Lim et al., 2013 - Google Patents
Structural modification of fluorene-thiophene-based copolymers for OPVsLim et al., 2013
View PDF- Document ID
- 6013836245557869980
- Author
- Lim E
- Lee K
- Lee S
- Publication year
- Publication venue
- Journal of Nanoscience and Nanotechnology
External Links
Snippet
A series of fluorene-thiophene-based π-conjugated copolymers, PFT2, PFT4, and PFT2BP, have been synthesized using the Suzuki coupling reaction. Compared to PFT2 and PFT2BP, PFT4 film showed clearly red-shifted UV-visible absorption and photoluminescence (PL) …
- 229920001577 copolymer 0 title abstract description 27
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
- H01L51/0039—Polyeflurorene and derivatives
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
- H01L51/0038—Poly-phenylenevinylene and derivatives
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0043—Copolymers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/42—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
- H01L51/4253—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture comprising bulk hetero-junctions, e.g. interpenetrating networks
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/05—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential- jump barrier or surface barrier multistep processes for their manufacture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2251/00—Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Benten et al. | Recent research progress of polymer donor/polymer acceptor blend solar cells | |
Li et al. | Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility | |
Lin et al. | Thiazole‐based organic semiconductors for organic electronics | |
US7667230B2 (en) | Electronic devices containing acene-thiophene copolymers | |
Xia et al. | Novel random low‐band‐gap fluorene‐based copolymers for deep red/near infrared light‐emitting diodes and bulk heterojunction photovoltaic cells | |
EP2652004A2 (en) | Fluoro monomers, oligomers, and polymers for inks and organic electronic devices | |
Li et al. | Design of three-component randomly incorporated copolymers as non-fullerene acceptors for all-polymer solar cells | |
Cheng et al. | Dithienocyclopentathieno [3, 2‐b] thiophene Hexacyclic Arene for Solution‐Processed Organic Field‐Effect Transistors and Photovoltaic Applications | |
Liu et al. | A Dithienyl Benzotriazole‐based Polyfluorene: Synthesis and Applications in Polymer Solar Cells and Red Light‐Emitting Diodes | |
Usluer et al. | Charge carrier mobility, photovoltaic, and electroluminescent properties of anthracene‐based conjugated polymers bearing randomly distributed side chains | |
Huang et al. | Synthesis and optical and electroluminescent properties of novel conjugated polyelectrolytes and their neutral precursors derived from fluorene and benzoselenadiazole | |
Tamilavan et al. | Synthesis of N-[4-Octylphenyl] dithieno [3, 2-b: 2′, 3′-d] pyrrole-based broad absorbing polymers and their photovoltaic applications | |
Song et al. | Emission color tuning of copolymers containing polyfluorene, benzothiadiazole, porphyrin derivatives | |
Kim et al. | Synthesis and characterization of indeno [1, 2-b] fluorene-based low bandgap copolymers for photovoltaic cells | |
Kato et al. | Naphthalene-diimide-based all-conjugated block copolymer as an effective compatibilizer to improve the performance and thermal stability of all-polymer solar cells | |
Lange et al. | Influence of different copolymer sequences in low band gap polymers on their performance in organic solar cells | |
Lee et al. | Low bandgap carbazole copolymers containing an electron-withdrawing side chain for solar cell applications | |
Chen et al. | Alternating and Diblock Donor–Acceptor Conjugated Polymers Based on Diindeno [1, 2‐b: 2′, 1′‐d] thiophene Structure: Synthesis, Characterization, and Photovoltaic Applications | |
Ren et al. | Thickness insensitive polymer solar cells employing D-A1-D-A2 random terpolymers based on different thiophene units as electron-donor | |
Lim | Synthesis and Characterization of Carbazole‐Benzothiadiazole‐Based Conjugated Polymers for Organic Photovoltaic Cells with Triazole in the Main Chain | |
Shibasaki et al. | Monosubstitution at the 4-position of 2, 7-carbazolylene expands the structural design and fundamental properties of D-π-A copolymers for organic photovoltaic cells | |
Wang et al. | Slight structural disorder in bithiophene-based random terpolymers with improved power conversion efficiency for polymer solar cells | |
Wang et al. | Synthesis and characterization of donor–acceptor poly (3‐hexylthiophene) copolymers presenting 1, 3, 4‐oxadiazole units and their application to photovoltaic cells | |
Huo et al. | Synthesis and characterization of n-type conjugated copolymers bearing perylene diimide moieties | |
Kwak et al. | Improved efficiency in organic solar cells via conjugated polyelectrolyte additive in the hole transporting layer |