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ABSTRACT
Background. Global food systems in recent years have been impacted by some harsh
environmental challenges and excessive anthropogenic activities. The increasing levels
of both biotic and abiotic stressors have led to a decline in food production, safety,
and quality. This has also contributed to a low crop production rate and difficulty
in meeting the requirements of the ever-growing population. Several biotic stresses
have developed above natural resistance in crops coupled with alarming contamination
rates. In particular, the multiple antibiotic resistance in bacteria and some other plant
pathogens has been a hot topic over recent years since the food system is often exposed to
contamination at each of the farm-to-fork stages. Therefore, a system that prioritizes
the safety, quality, and availability of foods is needed to meet the health and dietary
preferences of everyone at every time.
Methods. This review collected scattered information on food systems and proposes
methods for plant disease management. Multiple databases were searched for relevant
specialized literature in the field. Particular attention was placed on the geneticmethods
with special interest in the potentials of the Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR) and Cas (CRISPR associated) proteins technology in
food systems and security.
Results. The review reveals the approaches that have been developed to salvage the
problem of food insecurity in an attempt to achieve sustainable agriculture. On
crop plants, some systems tend towards either enhancing the systemic resistance or
engineering resistant varieties against known pathogens. The CRISPR-Cas technology
has become a popular tool for engineering desired genes in living organisms. This review
discusses its impact and why it should be considered in the sustainable management,
availability, and quality of food systems. Some important roles of CRISPR-Cas have
been established concerning conventional and earlier genome editing methods for
simultaneous modification of different agronomic traits in crops.
Conclusion. Despite the controversies over the safety of the CRISPR-Cas system, its
importance has been evident in the engineering of disease- and drought-resistant crop
varieties, the improvement of crop yield, and enhancement of food quality.

Subjects Agricultural Science, Bioengineering, Biotechnology, Microbiology, Plant Science
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INTRODUCTION
The world’s population is estimated to reach ten billion by 2050; hence, a rise in food
production by 60 to 100% would be required to support the demand of the growing global
population in the near future (Chen et al., 2019; Francisco-Ribeiro & Camargo-Rodriguez,
2020). The second sustainable development goal (SDG) of the United Nations aims
at ending malnutrition and hunger by 2030 as well as ensuring access for everyone to
sufficient and nutritious food all year round (Fanzo, 2019). Despite concerted efforts to
improve the global food system, current agricultural production is still struggling with the
challenge of meeting the required level of productivity needed to feed 10 billion people
by 2050 (Hickey et al., 2019). Further, the effect of biotic (e.g., insect pests, fungi, bacteria,
and viruses) and abiotic (drought, heat, salinity, and frost) stressors is heightened with
excessive anthropogenic activities. These are causing a decrease in agricultural lands,
adequate water resources, and increased competition for the depleting resources, which are
recognized as the foremost challenges affecting the productivity of plant products in this
age (Akanmu et al., 2021; Babalola, Berner & Amusa, 2007; Razzaq et al., 2019; Vermeulen,
Campbell & Ingram, 2012). Therefore, achieving a secure and safe food system in the face
of an accelerating food demand will be imperative (Chukwuka et al., 2020; Mamphogoro,
Babalola & Aiyegoro, 2020).

Crop improvement aims at increasing the yield, quality, and nutrient values as well
as improving resistance against different biotic and abiotic stressors. Today, genetic
improvements in food crops have been shown as promising measures for attaining the
dietary needs of the increasing population, while safeguarding the preferences and health of
individuals who are the end-users of such food. Genetic engineering systems include mega-
nucleases, transcription activator-like effector nucleases (TALENs), zinc finger nucleases
(ZFNs), and CRISPR-Cas9 with its orthologs (Jinek et al., 2012; Zetsche et al., 2015; Pant
et al., 2022). The CRISPR-associated proteins (Cas9 and Cas12a), which are the focus of
this review, have been reported as accurate, convenient, and efficient genome editing tools
that have opened up opportunities for applications in various fields (Macovei et al., 2018;
Mohanraju et al., 2016; Swartjes, Staals & van der Oost, 2020; Zhang et al., 2018a; Zhang et
al., 2017). The CRISPR-Cas9 system has received massive attention as a result of its wide
range of usage in plant breeding for the development of agricultural crops and biological
research. In particular, genome editing for traits of interest such as disease resistance (Katoch
et al., 2020), drought tolerance (Shi et al., 2017), and salt tolerance (Zhang et al., 2019), in
major crops such as wheat (Liang, Chen & Gao, 2019), maize (Barman et al., 2019), and
soybean (Chilcoat, Liu & Sander, 2017), have been investigated. Thus, this review discusses
the contribution and efficiency of CRISPR-Cas9 in improving the security, quality, and
safety of the food system.

Survey methodology
A comprehensive investigation of published articles on CRISPR-Cas applications in
plant improvements toward sustainable crop production was conducted. This was
carried out through inclusiveness and impartial investigations of literature in line
with the method of De Souza & Bonciu (2022), multiple databases including Web of
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Science (http://apps.isiknowledge.com), Scopus (http://www.scopus.com/), ScienceDirect
(http://www.sciencedirect.com/), and PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and
Google Scholar (https://scholar.google.com/) were searched while relevant and specialized
literature with the latest publication in the field was further hand searched using the
following keywords; Crispr-Cas, genome editing, food security, food safety, food system,
sustainable agriculture, and crop production. Without bias, the search results gathered
were compiled by employing the online endnote library system to arrange the useful
articles embedded in the context. Furthermore, we appraised the titles, abstracts, and the
conclusion of the literature to determine the useful ones.

CRISPR-CAS: THE FUTURE OF THE FOOD SYSTEM
CRISPR-Cas is a cutting-edge technology that can be adopted for plant breeding techniques,
it allows making precise cuts in a plant’s genome to insert/delete genes for promoting
crop development. The subsequent repair of the cut by the cell’s endogenous repair
mechanisms can introduce precise changes in the targeted chromosomes (Wu et al., 2018).
The CRISPR-Cas technology may utilize crops’ natural traits and does not introduce
new genes in the event of gene disruption (Soda, Verma & Giri, 2018). Current scientific
advancements have shown CRISPR-Cas systems especially type II CRISPR-SpCas9 from
Streptococcus pyogenes and type V CRISPR-LbCas12a from Lachnospiraceae bacterium as
a versatile technology whose prospects are yet to be thoroughly mined in human biology
(Li et al., 2023a; Li et al., 2023b), agriculture, and microbiology (Brandt & Barrangou,
2019; Tomlinson, 2018; He et al., 2023). With a focus on food security and safety, the
effectiveness of CRISPR-Cas systems and other gene editing techniques lies in the ability to
keep established croplands productive in the face of a changing climate and conserve the
remaining wild areas of the planet. Gene-editing technologies can reduce farmers’ reliance
on fertilizers through the development of designer microbes that produce nitrogen for crop
use. In addition, CRISPR-Cas systems would help create crops with novel traits that offer
more incremental advances in efficiency, sequester more carbon, pack in more nutrients,
and produce more food per acre with fewer inputs (Brandt & Barrangou, 2019). To adopt
this technology, a single-guide RNA (sgRNA) is designed to target a gene of interest, with
the aid of CRISPR/Cas9 used to deliver the genetic information into the plant cell, often
done via suitable bacteria delivery system like the Agrobacterium-mediated transformation
method/ribonucleoprotein (RNP). These commonly involve (i) tissue culture for callus
induction, (ii) plant regeneration from CRISPR/Cas9-mutated tissues, (iii) generation of
T0 CRISPR/Cas9-mutated transgenic plants, (iv) screening of transgenic plants to detect
on- and off-target efficiency of CRIPR-Cas9, (v) self-pollination of T0 transgenic plants for
generation of homozygous T1 plants, till (vi) phenotypic analysis of T1 plants (Fig. 1).

The introduction of small indels or premature stop codons that result in gene knockouts
or null alleles causes frame-shift mutations, which has been the most frequent strategy
employed in CRISPR-Cas application (Zhang et al., 2018a). Thus, the technology over the
years has been rapidly exploited in plant improvements and it poses an effective solution
to many problems in plant breeding (Gao, 2018; Ricroch, Clairand & Harwood, 2017;
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Figure 1 Workflow for the use of CRISPR-Cas9-based gene editing in plants. (A) Selection of the target
gene for plant transformation and designing of single-guide RNA (sgRNA) for the target gene. (B) con-
struction of suitable vector, (C) genetic transformation for the delivery of CRISPR/Cas9 via suitable bac-
teria delivery system like the Agrobacterium mediated transformation method/ribonucleoprotein (RNP),
(D) tissue culture for callus induction, (E) plant regeneration from CRISPR/Cas9-mutated tissues, (F)
generation of T0 CRISPR/Cas9-mutated transgenic plants, (G) screening of transgenic plants to detect on-
and off-target efficiency of CRIPR-Cas9,by detection of on- and off-target efficiency by Sanger sequenc-
ing, (H) self-pollination of T0 transgenic plants for generation of homozygous T1 plants, (I) generation of
CRISPR/Cas9-mutated T0 Seeds, (J) generation of transgene-free T1 progeny, (K) phenotypic analysis of
T1 plants and other analysis.

Full-size DOI: 10.7717/peerj.17402/fig-1

Zhang, Li & Li, 2016). It has also been used to create genetically engineered plants, which
would significantly boost agricultural yields and other important features in commercially
genetically modified crops (Stout, Klaenhammer & Barrangou, 2017; Shi et al., 2017; Zhang
et al., 2018a; Verma et al., 2023). It is perceived to have an advantage over traditional
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breeding methods, in that it enables the researchers to generate suitable germplasms such
as disease resistance, herbicide resistance, and improved yield and quality, which occur by
the removal of undesirable genetic elements or inserting gain-of-function mutations via
precise genome editing. This has been established for the improvement of several plants
including wheat, cassava, tomatoes, and corn (Castiglioni et al., 2008; Francisco-Ribeiro &
Camargo-Rodriguez, 2020; Khatodia, Bhatotia & Tuteja, 2017; Shi et al., 2017; Zaidi et al.,
2016). Some of its applications currently under study show features such as improved
biotic and abiotic values, as in the development of resistance to powdery mildew disease in
wheat and tomato, resistance to viruses in potato and cucumber, and drought tolerance in
soybean among others (Table 1). Applications of CRISPR-Cas have also enabled, in some
crops, the improvement of yield traits and nutrient qualities such as the increased protein
and amylose contents in wheat, enhancement of lycopene contents, fruit color, shape, and
longer shelf-life in tomato, the breeding for lipoxygenase-free soybean and production of
cyanide-free cassava (Table 2). Similarly, CRISPR-Cas is instrumental in increasing the
fruit size, grain length, width, and weight as observed in wheat, tomato, groundcherry, and
rice, while it has also been employed in the spreading of plant tillers in wheat (Table 3).
However, most engineered crops are at different stages of research, development, and
production, with many of them awaiting regulatory approvals (Chen et al., 2019).

CROP IMPROVEMENT USING CRISPR-CAS AS GENETIC
ENGINEERING TOOL
Today, there is a wide availability of genomic information on varying plant species and this
development could be linked to the advancement in sequencing technologies that serve
as the gateway to precision gene editing (Ahmar et al., 2020). Modern breeding strategies
for the improvement of crop plants employ the deciphering of numerous biological
mechanisms and elucidation of the role of genetic and epigenetic factors (Gallusci et al.,
2017; Richardson, Kelsh & Richardson, 2023). The hallmark of modern genetic engineering
rests on the ability to couple specific sequences to induce a break in the DNA. When
combined with a desired DNA binding domain (DBD), a nuclease may be directed to
a specific target location (Ranjha, Howard & Cejka, 2018). DNA cleavage, then, activates
the host’s DNA repair system, resulting in mutations and the probable loss of function of
a specific gene of interest (Jinek et al., 2012; Zetsche et al., 2015; Globus & Qimron, 2018).
The recombinant DNA technology, therefore, allows the transfer of the desired genes
from any plant or microorganism into crops. This, subsequently, produces new genotypes
and phenotypes that offer the possible yield enhancement required for breeding purposes
and ultimately improve fruit/crop quality (Zhang et al., 2019; Das et al., 2023). Homing
meganucleases, zinc finger nucleases, transcription activator-like effector nucleases, and
CRISPR-Cas9 and -Cas12a orthologs are the four types of designed nucleases created for
genome engineering. The first three approaches, however, have a closed architecture that
makes manipulating target specificity difficult, time-consuming, and expensive (Guha &
Edgell, 2017; Chandran et al., 2023).
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Table 1 The CRISPR-modified crops with improved biotic and abiotic characteristics.

Crop species Target gene Associated Trait Reference

EDR1 Developing resistance to pow-
dery mildew disease caused by
Blumeria graminis f.sp. (Btg)
Tricitici

Zhang et al. (2017)

OsERF922 Resistance to rice blast disease Wang et al. (2016)
OsSWEET13 Resistance to bacteria blight Zhou et al. (2015)

Wheat (Tritocum aestivum)

ALS, EPSPS Resistance to herbicide Butt et al. (2017); Endo, Mikami
& Toki (2016); Li et al. (2016);
Sun et al. (2016)

SlMLO1 Resistance to powdery mildew
disease

Nekrasov et al. (2017)
Tomato (Solanum lycopersicum
L.) SlJAZ2 Resistance to bacteria speck dis-

ease
Ortigosa et al. (2019)

ALS Herbicide resistance Svitashev et al. (2015)
Maize (Zea mays L.)

ARGOS8 Tolerance to drought Shi et al. (2017)
ALS Herbicide resistance Butler et al. (2016)

Potato (Solanum tuberosum L.)
elF4E and elF(iso)4E) Resistance against viruses and

cold-induced sweetening
Hameed et al. (2020)

Grapefruit (Citrus paradisi) CsLOB1 promoter Resistance to citrus canker dis-
ease

Jia et al. (2016); Jia et al. (2017)

Orange (Citrus sinensis) CsLOB1 promoter Resistance to citrus canker dis-
ease

Peng et al. (2017)

Cucumber (Cucumis sativus) eIF4E Resistance to viral disease Chandrasekaran et al. (2016)
ALS Herbicide resistance Li et al. (2015)

Soybean (Glycine max [L.] Merr.
HaHB4 Drought tolerance Martignago et al. (2020)
EPSPS Herbicide resistance Hummel et al. (2018)Cassava (Manihot esculenta

Crantz) eIF4E isoforms nCBP-1 and
nCBP-2

Reduction in cassava brown
streak disease symptom severity
and incidence

Gomez et al. (2019)

Flax (Camelina sativa) EPSPS Herbicide resistance Sauer et al. (2016)
Kale (Brassica oleracea) CRTISO Yellow leaves and stems Sun et al. (2020)

The CRISPR-Cas systems, rather than protein-DNA complexes, use guide-RNA (gRNA)
and ribonucleotide-DNA complexes for target identification and subsequent cleavage,
modification, deletion, insertion, or replication, which makes them more flexible to use
(Jinek et al., 2012;Zetsche et al., 2015;Globus & Qimron, 2018). CRISPR-Cas9 andCRISPR-
Cas12a are most widely used in plants. The elucidation of the biochemical mechanism
of the CRISPR-Cas9 system, for instance, was first reported in 2012 and since then has
revolutionized genetic research in life sciences. They can both target DNA, carry out a
double-strand break (DSBS), and have therefore been employed in delivering DNAs,
RNAs, or even protein-RNA into active site-directed nucleases (SDN) in plant cells (Zhang
et al., 2018a; Zhang et al., 2017).

CRISPR–Cas has emerged as a valuable tool in agriculture due to its unequaled ability
to accurately change plant genomes (Khan et al., 2022). It has changed present breeding
processes and assisted in the development of novel varieties of crops with desirable traits
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Table 2 The CRISPR-modified crops with improved yield quality.

Crop species Target gene Associated Trait Reference

OsMATL Inducing haploid plants Yao et al. (2018)
TaGW2, α-gliadin genes Low gluten content Sánchez-León et al. (2018);Wang

et al. (2018)
SBEIIb Increased amylose content Sun et al. (2017)Wheat (Tritocum aestivum)

GW2 Increase in protein content Zhang et al. (2018a)
SP, SP5G, CLV3, WUS, GGP1 Domestication of tomato Li et al. (2018a)
SlAGL6 Parthenocarpy Klap et al. (2017)
ANT1 Fruit color (purple) Čermák et al. (2015); Vu et al.

(2020)
SlMYB12 Fruit color (pink) Deng et al. (2018)
CRTISO Fruit color (tangerine) Ben Shlush et al. (2020)
Psy1, CrtR-b2 Fruit color (yellow) D’Ambrosio, Stigliani & Giorio

(2018)
OVATE, Fas, Fw2.2 Fruit size, oval fruit shape Zsögön et al. (2018)
TaGW7 Grain shape Wang et al. (2019)
ALC Long shelf life Yu et al. (2017)
PL, PG2a, TBG4 Long shelf life Uluisik et al. (2016)
slyPDS Increased lycopene content Li et al. (2018b)

Tomato (Solanum lycopersicum
L.)

BnFAD2 High oleic acid proportion Okuzaki et al. (2018)
TMS5 Thermosensitive male-sterile Liu et al. (2017)
Psy1 Seed color Zhu et al. (2016)Maize (Zea mays L.)

Wx1 Waxy corn Gao et al. (2020)
StGBSS Low amylose content Veillet et al. (2019)
StSBE1, StSBE2 High amylose content Tuncel et al. (2019)
OsBEI and OsBEIIb High amylose content Sun et al. (2017)
CrtI, PSY High β-carotene content Dong et al. (2020)

Potato (Solanum tuberosum L.)

Wx1 High amylopectin content Andersson et al. (2017)
IbGBSSI Low amylose content Wang et al. (2019)

Sweet potato (Ipomoea batatas)
IbGBSSI, IbSBEII High amylose content Wang et al. (2019)

Grapefruit (Citrus paradisi) ldnDH Low tartaric acid Ren et al. (2016)
Mushroom PPO Anti-browning phenotype Waltz (2016)

GmFAD2–1A and GmFAD2–1B Improvement of seed oil compo-
sition

Do et al. (2019)

Soybean (Glycine max [L.] Merr.
GmLox genes (GmLox1, GmLox2,
and GmLox3)

Breeding for lipoxygenase-free
soybean varieties

Wang et al. (2020)

CYP79D1 and CYP79D2 Production of Cyanide-free cas-
sava

Granada et al. (2020)

GBSS and PTST/PTST1 Production of waxy starch Bull et al. (2018)
Cassava (Manihot esculenta
Crantz)

PTST1, GBSS Low amylose content Liu et al. (2021)
Flax (Camelina sativa) FAD2 Reduced polyunsaturated fatty

acids
Jiang et al. (2017)

(continued on next page)
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Table 2 (continued)

Crop species Target gene Associated Trait Reference

GS9 Slender grain shape Zhao et al. (2018)
OsGAD3 High GABA content Akama et al. (2020)
OsNramp5 Low Cd accumulations Tang et al. (2017)
OsFAD2-1 High oleic acid proportion Abe et al. (2018)
OsPLD Low phytic acid content Khan et al. (2019)
SlGAD2, SlGAD3 High GABA content Nonaka et al. (2017)
OsGBSSI Low amylose content Huang et al. (2020)
OsAAP6, OsAAP10 Reduce GPC Wang et al. (2020)
OsBADH2 Fragrant rice Ashokkumar et al. (2020);Wu

et al. (2018)

Rice (Oryza sativa)

SH2, GBSS Supersweet and waxy corn Dong et al. (2019)
Carrot (Daucus carota) DcMYB7 Root color Xu et al. (2019)
Kale (Brassica oleracea) CRTISO Yellow leaves and stems Sun et al. (2020)

MaACO1 Long shelf life Hu et al. (2021)
Banana (Musa paradisiaca)

OsGBSSI Low amylose content Xu et al. (2021)
HvGBSSIa Low amylose content Zhong et al. (2019)
Aux/IAA gene family (StIAA2) Involved in Auxin/indole-3-

acetid acid proteins synthesis
Wang et al. (2015)

Acetolactate synthase1 gene
(ALS1)

Biosynthesis of branched-chain
amino acids

Butler et al. (2015)

Granule-bound starch synthase
(GBBS)

Involved in starch synthesis
pathway

Andersson et al. (2017)Barley (Hordeum vulgare L.)

Wx1 High amylopectin content Satyawan & Santoso (2019)
BnITPK Low phytic acid content Sashidhar et al. (2020)

Rapeseed (Brassica napus)
BnTT8 High oil production and GPC Zhai et al. (2020)

Camelina (Camelina sativa) CsFAD2 High oleic acid proportion Khan et al. (2019)
Banana (Musa paradisiaca) MaACO1 Long shelf life Hu et al. (2021)

(Zhu, Li & Gao, 2020), thus making it possible to domesticate new species within a short
period (Wolter, Schindele & Puchta, 2019). Some recent studies have shown increased
plant yield as a result of the manipulation of cytokinin homeostasis (among many factors
impacting yield) as a practical technique to boost grain production (Zhu, Li & Gao, 2020).
An instance of this is the wheat phenotype with high yields, created by knocking down
the gene for cytokinin oxidase/dehydrogenase (CKX), an enzyme that catalyzes cytokinin
degradation (Nadolska-Orczyk et al., 2017). While retaining the grain quality of rice,
cultivars with higher tiller numbers and yields were created by knocking out the gene that
encodes amino acid permease 3, which is important in nutrient partitioning. Furthermore,
the terminus C (LOGL5), which encodes the activation of cytokinin enzyme in rice, has
been edited for increased grain production in a range of climatic settings (Zhu, Li & Gao,
2020). Likewise, more complex traits have been edited in corn and tomatoes for greater
productivity using CRISPR technology. The site-directed nucleases1 (InDel) was applied
to generate some site-directed mutations in regulatory genetic regions controlling yielding
in tomatoes, which affected their genetic variation and boosted their yielding in less time
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Table 3 The CRISPR-modified crops with improved growth and development.

Crop species Target gene Associated Trait Reference

LAZY1 Spreading of plant tillers Miao et al. (2013)
TaGW2, α-gliadin genes Increase grain size Sánchez-León et al. (2018);Wang

et al. (2018)Wheat (Tritocum aestivum)

GW2 Enhances grain weight Zhang et al. (2018a)
SP5G Earlier harvest time Soyk et al. (2017)
fas, lc Fruit size Rodríguez-Leal et al. (2017)
ENO Fruit size Yuste-Lisbona et al. (2020)

Tomato (Solanum lycopersicum
L.)

CLV3 Fruit size Zsögön et al. (2018)
GS3, Gn1a Grain length Shen et al. (2018)
GW2, GW5, TGW6 Grain length and width Xu et al. (2016)
GL2/OsGRF4, OsGRF3 Grain size Hao et al. (2019)
GS9 Slender grain shape Zhao et al. (2018)
GW5 Grain width Liu et al. (2017)
OsGS3, OsGW2 and OsGn1a Grain length and width Zhou et al. (2019)

Rice (Oryza sativa)

Gn1a, GS3, DEP1 Larger grain size, enhanced grain
number, and dense erect panicles

Li et al. (2016)

Groundcherry (Physalis sp.) ClV1 Fruit size Lemmon et al. (2018)

compared to conventional breeding techniques (Kawall, 2021; Tiwari, Singh & Behera,
2023).

CRISPR-Cas technology has also been explored against plant biotic stress through the
introduction of dominant resistant genes that could foster the development of resistance
in pathogens (Ahmad et al., 2021). A popular example is the use of InDel in wheat to
create a resistant variety against powdery mildew fungus, an obligate host-specific fungus
called Blumeria graminis f. sp. Triciti. This fungus is known to be responsible for great
losses of this crop across the world (Lyzenga, Pozniak & Kagale, 2021). It has also been
applied to a promoter sequence of Argose (a maize line also called Zars) to confer a
constitutive expression of the endogenous gene for improved massive yielding even under
a drought-stressed environment (Manna, Rengasamy & Sinha, 2023). Another instance is
the rice lines with broad-spectrum resistance to Xanthomonas. oryzae pv. oryzae created by
employing CRISPR-Cas to modify the promoter region of O. sativa SWEET11, O. sativa
SWEET13, and O. sativa SWEET14 (Oliva et al., 2019). Furthermore, a wheat cultivar
with broad-spectrum powdery mildew resistance was developed by mutating all three
mildew-resistance locus O (MLO) homologues EDR (encoding for enhanced resistance)
to B. graminis f.sp. tritici at the same time (Zhang et al., 2018a). Moreover, mutagenizing
the TaMLO-A1 and TaMLO-B1 genes with CRISPR-Cas9 resulted in bread wheat that is
also resistant to powdery mildew (Tyagi et al., 2021). Similarly, tolerance to Oidiumneo
lycopersici, which causes powdery mildew in tomatoes, was provided by targeting Solanum
lycopersicum MLO1 with CRISPR–Cas in tomatoes. Defense against RNA viruses has
been developed using the RNA-targeting Cas13a, Cas13b, Cas13d, and Cas12a Francisella
tularensis subsp. novicida (strain U112) (Wang et al., 2014). Also, creating broad-spectrum
viral resistance by knocking off plant susceptibility genes is a viable option that has already
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been explored in Potyviruses of Cucumis sativus. By knocking down the eIF4E (eukaryotic
translation initiation factor) gene in Cucumis sativus, which is not required for plant
growth, a broad-spectrum resistance to potyviruses in cucumber was achieved without
compromising its fitness (Bastet, Robaglia & Gallois, 2017).

IMPACT OF CRISPR-CAS IN MANAGING THE ENVIRONMEN-
TAL STRESS ON CROPS
Extreme temperatures (heat and cold), drought, salinity, UV radiation, and environmental
pollution are some of the most prevalent abiotic stressors that have significant impacts
on plants’ yield, quality, growth, and development (Wang, Vinocur & Altman, 2003; Li
et al., 2023a; Li et al., 2023b). Several structural and regulatory genes, together with
non-coding RNAs, involved in crop response to varying environmental pressures have
been targeted to improve crop tolerance to abiotic challenges (Zhang et al., 2021). The
potential of the CRISPR-Cas system to increase the tolerance of plants to abiotic stressors
was evident in the editing of the AGROS8 gene which is a negative regulator of ethylene
response for enhanced maize tolerance to drought (Hameed & Awais, 2021). Similarly,
SlAGAMOUS-Like 6 (SlAGL6) is an R gene that, when knocked out using CRISPR-Cas9,
allows tomato plants to grow better and produce fruits even during heat stress (Wan et
al., 2021). Furthermore, CRISPR-Cas-edited Arabidopsis mutants of dpa4-sod7-aitr256
improved plant tolerance to drought treatments, according to a recent study (Zhang et
al., 2021). However, there are situations in which CRISPR-Cas9 was reported to show the
opposite phenotype. This is the case for tomato plants where CRISPR-Cas9 knockdown of
non-expressor of pathogenesis-related gene 1 (npr1) impaired drought tolerance (Zhang
et al., 2021).

The challenges of climate change pose a major threat to food security and food safety as
a result of the unpredictable weather patterns, rise in CO2 concentrations, drought stress,
disruption of plant defense mechanisms, and a spike in pests and pathogen populations
and virulence (Gangurde et al., 2019). Moreover, for every 1 ◦C rise in global temperature,
an estimated 10 to 25% of food crops, which include corn, rice, and wheat, will be damaged
by pests. Thus, a drastic reduction is occurring in the expected yield, with an annual decline
reported in some essential food crops such as; rice (0.3%), wheat (0.9%), and oil palm
(13.4%) (Basnet, 2012; Ray et al., 2019). At the same time, total crop production needs to
be doubled by 2050 to enable the global food system to support the growing population
(Pastor et al., 2019).

Alleviating the effect of climate change on the quantity and quality of food products
by using traditional approaches has not been really successful. In contrast, CRISPR-Cas
systems have emerged as a precise, time and cost-effective method of adapting plants
to meet future challenges. The technology was employed to improve the salt tolerance
of rice by knocking out the OSRR22 gene, thereby making a crop that feeds 3.5 billion
people across the world safe for consumption (Zhang et al., 2019). Also, CRISPR-Cas was
used to boost maize grain yields under drought conditions by modifying the ARGOS8
gene, promoting cell division, and offsetting water scarcity (Shi et al., 2017). Furthermore,
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CRISPR-Cas has been used to engineer disease resistance in tomatoes by inactivating
a single gene (DMR6), which confers broad-spectrum disease resistance to the crop
(De Toledo Thomazella et al., 2016). The mutants did not have any significant detrimental
effects on growth and development while showing disease resistance against Pseudomonas
syringae, Phytopthora capsica, and Xanthomonas spp. (Kieu et al., 2021).

In addition, herbicide-resistant weeds constitute a significant crop loss and pose a threat
to global food security (Manning & Soon, 2019; Tyczewska et al., 2018). The production
of herbicide-resistant crops using CRISPR-Cas has become an efficient technique for
controlling weeds, and new technologies for transferring herbicide resistance to plants
(Han & Kim, 2019). This is achieved by targeting endogenous genes like acetolactate
synthase (ALS), cellulose synthase A catalytic subunit 3 (CESA3), 5-enolpyruvylshikimate-
3-phosphate synthase (EPSPS), and splicing factor 3B subunit 1 (SF3B1) (Hussain et al.,
2021; Khan et al., 2022). Herbicide tolerance can be achieved by the changes in the ALS
gene of amino acid according to studies of naturally occurring point mutations in the
ALS gene (McNaughton et al., 2005). In the report of Preston et al. (2006), cytosine base
editors (CBEs) were used to introduce specific base transitions into O. sativa ALS to confer
herbicide resistance to rice while maintaining ALS activity.

Unlike the conventional breeding method, CRISPR-edited gene is time efficient and
stable, as there is no distinguishable difference between the variants generated from genome
editing and those obtained from naturally occurring variations (Marone, Mastrangelo &
Borrelli, 2023; Anders, Hoengenaert & Boerjan, 2023). It was also more readily accepted in
the market for commerce (Brandt & Barrangou, 2019).

ADOPTION OF CRISPR-CAS: CURRENT POSITION AND
IMPLICATIONS ON ETHICAL CONSIDERATIONS
About 190 million hectares of transgenic crops were grown during the past two years
in 26 countries consisting of about 21 developing and five industrialized nations. Brazil,
Argentina, and India are among the top five nations with the highest area of biotech
crop production areas, accounting for 54% of the total growth in developing countries
(Turnbull, Lillemo & Hvoslef-Eide, 2021). The industrialized nations which include the
United States, Canada, Australia, Spain, and Portugal produce 46% of all biotech crops.
However, governments and lawmakers across the world strive to safeguard their citizens,
constituencies, and their environment, and this they do by ensuring the regulation of feeds,
plants, and crops produced for consumption (Hilbeck et al., 2020). Variations occur in
this regulation whether it is process- or product-oriented. Thus, the regulation of genetic
engineering in general and the creation of transgenic organisms in particular is governed
by two basic legal approaches (Eckerstorfer et al., 2019).

The product-oriented approach, which has historically been backed by the US, Canada,
and other American countries, views genetically modified products or organisms (GM,
GMOs) as the equivalents of those made by conventional selection processes (Medvedieva
& Blume, 2018). The use of the aforementioned products or organisms therefore comes
under the purview of current general legislation on the protection and eradication of
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potential risks to individuals or the environment, and special regulations were therefore
considered unnecessary (Turnbull, Lillemo & Hvoslef-Eide, 2021). On the other hand, the
European Union has historically backed the process-oriented approach (Medvedieva &
Blume, 2018). According to this perspective, gene modification technologies are unique
and in particular quantitatively novel, hence the implementation of special regulations and
legislation is thought to be essential (Duensing et al., 2018). The majority of the modified
plant products, their production and release are already covered by European Union law
particularly for some certain crops like corn, soybean, rapeseed and cotton. The law also
permits various methods with adequate risk assessment measures with the exception of
techniques such as mutation breeding used prior to the directive’s implementation in
2001 (Wolt et al., 2016; Van der Meer et al., 2023). It could be possible to apply the present
process-oriented European Union regulations to the CRISPR/Cas9 technology if it is
considered a variation of the conventional genetic engineering that leads to the generation
of GMOs (Zhang et al., 2020).

So far, more than 25 plant species and 100 genes have been successfully edited using
CRISPR-Cas9 to achieve a range of desirable traits in important crops (Manghwar et al.,
2020). Despite the fact that the CRISPR-Cas technology has been proven as a highly efficient
genome editing tool for genetic improvement of crop production (Zhang et al., 2020), the
controversy on the pros and cons of the consequences of its use in genome editing for
agricultural food production was brought to the Court of Justice of the European Union
(CJEU) in July 2018 (Purnhagen & Wesseler, 2021). The court, which issued a historic
ruling, considered CRISPR-Cas as an application of ’mutagenesis exception’ entrenched
in Appendix 1 B of the Genetically Modified Organism (GMO) in the preliminary
reference Confédération Paysanne (C-528/16) (Siebert, Herzig & Birringer, 2022). Hence,
the new plant breeding techniques (NPBT) conclusively found ‘oligonucleotide-directed
mutagenesis’ to be unqualified to receivemutagenesis exemption, after previously declaring
the technology as a GMO-based technique (Urnov, Ronald & Carroll, 2018). However, such
legal recognition of the regulation poses a disadvantage to the biotechnology enterprises that
use the technology as a result of additional paperwork and expenses such as the requirement
to acquire marketing authorization and to label the product among other things (Turnbull,
Lillemo & Hvoslef-Eide, 2021). Thus, the acceptance and adoption of CRISPR-Cas as a new
gene-editing technology has become a contentious and divisive social topic of international
interest, especially among the scientists and the direct beneficiaries of the technology itself.

However, different states have different stances on this issue. An instance is the case of
Argentina which in 2015 became the first nation to enact a unique regulatory legislation
about novel plant breeding technology. This legislative document covered genome editing
and declared that transgene-free goods were exempt from the GMO laws currently in effect
(Menz et al., 2020). Given that the United States controls about 30% of the worldwide
market for agricultural biotechnology, the nation is regarded as the world leader in
the development and marketing of genetically modified crops. Contrary to most other
nations, the United States lacks comprehensive federal legislation that regulates genetically
modified organisms (Wong & Chan, 2016). Newly developed GM products are subjected
to specialized regulatory authorities under the Coordinated Framework for Regulation
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of Biotechnology (Wolt & Wolf, 2018). This entails that GM products are evaluated by
the same health environmental and safety standards that apply to conventional products,
which allows the designated authorities to treat similar products equally (Turnbull, Lillemo
& Hvoslef-Eide, 2021). Similarly in Canada, a science-based assessment of risks that focuses
on the product’s allergenicity, toxicity, and off-target effects has been maintained (Arpaia
et al., 2020). The regulations become effective when there occurs the trait expression of at
least 20–30% lower or higher in a particular plant trait than in the conventionally grown
varieties. Such a plant with novel traits is classified as a plant with new characteristics (PNT)
and not a GMO (Ferreira & Reis, 2023). However, before any unconfined environmental
releases can take place, the applications must pass through the Canadian Food Inspection
Agency (CFIA) (Smyth, 2019). In Africa however, many countries including South Africa,
Ethiopia, Malawi, Kenya, Nigeria Sudan, and Eswatini (Swaziland) are actively growing
GM crops, despite the fact that population increase and climate change pose significant
threats to food security (Kedisso et al., 2022). South Africa which is the producer of GM
crops in the region was the first country in Africa to adopt a regulatory framework allowing
GM crop cultivation, import, and export. This was followed by other listed countries and
Burkina Faso which, although it has not commenced commercial production of GM crops,
has had a Biosafety Law in place since the year 2012 (Turnbull, Lillemo & Hvoslef-Eide,
2021).

The need to further elucidate the safety of this system requires the evaluation of the
possible constraints experienced in the adoption and use of this technology. This reveals
two major concerns that could emanate from its use as off-target editing and unlawful or
unethical scientific experimentation. As for the off-target editing, two possible impacts
have been hypothesized. First, off-targets are expected in genomic regions that show high
sequence similarity with the target. Second, off-targets are unexpected in genomic regions
that are unrelated to the target (Kaul et al., 2020). As a result of the binding and cleavage
that occur at sites other than the target DNA sequence, off-target editing can generate a loss
of function in well-functioning genes or incorrect repair of disease-inducing genes thereby
posing major therapeutic problems (Klein et al., 2018). Also, off-target editing can result in
chromosomal rearrangements and other possible alterations that include the incorporation
of DNA mismatches in the PAM-distal location of the sgRNA complementary sequence
(Manghwar et al., 2020). Furthermore, off-target mutations caused by CRISPR-Cas9 may
also have an impact on the edited organism and possibly its offspring (Zhang et al., 2018b),
while future studies and advancements in this technology may reveal new unexpected
off-target effects that could constitute unpredictable implications (Moon et al., 2019).

Despite the improved knowledge of CRISPR-Cas9 technology, a gap still exists in its
targeting efficiency. The potential off-target effects have recently been a source of concern
for CRISPR-Cas9 applications in plants, which needs to be addressed if the technology
is to be widely used in gene therapy and crop breeding. However, the off-target effects
are efficiently managed during the breeding process by the validation and the selection
of phenotypes of interest to exclude off-target or inferior mutations that could result in
inferior traits (Bishop & Van Eenennaam, 2020). Further, the current state of CRISPR-Cas9
applications in plant genome editing indicates that off-target mutations are uncommon
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(Wolt et al., 2016). Unlike gene therapy and clinical research in humans (Hunt et al., 2023),
plant research is not subject to the same ethical concerns, and off-target effects may be
tolerated more readily.

CONCLUSION AND FUTURE PERSPECTIVES
CRISPR-Cas is an essential technology due to its capability of rapid modification of plant
genome to achieve the traits of interest while ensuring effective management of biotic and
abiotic stressors. However, despite the enormous importance of CRISPR-Cas technology, it
remains an object of debate over ethical issues and the safety of its global adoption and use.
Scientific principles/application of the CRISPR-Cas system is not the main problem in crop
production, but public acceptance and regulations for the products. New traits derived
by conventional plant breeding are ‘nature-identical’, whereas the CRISPR technologies
can be used for different purposes such as the development of exogenous genes and the
propensity of such genetically modified organisms.

However, the basic expectation for the use of this technology should be more focused
on the enhancement of ‘nature-identical’ traits. In addition, while the deployment of this
technology in biomedical and human research could require strong ethical clearance,
evidence shows that its application for agricultural purposes is relatively safe, especially in
cropping agriculture. Nevertheless, we can say that despite the well-established use of the
CRISPR-Cas tool for enhancing crop production at large, it is still not well explored due
to its global regulations. In addition, more advanced CRISPR tools have been developed
for the enhancement of the agricultural system over the last few years. These tools are
beyond DSB-based editing, as they can recognize and target some specific portion of DNA
sequences. DNA-targeting proteins such as the nuclease-dead Cas9 and Cas12a can be
fused with domains carrying out different enzymatic activities. For example, dead Cas9
can be fused with the deaminase enzyme to enable the direct conversion of a single DNA
nucleotide into a DSB. However, there is a limited availability of base editing platforms,
namely C-T or A-G conversions, which has narrowed the sequence-editing windows. It
is possible that broader platforms would emerge soon and remove this limitation. Then
there will be a broader suite for the application of CRISPR tools such as the visual editing
of specific genomic loci, the direct regulation of gene transcription, and the induction of
targeted epigenetic modifications.

Taken together, there is a need for political willingness and public acceptance of the
exploitation of this tool. Also, further research and observation of proactive events,
which will facilitate CRISPR global acceptance needs to be carried out. Scientists should
not discount the challenges and be transparent enough in providing CRISPR-breeding
technology. This would go a long way in gaining the public and regulatory trust. The
sustainable future of the crop system relies on the wide application of breeding tools
that would be improved if used together with CRISPR tools. Moreover, resolving both
the scientific and public/regulatory concerns would pave the way for sustainable crop
production.
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