Terechshenko et al., 2019 - Google Patents
Spray-pyrolysis preparation of Li4Ti5O12/Si composites for lithium-ion batteriesTerechshenko et al., 2019
View PDF- Document ID
- 8039653239547185794
- Author
- Terechshenko A
- Sanbayeva A
- Babaa M
- Nurpeissova A
- Bakenov Z
- Publication year
- Publication venue
- Eurasian Chemico-Technological Journal
External Links
Snippet
This paper introduces the novel anode material which is Li 4 Ti 5 O 12/Si prepared by gas- stated method, mainly spray-pyrolysis technique. The literature review performed in this paper revealed two main components which can be potentially mixed into the efficient …
- 238000005118 spray pyrolysis 0 title abstract description 15
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B31/00—Carbon; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Taniguchi et al. | Electrochemical properties of LiM1/6Mn11/6O4 (M= Mn, Co, Al and Ni) as cathode materials for Li-ion batteries prepared by ultrasonic spray pyrolysis method | |
KR100453555B1 (en) | A Manufacture Method of Nano-size Lithium Cobalt Oxide by Flame Spray Pyrolysis | |
JP4211865B2 (en) | Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
KR101989760B1 (en) | Positive electrode active material precursor particulate powder and positive electrode active material particulate powder, and non-aqueous electrolyte secondary battery | |
JP6107832B2 (en) | Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
Tian et al. | Reversible reduction of Li 2 CO 3 | |
EP3203551B1 (en) | Positive electrode active material and method for manufacturing same | |
Deng et al. | Controllable synthesis of spinel nano-ZnMn 2 O 4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries | |
CN103443972B (en) | Lithium ion secondary battery anode material and manufacture method thereof | |
JP6112118B2 (en) | Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery | |
JP5317203B2 (en) | Method for producing positive electrode active material for lithium ion secondary battery | |
EP2884568A1 (en) | Process for producing electrode materials | |
CN103733394B (en) | With highdensity negative electrode active material and preparation method thereof | |
Oljaca et al. | Novel Li (Ni1/3Co1/3Mn1/3) O2 cathode morphologies for high power Li-ion batteries | |
Cao et al. | Wet chemical synthesis of Cu/TiO 2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries | |
CN106537659A (en) | Anode material for non-aqueous electrolyte secondary battery, preparation method therefor, and non-aqueous electrolyte secondary battery including same | |
JP4642960B2 (en) | Method for producing lithium titanate | |
JP2003514353A (en) | Electrodes containing particles of specific size | |
Guo et al. | Aerosol assisted synthesis of hierarchical tin–carbon composites and their application as lithium battery anode materials | |
JP2003536231A (en) | Lithium metal oxide | |
Hou et al. | Facile synthesis of ZnFe 2 O 4 with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance | |
EP3335259B1 (en) | Lithium sulfide electrode and method | |
JP2004508669A (en) | High-rate battery | |
WO2012110404A1 (en) | Electrode materials and method for producing same | |
JP5807730B1 (en) | Lithium titanate powder and active material for electrode of power storage device, and electrode sheet and power storage device using the same |