Cabini et al., 2024 - Google Patents
Fast deep learning reconstruction techniques for preclinical magnetic resonance fingerprintingCabini et al., 2024
View PDF- Document ID
- 11055640088840123695
- Author
- Cabini R
- Barzaghi L
- Cicolari D
- Arosio P
- Carrazza S
- Figini S
- Filibian M
- Gazzano A
- Krause R
- Mariani M
- Peviani M
- Pichiecchio A
- Pizzagalli D
- Lascialfari A
- Publication year
- Publication venue
- NMR in Biomedicine
External Links
Snippet
We propose a deep learning (DL) model and a hyperparameter optimization strategy to reconstruct T1 and T2 maps acquired with the magnetic resonance fingerprinting (MRF) methodology. We applied two different MRF sequence routines to acquire images of ex vivo …
- 238000000034 method 0 title abstract description 122
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5615—Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/561—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
- G01R33/5611—Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
- G01R33/5612—Parallel RF transmission, i.e. RF pulse transmission using a plurality of independent transmission channels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56341—Diffusion imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences, Generation or control of pulse sequences ; Operator Console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4806—Functional imaging of brain activation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/483—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schloegl et al. | Infimal convolution of total generalized variation functionals for dynamic MRI | |
JP6557710B2 (en) | Nuclear magnetic resonance (NMR) fingerprinting | |
Haris et al. | Self‐gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study | |
Sommer et al. | Towards predicting the encoding capability of MR fingerprinting sequences | |
US12007455B2 (en) | Tensor field mapping with magnetostatic constraint | |
El‐Rewaidy et al. | Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI | |
Fan et al. | Rapid dealiasing of undersampled, non‐Cartesian cardiac perfusion images using U‐net | |
Song et al. | HYDRA: Hybrid deep magnetic resonance fingerprinting | |
Jeelani et al. | A myocardial T1-mapping framework with recurrent and U-Net convolutional neural networks | |
Cabini et al. | Fast deep learning reconstruction techniques for preclinical magnetic resonance fingerprinting | |
Shen et al. | Rapid reconstruction of highly undersampled, non‐Cartesian real‐time cine k‐space data using a perceptual complex neural network (PCNN) | |
US20210166384A1 (en) | System, method and computer-accessible medium for tissue fingerprinting | |
Cheng et al. | Multi‐pathway multi‐echo acquisition and neural contrast translation to generate a variety of quantitative and qualitative image contrasts | |
Motaal et al. | Accelerated high‐frame‐rate mouse heart cine‐MRI using compressed sensing reconstruction | |
Chen et al. | Compressive mr fingerprinting reconstruction with neural proximal gradient iterations | |
Hu et al. | SPICER: Self‐supervised learning for MRI with automatic coil sensitivity estimation and reconstruction | |
Chu et al. | Coil compression in simultaneous multislice functional MRI with concentric ring slice‐GRAPPA and SENSE | |
Feng et al. | Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging | |
Chen et al. | Compressed sensing in sodium magnetic resonance imaging: techniques, applications, and future prospects | |
Jafari et al. | GRASPNET: fast spatiotemporal deep learning reconstruction of golden‐angle radial data for free‐breathing dynamic contrast‐enhanced magnetic resonance imaging | |
Kleineisel et al. | Real‐time cardiac MRI using an undersampled spiral k‐space trajectory and a reconstruction based on a variational network | |
Yang et al. | Attention-based MultiOffset deep learning reconstruction of chemical exchange saturation transfer (AMO-CEST) MRI | |
Slavkova et al. | An untrained deep learning method for reconstructing dynamic MR images from accelerated model‐based data | |
Dawood et al. | Iterative training of robust k‐space interpolation networks for improved image reconstruction with limited scan specific training samples | |
Huang et al. | Synthetic‐to‐real domain adaptation with deep learning for fitting the intravoxel incoherent motion model of diffusion‐weighted imaging |