Fang et al., 2011 - Google Patents
Iterative OFDM receiver with combined interference suppression and cancellationFang et al., 2011
- Document ID
- 3656656030195228832
- Author
- Fang K
- Auer G
- Publication year
- Publication venue
- 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications
External Links
Snippet
For cellular networks, the increased cell density and decreased cell size will give rise to significant inter-cell interference. In this work, an adaptive antenna array and an iterative receiver are combined to facilitate inter-cell interference suppression and cancellation at the …
- 230000001629 suppression 0 title abstract description 11
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03248—Arrangements for operating in conjunction with other apparatus
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0837—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
- H04B7/0842—Weighted combining
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0228—Channel estimation using sounding signals with direct estimation from sounding signals
- H04L25/023—Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0426—Power distribution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0417—Feedback systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0047—Decoding adapted to other signal detection operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/005—Interference mitigation or co-ordination of intercell interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yan et al. | Receiver design for downlink non-orthogonal multiple access (NOMA) | |
US8605841B2 (en) | Method for processing received OFDM data symbols and OFDM baseband receiver | |
KR101564479B1 (en) | Method and system for reduced complexity channel estimation and interference cancellation for v-mimo demodulation | |
KR20070072406A (en) | Method and device for canceling interference in a wireless communication system | |
EP2575274B1 (en) | Method and receiver for recovering a desired signal transmitted in the presence of one or more interference signals | |
JP4889756B2 (en) | Radio access system and mobile station apparatus | |
KR100871259B1 (en) | Apparatus and method for receiving signal in communication system | |
EP2442458A1 (en) | Method and receiver for recovering a desired signal transmitted in the presence of one or more interference signals | |
US9787337B2 (en) | Receiver for wireless communications networks | |
Adachi et al. | Distributed MIMO cooperative transmission technique and its performance | |
US8576959B2 (en) | Receiver with prefiltering for discrete fourier transform-spread-orthogonal frequency division multiplexing (DFT-S-OFDM) based systems | |
Fang et al. | Iterative OFDM receiver with combined interference suppression and cancellation | |
US8467439B2 (en) | Adaptively switching equalization operations in a node of a wireless network | |
KR20160024375A (en) | Improved receiver for wireless communications networks | |
Mikami et al. | An inter-cell interference cancellation scheme with multi-cell coordinated scheduling for downlink of MIMO/OFDM cellular systems | |
Ribeiro et al. | Analytical performance evaluation of Base Station cooperation systems using SC-FDE modulations with iterative receivers | |
Ribeiro et al. | Iterative frequency-domain receivers for the uplink of cellular systems with base station cooperation | |
Lim et al. | QoS-constrained opportunistic scheduling for SC-FDMA with iterative multiuser detection | |
Mikami et al. | Iterative MIMO signal detection with inter-cell interference cancellation for downlink transmission in coded OFDM cellular systems | |
EP3335339B1 (en) | Receiver for wireless communication networks | |
Manchón et al. | Interference cancellation based on divergence minimization for MIMO-OFDM receivers | |
Zhou et al. | A blind single antenna interference cancellation algorithm for asynchronous OFDM communication systems | |
Huang et al. | Advanced link-to-system modeling of MMSE-SIC receiver in MIMO-OFDM systems | |
Miyagi et al. | MMSE interference rejection followed by joint maximum likelihood detection for distributed antenna network | |
Jiang et al. | Design of high performance MIMO receivers for LTE/LTE-A uplink |