes, and two rRNA genes. Mitogenome
is a convenient option for phylogenetic reconstruction for several reasons: (1) due to
the high number of copies of this molecule, it is relatively easy to obtain mitochondrial
molecular markers; (2) although it is variable enough to be used for barcoding initiatives,
the mitochondrial genes are characterized by diverse rates of evolution, which make
them informative markers for phylogenetic reconstruction at multiple taxonomic scales
(Crampton-Platt et al., 2015; Crampton-Platt et al., 2016; Timmermans et al., 2010); (3)
while rare exceptions of rearrangement have been found, the arrangements of insect
mitogenomes are relatively stable, which promise mitogenomes as a useful data set
for the study of deep divergences of insects (Cameron, 2014). On the other hand, the
rearrangements in some lineages indicate diversities within the group, such as D-K (D:
tRNA-Asp or trnD, K: tRNA-Lys or trnK ) rearrangement in the lineage Acridomorpha
(Li et al., 2020) and some crickets, inversion of the gene cluster M-I-Q (M: tRNA-Met or
trnM, I: tRNA-Ile or trnI, Q: tRNA-Gln or trnQ) and occasional inversion of W (tRNA-Trp
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or trnW ) (Ma et al., 2019). Moreover, considering the potential effect of nuclear copies
of mitochondrial genes, or pseudogenes (numts), the complete mitogenomes in crickets
contain more accurate phylogenetic information than single or multi-locus data (Song et
al., 2008). Mitogenomes have consequently been considered as a powerful source of data
(combing appropriate models) to reconstruct phylogenies accuracy, power and robustness
with strong branch supports (Nie et al., 2020; Song et al., 2020).

With the development of theNextGeneration Sequencing (NGS) technologies, obtaining
the mitogenomic information from fresh or ethanol-preserved specimens is now easy.
However, the amplification of mitogenomes from historical specimens remains more
challenging because of DNA degradation and fragmentation, even when obtaining some
short fragments is also becoming common (e.g., cox1 barcoding in insects (Strutzenberger,
Brehm & Fiedler, 2012)). Genome skimming, a shallow NGS approach that allows for
comparatively deep sequencing of high-copy genomes such as the mitogenome and
complete nuclear ribosomal cluster (Dodsworth, 2015; Straub et al., 2012), has been used
successfully at varying taxonomic levels, e.g., in octopus (Taite et al., 2023), plants (Liu et
al., 2021), and even pathogens (Denver et al., 2016). Despite the technical progress and the
current trend of using complete mitogenomic data for phylogenetic analyses in insects,
including in ensiferans (Song et al., 2020; Zhou et al., 2017), cricket mitogenomes are still
very scarce in the data bases, with only a handful of new ones generated each year from on
freshly collected material.

In this study, we sequenced and assembled three new complete mitogenomes,
representing two tribes of subfamily Eneopterinae by using the genome skimming method.
Among these, two were obtained from old historical type material, while one corresponds
to a freshly collected specimen, which allows direct comparisons of the efficiency of the
methods used to recover mitogenomic data of the superfamily Grylloidea.

MATERIALS AND METHODS
Sampling and genomic DNA extraction
New sequence data correspond to three species of the cricket subfamily Eneopterinae.
One specimen of the species Nisitrus vitattus (Haan, 1844) (tribe Nisitrini) was collected
recently in Brunei, preserved in absolute ethyl alcohol and deposited in Muséum national
d’Histoire naturelle, Paris (MNHN). The collection ofN. vittatusmaterial in Kuala Belalong
Field Studies Centre, Brunei Darussalam was granted by the Institute for Biodiversity and
Environmental Research, Universiti Brunei Darussalam (UBD/AVC-RI/1.21.1 [a]) and
the export permit was issued by the Research Innovation Centre (BioRIC), Ministry of
Primary Resources and Tourism, Brunei Darussalam (BioRIC/HoB/TAD/51-73). The two
other specimens correspond to historical dry insect specimens from MNHN and Musée
Royal de l’Afrique Centrale, Tervuren, Belgium (MRAC), which were selected during the
recent taxonomic revision of the genus Xenogryllus Bolívar, 1890 (Jaiswara et al., 2019): the
holotype and unique specimen of Xenogryllus lamottei Robillard, 2019 collected in Guinea
(Simandou Mount) in 1951, and one male paratype of Xenogryllus maniema Robillard
& Jaiswara, 2019 collected in 1939. The sampling information in detail is presented in
Table S1.
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DNA extraction, PCR amplification, and bank preparations were carried out at Service
de Systématique Moléculaire of the MNHN (SSM). Total genomic DNA of the three
species were extracted from a median leg, using a DNeasy Blood and Tissue Kit (Qiagen
Inc., Valencia, CA, USA) following the manufacturer’s instructions. We used this method
as it is a non-destructive way to prevent damaging legs of type specimens, which were dried
after DNA extraction and replaced on the specimens. The three extracts were then used for
library preparation in a genome skimming approach (Straub et al., 2012) as presented in
Salazar et al. (2020) with a minor modification: the recent specimen N. vitattus (molecular
code: N37) underwent DNA fragmentation in sonication step, while the older specimens
X. lamottei (molecular code: X24) and X. maniema (molecular code: X36) skipped that
step due to their age and a more fragmented DNA.

Mitochondrial genome sequencing and assembly
The workflow including sequencing reads quality detection from both paired-end libraries,
the interest sequences extraction from the total reads and the de novo assemble procedure
was followed the protocol of a previous study (Salazar et al., 2020). The mitochondrial
genomes of Xenogryllus marmoratus (Haan, 1844) (Ma, Zhang & Li, 2019): Genbank
accession MK033622) was used as reference in theMap to reference option in Geneious.

Mitochondrial genome annotation and sequence analyses
Annotation of the mitogenomes was performed using the MITOS webserver with
invertebrate genetic code (Bernt et al., 2013) and modified after comparisons with
other mitogenomes from Grylloidea species. The validation of tRNA sequences
was performed in tRNAscan-SE (http://trna.ucsc.edu/tRNAscan-SE/) and ARWEN
(http://130.235.244.92/ARWEN/) using the invertebrate mitogenome genetic codon (Chan
et al., 2019; Laslett & Canback, 2008). The tandem repeats in the control regions were found
with Tandem Repeats Finder web server (TRF version 4.09, (Benson, 1999)).

The nucleotide base compositions of the complete mitogenomes were calculated in
Geneious 9.0.2 (Biomatter Ltd., New Zealand, http://www.geneious.com, Kearse et al.,
2012). The nucleotide compositional skews were calculated following the formula by
Konstantinov et al. (2016): AT-skew = (A-T)/(A+T) and GC-skew = (G-C)/(G+C), where
A, C, G, and T are the frequencies of the four bases. The nucleotide base composition
comparison analysis for the whole mitogenomes, two ribosomal genes (the large and
small ribosomal subunit, rrnL, and rrnS) among 32 Gryllidae mitogenomes (29 sequences
from GenBank and three news in this study) were also calculated. The PCGs nucleotide
composition, genome and codon position were determined and the PCGs were translated
into a sequences of amino acid residues in silico for calculating of the relative synonymous
codon usage (RSCU) using the invertebrate mitochondrial genetic code in MEGA 7.0
(Kumar, Stecher & Tamura, 2016). Besides, to detect the selective pressure of eneopterine
mitogenomes, the comparison analyses of synonymous and non-synonymous substitutions
(Ka/Ks) for each PCG in eneopterine crickets were calculated using KaKs_Calculator 3.0
software (https://ngdc.cncb.ac.cn/biocode/tools/BT000001) (Zhang, 2022).
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Phylogenetic analysis
Thirteen protein-coding genes, 22 tRNAs and 2 rRNAs of 32 Gryllidae species (29 from
GenBank and three in this study), and six species representing other families in the
superfamily Grylloidea were used for the phylogenetic analysis. Four species representing
the Gryllotalpoidea superfamily were used as outgroup. The detailed information about
the taxonomic sampling used in this study is listed in Table S2.

The phylogenetic analysis was applied in Bayesian Inference and Maximum Likelihood
using mitogenomes in PhyloSuite V1.2.3 program (http://phylosuite.jushengwu.com/
dongzhang0725.github.io/installation/) following the users’ instructions (Xiang et al., 2023;
Zhang et al., 2020). For BI tree, a clade with a PP value higher than 0.95 was considered
as strongly supported following Erixon et al. (2003). For ML tree, nodes supported by
bootstrap support values (BS) ≥70% were considered strongly supported following Hillis
& Bull (1993).

RESULTS
Sequencing and assembly of mitochondrial genome
After excluding low quality reads from the sequencing, a total of 15,765,390 read-pairs
were generated from the recent specimen of Nisitrus vittatus (collected in 2017); 989,605
read-pairs from the holotype of Xenogryllus lamottei collected in 1951; and 2,127,394
read-pairs from the paratype of Xenogryllus maniema collected in 1939.

After a ‘‘Map to Reference’’ assembly in Geneious R9.0.2, 56,224 reads were assembled
to the X. lamottei bait sequence, 33,572 reads to the X. maniema bait sequence, and
31,196 reads to the N. vittatus bait sequence. For the quality examination of the contigs,
pairwise identity reached 99.9% in the three cricket species. Consensus assemblies were
generated, which were 16,156 bp long for X. lamottei, 16,191 bp for X. maniema and
15,458 bp for N. vittatus. Overlapped regions were manually removed to circularize the
complete mitochondrial genome of X. lamottei, X. maniema, and N. vittatus (15,590 bp,
15,853 bp, and 15,450 bp, respectively). The three complete mitochondrial genome
sequences were deposited in GenBank under accession numbers OQ459859 (N. vittatus,
molecular code: N37), OQ457268 (X. lamottei, molecular code: X24), and OQ457269
(X. maniema, molecular code: X36).

Genome organization and base composition
The complete mitochondrial genome organization of the three eneopterine crickets was
consistent with the ancestral insect mitochondrial genome (Cameron, 2014), including
13 PCGs, two rRNA genes, 22 tRNA genes (one for each amino acid, two for Leucine
and Serine), and a major non-coding region known as the control region, CR (Figs. 1–3
& Table 1). Twenty genes were transcribed on the majority strand (J-strand) and the
other 17 genes were oriented on the minority strand (N-strand). Moreover, the ancestral
gene arrangement of a local inversion of the trnN -trnS1-trnE to trnE-trnS1-trnN were
observed in the three eneopterine crickets, which is consistent with the published gryllid
mitogenomes (Yang, Ren & Huang, 2016; Zhou et al., 2017). For the three species, the
overlapping sequences of all ranged in size from 1 to 10 bp, while there was a discrepancy
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     Nisitrus vittatus
mitochondrial genome
       15,450 bp

Figure 1 Mitochondrial genome organizations ofNisitrus vittatus. Circular maps on the left indicates
mitochondrial genome organizations, and the corresponding species in dorsal view were showed on the
right. Circular maps exported by Geneious R9.0.2 and photo of male specimen in dorsal view were taken
by MKT using the photography platform of the MNHN collections. The figure was assembled using
Adobe Illustrator 24.1. The orientation of gene transcription is indicated with arrows. The tRNA genes are
indicated with their one-letter corresponding amino acids. The GC content and AT content were plotted
using a blue and green sliding window in the circular map respectively, as the deviation from the average
GC content and AT content of the entire sequence. Circular map was drawn using Geneious 9.0.2.

Full-size DOI: 10.7717/peerj.17734/fig-1

in the length of the intergenic spacers between N. vittatus and the two Xenogryllus species.
The intergenic spacer sequences range from 1 to 189 bp in X. lamottei and 1 to 103 bp
in X. maniema (Table 1). In X. lamottei, the three longest intergenic spacers were located
between trnQ and trnM (94 bp), between trnS2 and nd1 (155 bp), and between trnH and
nd4 (189 bp). In X. maniema, they were located between nd4l and trnT (12 bp), trnS2 and
nd1 (47 bp), and between trnQ and trnM (103 bp). However, the longest intergenic spacers
in N. vittatus were 21 bp (located between nd1 and trnS2), 7 bp (located between atp6 and
atp8), and 4 bp (located between nd4l and trnT ).

The nucleotide composition of three mitogenomes were typically insect-A+T biased
(with 74.8% in N. vittatus, 72.9% in X. lamottei, and 69.6% in X. maniema, respectively),
and were slightly A skewed (AT-skew = 0.09 in N. vittatus, 0.12 in X. lamottei, and 0.16 in
X. maniema, respectively) and strongly C skewed (GC-skew = −0.26 in N. vittatus, −0.36
in X. lamottei, and −0.40 in X. maniema, respectively). The nucleotide compositional
skew of the whole mitogenomes, PCGs genes, rrnL genes, rrnS genes, and tRNAs genes of
Gryllidae crickets were also represented in Table 2 and Fig. 4. The nucleotide composition
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 Xenogryllus lamottei
mitochondrial genome
       15,853 bp

Figure 2 Mitochondrial genome organizations of Xenogryllus lamottei. Circular maps exported by
Geneious R9. 0.2 and photo of male holotype in dorsal view were taken by TR using the photography plat-
form of the MNHN collections. Circular map was drawn using Geneious 9.0.2.

Full-size DOI: 10.7717/peerj.17734/fig-2

of the control region were not represented in Fig. 4 (but partially shown in Table 2) as a
result of unconfirmed by the original data from the GenBank.

Protein-coding genes and codon usage
Nine of the 13 PCGs were situated on the J-strand (represented clockwise in Figs. 1–3)
and four on the N-strand (represented counter clockwise in Figs. 1–3). All PCGs started
with ATN codons with the exception of cox1 (TCG in X. lamottei) and nd1 (TTG in all
three eneopterine crickets). Nine genes shared same start codons among three species,
while it is different in atp8, cox1, nd3, and nd6 genes (Table 1). In the three species, the
most common start codon was ATG, which was found in six PCGs, followed by ATT (four
in X. lamottei and N. vittatus, three in X. maniema). In terms of stop codons, most PCGs
terminated with TAA (seven in X. maniema and N. vittatus, six in X. lamottei) but TAG
stop codon was observed with genes cytb and nd3 inN. vittatus, nd1 and nd2 in X. lamottei,
and nd1 in X. maniema. Moreover, five incomplete stop codons (T) were observed with
genes cox1, cox2, cox3, nd4, and nd5 in X. lamottei and X. maniema, and four were in N.
vittatus with genes cox3, nd1, nd4, and nd5.

The number of each codon, the relative synonymous codon usage (RSCU) values and
the amino acid compositions of PCGs in the three eneopterines are given in Fig. S1. The
pattern of codon usage was consistent with the preference for AT-rich codons in three
eneopterines. Synonymous codons ending with A or T were clearly preferred, and UUA
(Leu) were the most frequently used codons, followed by UCA (Ser) with exception of
UCU (Ser) in X. lamottei.
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Xenogryllus maniema
mitochondrial genome
       15,590 bp

Figure 3 Mitochondrial genome organizations of Xenogryllus maniema. Circular maps exported by
Geneious R9. 0.2 and photo of males paratype specimen in dorsal view were taken by TR using the pho-
tography platform of the MNHN collections. Circular map was drawn using Geneious 9.0.2.

Full-size DOI: 10.7717/peerj.17734/fig-3

The Ka/Ks ratio of PCGs in the subfamily Eneopterinae is shown in Fig. 5. The ratios of
Ka/Ks were all less than 1, indicating the existence of purifying selection in these species.
Among the 13 PCGs, atp8 has experienced the strongest purifying pressure, followed by
nd6 and nd2. However, two cytochrome c oxidase subunit genes (cox1 and cox2) and nd1
have experienced relatively weak purifying pressure. Moreover, cytb and nd4l probably
have experienced the same level of purifying pressure.

Transfer and ribosomal RNA genes
The tRNA genes ranged in size from 62 bp (trnC and trnR, both in X. lamottei and
X. maniema, trnH in N. vittatus) to 72 bp (trnK in X. maniema). Apart from trnS1 (AGN )
that lacked a stable dihydrouridine arm (DHU) (Fig. S2), all tRNA genes could be folded
into typical clover-leaf secondary structures. The 22 tRNAs each shared the same anticodon
among the three species.

Two rRNA genes, rrnL and rrnS, were encoded by the minority strand and separated by
trnV. The rrnL ranged in size from 1,274 to 1,288 bp and located between trnL and trnV in
the three eneopteries, while rrnS ranged in size from 748 to 772 bp and occurred between
trnV and CR (Table 1 and Figs. 1–3). Each rRNA gene had a similar A+T content among
these mitogenomes (Table 2).

A+T-rich region
The CR was characterized by a high A+T content with 80.1% in X. lamottei, 78.3% in
X. maniema, and 82.1% in N. vittatus, respectively (Table 2). It ranged in size from 414 bp
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Table 1 List of annotated mitochondrial genes of Xenogryllus lamottei, Xenogryllus maniema andNisitrus vittatus. The protein coding and ri-
bosomal RNA genes are represented by standard nomenclature, tRNAs are represented as trn followed by the IUPAC-IUB single letter amino acid
codes. (J) values in strand represent as majority strand (J-strand) and (N) values represent as minority strand (N-strand). IGS represents (+) values
as intergenic spacer and (−) values as overlapping regions. CR represents the control region.

Xenogryllus lamottei Xenogryllus maniema Nisitrus vittatus

Strand Location Size
(bp)

Start/stop
codon

IGS Strand Location Size
(bp)

Start/stop
codon

IGS Strand Location Size
(bp)

Start/stop
codon

IGS

trnI J 1–65 65 J 1–63 63 J 1–64 64

trnQ N 63–131 69 −3 N 60–130 71 −4 N 61–131 71 −4

trnM J 226–294 69 94 J 234–302 69 103 J 131–199 69 −1

nd2 J 295–1308 1,014 ATT/TAG 0 J 303–1316 1,014 ATT/TAA 0 J 200–1,219 1,020 ATT/TAA 0

trnW J 1,309–1,371 63 0 J 1,313–1,381 69 −4 J 1,217–1,284 68 −3

trnC N 1,364–1,425 62 −8 N 1,372–1,433 62 −10 N 1,276–1,338 63 −9

trnY N 1,431–1,497 67 5 N 1,436–1,502 67 2 N 1,342–1,408 67 3

cox1 J 1,496–3,032 1,537 TCG/T −2 J 1,495–3,037 1,543 ATC/T −8 J 1,401–2,945 1,545 ATT/TAA −8

trnL2 J 3,032–3,100 69 −1 J 3,038–3,104 67 0 J 2,940–3,005 66 −6

cox2 J 3,103–3,778 676 ATG/T 2 J 3,105–3,780 676 ATG/T 0 J 3,008-3,685 678 ATG/TAA 2

trnK J 3,778–3,849 72 −1 J 3,780–3,851 72 −1 J 3,688–3,758 71 2

trnD J 3,848–3,913 66 −2 J 3,850–3,916 67 −2 J 3,758–3,823 66 −1

atp8 J 3,914–4,075 162 ATT/TAA 0 J 3,917–4,081 165 ATT/TAA 0 J 3,824–3,979 156 ATC/TAA 0

atp6 J 4,069–4,752 684 ATG/TAA −7 J 4,075–4,758 684 ATG/TAA −7 J 3,973–4,656 684 ATG/TAA 7

cox3 J 4,752–5,540 789 ATG/TAA −1 J 4,758–5,544 787 ATG/T −1 J 4,656–5,442 787 ATG/T −1

trnG J 5,543–5,607 65 2 J 5,544–5,609 66 0 J 5,442–5,506 65 −1

nd3 J 5,608–5,961 354 ATC/TAA 0 J 5,609–5,962 354 ATA/TAA −1 J 5,506–5,859 354 ATC/TAG −1

trnA J 5,963–6,028 66 1 J 5,964–6,029 66 1 J 5,857–5,923 67 −3

trnR J 6,029–6,090 62 0 J 6,030–6,091 62 0 J 5,922–5,984 63 −2

trnE N 6,084–6,150 67 −7 N 6,086–6,150 65 −6 N 5,978–6,041 64 −7

trnS1 N 6,152–6,218 67 1 N 6,153–6,223 71 2 N 6,043–6,109 67 1

trnN N 6,219–6,284 66 0 N 6,221–6,289 69 −3 N 6,110–6,178 69 0

trnF N 6,284–6,348 65 −1 N 6,298–6,362 65 8 N 6,179–6,241 63 0

nd5 N 6,348–8,094 1,747 ATT/T −1 N 6,362–8,105 1,744 ATT/T −1 N 6,243–7,968 1,726 ATT/T 1

trnH N 8,095–8,160 66 0 N 8,105–8,171 67 −1 N 7,969–8,030 62 0

nd4 N 8,350–9,691 1,342 ATG/T 189 N 8,171–9,512 1,342 ATG/T −1 N 8,031–9,366 1,336 ATG/T 0

nd4l N 9,685–9,981 297 ATG/TAA −7 N 9,506–9,802 297 ATG/TAA −7 N 9,360–9,656 297 ATG/TAA −7

trnT J 9,987–10,053 67 5 J 9,815–9,878 64 12 J 9,661–9,728 68 4

trnP N 10,051–10,117 65 −3 N 9,879–9,943 65 0 N 9,726–9,792 67 −3

nd6 J 10,119–10,640 522 ATT/TAA 1 J 9,946–10,470 525 ATA/TAA 2 J 9,794–10,315 522 ATT/TAA 1

cytb J 10,640–11,776 1,137 ATG/TAA −1 J 10,470–11,606 1,137 ATG/TAA −1 J 10,319–11,455 1,137 ATG/TAG 3

trnS2 J 11,778–11,844 67 1 J 11,614–11,680 67 7 J 11,454–11,517 64 −2

nd1 N 12,000–12,938 939 TTG/TAG 155 N 11,728–12,669 942 TTG/TAG 47 N 11,539–12,478 940 TTG/T 21

trnL1 N 12,938–13,007 70 −1 N 12,669–12,738 70 −1 N 12,478–12,543 66 −1

rrnL N 13,007–14,293 1,286 −1 N 12,738–14,025 1,288 0 N 12,543–13,816 1,274 −1

trnV N 14,294–14,361 68 0 N 14,026–14,093 68 0 N 13,817–13,886 70 0

rrnS N 14,361–15,132 772 −1 N 14,093–14,868 776 −1 N 13,890–14,637 748 3

CR J 15,133–15,853 721 0 J 14,869–15,590 722 0 J 14,638–15,450 813 0
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Table 2 General nucleotide composition of complete mitogenome and nucleotide compositional skew of the Gryllidae mitogenomes, rrnL
genes, rrnS genes, and the control region in grylline crickets. A (%), T (%), G (%), and C (%) mean the percentage of adenine, thymine, guanine,
and cytosine. The number with right-top letters represent the average nucleotide compositional skews in the subfamilies Eneopterinae (a) and Gryl-
linae (b). The numbers with left-top asterisks ‘*’ represent the average nucleotide compositional skews for this species. Signs ‘-’ indicate nucleotide
compositional skews not calculated.

Whole mitogenome

Species Length (bp) A (%) T (%) G (%) C (%) AT_skew GC_skew

Cardiodactylus muiri 16,328 41.4 35.1 8.4 15.2 0.08 −0.29
Nisitrus vittatus 15,450 40.9 33.9 9.3 15.8 0.09 −0.26
Pseudolebinthus lunipterus 16,075 42.1 33.7 8.5 15.7 0.11 −0.30
Xenogryllus lamottei 15,853 40.8 32.1 8.7 18.5 0.12 −0.36
Xenogryllus maniema 15,590 40.2 29.4 9.1 21.3 0.16 −0.40
Xenogryllus marmoratus 15,762 40.8 31.3 8.7 19.2 0.13 −0.38
Xenogryllus marmoratus 15,576 40.5 31.3 9.3 19 0.13 −0.34
*Xenogryllus marmoratus 0.13 −0.36
subfamily Eneopterinae 0.12a −0.33a

Acheta domesticus 15,784 39.2 31.7 9.5 19.6 0.11 −0.35
Acheta domesticus 16,071 39.5 31.9 9.4 19.1 0.11 −0.34
*Acheta domesticus 0.11 −0.34
Gryllodes sigillatus 16,369 37.8 32.6 10.3 19.3 0.07 −0.30
Gryllodes sigillatus 16,176 37.9 32.9 10.1 19 0.07 −0.31
*Gryllodes sigillatus 0.07 −0.30
Gryllodes sp. 15,550 37.9 32.7 10.2 19.1 0.07 −0.30
Gryllus bimaculatus 16,075 40.3 33.8 9.1 16.8 0.09 −0.30
Gryllus bimaculatus 15,737 40.5 33.7 9 16.8 0.09 −0.30
*Gryllus bimaculatus 0.09 −0.30
Gryllus lineaticeps 15,607 39.9 32.7 9.7 17.8 0.10 −0.29
Gryllus veletis 15,686 40.1 33.5 9.4 16.9 0.09 −0.29
Loxoblemmus doenitzi 15,396 40.9 32.4 9.4 17.3 0.12 −0.30
Loxoblemmus doenitzi 15,399 40.9 32.2 9.5 17.3 0.12 −0.29
*Loxoblemmus doenitzi 0.12 −0.29
Loxoblemmus equestris 16,314 40.3 31.6 10.2 17.9 0.12 −0.27
Teleogryllus emma 15,697 40.2 33 9.6 17.2 0.10 −0.28
Teleogryllus emma 16,044 40.4 33.2 9.5 17 0.10 −0.28
Teleogryllus emma 15,660 40.5 32.6 9.8 17 0.11 −0.27
*Teleogryllus emma 0.10 −0.28
Teleogryllus infernalis 15,512 40 33.9 9.6 16.5 0.08 −0.26
Teleogryllus oceanicus 15,660 40.4 32.6 9.8 17.1 0.11 −0.27
Teleogryllus occipitalis 15,501 40.2 33.3 9.5 17.1 0.09 −0.29
Teleogryllus occipitalis 15,501 40.2 33.3 9.5 17.1 0.09 −0.29
*Teleogryllus occipitalis 0.09 −0.29
Tarbinskiellus portentosus 15,710 40.6 32.2 9.9 17.3 0.12 −0.27
Tarbinskiellus portentosus 15,498 40.6 32.2 9.9 17.3 0.12 −0.27
*Tarbinskiellus portentosus 0.12 −0.27
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Table 2 (continued)

Whole mitogenome

Species Length (bp) A (%) T (%) G (%) C (%) AT_skew GC_skew

Tarbinskiellus sp. 15,514 40.6 32.2 9.9 17.3 0.12 −0.27
Velarifictorus hemelytrus 16,123 39.7 32.9 8.9 18.4 0.09 −0.35
Sclerogryllus punctatus 15,438 41 33.7 8.8 16.4 0.10 −0.30
Turanogryllus eous 16,045 40.1 31 9.6 19.4 0.13 −0.34
subfamily Gryllinae 0.10b −0.30b

PCGs rrnLs rrnSs

Species AT_skew GC_skew AT_skew GC_skew AT_skew GC_skew

Cardiodactylus muiri 0.09 −0.28 0.11 −0.40 0.08 −0.37
Nisitrus vittatus 0.09 −0.25 0.15 −0.38 0.12 −0.38
Pseudolebinthus lunipterus 0.12 −0.30 0.16 −0.41 0.19 −0.36
Xenogryllus lamottei 0.13 −0.36 0.16 −0.43 0.13 −0.43
Xenogryllus maniema 0.17 −0.41 0.19 −0.46 0.14 −0.44
Xenogryllus marmoratus 0.15 −0.37 0.17 −0.47 0.12 −0.44
Xenogryllus marmoratus 0.14 −0.34 0.17 −0.46 0.12 −0.43
*Xenogryllus marmoratus 0.14 −0.35 0.17 −0.47 0.12 −0.43
subfamily Eneopterinae 0.13a −0.33a 0.16a −0.43a 0.13a −0.41a

Acheta domesticus 0.11 −0.34 0.13 −0.44 0.10 −0.41
Acheta domesticus 0.11 −0.34 0.12 −0.44 0.10 −0.41
*Acheta domesticus 0.11 −0.34 0.13 −0.44 0.10 −0.41
Gryllodes sigillatus 0.08 −0.30 0.07 −0.40 0.09 −0.38
Gryllodes sigillatus 0.08 −0.30 0.07 −0.41 0.09 −0.38
*Gryllodes sigillatus 0.08 −0.30 0.07 −0.40 0.09 −0.38
Gryllodes sp. 0.08 −0.30 0.07 −0.40 0.09 −0.38
Gryllus bimaculatus 0.10 −0.30 0.07 −0.30 0.09 −0.34
Gryllus bimaculatus 0.10 −0.30 0.12 −0.37 0.10 −0.38
*Gryllus bimaculatus 0.10 −0.30 0.09 −0.33 0.09 −0.36
Gryllus lineaticeps 0.12 −0.32 0.13 −0.43 0.10 −0.37
Gryllus veletis 0.10 −0.30 0.12 −0.41 0.09 −0.38
Loxoblemmus doenitzi 0.12 −0.31 0.19 −0.45 0.16 −0.35
Loxoblemmus doenitzi 0.12 −0.30 0.19 −0.44 0.16 −0.35
*Loxoblemmus doenitzi 0.12 −0.30 0.19 −0.45 0.16 −0.35
Loxoblemmus equestris 0.11 −0.28 0.16 −0.40 0.18 −0.32
Teleogryllus emma 0.09 −0.28 0.16 −0.41 0.14 −0.39
Teleogryllus emma 0.09 −0.29 0.16 −0.43 0.14 −0.38
Teleogryllus emma 0.10 −0.26 0.16 −0.44 0.13 −0.39
*Teleogryllus emma 0.10 −0.28 0.16 −0.43 0.13 −0.39
Teleogryllus infernalis 0.08 −0.26 0.14 −0.43 0.11 −0.39
Teleogryllus oceanicus 0.10 −0.26 0.16 −0.43 0.13 −0.39
Teleogryllus occipitalis 0.09 −0.29 0.15 −0.43 0.14 −0.38
Teleogryllus occipitalis 0.09 −0.28 0.15 −0.42 0.14 −0.38
*Teleogryllus occipitalis 0.09 −0.29 0.15 −0.42 0.14 −0.38
Tarbinskiellus portentosus 0.12 −0.28 0.15 −0.38 0.15 −0.36
Tarbinskiellus portentosus 0.12 −0.28 0.16 −0.38 0.16 −0.35
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Table 2 (continued)

PCGs rrnLs rrnSs

Species AT_skew GC_skew AT_skew GC_skew AT_skew GC_skew

*Tarbinskiellus portentosus 0.12 −0.28 0.16 −0.38 0.16 −0.35
Tarbinskiellus sp. 0.12 −0.28 0.15 −0.37 0.15 −0.35
Velarifictorus hemelytrus 0.09 −0.34 0.11 −0.46 0.07 −0.43
Sclerogryllus punctatus 0.10 −0.30 0.13 −0.41 0.13 −0.36
Turanogryllus eous 0.13 −0.35 0.15 −0.45 0.12 −0.41
subfamily Gryllinae 0.10b −0.30b 0.14b −0.41b 0.12b −0.38b

tRNAs Control regions

Species AT_skew GC_skew AT_skew GC_skew

Cardiodactylus muiri 0.06 −0.13 0.01 −0.37
Nisitrus vittatus 0.06 −0.13 0.07 −0.24
Pseudolebinthus lunipterus 0.09 −0.18 −0.06 −0.28
Xenogryllus lamottei 0.07 −0.18 0.02 −0.35
Xenogryllus maniema 0.07 −0.20 0.04 −0.45
Xenogryllus marmoratus 0.07 −0.19 0.00 −0.39
Xenogryllus marmoratus 0.08 −0.18 −0.03 −0.28
*Xenogryllus marmoratus 0.07 −0.19
subfamily Eneopterinae 0.07a −0.17a

Acheta domesticus 0.05 −0.16 – –
Acheta domesticus 0.05 −0.16 – –
*Acheta domesticus 0.05 −0.16
Gryllodes sigillatus 0.04 −0.15 0.09 −0.32
Gryllodes sigillatus 0.04 −0.15 0.05 −0.31
*Gryllodes sigillatus 0.04 −0.15
Gryllodes sp. 0.04 −0.15 – –
Gryllus bimaculatus 0.03 −0.15 – –
Gryllus bimaculatus 0.03 −0.16 – –
*Gryllus bimaculatus 0.03 −0.16
Gryllus lineaticeps 0.05 −0.18 −0.11 0.05
Gryllus veletis 0.01 −0.15 0.01 −0.09
Loxoblemmus doenitzi 0.07 −0.12 0.01 −0.03
Loxoblemmus doenitzi 0.07 −0.12 0.02 −0.04
*Loxoblemmus doenitzi 0.07 −0.12
Loxoblemmus equestris 0.05 −0.14 0.22 −0.20
Teleogryllus emma 0.06 −0.13 0.13 −0.18
Teleogryllus emma 0.05 −0.12 – –
Teleogryllus emma 0.06 −0.10 0.13 −0.23
*Teleogryllus emma 0.06 −0.12
Teleogryllus infernalis 0.05 −0.11 0.10 −0.11
Teleogryllus oceanicus 0.06 −0.11 – –
Teleogryllus occipitalis 0.05 −0.12 – –
Teleogryllus occipitalis 0.05 −0.12 – –
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Table 2 (continued)

tRNAs Control regions

Species AT_skew GC_skew AT_skew GC_skew

*Teleogryllus occipitalis 0.05 −0.12
Tarbinskiellus portentosus 0.06 −0.11 0.07 −0.06
Tarbinskiellus portentosus 0.05 −0.12 0.08 −0.12
*Tarbinskiellus portentosus 0.05 −0.12
Tarbinskiellus sp. 0.06 −0.11 – –
Velarifictorus hemelytrus 0.03 −0.15 0.15 −0.41
Sclerogryllus punctatus 0.05 −0.17 0.07 −0.18
Turanogryllus eous 0.07 −0.16 0.10 −0.24
subfamily Gryllinae 0.05b −0.14b

in N. vittatus to 722 bp in X. maniema. The tandem repeats were detected in N. Vittatus
(143 bp) but not in X. lamottei or X. maniema.

Phylogenetic analyses
The topology of BI tree is similar to that of ML tree (Fig. 6; see also Appendix Fig. S3 for
original outputs of both BI and ML analyses). The superfamily Grylloidea is recovered
monophyletic with a high support (BS= 99%, PP= 1). The fivemain families of Grylloidea
are also recovered monophyletic with high support: Mogoplistidae, represented by three
Ornebius species is strongly supported (BS = 100%, PP = 1); it is placed as the sister clade
of a group including the four other families, which is highly supported (BS = 100%, PP
= 1). Trigonidiidae is found monophyletic with a high support (BS = 100%, PP = 1),
and is sister to a clade grouping Phalangopsidae and a clade grouping Oecanthidae and
Gryllidae, each family being monophyletic with a high support (BS = 100%, PP = 1 for
Phalangopsidae; BS = 78%, PP = 1 for Oecanthidae; BS = 86%, PP = 1 for Gryllidae.
In both ML and BI, both the subfamilies Eneopterinae and Gryllinae were recovered as
monophyletic with good support (Eneopterinae: BS= 80%, PP= 1; Gryllinae: BS= 100%,
PP = 1).

Within the Eneopterinae subfamily, the tribe Xenogryllini is not recovered as
monophyletic, the species Pseudolebinthus lunipterus grouping with Cardiodactylus muiri
(tribe Lebinthini). The genus Xenogryllus is strongly supported as a monophyletic group
in both analyses (BS = 100%, PP = 1).

DISCUSSION
In this study, we generated three mitogenomes for the cricket subfamily Eneopterinae,
which allows comparisons with existing mitogenomes from other cricket subfamilies.

The gene order and orientation within the mitogenome of X. lamottei, X. maniema, and
N. vittatus are identical with those described for other Gryllidae crickets. The length of the
whole mitogenomes and the length range of tRNAs in these three species are also similar to
other subfamilies. The new mitogenomes are weakly AT-skewed and strongly GC-skewed.
The nucleotide compositional AT-skew of whole mitogenome, PCGs, rrnL, and tRNAs are
slightly stronger in the subfamily Eneopterinae than that in Gryllinae, but it is yet too early
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Figure 4 Comparison of AT-skews and GC-skews of Gryllidae family. Legends on the right-top in-
dicated AT skew and GC skew (ending with suffix as AT_skew and GC_skew) for whole mitochondrial
genomes, protein coding genes, two ribosomal RNA genes and transfer RNA genes, starting with prefix as
W_, PCGs_, rrnL_, rrnS_, and tRNAs_, separately.

Full-size DOI: 10.7717/peerj.17734/fig-4

to test the significance of this trend, as there are too few data available at the scale of the
family. Therefore, moremitogenomes of other subfamilies are necessary to test whether this
is consistent among the subfamilies. Overall, the results of the genome skimming method
are fully satisfactory compared to other NGS methods in order to recover mitogenomic
data from museum specimens, as suggested by previous studies (Nattier & Salazar, 2019;
Salazar & Nattier, 2020; Zeng et al., 2018); despite lower coverage and DNA degradation,
the quality and length distribution of the sequences obtained from museum specimens
are sufficient to pass quality tests and are generally comparable with data obtained from
fresher material.
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Figure 5 Ka/Ks ratio of PCGs in the subfamily Eneopterinae.
Full-size DOI: 10.7717/peerj.17734/fig-5

Interestingly, the evolutionary rates of apt8 and nd6 are higher than that of any other
mitochondrial genes in eneopterine crickets according to the Ka/Ks ratios. This is consistent
with previous results about another eneopterine species from the tribe Lebinthini (Dong
et al., 2017), and suggests that these higher rates are common to all the members of the
subfamily Eneopterinae. It is not a surprise that the cytochrome c oxidase subunit genes
have experienced relatively weak purifying pressure according to their Ka/Ks ratios, and it
is probably correlated with the fact that cox1 is regularly used as a barcoding marker, for it
shows less intraspecific than interspecific variation.

The phylogenetic analyses recover the main topologies found in previous studies at the
scale of the familial and subfamilial relationship all the families and subfamilies currently
recognized in crickets and that were tested by our taxonomic sampling were recovered with
high support. Our study overall attests that the mitogenomic data strongly support the
phylogenetic relationships at multiple time scales: all the families within the superfamily
Grylloidea and their relationships are confirmed despite the low taxonomic sampling in
this study. The deeper nodes in the cricket phylogeny that are recovered by our study
are consistent with the conclusions of recent molecular phylogenetic studies (Chintauan-
Marquier et al., 2016; de Campos et al., 2022; Ma et al., 2019; Ma, Zhang & Li, 2019; Song
et al., 2015; Song et al., 2020). Our results also attest that the mitogenomic information is
valuable to resolve the phylogenetic relationships within the family Gryllidae, from the
monophyly of the subfamilies to their relationships. In the subfamily Eneopterinae, our
results also show that mitogenomic data perform well to recover generic and species-
level relationships, while they are less accurate to recover tribal relationships previously
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Figure 6 Phylogeny of the superfamily Grylloidea inferred frommaximum likelihood (ML) and
Bayesian inference (BI).Values on nodes indicate branch support; the first values correspond to
non-parametric bootstrap values (BS) from IQ-TREE analyses, whereas the second value corresponds to
BI posterior probabilities (PP). Signs ‘‘-’’ indicate topological incongruences between analyses. Species
represented in bold correspond to the newly generated mitogenomes. The scale bar indicates the number
of substitutions per site.

Full-size DOI: 10.7717/peerj.17734/fig-6

supported by recent papers on the phylogeny of this subfamily (Dong et al., 2018; Jaiswara
et al., 2019; Vicente et al., 2017). The relationships within the subfamily Eneopterinae are
not similar in our study given the position of species C. muiri, found as the sister group of
P. lunipterus. These differences could be explained by sampling effects, and to the fact that
the diverse Lebinthini tribe is only represented by one Cardiodactylus species (C. muiri) in
our study.

Finally, it is important to recall that two of the newly generatedmitogenomes correspond
to dry-pinned historical specimens from natural history collections respectively 80 and 68
years old (age at date of extraction). The genome skimming method used for sequencing
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performed as well as for the recent specimen used for the third cricket species, confirming
how promising this approach is to perform large-scale comparative studies of mitogenomes
to promote resources existing in natural history collections (Nattier & Salazar, 2019).

CONCLUSION
We show that the genome skimming method used by NGS allowed to efficiently obtain
the whole mitogenome from dry-pinned historical specimens. Genome skimming is a
promising method to break the limitation by the availability of sequence material for
species known from only a few old specimens and/or from regions difficult to access and
take full advantage of using the natural history collection specimens. Additionally, the new
mitogenomes described in the present study, combined with the existing datasets, arises as
an invaluable resource for future comparative evolutionary genomic studies in insects.
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