Nurkowski, 2004 - Google Patents
An inductive strain sensor for operation in high pressure environmentsNurkowski, 2004
- Document ID
- 15775102240566313853
- Author
- Nurkowski J
- Publication year
- Publication venue
- International Journal of Rock Mechanics and Mining Sciences
External Links
Snippet
A toroidal inductive sensor for measuring circumferential strain of cylindrical rock sample in high-pressure cell (triaxial test) was described earlier [1]. Deformation of the sample causes changes in the length of the sensor which is installed directly on the sample (Fig. 1a). This …
- 230000001939 inductive effect 0 title abstract description 11
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
- G01N27/22—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating capacitance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/26—Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
- G01N27/04—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic means
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic means for measuring length, width or thickness
- G01B7/06—Measuring arrangements characterised by the use of electric or magnetic means for measuring length, width or thickness for measuring thickness
- G01B7/10—Measuring arrangements characterised by the use of electric or magnetic means for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic means
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic means for measuring deformation in a solid, e.g. by resistance strain gauge
- G01B7/22—Measuring arrangements characterised by the use of electric or magnetic means for measuring deformation in a solid, e.g. by resistance strain gauge using change in capacitance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating magnetic variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
- G01N11/10—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0617—Electrical or magnetic indicating, recording or sensing means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/14—Measuring force or stress in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/005—Investigating or analyzing materials by the use of thermal means by investigating specific heat
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/26—Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants; Measuring impedance or related variables
- G01R27/2688—Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4654598A (en) | Dielectric methods and apparatus for in situ prediction of porosity and specific surface area (i.e., soil type) and for detection of hydrocarbons, hazardous waste materials, and the degree of melting of ice and to predict in situ stress-strain behavior | |
Butler et al. | Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor | |
US2225668A (en) | Method and apparatus for logging drill holes | |
Jones et al. | Standardizing characterization of electromagnetic water content sensors: Part 1. Methodology | |
ATE469349T1 (en) | DEVICE FOR MEASURING THE CONDITION OF OILS AND FATS | |
Sun et al. | Electrical resistivity variation in uniaxial rock compression | |
US7681438B2 (en) | Apparatus and method for measurement of hardenable material characteristics | |
Nurkowski et al. | Inductive sensor for measuring linear displacement and velocity–Version with stationary magnetic core | |
Nurkowski | An inductive strain sensor for operation in high pressure environments | |
Shuai et al. | Use of a new thermal conductivity sensor to measure soil suction | |
Tejaswini et al. | Conductivity measurement using non-contact potential electrodes and a guard ring | |
Twombly et al. | Simultaneous dynamic mechanical analysis and dielectric analysis of polymers (DMA-DEA) | |
US2722657A (en) | Means for detecting changes in dielectric constant of thin strata of lithological formations traversed by a borehole | |
Nurkowski | A referential method of strain measurements in a high-pressure cell using an inductive coreless sensor | |
Nurkowski | An inductive sensor for displacement measurement during uniaxial and triaxial compression test | |
Sun et al. | Eddy current measurements on case hardened steel | |
Nurkowski et al. | Thermally compensated inductive deformation sensor–Mathematical background and practical implementation | |
de Lezana et al. | Comparative study of alternative circuit configurations for inductive sensors | |
Karipott et al. | A Wireless, Battery-Free Embedded Sensor for Monitoring Tension on a Suture Anchor | |
Nurkowski | The application of coreless inductors for displacement measurements in laboratory investigations of rock properties | |
Zeng et al. | Board level integrated microsystem design and associated technique for impedance analysis of resonator sensors | |
PRZEMIESZCZEŃ et al. | JANUSZ NURKOWSKI | |
Bonetti et al. | Automated resonant mechanical analyzer | |
Safaqah et al. | The elastomer gage for local strain measurement in monotonic and cyclic soil testing | |
Človečko et al. | Properties of the 100 kHz quartz tuning forks in strong magnetic fields and very low temperatures |