Chen et al., 2023 - Google Patents
Improving the electrochemical performance of ultrahigh-nickel-based layered LiNi0. 95Mn0. 05O2 cathode through cobalt modification for next-generation high …Chen et al., 2023
View HTML- Document ID
- 3751255964426877168
- Author
- Chen J
- Chu B
- Li G
- Huang T
- Yu A
- Publication year
- Publication venue
- Electrochemistry Communications
External Links
Snippet
Nickel-rich cobalt-free layered cathode materials are expected to meet the urgent demand for high-energy batteries at an adorable cost. However, as the nickel content increases and cobalt content decreases, layered cathode materials suffer from serious structure …
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/32—Three-dimensional structures spinel-type (AB2O4)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode material | |
Huang et al. | Enhanced electrochemical performance of LiNi0. 8Co0. 15Al0. 05O2 by nanoscale surface modification with Co3O4 | |
Park et al. | Improvement of the rate capability of LiMn2O4 by surface coating with LiCoO2 | |
Hu et al. | Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries | |
Santhanam et al. | High rate cycling performance of Li1. 05Ni1/3Co1/3Mn1/3O2 materials prepared by sol–gel and co-precipitation methods for lithium-ion batteries | |
Kim et al. | Synthesis and electrochemical characteristics of Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries | |
Wang et al. | Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1. 2Ni0. 13Co0. 13Mn0. 54O2 as cathode material for Li-ion batteries | |
Chen et al. | Improve the structure and electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 cathode material by nano-Al2O3 ultrasonic coating | |
Park et al. | Improvement of structural and electrochemical properties of AlF3-coated Li [Ni1/3Co1/3Mn1/3] O2 cathode materials on high voltage region | |
Zhao et al. | Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathode material | |
Han et al. | Electrochemical properties of LiNi0. 8Co0. 2− xAlxO2 prepared by a sol–gel method | |
JP5627142B2 (en) | High capacity positive electrode active material and lithium secondary battery including the same | |
Lei et al. | Nb-doping in LiNi0. 8Co0. 1Mn0. 1O2 cathode material: Effect on the cycling stability and voltage decay at high rates | |
Liu et al. | Enhancing electrochemical performance of LiNi0. 6Co0. 2Mn0. 2O2 by lithium-ion conductor surface modification | |
He et al. | Synthesis of LiNi1/3Co1/3Mn1/3O2− zFz cathode material from oxalate precursors for lithium ion battery | |
Yang et al. | Mitigating voltage decay in high-capacity Li1. 2Ni0. 2Mn0. 6O2 cathode material by surface K+ doping | |
Du et al. | A high-powered concentration-gradient Li (Ni0. 85Co0. 12Mn0. 03) O2 cathode material for lithium ion batteries | |
Zhang et al. | Integrating surface structure via triphenyl phosphate treatment to stabilize Li-rich Mn-based cathode materials | |
Li et al. | NH4F surface modification of Li-rich layered cathode materials | |
Li et al. | Surface modification of Sr-doped LaMnO3 coating by spray drying on Ni-rich LiNi0. 8Mn0. 1Co0. 1O2 cathode material for lithium-ion batteries | |
Gu et al. | Enhanced cycling stability of high voltage LiCoO2 by surface phosphorylation | |
Wang et al. | AlPO4-Li3PO4 dual shell for enhancing interfacial stability of Co-free Li-rich Mn-based cathode | |
Cheng et al. | Enhanced rate performance and cycle stability of LiNi0. 6Co0. 2Mn0. 2O2 at high cut-off voltage by Li6. 1La3Al0. 3Zr2O12 surface modification | |
Ma et al. | Comparative study of simple and concentration gradient shell coatings with Li1. 2Ni0. 13Mn0. 54Co0. 13O2 on LiNi0. 8Mn0. 1Co0. 1O2 cathodes for lithium-ion batteries | |
Bai et al. | A novel approach to improve the electrochemical performances of layered LiNi1/3Co1/3Mn1/3O2 cathode by YPO4 surface coating |