[go: up one dir, main page]

Khanam et al., 2021 - Google Patents

Design and implementation of ALU-based FIR filter

Khanam et al., 2021

View PDF
Document ID
732979360361043910
Author
Khanam R
Mehta G
Astya R
Publication year
Publication venue
Smart Computing

External Links

Snippet

In the field of technological advancement, researchers are continuously trying to improve the technology to make it better than before. In this proposed work, we use an algorithm to design an ALU-based FIR (Finite Impulse Response) filter. Basically, adder and multiplier …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0223Computation saving measures; Accelerating measures
    • H03H17/0225Measures concerning the multipliers
    • H03H17/0226Measures concerning the multipliers comprising look-up tables
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/065Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0628Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing the input and output signals being derived from two separate clocks, i.e. asynchronous sample rate conversion
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/04Recursive filters
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0283Filters characterised by the filter structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H2017/0072Theoretical filter design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • G06F2207/386Special constructional features
    • G06F2207/388Skewing
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters

Similar Documents

Publication Publication Date Title
Patali et al. High throughput and energy efficient FIR filter architectures using retiming and two level pipelining
Aggarwal et al. FIR filter designing using Xilinx system generator
Thakral et al. Design and implementation of a high speed digital FIR filter using unfolding
Dixit et al. IIR filters using Xilinx System Generator for FPGA implementation
Kaplun et al. Technique to adjust adaptive digital filter coefficients in residue number system based filters
Gaur et al. Application of vedic multiplier: Design of a FIR filter
Khanam et al. Design and implementation of ALU-based FIR filter
Madhavi et al. Implementation of programmable fir filter using Dadda multiplier and parallel prefix adder
Yadav et al. FPGA Implementation of Efficient FIR Filter
Ramesh et al. Implementation and Design of FIR Filters using Verilog HDL and FPGA
Kumar et al. Low area VLSI implementation of CSLA for FIR filter design
Gopi et al. An efficient design for FIR filter transposed structure
Paliwal et al. Efficient FPGA implementation architecture of fast FIR algorithm using Han-Carlson adder based vedic multiplier
Biswas et al. Analysis of Area Efficient Parallel FIR Filters using FPGA
Thamizharasan et al. An efficient VLSI architecture for FIR filter using computation sharing multiplier
Subathradevi et al. Delay optimized novel architecture of FIR filter using clustered-retimed MAC unit Cell for DSP applications
Damian et al. A low area FIR filter for FPGA implementation
Yadav et al. Design of Modified RNS-PPA Based FIR Filter for High-Speed Application
Yahya et al. Low Area Implementation of FIR Filter Based on FPGA Using Approximation Method
Chatterjee et al. FIR Filter Design Using Distributed Arithmetic with Lookup Tables (LUTs)
Kalaiyarasi et al. Area efficient implementation of FIR filter using distributed arithmetic with offset binary coding
Bharti et al. Efficient design of different forms of FIR filter
Bali et al. Implementation of FIR Filter Using Multiplexer Based Truncated Multiplier and Approximate Adders
Oruganti et al. Efficient ADD/SHIFT architecture for transposed structure of FIR filter using verilog HDL
Barsainya et al. Design and implementation of fractional order integrator with reduced hardware