[go: up one dir, main page]

WO2025000984A1 - 一种煤电机组煤粉稳燃及浓缩装置 - Google Patents

一种煤电机组煤粉稳燃及浓缩装置 Download PDF

Info

Publication number
WO2025000984A1
WO2025000984A1 PCT/CN2023/141148 CN2023141148W WO2025000984A1 WO 2025000984 A1 WO2025000984 A1 WO 2025000984A1 CN 2023141148 W CN2023141148 W CN 2023141148W WO 2025000984 A1 WO2025000984 A1 WO 2025000984A1
Authority
WO
WIPO (PCT)
Prior art keywords
airflow
pulverized coal
combustion
section
sub
Prior art date
Application number
PCT/CN2023/141148
Other languages
English (en)
French (fr)
Inventor
牛芳
王翰锋
张红顺
王乃继
纪任山
石亮
罗伟
刘增斌
张鑫
徐大宝
刘刚
刘振宇
段璐
裘星
龚艳艳
李小炯
周沛然
姜思源
贾东亮
程鹏
孟长芳
王志星
张旭芳
陈喆
张朝
张斌
崔名双
王欣
王永英
王学文
于海鹏
魏琰荣
颜淑娟
杜伯犀
张松
董智
王诗珺
刘鹏中
谭静
梁兴
张静
Original Assignee
北京天地融创科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202321620820.1U external-priority patent/CN220287427U/zh
Priority claimed from CN202321625137.7U external-priority patent/CN220119365U/zh
Priority claimed from CN202321624454.7U external-priority patent/CN220397500U/zh
Priority claimed from CN202310755873.2A external-priority patent/CN116772199B/zh
Priority claimed from CN202310754085.1A external-priority patent/CN116624865A/zh
Priority claimed from CN202310754088.5A external-priority patent/CN116608462A/zh
Priority claimed from CN202321625146.6U external-priority patent/CN220397504U/zh
Priority claimed from CN202321620798.0U external-priority patent/CN220119364U/zh
Priority claimed from CN202321625121.6U external-priority patent/CN220397503U/zh
Application filed by 北京天地融创科技股份有限公司 filed Critical 北京天地融创科技股份有限公司
Publication of WO2025000984A1 publication Critical patent/WO2025000984A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L5/00Blast-producing apparatus before the fire

Definitions

  • the pulverized coal pipe assembly can divide the first airflow into a first sub-airflow and a second sub-airflow and introduce the first sub-airflow into the cavity, the pulverized coal concentration of the first sub-airflow is less than the pulverized coal concentration of the second sub-airflow, and the introduction position of the second sub-airflow is adjacent to the outlet end of the flame stabilizer relative to the introduction position of the first sub-airflow;
  • a secondary air duct is communicated with the cavity.
  • the pulverized coal combustion stabilization and concentration device of the coal-fired power unit in the embodiment of the present application has the advantages of good combustion stability, good environmental protection effect and low production cost.
  • the pulverized coal combustion stabilization and concentration device for coal-fired power units has the following effects:
  • the present application has significant economic advantages. It can achieve the effect of using a small amount of coal powder to ignite most of the surrounding coal powder, completely replace the traditional micro-oil igniter and plasma igniter, use coal as fuel for direct ignition, and achieve the purpose of using a small amount of coal powder to ignite a large amount of surrounding coal powder, thereby improving the economy of coal-fired units during the ignition process and peak load regulation process.
  • This application couples the ignition and stable combustion strengthening measures of multi-stage coal powder concentration and multi-stage coal powder preheating, by constructing coal powder concentration combustion and secondary coal powder ignition preheating inside the combustion stabilizer without combustion support, and constructing multi-stage (three or more) coal powder preheating downstream of the combustion stabilizer without combustion support, and igniting the downstream coal powder airflow in sequence. It is helpful for the rapid ignition during the startup of coal-fired units, and the stable combustion during the flexible peak regulation process, and at the same time promotes the burnout effect during the coal powder combustion process.
  • the present application can be applied to a four-corner tangential circular direct current burner or a wall-type opposed swirl burner, has wide applicability, and is convenient for on-site modification on existing types of burners.
  • FIG1 is a schematic diagram of the structure of a pulverized coal combustion stabilization and concentration device for a coal-fired power unit according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the internal airflow flow of a combustion stabilizer and a burner of a pulverized coal combustion stabilization and concentration device of a coal-fired power unit according to an embodiment of the present application.
  • FIG 3 is a left view of the combustion stabilizer of the pulverized coal combustion stabilization and concentration device of the coal-fired power unit according to an embodiment of the present application.
  • FIG. 4 is a cross-sectional view of a combustion stabilizer of a pulverized coal combustion stabilizing and concentrating device for a coal-fired power unit according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of a combustion stabilizer and a burner of a pulverized coal combustion stabilization and concentration device for a coal-fired power unit according to an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a concentrator of a pulverized coal combustion stabilization and concentration device for a coal-fired power unit according to an embodiment of the present application.
  • Figure 7 is a schematic cross-sectional view of A-A, B-B, C-C, and D-D in Figure 6.
  • FIG. 8 is a schematic structural diagram of the burner and tertiary air duct of the pulverized coal combustion stabilization and concentration device of the coal-fired power unit according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the internal airflow direction of the burner according to an embodiment of the present application.
  • the pulverized coal combustion stabilizing and concentrating device 1000 of a coal-fired power unit includes a burner 200 , a combustion stabilizer 100 and a concentrator 300 .
  • the outlet end of the stabilizer 100 is connected to the burner 200.
  • the stabilizer 100 extends along a first direction.
  • the stabilizer 100 includes a cavity and a pulverized coal pipe assembly 11 at least partially disposed in the cavity.
  • the concentrator 300 can be connected to the pulverized coal pipe assembly 11 so as to introduce a first airflow containing pulverized coal into the pulverized coal pipe assembly 11.
  • the pulverized coal pipe assembly 11 can divide the first airflow into a first sub-airflow and a second sub-airflow and introduce them into the cavity.
  • the pulverized coal concentration of the first sub-airflow is less than that of the second sub-airflow.
  • the introduction position of the second sub-airflow is adjacent to the outlet end of the stabilizer 100 relative to the introduction position of the first sub-airflow.
  • the secondary air duct 13 is communicated with the cavity.
  • FIG. 1 For the convenience of description, the left-right direction in FIG. 1 is taken as the first direction below.
  • the flame stabilizer 100 extends in the left-right direction, the outlet end of the flame stabilizer 100 is the right end of the flame stabilizer 100, a cavity is provided in the flame stabilizer 100, the right end of the pulverized coal pipe assembly 11 is provided in the cavity, the concentrator 300 can be connected to the pulverized coal gas source, and the concentrator 300 is connected to the left end of the pulverized coal pipe assembly 11 so as to introduce the first airflow into the pulverized coal pipe assembly 11.
  • the concentrator 300 introduces a first airflow into the pulverized coal pipe assembly 11, and the first airflow is divided into a first sub-airflow and a second sub-airflow with different pulverized coal concentrations in the pulverized coal pipe assembly 11, and the pulverized coal concentration of the first sub-airflow is less than that of the second sub-airflow.
  • the first sub-airflow and the second sub-airflow flow into the cavity from the pulverized coal pipe assembly 11, and the introduction position of the first sub-airflow is on the left side of the introduction position of the second sub-airflow.
  • the secondary air is sprayed into the cavity at high speed along the secondary air duct 13, gradually flows to the right in the cavity and forms a high-speed rotating airflow, and forms a low-pressure area in the central area of the secondary air.
  • the secondary air gradually flows to the right, part of the secondary air will flow into the low-pressure area, thereby forming a high-speed recirculation area in the shell 12.
  • the second sub-airflow Since the introduction position of the second sub-airflow is adjacent to the high-speed recirculation zone, the second sub-airflow is more easily sucked into the high-speed recirculation zone during the flow process, igniting part of the coal powder in the second sub-airflow, so that the second sub-airflow swirls and burns in the high-speed recirculation zone to release heat, thereby forming a dense phase high-temperature recirculation zone, which will be conducive to promoting the rapid heating and ignition of the second sub-airflow, and releasing more heat to form a dense phase high-temperature recirculation zone.
  • the first sub-airflow is sprayed in at a certain distance from the left side of the second sub-airflow, and the first sub-airflow is blocked and carried by the secondary air in the swirl state, thereby turning its direction, and the first sub-airflow enters the dense phase high-temperature recirculation zone between the secondary air in the swirl state and the second sub-airflow.
  • the coal powder concentration in the first sub-airflow is low and not easy to ignite and burn
  • the low-concentration coal powder in the first sub-airflow is subjected to convection and radiation heat exchange in the high-temperature reflux zone, which can promote the heating and ignition of the first sub-airflow.
  • the introduction position of the first sub-airflow is on the left side of the introduction position of the second sub-airflow, so that the first sub-airflow has a longer residence time in the shell 12 relative to the second sub-airflow.
  • the above two aspects will jointly promote the ignition and burnout effect of the first sub-airflow.
  • the first sub-airflow is preheated at the first level, quickly heats up and ignites, and releases more heat, forming a light-phase high-temperature reflux zone outside the dense-phase high-temperature reflux zone.
  • the second sub-airflow is injected at a certain distance from the first sub-airflow, it is beneficial to delay the mixing of the rich and lean airflows. While promoting the overall combustion, it is beneficial to deepen the rich and lean combustion effect of the pulverized coal and reduce NOx generation.
  • the pulverized coal combustion stabilization and concentration device 1000 for a coal-fired power plant has the following advantages:
  • the present application Compared with the traditional micro-oil igniter and plasma igniter, the present application has significant economic advantages.
  • the present application only needs to ignite part of the coal powder in the second sub-airflow, that is, it can achieve the effect of using a small amount of coal powder to ignite most of the surrounding coal powder, completely replace the traditional micro-oil igniter and plasma igniter, use coal as fuel for direct ignition, and achieve the purpose of using a small amount of coal powder to ignite a large amount of surrounding coal powder, improve the economy of coal-fired units in the ignition process and peak-shaving process, and reduce production costs.
  • the present application constructs coal powder concentration-lean combustion and secondary coal powder ignition preheating inside the non-combustion-supporting stabilizer 100, which helps to quickly ignite the coal-fired unit during startup and stabilize combustion during flexible peak regulation, while promoting the burnout effect during coal powder combustion.
  • the coal powder rich-lean combustion and two-stage high-temperature reduction zone inside the combustion stabilizer without combustion support 100, it is helpful to reduce the generation of fuel-type NOx.
  • the overall temperature distribution inside the combustion stabilizer without combustion support 100 and the coal powder burner 200 is relatively uniform, which helps to reduce the generation of thermal NOx and improve the environmental protection effect.
  • the combustion stabilizer 100 of the pulverized coal combustion stabilizing and concentrating device 1000 of the coal-fired power unit of the embodiment of the present application can be applied to a four-corner cut-circle direct current burner 200, and can also be applied to a wall-type opposed swirl burner 200. It has wide applicability and is convenient for on-site modification on existing types of burners 200.
  • the pulverized coal combustion stabilization and concentration device 1000 for a coal-fired power unit has the advantages of good combustion stability, good environmental protection effect and low production cost.
  • the combustion stabilizer 100 of the embodiment of the present application includes a shell 12 , a pulverized coal pipe assembly 11 , a secondary air duct 13 and a concentrator 1112 .
  • the housing 12 includes a cavity.
  • the pulverized coal pipe assembly 11 extends along a first direction, the first direction includes a first sub-direction and a second sub-direction opposite to the first sub-direction, the direction from the inlet end of the pulverized coal pipe assembly 11 to the outlet end of the pulverized coal pipe assembly 11 is the first sub-direction, at least part of the pulverized coal pipe assembly 11 is arranged in the cavity, and the outer peripheral surface of the pulverized coal pipe assembly 11 is sealed and connected to the shell 12.
  • the first channel 117 and the second channel 118 are spaced apart in the pulverized coal pipe assembly 11 . Both the first channel 117 and the second channel 118 are connected to the cavity. An outlet of the first channel 117 is adjacent to an inlet end of the pulverized coal pipe assembly 11 relative to an outlet of the second channel 118 .
  • the concentrator 1112 is arranged in the coal powder pipe assembly 11.
  • the concentrator 1112 can split the first airflow entering the coal powder pipe assembly 11 into a first sub-airflow and a second sub-airflow, and the coal powder concentration of the first sub-airflow is less than the coal powder concentration of the second sub-airflow.
  • the first channel 117 is used for the first sub-airflow to pass through
  • the second channel 118 is used for the second sub-airflow to pass through.
  • the secondary air duct 13 is communicated with the cavity.
  • the left-right direction in FIG. 4 is taken as the first direction, wherein the rightward direction is the first sub-direction and the leftward direction is the second sub-direction.
  • a cavity is provided in the shell 12, the pulverized coal pipe assembly 11 extends in the left and right directions, the center line of the pulverized coal pipe assembly 11 coincides with the center line of the shell 12, the left end of the pulverized coal pipe assembly 11 is provided outside the shell 12, and the right end of the pulverized coal pipe assembly 11 is provided inside the shell 12.
  • the left end of the shell 12 is provided with a sealing plate, the middle of which is provided with an installation opening, through which the pulverized coal pipe assembly 11 is fixed in the shell 12, and the outer peripheral wall of the pulverized coal pipe assembly 11 is sealedly connected to the inner peripheral wall of the installation opening.
  • the right end of the shell 12 is provided with a stabilizer outlet 125.
  • the second sub-airflow is injected at a certain distance from the first sub-airflow, it is beneficial to delay the mixing of the rich and lean airflows. While promoting the overall combustion, it is beneficial to deepen the rich and lean combustion effect of the pulverized coal and reduce NOx generation.
  • the present application constructs coal powder concentration-lean combustion and secondary coal powder ignition preheating inside the non-combustion-supporting stabilizer 100, which helps to quickly ignite the coal-fired unit during startup and stabilize combustion during flexible peak regulation, while promoting the burnout effect during coal powder combustion.
  • the combustion stabilizer 100 of the embodiment of the present application has the advantages of good combustion stability, good environmental protection effect and low production cost.
  • the pulverized coal pipe assembly 11 is provided with a first inlet 1111, a first outlet 115, and a second outlet 116, and the three are arranged in sequence along the left-right direction, the first inlet 1111 is provided on the left side of the pulverized coal pipe assembly 11 and is located outside the shell 12, the first inlet 1111 is communicated with the first outlet 115, and the first inlet 1111 is also communicated with the second outlet 116.
  • the first outlet 115 and the second outlet 116 are both provided in the shell 12 and communicated with the cavity.
  • the openings of the first outlet 115 and the second outlet 116 are both toward the left side, so that the initial directions of the first sub-airflow and the second sub-airflow entering the cavity are both toward the left side, so as to form a high-temperature reflow zone with the secondary air.
  • the pulverized coal pipe assembly 11 includes a first pipe 111 and a second pipe 112.
  • the inlet end of the first pipe 111 is provided with a first inlet 1111
  • the second pipe 112 and the concentrator 1112 are both arranged in the first pipe 111
  • the concentrator 1112 and the second pipe 112 are arranged sequentially and at intervals in the first sub-direction
  • the inner circumferential wall of the first pipe 111 and the outer circumferential wall of the second pipe 112 define a first sub-channel
  • the inner circumferential wall of the second pipe 112 defines a second channel 118.
  • the first tube 111 extends in the left-right direction, the inlet end of the first tube 111 is the left end of the first tube 111, the outlet end of the first tube 111 is the right end of the first tube 111, and the left end of the first tube 111 is open to form the first inlet 1111.
  • the second tube 112 is arranged inside the first tube 111, and the condenser 1112 is arranged at the
  • the first outlet 115 is arranged on the left side of the second outlet 116 so that when the first sub-airflow and the second sub-airflow enter the cavity, the first sub-airflow is on the left side of the second tube 112 and is spaced apart from the second tube 112.
  • the first airflow is divided into the first sub-airflow and the second sub-airflow after passing through the concentrator 1112.
  • the inner circumferential wall of the first tube 111 is spaced apart from the outer circumferential wall of the second tube 112 to form a first sub-channel, and the inner circumferential wall of the second tube 112 defines a second channel 118.
  • the first outlet 115 is arranged on the left side of the second outlet 116 so that when the first sub-airflow and the second sub-airflow enter the cavity, the first sub-airflow is on the left side of the second sub-airflow.
  • the first tube 111 and the second tube 112 are spaced apart to define the first sub-channel and the second channel 118, thereby facilitating the passage of the coal powder airflow.
  • the left end of the first tube 111 extends leftward out of the housing 12 , and the concentrator 1112 is located at the portion of the first tube 111 extending out of the housing 12 , thereby facilitating replacement of the concentrator 1112 .
  • the pulverized coal pipe assembly 11 further includes a first return member 113 and a second return member 114, the first return member 113 is sleeved on the outer peripheral side of the second pipe 112 and connected to the outlet end of the second pipe 112, and the outlet end of the first pipe 111 extends between the first return member 113 and the second pipe 112, so that the inner peripheral wall of the first return member 113 and the outer peripheral wall of the first pipe 111 define a return channel 119 connected to the first sub-channel, and the opening of the return channel 119 faces the inlet end of the first pipe 111 to form a first outlet 115.
  • the first return member 113 and the second return member 114 are arranged in sequence and at intervals, and a part of the second return member 114 is sleeved on the outer peripheral side of the first return member 113 to form a second outlet 116.
  • the outlet end of the second tube 112 is the right end of the second tube 112
  • the first reflux member 113 is connected to the right end of the second tube 112 and is sleeved on the outer peripheral side of the second tube 112
  • the outlet end of the first tube 111 is the right end of the first tube 111
  • the right end of the first tube 111 is located between the first reflux member 113 and the second tube 112
  • the outer peripheral wall of the first tube 111 and the inner peripheral wall of the first reflux member 113 are spaced to form a reflux channel 119
  • the right end surface of the first tube 111 is spaced from the right end of the first reflux portion, so that the reflux channel 119 and the first sub-channel can be connected.
  • the opening of the reflux channel 119 faces leftward to form the first outlet 115.
  • the second return member 114 is arranged on the right side of the first return member 113, and a part of the second return member 114 is sleeved on the outer peripheral side of the first return member 113, so that a second outlet 116 opening toward the left is formed between the inner peripheral wall of the second return member 114 and the outer peripheral wall of the first return member 113.
  • the flame stabilizer 100 of the embodiment of the present application uses the first reflow member 113 and the second reflow member 114, so that the initial flow directions of the first sub-airflow and the second sub-airflow entering the cavity are both toward the left, thereby facilitating the formation of a high-temperature combustion zone, thereby improving the stability of the flame stabilizer 100.
  • the first reflux member 113 includes a first barrel and a first end portion, the first barrel portion is sleeved on the outer peripheral side of the first tube 111, and the first end portion is used to connect the first barrel portion and the second tube 112. In the first direction, the first end portion is spaced apart from the end face of the outlet end of the first tube 111 so that the first sub-channel and the reflux channel 119 are connected to form a first channel 117.
  • the first end is an annular plate-like member
  • the inner peripheral wall of the first end is connected to the second tube 112
  • the outer peripheral wall of the second end is connected to the first cylinder
  • the first cylinder extends leftward from the left side of the first end.
  • the outlet end of the first tube 111 is the right end of the first tube 111, and the right end of the first tube 111 is spaced apart from the first end so that the first sub-channel and the reflux channel 119 are connected to form the first channel 117.
  • the first reflow member 113 of the combustion stabilizer 100 of the embodiment of the present application has a simple structure and is easy to process.
  • the second return member 114 includes a second end and a second barrel portion, the second end and the first end are spaced apart in the first direction, the second barrel portion extends from the surface of the second end toward the direction of the first end, and the second barrel portion is sleeved on the outer circumferential side of the first barrel portion so that a second outlet 116 opening toward the inlet end of the pulverized coal pipe assembly 11 is formed between the inner circumferential wall of the second barrel portion and the outer circumferential wall of the first barrel portion.
  • the second end is a circular plate-like member
  • the second cylinder extends leftward from the left side of the second end, and is sleeved on the outer peripheral wall of the first cylinder, the first cylinder and the second cylinder are spaced apart to form a second outlet 116, and the opening of the second outlet 116 faces the left side.
  • the first reflow member 113 of the combustion stabilizer 100 of the embodiment of the present application has a simple structure and is easy to process.
  • the shell 12 includes a first section 121, a second section 122, a third section 123 and a fourth section 124 connected in sequence in a first direction
  • the secondary air duct 13 is connected to the first section 121
  • the first section 121 and the third section 123 are both cylindrical
  • the cross-sectional area of the second section 122 gradually increases along the first sub-direction
  • the cross-sectional area of the fourth section 124 gradually decreases along the first sub-direction
  • the first outlet 115 is arranged in the second section 122
  • the second outlet 116 is arranged in the third section 123.
  • the first section 121, the second section 122, the third section 123 and the fourth section 124 are arranged in sequence from left to right, the secondary air duct 13 is arranged on the outer peripheral side of the first section 121, the first section 121 and the third section 123 are both cylindrical, in other words, the cross-sectional areas of the first section 121 and the third section 123 remain unchanged, the cross-sectional area of the second section 122 gradually increases from left to right, and the cross-sectional area of the fourth section 124 gradually decreases from left to right.
  • the right end of the fourth section 124 is provided with a flame stabilizer outlet 125, and the fourth section 124 can gather the flame in the flame stabilizer 100 and increase the speed of the flame.
  • the cross-sectional area of the second section 122 gradually increases from left to right, during the process of the secondary air flowing through the second section 122, the flow rate of the secondary air decreases and the static pressure gradually increases, so as to form a high recirculation zone.
  • the secondary air duct 13 is disposed on the outer peripheral side of the first section 121 and is connected to the first section 121.
  • the air outlet direction is tangent to the inner peripheral wall of the first section 121.
  • the secondary air duct 13 is arranged on the outer peripheral side of the first section 121 and is connected to the first section 121, and the air outlet direction of the secondary air duct 13 is tangent to the inner peripheral wall of the first section 121.
  • a secondary air channel is arranged in the secondary air duct 13, and the secondary air channel is tangent to the inner peripheral wall of the first section 121.
  • the air outlet direction of the secondary air duct 13 is tangent to the inner circumferential wall of the shell 12, so that the secondary air rotates and flows at a high speed, forming a low-pressure area in the central area of the secondary air.
  • the concentrator 1112 is annular and the inner circumferential wall of the concentrator 1112 defines a concentration adjustment channel, the outer circumferential wall of the concentrator 1112 is in contact with the inner circumferential wall of the first tube 111, and the concentrator 1112 includes a tapered section 11121 and a gradually expanding section 11122 arranged in sequence along the first sub-direction, the cross-sectional area of the tapered section 11121 gradually increases along the first sub-direction, and the cross-sectional area of the gradually expanding section 11122 gradually decreases along the first sub-direction, so that the cross-sectional area of the concentration adjustment channel first gradually decreases and then gradually increases along the first sub-direction.
  • the concentrator 1112 is an annular member, and a concentration adjustment channel is provided in the middle of the concentrator 1112, and the first airflow can pass through the concentration adjustment channel.
  • the outer peripheral wall of the concentrator 1112 is arranged in close contact with the inner peripheral wall of the first tube 111, so that the first airflow can only pass through the concentration adjustment channel.
  • the tapered section 11121 is arranged on the left side of the gradually expanding section 11122, and the tapered section 11121 is arranged adjacent to the first outlet 115.
  • the cross section of the tapered section 11121 is annular, and the cross-sectional area of the tapered section 11121 gradually increases from left to right, so that the cross-sectional area of the part of the concentration adjustment channel defined by the inner peripheral wall of the tapered section 11121 gradually decreases from left to right.
  • combustion stabilizer 100 of the embodiment of the present application is described below with reference to FIGS. 3 , 4 and 10 .
  • the first airflow passes through the first inlet 1111 in sequence and enters the pulverized coal pipe assembly 11.
  • the first airflow first meets the concentrator 1112.
  • the pulverized coal particles in the first airflow collide with the concentrator 1112, they are separated by inertia, which causes the first airflow to be separated into light and dark, so that the pulverized coal gathers near the center line of the first tube 111, thereby forming a first sub-airflow with a lower pulverized coal concentration near the inner wall of the first tube 111, and forming a second sub-airflow with a higher pulverized coal concentration near the center line of the first tube 111.
  • the first sub-airflow flows out from the first outlet 115 along the direction from right to left and flows into the second section 122.
  • the second sub-airflow enters the second channel 118, and under the action of the second return member 114, the second sub-airflow flows into the third section 123 along the direction from right to left and gradually flows leftward to the second section 122.
  • the secondary air is sprayed into the cavity at high speed along the secondary air duct 13, forming a high-speed rotating airflow in the first section 121, and flows into the area near the inner wall surface of the second section 122. Since the secondary air at this time has a large rotating tangential velocity, a low-pressure area is formed in the central area of the secondary air during the high-speed rotating flow of the secondary air. In addition, since the cross-sectional area of the second section 122 gradually increases from left to right, the flow velocity of the secondary air decreases during the process of the secondary air flowing through the second section 122, and the static pressure gradually increases.
  • a low-pressure area is formed in the central area of the secondary air, the flow velocity of the secondary air decreases and the static pressure gradually increases. Under the influence of these two factors, when the secondary air gradually flows to the right, part of the secondary air will flow into the low-pressure area, thereby forming a high-speed recirculation area in the second section 122 and the third section 123.
  • the coal powder concentration in the first sub-airflow is low and not easy to ignite and burn
  • the low-concentration coal powder in the first sub-airflow is subjected to convection and radiation heat exchange in the high-temperature reflux zone, which can promote the heating and ignition of the first sub-airflow.
  • the first outlet 115 is arranged on the left side of the second outlet 116, so that the first sub-airflow has a longer residence time in the shell 12 than the second sub-airflow. The above two aspects will jointly promote the ignition and burnout effect of the first sub-airflow.
  • the first sub-airflow is preheated at the first level, quickly heats up and ignites, and releases more heat, forming a light-phase high-temperature reflux zone.
  • the second sub-airflow is injected at a certain distance from the first sub-airflow, it is beneficial to delay the mixing of the rich and lean airflows. While promoting the overall combustion, it is beneficial to deepen the rich and lean combustion effect of the pulverized coal and reduce NOx generation.
  • the airflows in the dense phase high temperature reflux zone and the light phase high temperature reflux zone jointly form a primary flame, which is accelerated by the fourth section 124 and then ejected at high speed from the burner stabilizer outlet 125 .
  • the flame stabilizer 100 of the embodiment of the present application has the following advantages:
  • the present application has significant economic advantages. It can achieve the effect of using a small amount of coal powder to ignite most of the surrounding coal powder, completely replace the traditional micro-oil igniter and plasma igniter, use coal as fuel for direct ignition, and achieve the purpose of using a small amount of coal powder to ignite a large amount of surrounding coal powder, thereby improving the economy of coal-fired units during the ignition process and peak load regulation process.
  • the present application couples the ignition and stable combustion strengthening measures of multi-stage coal powder concentration and multi-stage coal powder preheating, by constructing coal powder concentration combustion and secondary coal powder ignition preheating inside the combustion stabilizer 100 without combustion support, and constructing multi-stage (three or more) coal powder preheating downstream of the combustion stabilizer 100, and sequentially igniting the downstream coal powder airflow. It is helpful for rapid ignition during the startup of coal-fired units, stable combustion during flexible peak regulation, and promotes the burnout effect during coal powder combustion.
  • the burner 200 of the pulverized coal combustion stabilization and concentration device 1000 of a coal-fired power plant is described below.
  • the burner 200 of the embodiment of the present application includes a feed pipe assembly 22 and a combustion tube assembly 21 .
  • a fifth channel 215 is provided in the feed tube assembly 22, a combustion chamber is provided in the combustion tube assembly 21, the feed tube assembly 22 is connected to the combustion tube assembly 21, the combustion tube assembly 21 extends along a first direction, a third channel 213 and a fourth channel 214 are provided in the combustion tube assembly 21, the fifth channel 215, the third channel 213 and the fourth channel 214 are all connected to the combustion chamber, the fifth channel 215, the third channel 213 and the fourth channel 214 are spaced apart in the first direction, the flame stabilizer 100 and the combustion tube assembly 21 are arranged in sequence along the first sub-direction, and the outlet end of the combustion tube assembly 21 is suitable for being connected to a combustion furnace.
  • the left-right direction in FIG. 5 is taken as the first direction below.
  • the feed pipe assembly 22 is used to supply fuel to the combustion tube assembly 21.
  • a fifth channel 215 is provided in the feed pipe assembly 22.
  • the right end of the combustion tube assembly 21 is suitable for connecting to a combustion furnace so that the flame in the combustion chamber can enter the combustion furnace.
  • the combustion tube assembly 21 extends in the left-right direction, and a third channel 213 and a fourth channel 214 are further provided in the combustion tube assembly 21.
  • the fifth channel 215 is provided on the left side of the third channel 213, and the third channel 213 is provided on the left side of the fourth channel 214.
  • the connection between the fifth channel 215 and the combustion chamber is provided on the left side of the connection between the third channel 213 and the combustion chamber, and the connection between the third channel 213 and the combustion chamber is provided on the left side of the connection between the fourth channel 214 and the combustion chamber.
  • the flame stabilizer 100 is arranged on the left side of the combustion tube assembly 21, and the airflow in the flame stabilizer 100 flows rightward into the combustion tube assembly 21.
  • the outlet end of the combustion tube assembly 21 is suitable for being connected to the combustion furnace, and the flame stabilizer outlet 125 and the inlet end of the combustion tube assembly 21 are arranged relative to each other in the left-right direction, and the flame stabilizer outlet 125 and the inlet end of the combustion tube assembly 21 are spaced apart.
  • the fifth channel 215, the third channel 213 and the fourth channel 214 can be used to transport fuel into the combustion chamber, and the fifth channel 215, the third channel 213 and the fourth channel 214 are arranged at intervals in the left and right directions, and the fuel can be added three times to form a three-stage preheating combustion, forming three high-temperature combustion zones inside the burner 200, so that each level of fuel is preheated and burned, so that the coal powder is fully burned, thereby improving the combustion effect of the fuel.
  • the overall temperature distribution inside the burner 200 is relatively uniform, which helps to reduce the generation of thermal NOx and improve the environmental protection effect.
  • the burner of the embodiment of the present application has the advantages of good combustion effect and good environmental protection effect.
  • the first direction includes a first sub-direction and a second sub-direction opposite to the first sub-direction, and the direction from the inlet end of the combustion tube assembly 21 to the outlet end of the combustion tube assembly 21 is the first sub-direction.
  • the feed pipe assembly 22 is suitable for connecting the gas source and the combustion pipe assembly 21.
  • the feed pipe assembly 22 includes first feed pipes 221 arranged sequentially and at intervals in the first sub-direction.
  • the fifth channel 215 is disposed in the first feeding pipe 221 , and the second feeding pipe 222 is communicated with both the third channel 213 and the fourth channel 214 .
  • the left-right direction in FIG. 5 is taken as the first direction, wherein rightward is the first sub-direction and leftward is the second sub-direction.
  • the feed pipe assembly 22 includes a first feed pipe 221 and a second feed pipe 222.
  • the first feed pipe 221 is arranged on the left side of the second feed pipe 222.
  • One end of the first feed pipe 221 is connected to the pulverized coal gas source, and the other end of the first feed pipe 221 can be connected to the combustion chamber.
  • One end of the second feed pipe 222 is connected to the pulverized coal gas source, and the other end of the second feed pipe 222 is connected to the combustion chamber through the third channel 213 and the fourth channel 214.
  • the fifth channel 215 in the first feeding pipe 221 can be used to provide pulverized coal fuel into the combustion chamber
  • the second feeding pipe 222 can be used to provide pulverized coal fuel into the combustion chamber through the third channel 213 and the fourth channel 214.
  • the combustion tube assembly 21 includes an inner tube 211, and a cavity is provided in the inner tube 211 to form a combustion chamber.
  • the inner tube 211 includes a first combustion section 2111 and a second combustion section 2112.
  • the first combustion section 2111 and the second combustion section 2112 are arranged sequentially and connected in a first sub-direction, and the outlet end of the first combustion section 2111 extends into the inlet end of the second combustion section 2112, so that the outer peripheral wall of the first combustion section 2111 and the inner peripheral wall of the second combustion section 2112 define a third channel 213.
  • the inner tube 211 includes a first combustion section 2111 and a second combustion section 2112, the first combustion section 2111 is arranged on the left side of the second combustion section 2112, the combustion chamber includes a first combustion chamber and a second combustion chamber, the first combustion chamber is arranged in the first combustion section 2111, and the second combustion chamber is arranged in the second combustion section 2112.
  • the left end of the first combustion section 2111 is connected to the fifth channel 215, and the right end of the first combustion section 2111 can extend into the second combustion section 2112, and the outer wall of the first combustion section 2111 and the inner wall of the second combustion section 2112 are spaced apart to define the third channel 213.
  • the combustion tube assembly 21 also includes an outer tube 212, which is sleeved on the outside of the inner tube 211 and the inner circumferential wall of the outer tube 212 is spaced apart from the outer circumferential wall of the inner tube 211.
  • the outer tube 212 includes a straightening section 2121 and a guide section 2122 arranged in sequence along the first sub-direction, the inlet end of the straightening section 2121 is sealed and connected to the inlet end of the first combustion section 2111, and the inner circumferential wall of the guide section 2122 and the outer circumferential wall of the second combustion section 2112 define a fourth channel 214.
  • the outer tube 212 extends in the left-right direction
  • the straightening section 2121 is arranged on the left side of the guide section 2122
  • the guide section 2122 and the second combustion section 2112 are spaced apart so that the inner circumferential wall of the guide section 2122 and the outer circumferential wall of the second combustion section 2112 define a fourth channel 214.
  • the left side of the rectifying section 2121 is sealed and connected to the left side of the first combustion section 2111
  • the right end of the rectifying section 2121 is sealed and connected to the left end of the guide section 2122
  • the rectifying section 2121 is sleeved on the outside of the first combustion section 2111 so as to form a rectifying cavity between the outer peripheral wall of the first combustion section 2111 and the inner peripheral wall of the rectifying section 2121.
  • the left end of the third channel 213 is connected to the rectifying cavity
  • the right end of the third channel 213 is connected to the inlet end of the second combustion chamber
  • the left end of the fourth channel 214 is connected to the rectifying cavity
  • the right end of the fourth channel 214 is connected to the outlet end of the second combustion chamber.
  • the third channel 213 and the fourth channel 214 are both arranged in the guide section 2122, and the right end of the first combustion section 2111 extends to the right into the guide section 2122 so as to form a diversion channel between the rectification section 2121 and the first combustion section 2111, thereby facilitating the airflow in the rectification cavity to enter the third channel 213 and the fourth channel 214 along the diversion channel.
  • the burner of the embodiment of the present application by setting the rectifying section 2121 to define the rectifying cavity, allows the pulverized coal airflow in the second feeding pipe 222 to form a steady flow after adjustment in the rectifying cavity, and then enter the combustion chamber, thereby facilitating the stable combustion of the pulverized coal airflow in the combustion chamber, thereby improving the stability of the burner.
  • the first feed pipe 221 includes a first transition section 2212 , which is connected to the first combustion section 2111 , and the first transition section 2212 extends along a first direction, and a cross-sectional area of the first transition section 2212 gradually decreases along a first sub-direction.
  • the first transition section 2212 extends in the left-right direction, the right end of the first transition section 2212 is connected to the first combustion section 2111, and the cross-sectional area of the first transition section 2212 gradually decreases from left to right.
  • the first transition section 2212 is convenient to adapt to the first combustion section 2111 so as to be connected to the first combustion section 2111.
  • the first feeding tube 221 also includes a first feeding section 2211, the inlet end of the first feeding section 2211 extends along the second direction, the second direction is orthogonal to the first direction, the outlet end of the first feeding section 2211 extends along the first direction, the first feeding section 2211 is connected to the first transition section 2212, and the first feeding section 2211 and the first transition section 2212 are connected to form a fifth channel 215.
  • the up-down direction in FIG. 5 is taken as the second direction.
  • the inlet end of the first feeding section 2211 faces downward, and the outlet end of the first feeding section 2211 faces rightward.
  • the center line of the first feeding section 2211 is arc-shaped.
  • the coal powder airflow passes through the first feeding section 2211 and the first transition section 2212 in sequence and then enters the first combustion section 2111.
  • the cavity in the first feeding section 2211 and the cavity in the first transition section 2212 are connected to form a fifth channel 215.
  • the flame stabilizer 100 is connected to the first feeding section 2211, the inlet end of the flame stabilizer 100 is arranged on the outside of the first feeding section 2211, the outlet end of the flame stabilizer 100 passes through the side wall of the first feeding section 2211 and extends into the first feeding section 2211, and the flame stabilizer outlet 125 is located in the first transition section 2212.
  • the outlet end of the flame stabilizer 100 is arranged in the first feeding section 2211, the shell 12 of the flame stabilizer 100 is sealed and connected to the side wall of the first feeding section 2211, and the part of the flame stabilizer 100 located in the first feeding section 2211 is spaced apart from the inner circumferential wall of the first feeding section 2211 so that the second airflow passes between the first feeding section 2211 and the flame stabilizer 100.
  • the second feeding pipe includes a second transition section 2221, the second transition section 2221 is connected to the rectifying section 2121, and the second transition section 2221 is connected to the rectifying section 2121.
  • the cross-sectional area of the transition section 2221 gradually increases along the second direction.
  • the second transition section 2221 is disposed below the rectifying section 2121 , and the cross-sectional area of the second transition section 2221 gradually increases from bottom to top, thereby facilitating improving the efficiency of the pulverized coal airflow entering the rectifying section 2121 .
  • the burner further includes an air supply pipe, and the burner 200 is a four-corner tangential direct current burner 200 , and the air supply pipe is sleeved on the outer peripheral side of the guide section 2122 .
  • an air supply pipe can be arranged on the outer peripheral side of the guide section 2122, and a straight-flow first nozzle 231 is provided on the air supply pipe to provide an oxygen-containing air flow in the gas burner, which is used to grade the amount of oxygen required for the subsequent combustion of the pulverized coal, and to promote the combustion of the pulverized coal while achieving air-graded combustion to reduce NOx generation.
  • the cross-sectional shapes of the first combustion section 2111, the second combustion section 2112 and the guide section 2122 perpendicular to the axial direction of the burner 200 are all rectangular.
  • the oxygen-containing gas flow can be arranged at a certain distance around the burner 200 and injected in a direct current, that is, the nozzle is a cylindrical structure with a circular or rectangular cross-section.
  • the burner also includes an air supply pipe
  • the burner 200 is a wall-type counter-swirl burner 200
  • the air supply pipe includes a first pipe and a second pipe
  • the first pipe sleeve is arranged on the outer peripheral side of the guide section 2122
  • the second pipe sleeve is arranged on the outer peripheral side of the first pipe.
  • an air supply pipe can be arranged on the outside of the guide section 2122, and the air supply pipe includes an annular third nozzle 233 and a second nozzle 232, and the second nozzle 232 is arranged on the outer peripheral side of the third nozzle 233, so as to provide an oxygen-containing airflow for the burner 200, and swirl blades 234 are uniformly arranged in the circumferential direction in the third nozzle 233 and the second nozzle 232, respectively, for guiding the direct airflow into a high-speed rotating jet at the outlet.
  • the cross-sectional shapes of the first combustion section 2111, the second combustion section 2112 and the guide section 2122 perpendicular to the axial direction of the burner 200 are all circular.
  • this part of the tertiary air can be injected into the burner 200 in two layers of annular swirls, and two layers of inner and outer annular nozzles are set.
  • the outlet swirl intensity of the airflow in the two layers of nozzles can be adjusted by adjusting the angle of the blade 234. While realizing air classification, the oxygen-containing airflow injected in the swirl will also help to form a low-pressure area at the outlet of the burner 200, forming a high-temperature flue gas reflux, and promoting further combustion of coal powder and stable ignition.
  • the burner further includes a connecting pipe (not shown in the figure), which is used to connect the gas source with the first feeding pipe 221 or the second feeding pipe 222.
  • the pulverized coal gas source and the first feeding pipe 221 are connected through a connecting pipe so as to feed the pulverized coal into the first combustion chamber.
  • the pulverized coal gas source and the second feeding pipe 222 are connected through a connecting pipe so as to feed the pulverized coal into the second combustion chamber.
  • a through hole is provided on the side wall of the first feeding section 2211, the flame stabilizer 100 is installed in the through hole, and the shell of the flame stabilizer 100 is sealed and connected to the through hole of the first feeding section 2211.
  • the inlet end of the flame stabilizer 100 is provided outside the first feeding section 2211, and the outlet end of the flame stabilizer 100 passes through the through hole on the first feeding section 2211 and extends into the fifth channel 215 in the first feeding section 2211, and the outlet of the flame stabilizer 100 is located in the first transition section 2212.
  • the portion of the flame stabilizer 100 located in the first feeding section 2211 is spaced from the inner peripheral wall of the first feeding section 2211, so that the coal powder airflow in the fifth channel 215 passes between the first feeding section 2211 and the flame stabilizer 100.
  • the flame is ejected from the stabilizer 100 to the first transition section 2212, and the coal powder airflow in the first feeding section 2211 enters the first transition section 2212 from the gap between the stabilizer 100 and the first feeding section 2211, and is preheated and burned after meeting the flame, forming a high-temperature combustion zone. Then the flame flows to the right to the second combustion chamber, first meets the coal powder airflow in the third channel 213, and is preheated and burned, forming a high-temperature combustion zone. Finally, the flame continues to flow to the right, and meets the airflow in the fourth channel 214, and is preheated and burned, forming a high-temperature combustion zone.
  • each level of fuel is charged and burned, thereby improving the combustion effect of the fuel.
  • the overall temperature distribution inside the burner 200 is relatively uniform, which helps to reduce the generation of thermal NOx and improve the environmental protection effect.
  • the concentrator 300 of the pulverized coal combustion stabilization and concentrating device 1000 of a coal-fired power plant is described below.
  • the concentrator 300 includes a main feed pipe 34 and a concentrating assembly.
  • the main feed pipe 34 extends along the second direction, and a main feed port is provided at the inlet end of the main feed pipe 34, and the main feed port is suitable for being connected to the pulverized coal gas source.
  • the outlet end of the main feed pipe 34 is provided with a first port, a second port and a third port, and the second port is arranged opposite to the main feed port in the second direction, and the second port is located between the first port and the third port, and the first port and the second port are arranged opposite to each other in the first direction, and the first direction is orthogonal to the second direction;
  • the concentrating component is arranged in the main feed pipe 34.
  • the primary air pulverized coal airflow entering from the main feed port can be automatically divided into a first airflow, a second airflow and a third airflow with successively decreasing pulverized coal concentrations by impacting the concentrating component.
  • the first airflow is discharged from the first port
  • the second airflow is discharged from the second port
  • the third airflow is discharged from the third port.
  • the up-down direction in FIG. 6 is taken as the second direction
  • the left-right direction in FIG. 6 is taken as the first direction
  • the main feed pipe 34 extends in the up-down direction.
  • the inlet end of the main feed pipe 34 is the lower end of the main feed pipe 34.
  • the lower end of the main feed pipe 34 is provided with a main feed port.
  • the feed port is connected to the pulverized coal gas source so that the primary pulverized coal gas flow enters the main feed pipe 34 .
  • the outlet end of the main feed pipe 34 is the upper end of the main feed pipe 34.
  • the upper end of the main feed pipe 34 is provided with a first port, a second port and a third port, wherein the second port is provided just above the main feed port.
  • the first port and the third port are arranged opposite to each other in the left-right direction, and further, the first port is provided on the left side of the second port, and the third port is provided on the right side of the second port.
  • the primary coal powder airflow hits the concentration component, it is separated by inertia and can be automatically concentrated into three airflows with different concentrations, among which the coal powder concentration in the first airflow is the highest, the coal powder concentration in the third airflow is the lowest, and the coal powder concentration in the second airflow is between the first and third airflows.
  • the first airflow is discharged through the first port
  • the second airflow is discharged through the second port
  • the third airflow is discharged through the third port for use by the coal-fired power unit.
  • the concentrator 300 of the embodiment of the present application by setting a concentrating component in the main feed pipe 34, utilizes the inertia generated by the primary air pulverized coal airflow hitting the concentrating component, so that the primary air pulverized coal airflow can be automatically diverted into three airflows with different coal powder concentrations. During the concentrating process, there is no need to provide additional power for the primary air pulverized coal airflow, thereby reducing the energy consumption when concentrating the coal powder.
  • the concentrator 300 according to the embodiment of the present application has the advantage of low energy consumption.
  • the concentrator 300 also includes a first branch pipe 31, a second branch pipe 32 and a third branch pipe 33, the first branch pipe 31 is connected to the main feed pipe 34 through the first port, the second branch pipe 32 is connected to the main feed pipe 34 through the second port, and the third branch pipe 33 is connected to the main feed pipe 34 through the third port.
  • the first airflow can flow out from the first branch pipe 31, the second branch pipe 32 can flow out from the second branch pipe 33, and the third airflow can flow out from the third branch pipe 33.
  • the first branch pipe 31, the second branch pipe 32 and the third branch pipe 33 can guide the pulverized coal airflow to the desired position of the coal-fired power unit.
  • the first branch pipe 31 is connected to the combustion stabilizer, and the second branch pipe 32 and the third branch pipe 33 are connected to the burner.
  • the pulverized coal airflow can be transported to the desired position by using the first branch pipe 31, the second branch pipe 32 and the third branch pipe 33, and the structure is simple.
  • the first branch pipe 31 is connected to the first inlet 1111 so as to introduce the first airflow into the burner 200
  • the second branch pipe 32 is connected to the first feeding pipe so as to introduce the second airflow into the burner 200
  • the third branch pipe 33 is connected to the second feeding pipe so as to introduce the third airflow into the burner 200.
  • the primary air pulverized coal airflow provided by the pulverized coal gas source enters the main feed pipe 34, and then is split into the first airflow, the second airflow and the third airflow by the concentrator 300.
  • the first airflow enters the pulverized coal pipe assembly 11 through the first inlet 1111, and the second airflow enters the first combustion section 2111 after passing through the first feeding section 2211 and the first transition section 2212 in sequence.
  • the third airflow enters the rectifying section 2121 through the second feeding pipe 222.
  • the main feed pipe 34 has a first side wall 341, a second side wall 342, a third side wall 343 and a fourth side wall 344 connected in sequence in its circumferential direction, the first side wall 341 and the third side wall 343 are arranged relatively to each other in the first direction, the first port is provided on the first side wall 341, the third port is provided on the third side wall 343, the second side wall 342 and the fourth side wall 344 are arranged relatively to each other in the third direction, and the third direction is orthogonal to both the second direction and the first direction.
  • the front-to-back direction in FIG. 6 is taken as the third direction.
  • the first side wall 341 to the fourth side wall 344 are connected in sequence to form an annular main feed pipe 34.
  • the first side wall 341 is the left side wall of the main feed pipe 34
  • the third side wall 343 is the right side wall of the main feed pipe 34
  • the second side wall 342 is arranged between the first side wall 341 and the third side wall 343
  • the fourth side wall 344 is arranged between the first side wall 341 and the third side wall 343
  • the second side wall 342 and the fourth side wall 344 are arranged oppositely in the front-to-back direction.
  • the second side wall 342 is arranged in front of the fourth side wall 344, or the second side wall 342 is arranged behind the fourth side wall 344.
  • first side wall 341 to the fourth side wall 344 are all plate-shaped members, that is, the cross-section of the main feed pipe 34 is rectangular.
  • a first flow channel 345, a second flow channel 346, a third flow channel 347 and a fourth flow channel 348 arranged in an array are provided in the main feed pipe 34.
  • the first flow channel 345 and the second flow channel 346 are arranged in sequence
  • the third flow channel 347 and the fourth flow channel 348 are arranged in sequence
  • the first flow channel 345 is arranged adjacent to the second side wall 342 relative to the third flow channel 347.
  • the first flow channel 345, the second flow channel 346, the third flow channel 347 and the fourth flow channel 348 are arranged in a 2 ⁇ 2 array
  • the first flow channel 345 and the second flow channel 346 are arranged in sequence along the left-right direction
  • the third flow channel 347 and the fourth flow channel 348 are arranged in sequence along the left-right direction
  • the first flow channel 345 and the third flow channel 347 are arranged in sequence along the front-back direction
  • the second flow channel 346 and the fourth flow channel 348 are arranged in sequence along the front-back direction.
  • the first flow channel 345 is disposed adjacent to the second side wall 342.
  • the first flow channel 345 and the second flow channel 346 are disposed adjacent to the second side wall 342 relative to the third flow channel 347 and the fourth flow channel 348.
  • the first flow channel 345 and the second flow channel 346 are disposed in front of the third flow channel 347 and the fourth flow channel 348.
  • the first flow channel 345 and the second flow channel 346 are disposed behind the third flow channel 347 and the fourth flow channel 348.
  • the concentration assembly includes a first concentration block 35 , a second concentration block 36 and a diverter plate 37 , wherein the first concentration block 35 , the second concentration block 36 and the diverter plate 37 are arranged sequentially and spaced apart in the second direction, and the first concentration block 35 is disposed adjacent to the total feed port relative to the diverter plate 37 .
  • the first concentrating block 35, the second concentrating block 36 and the diverter plate 37 are arranged in sequence and at intervals from bottom to top.
  • the primary coal powder airflow is concentrated once after passing through the first concentrating block 35, concentrated once again after passing through the second concentrating block 36, and then diverted into the first airflow, the second airflow and the third airflow after passing through the diverter plate 37.
  • the first concentrated block 35 is disposed on the third side wall 343 to block the second flow channel 346 and the fourth flow channel 348
  • the second concentrated block 36 is disposed on the second side wall 342 to block the first flow channel 345 and the second flow channel 346 .
  • the first concentrator block 35 is detachably fixed on the third side wall 343 and protrudes toward the center line of the main feed pipe 34.
  • the first concentrator block 35 is used to block the second flow channel 346 and the fourth flow channel 348, so that the primary coal powder airflow can only flow from the first flow channel 345 and the third flow channel 347.
  • the second concentrator 36 is protruding toward the center line of the main feed pipe 34 and is disposed on the second side wall 342 to block the first flow channel 345 and the second flow channel 346 so that the primary coal powder airflow can only flow through the third flow channel 347 and the fourth flow channel 348.
  • the second concentrating block 36 is arranged on the fourth side wall 344 to block the third flow channel 347 and the fourth flow channel 348 , so that the primary coal powder airflow can only flow from the first flow channel 345 and the second flow channel 346 .
  • the first concentrating block 35 is shaped like a trapezoidal table, and the first concentrating block 35 has a first end face and a second end face that are spaced apart in a first direction and parallel to each other, the area of the first end face is greater than the area of the second end face, and the first end face is in contact with the inner surface of the third side wall 343.
  • the first concentrating block 35 is a trapezoidal prism, the first end face and the second end face are arranged at intervals in the left-right direction, and the first end face is arranged on the right side of the second end face, that is, the bottom face of the trapezoidal prism is the first end face, the top face is the second end face, and the first end face is arranged in close contact with the third side wall 343.
  • the gap between the first end face and the third side wall 343 is sealed to prevent the primary coal powder airflow from flowing from the first end face and the third side wall 343 to the second concentrating block 36.
  • the first concentrating block 35 is sealed and connected to the second side wall 342, and the first concentrating block 35 is sealed and connected to the fourth side wall 344.
  • the gap between the first concentrating block 35 and the second side wall 342 is sealed, and the gap between the first concentrating block 35 and the fourth side wall 344 is sealed, so as to prevent the primary coal powder airflow from flowing away from the gap between the first concentrating block 35 and the second side wall 342 or the gap between the first concentrating block 35 and the fourth side wall 344.
  • the first end surface is bonded to the third side wall 343.
  • the first enrichment block 35 is detachably connected to the main feed pipe 34, for example, the first enrichment block 35 is connected to the main feed pipe 34 by snapping.
  • the second concentrated block 36 is shaped as a trapezoidal table and has a third end face and a fourth end face that are parallel to each other and spaced apart in a third direction.
  • the area of the third end face is greater than that of the fourth end face, and the third end face is in contact with the inner surface of the second side wall 342.
  • the second concentrating block 36 is a trapezoidal prism
  • the third end face and the fourth end face are arranged at intervals in the front-to-back direction
  • the third end face is arranged in front of the fourth end face, that is, the bottom face of the trapezoidal prism is the third end face
  • the top face is the fourth end face
  • the third end face is arranged in close contact with the second side wall 342.
  • the gap between the third end face and the second side wall 342 is sealed to prevent the primary coal powder airflow from flowing from between the third end face and the second side wall 342 to the diverter plate 37.
  • the first end surface of the first concentrated block 35 is in contact with the inner surface of the third side wall 343, and the third end surface of the second concentrated block 36 is in contact with the inner surface of the second side wall 342. That is, the first concentrated block 35 and the second concentrated block 36 are arranged at 90 degrees.
  • the second concentrating block 36 is sealed and connected to the first side wall 341, and the second concentrating block 36 is sealed and connected to the third side wall 343.
  • the gap between the second concentrating block 36 and the first side wall 341 is sealed, and the gap between the second concentrating block 36 and the third side wall 343 is sealed, so as to prevent the primary coal powder airflow from flowing away from the gap between the second concentrating block 36 and the first side wall 341 or the gap between the second concentrating block 36 and the third side wall 343.
  • the first end surface is bonded to the third side wall 343 , or the first concentrate block 35 is detachably connected to the main feed pipe 34 , for example, the first concentrate block 35 is snap-connected to the main feed pipe 34 .
  • the diverter plate 37 is cross-shaped so as to be compatible with the first to fourth flow channels 345 to 348 .
  • the splitter plate 37 is disposed above the second concentrator block 36, and the splitter plate 37 is cross-shaped to form four regions, and the four regions correspond to the first flow channel 345 to the fourth flow channel 348, respectively, so that the airflow in the first flow channel 345 to the fourth flow channel 348 passes through, thereby further separating the primary air pulverized coal airflow.
  • the concentrator 300 also includes a baffle 38, which is disposed on the inner circumferential wall of the inlet end of the second branch pipe 32, and the baffle 38 is arranged adjacent to the first branch pipe 31 relative to the third branch pipe 33, and the baffle 38 is arranged opposite to the third flow channel 347 in the extension direction of the main feed pipe 34.
  • the baffle 38 is disposed on the left side wall of the second branch pipe 32, adjacent to the first branch pipe 31.
  • the baffle 38 is arranged opposite to the third flow channel 347, so that the gas in the third flow channel 347 is deflected, thereby guiding the gas flow in the third flow channel 347 to enter the first branch pipe 31, thereby preventing the gas flow in the third flow channel 347 from entering the second branch pipe 32.
  • the side wall of the first branch pipe 31 adjacent to the second branch pipe 32 extends into the second branch pipe 32 to form a baffle 38, and the baffle 38 is integrally formed with the first branch pipe 31.
  • the baffle 38 is easy to process and manufacture.
  • the concentrator 300 further includes a baffle (not shown in the figure), which is disposed on the inner peripheral wall of the inlet end of the second branch pipe 32, and is arranged adjacent to the third branch pipe 33 relative to the first branch pipe 31, and the baffle 38 is arranged opposite to the second flow channel 346 in the extending direction of the main feed pipe 34.
  • the baffle can deflect the gas in the second flow channel 346, so that the gas flows into the third branch pipe 33.
  • the primary coal powder air flow provided by the coal powder gas source enters the main feed pipe 34 of the concentrator, and then collides with the first concentrating block 35 to cause coal powder inertial separation. Since the first concentrator 35 blocks the second flow channel 346 and the fourth flow channel 348, a large amount of primary coal powder airflow is gathered in the first flow channel 345 and the third flow channel 347. After the primary coal powder airflow passes through the first concentrator 35, a small amount of coal powder airflow diffuses to the second flow channel 346 and the fourth flow channel 348.
  • the figure shows the distribution of coal powder in each flow channel of the concentrator 300 when it is working.
  • the coal powder is further separated by inertia. Since the second concentrating block 36 blocks the first flow channel 345 and the second flow channel 346, at this time, the third flow channel 347 is not blocked by the first concentrating block 35 or the second concentrating block 36, so the coal powder concentration of the airflow in the third flow channel 347 is the highest.
  • the airflows in the first flow channel 345 and the fourth flow channel 348 are both blocked by one of the first concentrating blocks 35 or the second concentrating block 36.
  • the coal powder concentration in the airflows in the first flow channel 345 and the fourth flow channel 348 is less than the coal powder concentration in the airflow in the third flow channel 347.
  • the second flow channel 346 is blocked twice by the first concentrating block 35 and the second concentrating block 36, so that the coal powder concentration in the second flow channel 346 is the lowest.
  • the airflow in the third flow channel 347 passes through the splitter plate 37 and then hits the baffle plate 38 , thereby being deflected and then flows into the first branch pipe 31 near the baffle plate 38 .
  • the airflow in the first flow channel 345 and the fourth flow channel 348 is not disturbed by the baffle plate 38 and thus enters the second branch pipe 32 .
  • the airflow in the second flow channel 346 hits the baffle plate, thereby being deflected and then flows into the third branch pipe 33 near the baffle plate.
  • the airflow in the third flow channel 347 enters the first branch pipe 31 to form a first airflow
  • the airflows in the first flow channel 345 and the fourth flow channel 348 enter the second branch pipe 32 and mix to form a second airflow
  • the airflow in the second flow channel 346 enters the third branch pipe 33 to form a third airflow.
  • the coal powder concentrations in the first airflow, the second airflow and the third airflow decrease successively.
  • the concentrator 300 of the embodiment of the present application by arranging a concentrating assembly in the main feed pipe 34, can automatically split the primary air pulverized coal airflow into three airflows with different coal powder concentrations by utilizing the inertia generated by the primary air pulverized coal airflow hitting the concentrating assembly.
  • the secondary concentration process no additional power is required for the primary air pulverized coal airflow, thereby reducing the energy consumption when concentrating the coal powder.
  • the primary air pulverized coal airflow can be concentrated twice by utilizing the first concentrating block 35, the second concentrating block 36, the diverter plate 37 and the baffle plate 38, so that the structure of the concentrator 300 is simple and easy to process.
  • the concentrator 300 of the embodiment of the present application has the advantages of low energy consumption and simple structure.
  • FIGS. 1-11 A specific embodiment of the present application is described below with reference to FIGS. 1-11 .
  • the primary coal powder airflow provided by the coal powder gas source enters the main feed pipe 34 of the concentrator 300, and then collides with the first concentrating block 35 to cause inertial separation of the coal powder. Since the first concentrating block 35 blocks the second flow channel 346 and the fourth flow channel 348, a large amount of primary coal powder airflow gathers in the first flow channel 345 and the third flow channel 347. After the primary coal powder airflow passes through the first concentrating block 35, a small amount of coal powder airflow diffuses to the second flow channel 346 and the fourth flow channel 348.
  • the primary air pulverized coal airflow further separates by inertia after meeting the second concentrator 36. Since the second concentrator 36 blocks the first flow channel 345 and the second flow channel 346, at this time, the third flow channel 347 is not blocked by the first concentrator 35 or the second concentrator 36, so the pulverized coal concentration in the airflow in the third flow channel 347 is the highest.
  • the airflows in the first flow channel 345 and the fourth flow channel 348 are both blocked by one of the first concentrator 35 or the second concentrator 36, so the pulverized coal concentration in the airflows in the first flow channel 345 and the fourth flow channel 348 is less than the pulverized coal concentration in the airflow in the third flow channel 347.
  • the second flow channel 346 is blocked twice by the first concentrator 35 and the second concentrator 36, so that the pulverized coal concentration in the second flow channel 346 is the lowest.
  • the airflow in the third flow channel 347 enters the first branch pipe 31 to form a first airflow
  • the airflows in the first flow channel 345 and the fourth flow channel 348 enter the second branch pipe 32 and mix to form a second airflow
  • the airflow in the second flow channel 346 enters the third branch pipe 33 to form a third airflow.
  • the coal powder concentrations in the first airflow, the second airflow and the third airflow decrease successively.
  • the first airflow passes through the first branch pipe 31 and the first inlet 1111 in sequence and enters the pulverized coal pipe group.
  • the first airflow first meets the concentrator 1112.
  • the pulverized coal particles in the first airflow collide with the concentrator 1112, they are separated by inertia, which causes the first airflow to be separated into light and dark, so that the pulverized coal gathers near the center line of the first pipe 111, thereby forming a first sub-airflow with a lower pulverized coal concentration near the inner wall of the first pipe 111, and forming a second sub-airflow with a higher pulverized coal concentration near the center line of the first pipe 111.
  • the first sub-airflow enters the first channel 117, and enters the return channel 119 under the action of the first return member 113, so that the first sub-airflow flows from right to left into the second section 122.
  • the second sub-airflow enters the second channel 118, and under the action of the second return member 114, the second sub-airflow flows from right to left into the third section 123, and gradually flows leftward to the second section 122.
  • the secondary air is sprayed into the cavity at high speed along the secondary air duct 13, forming a high-speed rotating airflow in the first section 121, and flows into the area near the inner wall surface of the second section 122. Since the secondary air at this time has a large rotating tangential velocity, a low-pressure area is formed in the central area of the secondary air during the high-speed rotating flow of the secondary air. In addition, since the cross-sectional area of the second section 122 gradually increases from left to right, the flow velocity of the secondary air decreases during the process of the secondary air flowing through the second section 122, and the static pressure gradually increases.
  • a low-pressure area is formed in the central area of the secondary air, the flow velocity of the secondary air decreases and the static pressure gradually increases. Under the influence of these two factors, when the secondary air gradually flows to the right, part of the secondary air will flow into the low-pressure area, thereby forming a high-speed recirculation area in the second section 122 and the third section 123.
  • the second outlet 116 is arranged at a position adjacent to the high-speed recirculation zone, the second sub-airflow is sprayed in at a position adjacent to the high-speed recirculation zone, so that the second sub-airflow is more easily sucked into the adjacent high-speed recirculation zone during its flow.
  • the second sub-airflow swirls and burns to release heat in the adjacent high-speed recirculation zone, thereby forming a dense-phase high-temperature recirculation zone, which will be beneficial to promoting the rapid heating and ignition of the second sub-airflow, and releasing more heat to form a dense-phase high-temperature recirculation zone.
  • the first sub-airflow is sprayed in at a certain distance from the left side of the second sub-airflow.
  • the first sub-airflow is blocked and carried by the secondary air in the swirl state, thereby changing direction.
  • the first sub-airflow enters the dense phase high-temperature reflux zone between the secondary air in the swirl state and the second sub-airflow.
  • the coal powder concentration in the first sub-airflow is low and not easy to ignite and burn
  • the low-concentration coal powder in the first sub-airflow is subjected to convection and radiation heat exchange in the high-temperature reflux zone, which can promote the heating and ignition of the first sub-airflow.
  • the first outlet 115 is arranged on the left side of the second outlet 116, so that the first sub-airflow has a longer residence time in the shell 12 than the second sub-airflow. The above two aspects will jointly promote the ignition and burnout effect of the first sub-airflow.
  • the first sub-airflow is preheated at the first level, quickly heats up and ignites, and releases more heat, forming a light-phase high-temperature reflux zone.
  • the second sub-airflow is injected at a certain distance from the first sub-airflow, it is beneficial to delay the mixing of the rich and lean airflows. While promoting the overall combustion, it is beneficial to deepen the rich and lean combustion effect of the pulverized coal and reduce NOx generation.
  • the airflows in the dense phase high temperature reflux zone and the light phase high temperature reflux zone jointly form a primary flame, which is accelerated by the fourth section 124 and then ejected at high speed from the burner stabilizer outlet 125 .
  • the second airflow in the second branch pipe 32 passes through the first feeding section 2211 and enters the first transition section 2212, and then mixes with the primary flame sprayed from the burner stabilizer outlet 125 in the first transition section 2212 and enters the first combustion section 2111.
  • the pulverized coal carried by the second airflow is preheated by the primary flame sprayed from the burner stabilizer 100, and is quickly ignited after mixing with the high-temperature flame sprayed from the burner stabilizer 100, and is subjected to secondary preheating to form a secondary flame and a high-temperature zone.
  • the third airflow passes through the second transition section 2221 and enters the rectifying section 2121. After being stabilized by the rectifying chamber, the third airflow flows to the right and is divided into a third sub-airflow and a fourth sub-airflow.
  • the third sub-airflow enters the second combustion tube from the third channel 213, and the fourth sub-airflow enters the second combustion tube from the fourth channel 214.
  • the third sub-airflow flows near the inner wall of the second combustion tube.
  • the third sub-airflow is directly mixed and preheated with the secondary flame from the upstream, so that the third sub-airflow ignites quickly and is preheated by the third stage to form a third stage flame and a high temperature zone.
  • the fourth sub-airflow After passing through the fourth channel 214, the fourth sub-airflow is directly mixed and preheated with the third-stage flame from upstream, so that the fourth sub-airflow is quickly ignited and preheated by the fourth stage to form a fourth-stage flame and a high-temperature zone.
  • the burner 200 of the pulverized coal combustion stabilization and concentration device 1000 of the coal-fired power unit of the embodiment of the present application may be a four-corner cut-circle direct current burner 200 and a wall-type hedge swirl burner 200 .
  • the direct current first nozzle 231 can be arranged at the upper and lower parts of the guide section 2122, respectively, so as to provide tertiary air in the gas burner, which is used to grade the oxygen required for the subsequent combustion of the pulverized coal, and promote the combustion of the pulverized coal while achieving air graded combustion to reduce NOx generation.
  • the cross-sectional shapes of the first combustion section 2111, the second combustion section 2112 and the guide section 2122 perpendicular to the axial direction of the burner 200 are all rectangular.
  • the tertiary air in this section refers to the secondary air in the combustion stabilizer 100.
  • air staged combustion can be achieved to reduce the amount of NOx generated.
  • this part of the tertiary air can be arranged at a certain distance around the burner 200, and injected in a direct current, that is, the nozzle is a cylindrical structure with a circular or rectangular cross-section.
  • the third annular nozzle 233 and the second nozzle 232 can be arranged in sequence from the inside to the outside on the outside of the guide section 2122, and the second nozzle 232 is arranged on the outer peripheral side of the third nozzle 233 to provide tertiary air for the burner 200, and the swirl blades 234 are evenly arranged in the circumferential direction in the third nozzle 233 and the second nozzle 232 respectively, so as to guide the direct current airflow into a high-speed rotating jet at the outlet.
  • the cross-sectional shapes of the first combustion section 2111, the second combustion section 2112 and the guide section 2122 perpendicular to the axial direction of the burner 200 are all circular.
  • the tertiary air in this section refers to the secondary air in the stabilizer 100.
  • air-staged combustion can be achieved and the amount of NOx generated can be reduced.
  • this part of the tertiary air can be injected into the burner 200 in two layers of annular swirls, and two layers of inner and outer annular nozzles are set.
  • the outlet swirl intensity of the airflow in the two layers of nozzles can be adjusted by adjusting the angle of the blade 234. While achieving air stratification, the secondary air injected in the swirl will also help to form a low-pressure area at the outlet of the burner 200, forming a high-temperature flue gas reflux, and promoting the further combustion of coal powder and stable ignition.
  • this application has significant economic advantages. It can use a small amount of coal powder to ignite most of the surrounding coal powder, completely replace the traditional micro-oil igniter and plasma igniter, use coal as fuel for direct ignition, and use a small amount of coal powder to ignite the surrounding coal powder.
  • the purpose of surrounding a large amount of coal powder is to improve the economy of coal-fired units during the ignition process and peak regulation process.
  • the present application couples the ignition and stable combustion strengthening measures of multi-stage coal powder concentration and multi-stage coal powder preheating, by constructing coal powder concentration combustion and secondary coal powder ignition preheating inside the combustion stabilizer 100 without combustion support, and constructing multi-stage (three or more) coal powder preheating downstream of the combustion stabilizer without combustion support, and igniting the downstream coal powder airflow in sequence. It is helpful for the rapid ignition during the startup of the coal-fired unit, and the stable combustion during the flexible peak load regulation, and at the same time promotes the burnout effect during the coal powder combustion process.
  • the present application can be applied to a four-corner tangential circular direct current burner 200, and can also be applied to a wall-type opposed swirl burner 200. It has wide applicability and is convenient for on-site modification on existing types of burners 200.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above”, and “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below”, and “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” etc. mean that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present application.
  • the schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.
  • those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, without contradiction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本申请涉及一种煤电机组煤粉稳燃及浓缩装置,所述煤电机组煤粉稳燃及浓缩装置包括燃烧器、稳燃器和浓缩器,浓缩器用于将煤粉气源提供的一次风煤粉气流分流成第一气流、第二气流和第三气流,第一气流、第二气流和第三气流在稳燃器和燃烧器内燃烧,第一进口与浓缩器连通以便向煤粉管组件内通入第一气流,煤粉管组件可将第一气流分流以得到第一子气流和第二子气流,第一子气流的煤粉浓度小于第二子气流的煤粉浓度,第一出口用于向空腔内排出第一子气流,第二出口用于向空腔内排出第二子气流,二次风管设在稳燃器的进口端的外周侧且与空腔连通。因此,本申请实施例的煤电机组煤粉稳燃及浓缩装置具有燃烧稳定性好、环保效果好和生产成本低等优点。

Description

一种煤电机组煤粉稳燃及浓缩装置
相关申请的交叉引用
本申请要求申请号为202310754085.1、申请日为2023年6月25日的中国专利申请的优先权和权益,申请号为202310755873.2、申请日为2023年6月25日的中国专利申请的优先权和权益,申请号为202321625121.6、申请日为2023年6月25日的中国专利申请的优先权和权益,申请号为202321624454.7、申请日为2023年6月25日的中国专利申请的优先权和权益,申请号为202310754088.5、申请日为2023年6月25日的中国专利申请的优先权和权益,申请号为202321620820.1、申请日为2023年6月25日的中国专利申请的优先权和权益,申请号为202321625146.6、申请日为2023年6月25日的中国专利申请的优先权和权益,申请号为202321620798.0、申请日为2023年6月25日的中国专利申请的优先权和权益,申请号为202321625137.7、申请日为2023年6月25日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请涉及煤粉燃烧技术领域,特别是涉及一种煤电机组煤粉稳燃及浓缩装置。
背景技术
燃煤电厂如需提高煤粉燃烧器在低负荷及变负荷运行过程中的稳燃能力,通常需采用增加点火装置或投入辅助燃料的方法实现。常见的点火及稳燃方法以柴油作燃料,这种方法需要使用大量的柴油,成本非常高,且投油助燃会带来新的污染物生成,如硫化物及氮氧化物。配备等离子点火装置的煤粉燃烧器可以提高低负荷的稳燃能力,但等离子点火装置的阴极材料使用寿命非常短,从而增加了机组运行成本。
近些年,出现了采用电阻丝加热燃烧室外壳从而将燃烧室内部燃料加热的方法,然而采用电阻丝间接加热燃烧室内部结构的加热效率低,且在加热过程中电阻丝和燃烧室外壳需要承受很高的温度,对电阻丝和燃烧室的材质要求高。
综上所述,如何提供一种不需要投入辅助燃料、且不需要增加点火装置就能提高煤粉燃烧器的低负荷及变负荷运行过程中稳燃能力的技术,已成为本领域研究及技术人员亟待解决的重要问题。
申请内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的实施例提出一种煤电机组煤粉稳燃及浓缩装置。
本申请实施例的煤电机组煤粉稳燃及浓缩装置包括:
燃烧器和浓缩器;
稳燃器,所述稳燃器的出口端与所述燃烧器连通,所述稳燃器沿第一方向延伸,所述稳燃器包括空腔和至少部分设在所述空腔内的煤粉管组件,所述浓缩器可与所述煤粉管组件连通以便向所述煤粉管组件内导入带有煤粉的第一气流;
所述煤粉管组件可将所述第一气流分成第一子气流和第二子气流并导入所述空腔内,所述第一子气流的煤粉浓度小于所述第二子气流的煤粉浓度,所述第二子气流的导入位置相对所述第一子气流的导入位置邻近所述稳燃器的出口端;
二次风管,所述二次风管与所述空腔连通。
因此,本申请实施例的煤电机组煤粉稳燃及浓缩装置具有燃烧稳定性好、环保效果好和生产成本低等优点。
而且,本申请实施例的煤电机组煤粉稳燃及浓缩装置具有如下效果:
(1)显著的经济性优势
相比于传统的微油点火器及等离子体点火器,本申请具有显著的经济性优势。可以实现采用少量煤粉点燃周围大部分煤粉的作用,完全替代传统的微油点火器及等离子体点火器,采用煤作为燃料进行直接点火,实现用少量煤粉点燃周围大量煤粉的目的,提高燃煤机组在点火过程及调峰过程中的经济性。
(2)快速点火及强低负荷稳燃能力
本申请耦合了多级煤粉浓缩及多级煤粉预热的点火及稳燃强化措施,通过在无助燃稳燃器内部构建煤粉浓淡燃烧及二级煤粉着火预热,以及在无助燃稳燃器下游构建多级(三级及以上)的煤粉预热,依次点燃下游煤粉气流。有助于燃煤机组启动过程中的快速点火,以及灵活调峰过程中的稳定燃烧,同时促进煤粉燃烧过程中的燃尽效果。
(3)低NOx生成
通过在无助燃稳燃器内部构建煤粉浓淡燃烧、两级高温还原区,以及在无助燃稳燃器的出口下游,构建多级浓淡燃烧,形成沿着火焰高温区的多级强还原氛围,有助于降低燃料型NOx生成。并且,由于多级高温区的存在,使无助燃稳燃器内部及煤粉燃烧器内部的整体温度分布较为均匀,有助于降低热力型NOx的生成。
(4)具有灵活实用性
本申请可应用于四角切圆直流燃烧器上,也可应用于墙式对冲旋流燃烧器上,具有广泛的适用性,且方便在已有类型燃烧器上进行就地改造。
附图说明
图1是本申请实施例的煤电机组煤粉稳燃及浓缩装置的结构示意图。
图2是本申请实施例的煤电机组煤粉稳燃及浓缩装置的稳燃器和燃烧器的内部气流流动示意图。
图3是本申请实施例的煤电机组煤粉稳燃及浓缩装置的稳燃器的左视图。
图4是本申请实施例的煤电机组煤粉稳燃及浓缩装置的稳燃器的剖视图。
图5是本申请实施例的煤电机组煤粉稳燃及浓缩装置的稳燃器和燃烧器的结构示意图。
图6是本申请实施例的煤电机组煤粉稳燃及浓缩装置的浓缩器的结构示意图。
图7是图6中的A-A、B-B、C-C、D-D处的剖视示意图。
图8是本申请实施例煤电机组煤粉稳燃及浓缩装置的燃烧器和三次风管的结构示意图。
图9是本申请另一实施例的煤电机组煤粉稳燃及浓缩装置的燃烧器和三次风管的结构示意图。
图10是本申请实施例的煤电机组煤粉稳燃及浓缩装置的稳燃器的内部气流流动示意图。
图11是本申请实施例的燃烧器的内部气流流向示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
如图1-9所示,本申请实施例的煤电机组煤粉稳燃及浓缩装置1000包括燃烧器200、稳燃器100和浓缩器300。
稳燃器100的出口端与燃烧器200连通,稳燃器100沿第一方向延伸,稳燃器100包括空腔和至少部分设在空腔内的煤粉管组件11,浓缩器300可与煤粉管组件11连通以便向煤粉管组件11内导入带有煤粉的第一气流;
煤粉管组件11可将第一气流分成第一子气流和第二子气流并导入空腔内,第一子气流的煤粉浓度小于第二子气流的煤粉浓度,第二子气流的导入位置相对第一子气流的导入位置邻近稳燃器100的出口端。
二次风管13与空腔连通。
为了便于描述,下面以图1中的左右方向作为第一方向。
例如,稳燃器100沿左右方向延伸,稳燃器100的出口端即为稳燃器100的右端,稳燃器100内设有空腔,煤粉管组件11的右端设在空腔内,浓缩器300可与煤粉气源连通,且浓缩器300与煤粉管组件11的左端连通,以便向煤粉管组件11内导入第一气流。
本申请实施例的煤电机组煤粉稳燃及浓缩装置1000在工作时,浓缩器300向煤粉管组件11内导入第一气流,在煤粉管组件11内第一气流被分流成煤粉浓度不同的第一子气流和第二子气流,第一子气流的煤粉浓度小于第二子气流的煤粉浓度。
而后,第一子气流和第二子气流从煤粉管组件11内流入空腔中,第一子气流的导入位置在第二子气流的导入位置的左侧,
与此同时,二次风沿着二次风管13高速喷入空腔内,在空腔内逐渐向右流动并形成高速旋转气流,并在二次风的中心区域形成低压区。二次风在逐渐向右流动时,部分二次风会流入低压区,从而在壳体12内形成高速回流区。
由于第二子气流的导入位置邻近高速回流区,从而使第二子气流在流动过程中更容易被卷吸到高速回流区内,点燃第二子气流中的部分煤粉,使得第二子气流在高速回流区内回旋燃烧放热,从而形成了浓相高温回流区,这将有利于促进第二子气流的快速升温及着火,并释放出较多的热量,形成浓相高温回流区。与此同时,第一子气流在第二子气流的左侧相距一定距离的位置喷入,第一子气流受到旋流状态下的二次风的阻隔及携带作用,从而折转方向,第一子气流在旋流状态下的二次风与第二子气流之间进入到浓相高温回流区内。
在这个过程中,尽管第一子气流中的煤粉浓度较低,不易于着火燃烧,但是:一方面,第一子气流中的较低浓度煤粉受到高温回流区的对流及辐射换热,能够促进这第一子气流升温着火。另一方面,第一子气流的导入位置在第二子气流的导入位置的左侧,使得第一子气流在壳体12内相对第二子气流具有较大的停留时间,以上两个方面将共同促进第一子气流的着火及燃尽效果。此时,第一子气流受到一级预热,快速升温及着火,并释放出较多的热量,在浓相高温回流区外侧形成淡相高温回流区。
同时,由于第二子气流与第一子气流间隔一定距离喷入,有利于推迟浓、淡气流的混合,在促进整体燃尽的同时,有利于深化煤粉浓淡燃烧效果,降低NOx生成。
本申请实施例的煤电机组煤粉稳燃及浓缩装置1000具有如下优点:
(1)显著的经济性优势。
相比于传统的微油点火器及等离子体点火器,本申请具有显著的经济性优势。本申请只需点燃第二子气流中的部分煤粉,即可以实现采用少量煤粉点燃周围大部分煤粉的作用,完全替代传统的微油点火器及等离子体点火器,采用煤作为燃料进行直接点火,实现用少量煤粉点燃周围大量煤粉的目的,提高燃煤机组在点火过程及调峰过程中的经济性,降低生产成本。
(2)快速点火及强低负荷稳燃能力
本申请通过在无助燃稳燃器100内部构建煤粉浓淡燃烧及二级煤粉着火预热,有助于燃煤机组启动过程中的快速点火,以及灵活调峰过程中的稳定燃烧,同时促进煤粉燃烧过程中的燃尽效果。
(3)降低NOx生成
通过在无助燃稳燃器100内部构建煤粉浓淡燃烧、两级高温还原区,有助于降低燃料型NOx生成。并且,由于多级高温区的存在,使无助燃稳燃器100内部及煤粉燃烧器200内部的整体温度分布较为均匀,有助于降低热力型NOx的生成,提高环保效果。
(4)本申请实施例的煤电机组煤粉稳燃及浓缩装置1000的稳燃器100可应用于四角切圆直流燃烧器200上,也可应用于墙式对冲旋流燃烧器200上,具有广泛的适用性,且方便在已有类型燃烧器200上进行就地改造。
因此,本申请实施例的煤电机组煤粉稳燃及浓缩装置1000具有燃烧稳定性好、环保效果好和生产成本低等优点。
下面详细描述本申请实施例煤电机组煤粉稳燃及浓缩装置1000的稳燃器100。
如图3、图4和图10所示,本申请实施例的稳燃器100包括壳体12、煤粉管组件11、二次风管13和浓缩件1112。
壳体12包括空腔。
煤粉管组件11沿第一方向延伸,第一方向包括第一子方向及与第一子方向相反的第二子方向,煤粉管组件11的进口端至煤粉管组件11的出口端的方向为第一子方向,至少部分煤粉管组件11设在空腔内,煤粉管组件11的外周面与壳体12密封连接。
第一通道117和第二通道118在煤粉管组件11内间隔设置,第一通道117和第二通道118均与空腔连通,且第一通道117的出口相对第二通道118的出口邻近煤粉管组件11的进口端。
浓缩件1112设在煤粉管组件11内,浓缩件1112可将进入煤粉管组件11内的第一气流分流成第一子气流和第二子气流,且第一子气流的煤粉浓度小于第二子气流的煤粉浓度,第一通道117用于供第一子气流通过,第二通道118用于供第二子气流通过。
二次风管13与空腔连通。
为了便于描述,下面以图4中的左右方向作为第一方向,其中以向右为第一子方向,向左为第二子方向。
例如,壳体12内设有空腔,煤粉管组件11沿左右方向延伸,煤粉管组件11的中心线与壳体12的中心线重合,煤粉管组件11的左端设在壳体12外侧,煤粉管组件11的右端设在壳体12内。
壳体12的左端设有密封板,密封板的中间设有安装口,煤粉管组件11通过安装口固定在壳体12内,且煤粉管组件11的外周壁与安装口的内周壁密封连接。壳体12的右端设有稳燃器出口125。
在煤粉管组件11内设有第一通道117和第二通道118,第一通道117和第二通道118间隔设置,第一通道117和第二通道118均与空腔连通,第一通道117的出口设在第二通道118的出口的左侧。
二次风管13内有二次风通道,二次风通道可与空腔连通以便向空腔内导入二次风。
本申请实施例的稳燃器100在工作时,煤粉气源提供的一次风气流进入煤粉管组件11中,在受到浓缩件1112的浓缩作用后,第一气流被分流成第一子气流和第二子气流,且所述第一子气流的煤粉浓度小于所述第二子气流的煤粉浓度, 第一子气流从第一通道117中流向空腔内,第二子气流从第二通道118中流向空腔内。
与此同时,二次风沿着二次风管13高速喷入空腔内,在空腔内逐渐向右流动并形成高速旋转气流,由于此时的二次风具有较大的旋转切向速度,使二次风在高速旋转流动过程中,在二次风的中心区域形成低压区。
二次风在逐渐向右流动时,部分二次风会流入低压区,从而在壳体12内形成高速回流区。
由于第二通道118的出口设在邻近高速回流区的位置,使得第二子气流在邻近高速回流区的位置喷入,从而使第二子气流在流动过程中更容易被卷吸到邻近高速回流区内,点燃第二子气流中的部分煤粉,即可使得第二子气流在邻近高速回流区内回旋燃烧放热,从而引燃第二子气流中所有的煤粉,进而形成了浓相高温回流区,这将有利于促进第二子气流的快速升温及着火,并释放出较多的热量,使得浓相高温回流区内的煤粉稳定燃烧。与此同时,第一子气流在第二子气流的左侧相距一定距离的位置喷入空腔内,第一子气流受到旋流状态下的二次风的阻隔及携带作用,从而折转方向,第一子气流在旋流状态下的二次风与第二子气流之间进入到浓相高温回流区内。
在这个过程中,尽管第一子气流中的煤粉浓度较低,不易于着火燃烧,但是:一方面,第一子气流中的较低浓度煤粉受到高温回流区的对流及辐射换热,能够促进这第一子气流升温着火。另一方面,第一通道117的出口位置设在第二通道118的出口位置的左侧,使得第一子气流进入空腔时位于第二子气流的左侧,从而使得第一子气流在壳体12内相对第二子气流具有较大的停留时间,以上两个方面将共同促进第一子气流的着火及燃尽效果。此时,第一子气流受到预热,快速升温及着火,并释放出较多的热量,在浓相高温回流区外侧形成淡相高温回流区。
同时,由于第二子气流与第一子气流间隔一定距离喷入,有利于推迟浓、淡气流的混合,在促进整体燃尽的同时,有利于深化煤粉浓淡燃烧效果,降低NOx生成。
而后,火焰由稳燃器出口125高速喷出。
本申请实施例的稳燃器100具有如下优点:
(1)显著的经济性优势。
相比于传统的微油点火器及等离子体点火器,本申请具有显著的经济性优势。本申请只需点燃第二子气流中的部分煤粉,即可以实现采用少量煤粉点燃周围大部分煤粉的作用,完全替代传统的微油点火器及等离子体点火器,采用煤作为燃料进行直接点火,实现用少量煤粉点燃周围大量煤粉的目的,提高燃煤机组在点火过程及调峰过程中的经济性,降低生产成本。
(2)快速点火及强低负荷稳燃能力
本申请通过在无助燃稳燃器100内部构建煤粉浓淡燃烧及二级煤粉着火预热,有助于燃煤机组启动过程中的快速点火,以及灵活调峰过程中的稳定燃烧,同时促进煤粉燃烧过程中的燃尽效果。
(3)降低NOx生成
通过在无助燃稳燃器100内部构建煤粉浓淡燃烧、两级高温还原区,有助于降低燃料型NOx生成。并且,由于多级高温区的存在,使无助燃稳燃器内部的整体温度分布较为均匀,有助于降低热力型NOx的生成,提高环保效果。
因此,本申请实施例的稳燃器100具有燃烧稳定性好、环保效果好和生产成本低等优点。
在一些实施例中,如图4所示,煤粉管组件11包括第一进口1111、第一出口115和第二出口116,第一进口1111、第一出口115和第二出口116均设在煤粉管组件11上且沿第一子方向依次且间隔布置,第一进口1111和第一出口115通过第一通道117连通,第一进口1111和第二出口116通过第二通道118连通,所述第一出口115和所述第二出口116的开口均朝向所述煤粉管组件11的进口端设置。稳燃器100的出口端设有稳燃器出口125。
例如,煤粉管组件11上设有第一进口1111、第一出口115和第二出口116,且三者沿左右方向依次布置,第一进口1111设在煤粉管组件11的左侧且位于壳体12外侧,第一进口1111与第一出口115连通,第一进口1111与第二出口116也连通。第一出口115和第二出口116均设在壳体12内且与空腔连通。
第一出口115和所述第二出口116的开口均朝向左侧,由此,使得第一子气流和第二子气流进入空腔的初始方向均朝向左侧,以便与二次风形成高温回流区。
在一些实施例中,如图4所示,煤粉管组件11包括第一管111和第二管112,第一管111的进口端设有第一进口1111,第二管112和浓缩件1112均设在第一管111内,浓缩件1112与第二管112在第一子方向上依次且间隔布置,第一管111的内周壁与第二管112的外周壁限定出第一子通道,第二管112的内周壁限定出第二通道118。
例如,第一管111沿着左右方向延伸,第一管111的进口端即为第一管111的左端,第一管111的出口端即为第一管111的右端,第一管111的左端敞口设置以形成第一进口1111。第二管112设在第一管111内部,浓缩件1112设在第 二管112的左侧且与第二管112间隔设置。第一气流经过浓缩件1112后分流成第一子气流和第二子气流。第一管111的内周壁与第二管112的外周壁间隔设置,以便形成第一子通道,第二管112的内周壁限定出第二通道118。第一出口115设在第二出口116的左侧,以便第一子气流和第二子气流进入空腔时,第一子气流在第二子气流的左侧。由此,通过第一管111和第二管112间隔设置,限定出第一子通道和第二通道118,从而方便煤粉气流经过。
可选地,第一管111的左端向左伸出壳体12设置,且浓缩件1112位于第一管111伸出壳体12的部分,由此,以便更换浓缩件1112。
在一些实施例中,如图4所示,煤粉管组件11还包括第一回流件113和第二回流件114,第一回流件113套设在第二管112的外周侧且与第二管112的出口端相连,第一管111的出口端伸入第一回流件113与第二管112之间,以使第一回流件113的内周壁与第一管111的外周壁限定出与第一子通道连通的回流通道119,且回流通道119的开口朝向第一管111的进口端以形成第一出口115。在第一子方向上第一回流件113与第二回流件114依次且间隔布置,第二回流件114的一部分套设在第一回流件113的外周侧以便形成第二出口116。
例如,第二管112的出口端即为第二管112的右端,第一回流件113与第二管112的右端相连且套设在第二管112的外周侧,第一管111的出口端即为第一管111的右端,第一管111的右端位于第一回流件113与第二管112之间,且第一管111的外周壁与第一回流件113的内周壁间隔设置以形成回流通道119,第一管111的右端面与第一回流部的右端间隔设置,从而使得回流通道119和第一子通道可以连通。回流通道119的开口朝向左方以形成第一出口115。
第二回流件114设在第一回流件113的右侧,第二回流件114的一部分套设在第一回流件113的外周侧,以便第二回流件114的内周壁与第一回流件113的外周壁之间形成开口朝向左方的第二出口116。
由此,第一子气流进入第一子通道后受到第一回流件113的阻挡从而折流进入回流通道119中,进而从第一出口115中排出。第二子气流进入第二通道118后受到第二回流件114的阻挡而折流后从第二出口116排出。本申请实施例的稳燃器100,利用第一回流件113和第二回流件114,使得第一子气流和第二子气流进入空腔的初始流向均朝向左侧,从而便于形成高温燃烧区,进而提高稳燃器100的稳定性。
在一些实施例中,如图4所示,第一回流件113包括第一筒部和第一端部,第一筒部套设在第一管111的外周侧,第一端部用于连接第一筒部和第二管112,在第一方向上第一端部与第一管111的出口端的端面间隔设置,以使第一子通道和回流通道119连通从而形成第一通道117。
例如,第一端部为环形的板状件,第一端部的内周壁与第二管112相连,第二端部的外周壁与第一筒部相连,第一筒部从第一端部的左侧向左延伸。第一管111的出口端即为第一管111的右端,第一管111的右端与第一端部间隔设置,以便第一子通道和回流通道119连通,进而形成第一通道117。
由此,本申请实施例的稳燃器100的第一回流件113结构简单,便于加工。
在一些实施例中,如图4所示,第二回流件114包括第二端部和第二筒部,第二端部和第一端部在第一方向上间隔设置,第二筒部从第二端部的表面向第一端部所在方向延伸,第二筒部套设在第一筒部的外周侧,以使第二筒部的内周壁与第一筒部的外周壁之间形成开口朝向煤粉管组件11的进口端的第二出口116。
例如,第二端部为圆形的板状件,第二筒部从第二端部的左侧向左延伸,并套设在第一筒部的外周壁,第一筒部和第二筒部间隔设置,以形成第二出口116,第二出口116的开口朝向左侧。
由此,本申请实施例的稳燃器100的第一回流件113结构简单,便于加工。
在一些实施例中,如图4所示,壳体12包括在第一方向上依次相连的第一段121、第二段122、第三段123和第四段124,二次风管13与第一段121相连,第一段121和第三段123均为圆柱形,第二段122的横截面积沿第一子方向逐渐增大,第四段124的横截面积沿第一子方向逐渐减小,第一出口115设在第二段122内,第二出口116设在第三段123内。
例如,第一段121、第二段122、第三段123和第四段124沿着从左至右的方向依次布置,二次风管13设在第一段121的外周侧,第一段121和第三段123均为圆柱形,换言之,第一段121和第三段123的横截面积不变,第二段122的横截面积沿着从左至右的方向逐渐增大,第四段124的横截面积沿着从左至右的方向逐渐减小。第四段124的右端设有稳燃器出口125,第四段124可将稳燃器100内的火焰聚拢后提高火焰的速度。
本申请实施例的稳燃器100,由于第二段122的横截面积从左向右逐渐增大,在二次风流经第二段122的过程中,二次风的流速降低,同时静压逐渐升高,以便形成高度回流区。
在一些实施例中,如图4和图3所示,二次风管13设在第一段121的外周侧与所述第一段121相连,二次风管13 的出风方向与第一段121的内周壁相切。二次风管13为多个,多个二次风管13沿第一段121的周向间隔布置。
例如,二次风管13设在第一段121的外周侧且与第一段121相连,二次风管13的出风方向与第一段121的内周壁相切,换言之,二次风管13内的设有二次风通道,二次风通道与第一段121的内周壁相切。二次风管13有多个,例如两个至六个等。可选地,二次风管13为两个、三个或六个。
本申请实施例的稳燃器100,二次风管13的出风方向与壳体12的内周壁相切,使得二次风高速旋转流动,在二次风的中心区域形成低压区。
在一些实施例中,如图4所示,浓缩件1112为环形且浓缩件1112的内周壁限定出浓度调节通道,浓缩件1112的外周壁与第一管111的内周壁贴合,浓缩件1112包括沿第一子方向依次布置的渐缩段11121和渐扩段11122,渐缩段11121的横截面积沿第一子方向逐渐增大,渐扩段11122的横截面积沿第一子方向逐渐减小,以使浓度调节通道的横截面积沿第一子方向先逐渐减小再逐渐增大。
例如,浓缩件1112为环形件,浓缩件1112的中间设有浓度调节通道,第一气流可从浓度调节通道中穿过,浓缩件1112的外周壁与第一管111的内周壁贴合设置,使得第一气流只能从浓度调节通道中经过。渐缩段11121设在渐扩段11122的左侧,渐缩段11121邻近第一出口115设置,渐缩段11121的横截面为环形,渐缩段11121的横截面积沿着从左向右的方向逐渐增大,使得渐缩段11121的内周壁限定的部分浓度调节通道的横截面积沿着从左向右的方向逐渐减小。
渐扩段11122的横截面也为环形,渐扩段11122的横截面积沿着从左向右的方向逐渐减小,使得渐扩段11122的内周壁限定的部分浓度调节通道的横截面积沿着从左向右的方向逐渐增大。
本申请实施例的稳燃器100在工作时,第一气流首先与浓缩件1112相遇,第一气流中的煤粉颗粒在撞击浓缩件1112的过程中,在渐缩段11121内,第一气流逐渐向第一管111的中心线附近聚集,使得第一管111的中心线附近的煤粉浓度逐渐增大,在渐扩段11122内,第一气流逐渐向第一管111的管壁附近扩散,由于浓缩件1112和第二管112之间的距离较短,第一气流即使向第一管111的管壁附近扩散,也没有足够的时间使得第一管111的管壁附近的煤粉浓度达到第一管111的中心线附近的煤粉浓度。
因此,第一气流在经过浓度调节通道的时候,受到惯性分离的作用发而生浓淡分离,从而在第一管111的内壁面附近形成煤粉浓度较低的第一子气流,在第一管111的中心线附近形成煤粉浓度较高的第二子气流,然后第一子气流进入第二管112外侧的第一通道117,第二子气流进入第二管112内部的第二通道118。
在一些实施例中,如图4所示,第二管112与第一回流件113一体成型。由此,第二管112和第一回流件113方便加工。
下面根据附图3、图4和图10描述本申请实施例的稳燃器100的具体的工作过程。
第一气流依次经过第一进口1111进入煤粉管组件11内。第一气流首先与浓缩件1112相遇,第一气流中的煤粉颗粒在撞击浓缩件1112的过程中,受到惯性分离的作用,将使第一气流发生浓淡分离,使得煤粉聚集在第一管111的中心线附近,从而在第一管111的内壁面附近形成煤粉浓度较低的第一子气流,在第一管111的中心线附近形成煤粉浓度较高的第二子气流。
而后,第一子气流进入第一通道117后,并在第一回流件113的作用下,使得第一子气流沿着从右向左的方向,从第一出口115流出,流入第二段122内。第二子气流进入第二通道118,并在第二回流件114的作用下,使得第二子气流沿着从右向左的方向,流入第三段123内,并逐渐向左流动至第二段122。
与此同时,二次风沿着二次风管13高速喷入空腔内,在第一段121内形成高速旋转气流,并流入第二段122的内壁面附近的区域,由于此时的二次风具有较大的旋转切向速度,使二次风在高速旋转流动过程中,在二次风的中心区域形成低压区。此外,由于第二段122的横截面积从左向右逐渐增大,在二次风流经第二段122的过程中,二次风的流速降低,同时静压逐渐升高。
综上,二次风的中心区域形成有低压区、二次风的流速降低且静压逐渐升高,在这两个因素的作用下,二次风在逐渐向右流动时,部分二次风会流入低压区,从而在第二段122和第三段123内形成高速回流区。
由于第二出口116设在邻近高速回流区的位置,使得第二子气流在邻近高速回流区的位置喷入,从而使第二子气流在流动过程中更容易被卷吸到邻近高速回流区内,第二子气流在邻近高速回流区内回旋燃烧放热,从而形成了浓相高温回流区,这将有利于促进第二子气流的快速升温及着火,并释放出较多的热量,形成浓相高温回流区。
与此同时,第一子气流在第二子气流的左侧相距一定距离的位置喷入,第一子气流受到旋流状态下的二次风的阻隔及携带作用,从而折转方向,第一子气流在旋流状态下的二次风与第二子气流之间进入到浓相高温回流区内。
在这个过程中,尽管第一子气流中的煤粉浓度较低,不易于着火燃烧,但是:一方面,第一子气流中的较低浓度煤粉受到高温回流区的对流及辐射换热,能够促进这第一子气流升温着火。另一方面,第一出口115设在第二出口116左侧,使得第一子气流在壳体12内相对第二子气流具有较大的停留时间,以上两个方面将共同促进第一子气流的着火及燃尽效果。此时,第一子气流受到一级预热,快速升温及着火,并释放出较多的热量,形成淡相高温回流区。
同时,由于第二子气流与第一子气流间隔一定距离喷入,有利于推迟浓、淡气流的混合,在促进整体燃尽的同时,有利于深化煤粉浓淡燃烧效果,降低NOx生成。
而后,浓相高温回流区和淡相高温回流区的气流共同形成一级火焰,一级火焰经过第四段124的聚拢加速作用后,由稳燃器出口125高速喷出。
本申请实施例的稳燃器100具有如下优点:
(1)显著的经济性优势
相比于传统的微油点火器及等离子体点火器,本申请具有显著的经济性优势。可以实现采用少量煤粉点燃周围大部分煤粉的作用,完全替代传统的微油点火器及等离子体点火器,采用煤作为燃料进行直接点火,实现用少量煤粉点燃周围大量煤粉的目的,提高燃煤机组在点火过程及调峰过程中的经济性。
(2)快速点火及强低负荷稳燃能力
本申请耦合了多级煤粉浓缩及多级煤粉预热的点火及稳燃强化措施,通过在无助燃稳燃器100内部构建煤粉浓淡燃烧及二级煤粉着火预热,以及在无助燃稳燃器100下游构建多级(三级及以上)的煤粉预热,依次点燃下游煤粉气流。有助于燃煤机组启动过程中的快速点火,以及灵活调峰过程中的稳定燃烧,同时促进煤粉燃烧过程中的燃尽效果。
(3)低NOx生成
通过在无助燃稳燃器100内部构建煤粉浓淡燃烧、两级高温还原区,以及在无助燃稳燃器100的出口下游,构建多级浓淡燃烧,形成沿着火焰高温区的多级强还原氛围,有助于降低燃料型NOx生成。并且,由于多级高温区的存在,使无助燃稳燃器100内部整体温度分布较为均匀,有助于降低热力型NOx的生成。
下面描述本申请实施例的煤电机组煤粉稳燃及浓缩装置1000的燃烧器200。
如图5、图8、图9和图51所示,本申请实施例的燃烧器200包括送料管组件22和燃烧管组件21。
送料管组件22内设有第五通道215,所述燃烧管组件21内设有燃烧室,所述送料管组件22与所述燃烧管组件21相连,所述燃烧管组件21沿第一方向延伸,所述燃烧管组件21内设有第三通道213和第四通道214,所述第五通道215、所述第三通道213和所述第四通道214均与所述燃烧室连通,所述第五通道215、所述第三通道213与所述第四通道214在第一方向上间隔设置,稳燃器100与燃烧管组件21沿第一子方向依次布置,燃烧管组件21的出口端适于与燃烧炉相连。
例如,为了便于描述,下面以图5中的左右方向作为第一方向。
送料管组件22用于向燃烧管组件21提供燃料,送料管组件22内设有第五通道215,燃烧管组件21的右端适于与燃烧炉相连以便燃烧室内的火焰进入燃烧炉中。
燃烧管组件21沿左右方向延伸,燃烧管组件21内还设有第三通道213和第四通道214,第五通道215设在第三通道213左侧,第三通道213设在第四通道214的左侧,第五通道215与燃烧室的连通处设在第三通道213与燃烧室的连通处的左侧,第三通道213与燃烧室的连通处设在第四通道214与燃烧室的连通处的左侧。
稳燃器100设在燃烧管组件21的左侧,稳燃器100中的气流向右流动至燃烧管组件21内,燃烧管组件21的出口端适于与燃烧炉相连,且稳燃器出口125与燃烧管组件21的进口端在左右方向上相对布置,且稳燃器出口125与燃烧管组件21的进口端间隔设置。
本申请实施例的燃烧器在工作时,利用第五通道215、第三通道213和第四通道214可以向燃烧室内输送燃料,而且第五通道215、第三通道213和第四通道214在左右方向上间隔设置,可以分三次投放燃料,形成三级预热燃烧,在燃烧器200内部形成三个高温燃烧区,使得每一级燃料预热并燃烧,从而使得煤粉充分燃烧,进而提高燃料的燃烧效果。而且由于多级高温区的存在,燃烧器200内部的整体温度分布较为均匀,有助于降低热力型NOx的生成,提高环保效果。
因此,本申请实施例的燃烧器具有燃烧效果好和环保效果好等优点。
在一些实施例中,如图5所示,第一方向包括第一子方向及与第一子方向相反的第二子方向,燃烧管组件21的进口端至燃烧管组件21的出口端的方向为第一子方向。
送料管组件22适于连通气源和燃烧管组件21,送料管组件22包括在第一子方向依次且间隔设置的第一送料管221 和第二送料管222,第五通道215设在第一送料管221内,第二送料管222与第三通道213和第四通道214均连通。
例如,为了便于描述,下面以图5中的左右方向作为第一方向,其中以向右为第一子方向,向左为第二子方向。
送料管组件22包括第一送料管221和第二送料管222,第一送料管221设在第二送料管222左侧,第一送料管221的一端与煤粉气源连通,第一送料管221的另一端可与燃烧室连通,第二送料管222的一端与煤粉气源连通,第二送料管222的另一端通过第三通道213和第四通道214与燃烧室连通。
由此,利用第一送料管221内的第五通道215可向燃烧室内提供煤粉燃料,利用第二送料管222可通过第三通道213和第四通道214向燃烧室内提供煤粉燃料。
在一些实施例中,如图5所示,燃烧管组件21包括内管211,内管211内设有空腔以形成燃烧室,内管211包括第一燃烧段2111和第二燃烧段2112,第一燃烧段2111和第二燃烧段2112在第一子方向上依次布置且连通,第一燃烧段2111的出口端伸入第二燃烧段2112的进口端内,以使第一燃烧段2111的外周壁与第二燃烧段2112的内周壁限定出第三通道213。
例如,内管211包括第一燃烧段2111和第二燃烧段2112,第一燃烧段2111设在第二燃烧段2112左侧,燃烧室包括第一燃烧室和第二燃烧室,第一燃烧室设在第一燃烧段2111内,第二燃烧室设在第二燃烧段2112内。
第一燃烧段2111的左端与第五通道215连通,第一燃烧段2111的右端可以伸入第二燃烧段2112内,且第一燃烧段2111的外周壁和第二燃烧段2112的内周壁间隔设置,以便限定出第三通道213。
在一些实施例中,如图5所示,燃烧管组件21还包括外管212,外管212套设在内管211外侧且外管212的内周壁与内管211的外周壁间隔设置,外管212包括沿第一子方向依次布置的整流段2121和导流段2122,整流段2121的进口端与第一燃烧段2111的进口端密封连接,导流段2122的内周壁与第二燃烧段2112的外周壁限定出第四通道214。
例如,外管212沿左右方向延伸,整流段2121设在导流段2122的左侧,导流段2122和第二燃烧段2112间隔设置,以便在导流段2122的内周壁与第二燃烧段2112的外周壁限定出第四通道214。
需要说明的是,整流段2121的左侧与第一燃烧段2111的左侧密封连接,整流段2121的右端和导流段2122的左端密封相连,整流段2121套设在第一燃烧段2111的外侧,以便在第一燃烧段2111的外周壁和整流段2121的内周壁之间形成整流腔。第三通道213的左端与整流腔连通,第三通道213的右端与第二燃烧室的进口端连通,第四通道214的左端与整流腔连通,第四通道214的右端与第二燃烧室的出口端连通。
第三通道213和第四通道214均设在导流段2122内,第一燃烧段2111的右端向右伸入导流段2122内,以便在整流段2121和第一燃烧段2111之间形成引流通道,进而便于整流腔内的气流沿着引流通道进入第三通道213和第四通道214中。
由此,本申请实施例的燃烧器,通过设置整流段2121以限定出整流腔,使得第二送料管222内的煤粉气流可以在整流腔内调整后形成稳流,然后再进入燃烧室内,从而便于煤粉气流在燃烧室内稳定的燃烧,进而提高燃烧器的稳定性。
在一些实施例中,如图5所示,第一送料管221包括第一过渡段2212,第一过渡段2212与第一燃烧段2111相连,第一过渡段2212沿第一方向延伸,且第一过渡段2212的横截面积沿第一子方向逐渐减小。
例如,第一过渡段2212沿着左右方向延伸,第一过渡段2212的右端与第一燃烧段2111相连,且第一过渡段2212的横截面积从左向右逐渐减小。由此,第一过渡段2212方便与第一燃烧段2111适配,以便与第一燃烧段2111相连。
在一些实施例中,如图5所示,第一送料管221还包括第一送料段2211,第一送料段2211的进口端沿第二方向延伸,第二方向与第一方向正交,第一送料段2211的出口端沿第一方向延伸,第一送料段2211与第一过渡段2212相连,且第一送料段2211和第一过渡段2212连通以形成第五通道215。
例如,为了便于描述,下面以图5中的上下方向为第二方向。第一送料段2211的进口端朝向下方,第一送料段2211的出口端朝向右方,换言之,第一送料段2211的中心线为弧形。煤粉气流依次经过第一送料段2211和第一过渡段2212后进入第一燃烧段2111中。第一送料段2211内的空腔和第一过渡段2212内的空腔连通以形成第五通道215。
在一些实施例中,稳燃器100与第一送料段2211相连,稳燃器100的进口端设在第一送料段2211外侧,稳燃器100的出口端穿过第一送料段2211的侧壁并伸入第一送料段2211内,且稳燃器出口125位于第一过渡段2212内。
稳燃器100的出口端设在第一送料段2211内,稳燃器100的壳体12与第一送料段2211的侧壁密封连接,且稳燃器100位于第一送料段2211内的部分与第一送料段2211的内周壁间隔设置,以便第二气流从第一送料段2211和稳燃器100之间穿过。
在一些实施例中,如图5所示,第二送料管包括第二过渡段2221,第二过渡段2221与整流段2121连通,且第二过 渡段2221的横截面积沿第二方向逐渐增大。
例如,第二过渡段2221设在整流段2121的下方,第二过渡段2221的横截面积沿着从下向上的方向逐渐增大,由此,便于提高煤粉气流进入整流段2121的效率。
在一些实施例中,如图11所示,燃烧器还包括供风管,燃烧器200为四角切圆直流燃烧器200,供风管套设在导流段2122的外周侧。
例如,当燃烧器200为四角切圆的直流燃烧器200时,可以在导流段2122的外周侧布置供风管,供风管上设有直流第一喷口231,以便为燃气器内提供含氧气流,用于分级供给煤粉后续燃烧所需要的氧量,在促进煤粉燃尽的同时,实现空气分级燃烧降低NOx生成。此时,垂直于燃烧器200轴向的第一燃烧段2111、第二燃烧段2112及导流段2122的截面形状均为矩形。
对于应用于四角切圆的直流燃烧器200而言,该部分含氧气流可在燃烧器200的周围间隔一定距离处布置,直流喷入,也就是喷口为具有圆形或矩形截面的筒状结构。
在一些实施例中,如图8所示,燃烧器还包括供风管,燃烧器200为墙式对冲旋流燃烧器200,供风管包括第一管和第二管,第一管套设在导流段2122的外周侧,第二管套设在第一管的外周侧。
例如,当燃烧器200为墙式对冲的旋流燃烧器200时,可以在导流段2122的外侧布置供风管,供风管包括环形的第三喷口233和第二喷口232,第二喷口232设在第三喷口233的外周侧,以便为燃烧器200提供含氧气流,并分别在第三喷口233和第二喷口232内沿周向均匀设置旋流叶片234,用于将直流气流导向成出口处的高速旋转射流。此时,垂直于燃烧器200轴向的第一燃烧段2111、第二燃烧段2112及导流段2122的截面形状均为圆形。
对于应用于墙式对冲的旋流燃烧器200而言,该部分三次风可在燃烧器200周围分两层环形旋流喷入,且设置内外两层环形喷口,可通过调节叶片234角度,分别对两层喷口内气流的出口旋流强度进行调节,在实现空气分级的同时,旋流喷入的含氧气流,也将有助于在燃烧器200出口处形成低压区,形成高温烟气回流,促进煤粉的进一步燃尽及稳定着火。
在一些实施例中,燃烧器还包括连接管(图中未示出),连接管用于连通气源与第一送料管221或第二送料管222。
例如,煤粉气源和第一送料管221通过连接管连通,以便将煤粉送入第一燃烧室内。煤粉气源和第二送料管222通过连接管连通,以便将煤粉送入第二燃烧室内。
在另一些实施例中,第一送料段2211的侧壁上设有通孔,稳燃器100安装在通孔内,稳燃器100的壳体与第一送料段2211的通孔密封连接。稳燃器100的进口端设在第一送料段2211外侧,稳燃器100的出口端穿过第一送料段2211上的通孔并伸入第一送料段2211内的第五通道215中,且稳燃器100出口位于第一过渡段2212内。稳燃器100位于第一送料段2211内的部分与第一送料段2211的内周壁间隔设置,以便第五通道215内的煤粉气流从第一送料段2211和稳燃器100之间穿过。
稳燃器100工作时,火焰从稳燃器100内喷出至第一过渡段2212内,第一送料段2211内的煤粉气流从稳燃器100和第一送料段2211之间的间隔进入第一过渡段2212内,与火焰相遇后预热并燃烧,形成高温燃烧区。接着火焰向右流动至第二燃烧室,首先与第三通道213内的煤粉气流相遇后预热并燃烧,形成高温燃烧区,最后,火焰继续向右流动,并与第四通道214内的气流相遇后预热并燃烧,形成高温燃烧区,由此逐级预热并燃烧,使得每一级燃料充燃烧,从而提高燃料的燃烧效果。而且由于多级高温区的存在,燃烧器200内部的整体温度分布较为均匀,有助于降低热力型NOx的生成,提高环保效果。
下面描述本申请实施例的煤电机组煤粉稳燃及浓缩装置1000的浓缩器300。
如图6-7所示,本申请实施例的浓缩器300包括总进料管34和浓缩组件。
总进料管34沿第二方向延伸,总进料管34的进口端设置总进料口,总进料口适于与煤粉气源连通,总进料管34的出口端设有第一口、第二口和第三口,第二口与总进料口在第二方向上相对布置,所述第二口位于所述第一口和所述第三口之间,第一口和第二口在第一方向上相对布置,第一方向与第二方向正交;
所述浓缩组件设在所述总进料管34内,从总进料口进入的一次风煤粉气流通过撞击所述浓缩组件可自动分成煤粉浓度依次降低的第一气流、第二气流和第三气流,所述第一气流从所述第一口排出,所述第二气流从所述第二口排出,所述第三气流从所述第三口排出。
例如,为了便于描述,以图6中的上下方向为第二方向,以图6中的左右方向为第一方向。
总进料管34沿上下方向延伸,总进料管34的进口端为总进料管34的下端,总进料管34的下端设有总进料口,总 进料口与煤粉气源连通,以便一次风煤粉气流进入总进料管34内。
总进料管34的出口端为总进料管34的上端,总进料管34的上端设有第一口、第二口和第三口,其中,第二口设在总进料口的正上方。第一口和第三口在左右方向上相对设置,进一步地,第一口设在第二口的左侧,第三口设在第二口的右侧。
一次风煤粉气流在撞击浓缩组件时,受到惯性分离的作用,可以自动浓缩成浓度不同的三股气流,其中,第一气流中的煤粉浓度最高,第三气流的煤粉浓度最低,第二气流的煤粉浓度介于第一起流和第三气流之间。第一气流通过第一口排出,第二气流通过第二口排出,第三气流通过第三口排出,以便供煤电机组使用。
本申请实施例的浓缩器300,通过在总进料管34内设置浓缩组件,利用一次风煤粉气流撞击浓缩组件产生的惯性,即可使得一次风煤粉气流自动分流成煤粉浓度不同的三股气流,在浓缩过程中无需为一次风煤粉气流提供额外的动力,从而降低浓缩煤粉时的能耗。
因此,本申请实施例的浓缩器300具有耗能少的优点。
在一些实施例中,如图6所示,浓缩器300还包括第一支管31、第二支管32和第三支管33,第一支管31通过第一口与总进料管34连通,第二支管32通过第二口与总进料管34连通,第三支管33通过第三口与总进料管34连通。
例如,第一气流可从第一支管31中流出,第二支管32可从第二支管32中流出,第三气流可从第三支管33中流出。第一支管31、第二支管32和第三支管33可以将煤粉气流导入煤电机组所需位置,例如,第一支管31与稳燃器连通,第二支管32和第三支管33与燃烧器连通。由此,利用第一支管31、第二支管32和第三支管33,可将煤粉气流输送至所需位置,结构简单。
在一些实施例中,第一支管31与第一进口1111连通以便将第一气流导入燃烧器200内,第二支管32与第一送料管连通以便将第二气流导入燃烧器200内,第三支管33与第二送料管连通以便将第三气流导入燃烧器200内。
例如,煤粉气源提供的一次风煤粉气流进入总进料管34内,然后被浓缩器300分流成第一气流、第二气流和第三气流,第一气流通过第一进口1111进入煤粉管组件11内,第二气流依次经过第一送料段2211和第一过渡段2212后进入第一燃烧段2111中。第三气流经过第二送料管222进入整流段2121内。
在一些实施例中,如图7所示,总进料管34在其周向上具有依次相连的第一侧壁341、第二侧壁342、第三侧壁343和第四侧壁344,第一侧壁341和第三侧壁343在第一方向上相对布置,第一口设在第一侧壁341上,第三口设在第三侧壁343上,第二侧壁342和第四侧壁344在第三方向上相对布置,第三方向与第二方向和第一方向均正交。
例如,为了便于描述,以图6中的前后方向为第三方向。
第一侧壁341至第四侧壁344依次相连,形成环形的总进料管34。第一侧壁341为总进料管34的左侧壁,第三侧壁343为总进料管34的右侧壁,第二侧壁342设在第一侧壁341和第三侧壁343之间,第四侧壁344设在第一侧壁341和第三侧壁343之间,第二侧壁342和第四侧壁344在前后方向上相对布置。第二侧壁342设在第四侧壁344前方,或者第二侧壁342设在第四侧壁344后方。由此,总进料管34的结构简单,便于加工。
可以理解的是,第一侧壁341至第四侧壁344均为板状件,即总进料管34的横截面为矩形。
在一些实施例中,如图7所示,总进料管34内设有呈阵列布置的第一流道345、第二流道346、第三流道347和第四流道348,在第一方向上,第一流道345和第二流道346依次布置,第三流道347和第四流道348依次布置,且第一流道345相对第三流道347邻近第二侧壁342设置。
例如,第一流道345、第二流道346、第三流道347和第四流道348呈2×2的阵列布置,第一流道345和第二流道346沿着左右方向依次布置,第三流道347和第四流道348沿着左右方向依次布置,第一流道345和第三流道347沿着前后方向依次布置,第二流道346和第四流道348沿着前后方向依次布置。第一流道345邻近第二侧壁342设置,换言之,第一流道345和第二流道346相对第三流道347和第四流道348邻近第二侧壁342设置。
当第二侧壁342设在第四侧壁344前方时,第一流道345和第二流道346设在第三流道347和第四流道348前方。当第二侧壁342设在第四侧壁344后方时,第一流道345和第二流道346设在第三流道347和第四流道348后方。
在一些实施例中,如图6所示,浓缩组件包括第一浓缩块35、第二浓缩块36和分流板37,第一浓缩块35、第二浓缩块36和分流板37在第二方向上依次且间隔布置,且第一浓缩块35相对分流板37邻近总进料口设置。
例如,第一浓缩块35、第二浓缩块36和分流板37沿着从下向上的方向依次且间隔布置。一次风煤粉气流经过第一浓缩块35后被浓缩一次,在经过第二浓缩块36后又被浓缩一次,然后经过分流板37后被分流成第一气流、第二气流和第三气流。
在一些实施例中,如图6-7所示,第一浓缩块35设在第三侧壁343上以便封堵第二流道346和第四流道348,第二浓缩块36设在第二侧壁342上以便封堵第一流道345和第二流道346。
例如,第一浓缩块35可拆卸地固定在第三侧壁343上且向总进料管34的中心线所在位置凸出设置,第一浓缩块35用于封堵第二流道346和第四流道348,使得一次风煤粉气流只能从第一流道345和第三流道347中流动。
第二浓缩块36向总进料管34的中心线所在位置凸出设置,第二浓缩块36设在第二侧壁342上以便封堵第一流道345和第二流道346,使得一次风煤粉气流只能从第三流道347和第四流道348中流动。
或第二浓缩块36设在第四侧壁344上以便封堵第三流道347和第四流道348,使得一次风煤粉气流只能从第一流道345和第二流道346中流动。
在一些实施例中,如图6所示,第一浓缩块35的形状为梯形台,第一浓缩块35具有在第一方向间隔设置且相互平行的第一端面和第二端面,第一端面的面积大于第二端面的面积,且第一端面与第三侧壁343的内表面贴合。
例如,第一浓缩块35为梯形棱台,第一端面和第二端面在左右方向上间隔设置,且第一端面设在第二端面的右侧,即梯形棱台的底面为第一端面,顶面为第二端面,第一端面与第三侧壁343贴合设置。由此,以便密封第一端面和第三侧壁343之间的间隙,避免一次风煤粉气流从第一端面和第三侧壁343之间流动至第二浓缩块36。
可选地,第一浓缩块35与第二侧壁342之间密封相连,第一浓缩块35与第四侧壁344之间密封相连。由此,以便密封第一浓缩块35和第二侧壁342之间的间隙,以便密封第一浓缩块35和第四侧壁344之间的间隙,从而避免一次风煤粉气流从第一浓缩块35和第二侧壁342之间的间隙或者第一浓缩块35和第四侧壁344之间的间隙中流走。
可选地,第一端面与第三侧壁343粘接相连。或者,第一浓缩块35与总进料管34之间可拆卸地相连,例如,第一浓缩块35和总进料管34卡接相连。
在一些实施例中,第二浓缩块36的形状为梯形台,第二浓缩块36具有在第三方向间隔设置相互平行的第三端面和第四端面,第三端面的面积大于第四端面的面积,且第三端面与第二侧壁342的内表面贴合。
例如,第二浓缩块36为梯形棱台,第三端面和第四端面在前后方向上间隔设置,且第三端面设在第四端面的前方,即梯形棱台的底面为第三端面,顶面为第四端面,第三端面与第二侧壁342贴合设置。由此,以便密封第三端面和第二侧壁342之间的间隙,避免一次风煤粉气流从第三端面和第二侧壁342之间流动至分流板37。
第一浓缩块35的第一端面与第三侧壁343的内表面贴合,第二浓缩块36第三端面与第二侧壁342的内表面贴合。即第一浓缩块35和第二浓缩块36呈90度布置。
可选地,第二浓缩块36与第一侧壁341之间密封相连,第二浓缩块36与第三侧壁343之间密封相连。由此,以便密封第二浓缩块36和第一侧壁341之间的间隙,以便密封第二浓缩块36和第三侧壁343之间的间隙,从而避免一次风煤粉气流从第二浓缩块36和第一侧壁341之间的间隙或第二浓缩块36和第三侧壁343之间的间隙中流走。
可选地,第一端面与第三侧壁343粘接相连,或者,第一浓缩块35与总进料管34之间可拆卸地相连,例如,第一浓缩块35和总进料管34卡接相连。
在一些实施例中,如图7所示,分流板37呈十字形以便与第一流道345至第四流道348适配。
例如,分流板37设在第二浓缩块36的上方,分流板37呈十字形以便形成四个区域,四个区域分别与第一流道345至第四流道348对应,以便第一流道345至第四流道348内的气流经过。由此,以便进一步分离一次风煤粉气流。
在一些实施例中,如图6所示,浓缩器300还包括挡板38,挡板38设在第二支管32的入口端的内周壁上,且挡板38相对第三支管33邻近第一支管31布置,在总进料管34的延伸方向上挡板38与第三流道347相对布置。
例如,由此,挡板38设在第二支管32的左侧壁上,邻近第一支管31设置。挡板38与第三流道347相对布置,使得第三流道347中的气体发生折流,从而引导第三流道347内的气流进入第一支管31中,进而避免第三流道347内的气流进入第二支管32中。
在一些实施例中,如图6所示,第一支管31邻近第二支管32的侧壁向第二支管32内延伸以形成挡板38,挡板38与第一支管31一体成型。由此,便于加工制作挡板38。
在另一实施例中,浓缩器300还包括挡流板(图中未示出),挡流板设在第二支管32的入口端的内周壁上,且挡流板相对第一支管31邻近第三支管33布置,在总进料管34的延伸方向上挡板38与第二流道346相对布置。由此,挡流板可以使得第二流道346中的气体发生折流,从而流入第三支管33中。
下面以第二侧壁342在第四侧壁344前方为例,描述本申请的一个具体的实施例。
首先,煤粉气源提供的一次风煤粉气流进入浓缩器的总进料管34内,然后与第一浓缩块35碰撞后发生煤粉惯性分 离,由于第一浓缩块35封堵了第二流道346和第四流道348,因此一次风煤粉气流大量聚集在第一流道345和第三流道347中,在一次风煤粉气流经过第一浓缩块35后,少量的煤粉气流扩散至第二流道346和第四流道348。
然后,如图7所示,图中展示了浓缩器300在工作时的各个流道内的煤粉分布情况。一次风煤粉气流与第二浓缩块36相遇碰撞后进一步发生煤粉惯性分离,由于第二浓缩块36封堵第一流道345和第二流道346,此时,第三流道347均未受到第一浓缩块35或第二浓缩块36的封堵,因此第三流道347内气流的煤粉浓度最高。第一流道345和第四流道348内的气流均受到第一浓缩块35或第二浓缩块36中的一个浓缩块的封堵,因此,第一流道345和第四流道348内的气流中的煤粉浓度小于第三流道347内气流的煤粉浓度。第二流道346受到第一浓缩块35和第二浓缩块36的两次封堵,使得第二流道346内的煤粉浓度最低。
第三流道347中的气流经过分流板37后,然后撞击到挡板38,从而发生折流,进而流向挡板38附近的第一支管31内。
第一流道345和第四流道348中的气流经过分流板37后,没有受到挡板38的干扰,从而进入第二支管32内。
第二流道346内的气流经过分流板37后,撞击到挡流板,从而发生折流,进而流向挡流板附近的第三支管33内。
第三流道347内的气流进入第一支管31后形成第一气流,第一流道345和第四流道348内的气流进入第二支管32后混合形成第二气流,第二流道346内的气流进入第三支管33后形成第三气流,第一气流、第二气流和第三气流中的煤粉浓度依次降低。
可以理解的是,当第四侧壁344设在第二侧壁342的前方时,第一流道345至第四流道348的位置稍有变化,但并不影响一次风煤粉气流的浓缩过程,此处不再赘述。
综上所述,本申请实施例的浓缩器300,通过在总进料管34内设置浓缩组件,利用一次风煤粉气流撞击浓缩组件产生的惯性,即可使得一次风煤粉气流自动分流成煤粉浓度不同的三股气流,在二级浓缩过程中无需为一次风煤粉气流提供额外的动力,从而降低浓缩煤粉时的能耗。而且利用第一浓缩块35、第二浓缩块36、分流板37和挡板38即可对一次风煤粉气流进行两次浓缩,使得浓缩器300的结构简单,便于加工。
因此,本申请实施例的浓缩器300具有耗能少和结构简单的优点。
下面根据附图1-11描述本申请的一个具体的实施例。
首先,煤粉气源提供的一次风煤粉气流进入浓缩器300的总进料管34内,然后与第一浓缩块35碰撞后发生煤粉惯性分离,由于第一浓缩块35封堵了第二流道346和第四流道348,因此一次风煤粉气流大量聚集在第一流道345和第三流道347中,在一次风煤粉气流经过第一浓缩块35后,少量的煤粉气流扩散至第二流道346和第四流道348。
然后,一次风煤粉气流与第二浓缩块36相遇后进一步发生煤粉惯性分离,由于第二浓缩块36封堵第一流道345和第二流道346,此时,第三流道347均未受到第一浓缩块35或第二浓缩块36的封堵,因此第三流道347内气流的煤粉浓度最高。第一流道345和第四流道348内的气流均受到第一浓缩块35或第二浓缩块36中的一个浓缩块的封堵,因此,第一流道345和第四流道348内的气流中的煤粉浓度小于第三流道347内气流的煤粉浓度。第二流道346受到第一浓缩块35和第二浓缩块36的两次封堵,使得第二流道346内的煤粉浓度最低。
第三流道347内的气流进入第一支管31后形成第一气流,第一流道345和第四流道348内的气流进入第二支管32后混合形成第二气流,第二流道346内的气流进入第三支管33后形成第三气流,第一气流、第二气流和第三气流中的煤粉浓度依次降低。
第一气流依次经过第一支管31、第一进口1111进入煤粉管组内。第一气流首先与浓缩件1112相遇,第一气流中的煤粉颗粒在撞击浓缩件1112的过程中,受到惯性分离的作用,将使第一气流发生浓淡分离,使得煤粉聚集在第一管111的中心线附近,从而在第一管111的内壁面附近形成煤粉浓度较低的第一子气流,在第一管111的中心线附近形成煤粉浓度较高的第二子气流。
而后,第一子气流进入第一通道117,并在第一回流件113的作用下进入回流通道119,使得第一子气流沿着从右向左的方向,流入第二段122内。第二子气流进入第二通道118,并在第二回流件114的作用下,使得第二子气流沿着从右向左的方向,流入第三段123内,并逐渐向左流动至第二段122。
与此同时,二次风沿着二次风管13高速喷入空腔内,在第一段121内形成高速旋转气流,并流入第二段122的内壁面附近的区域,由于此时的二次风具有较大的旋转切向速度,使二次风在高速旋转流动过程中,在二次风的中心区域形成低压区。此外,由于第二段122的横截面积从左向右逐渐增大,在二次风流经第二段122的过程中,二次风的流速降低,同时静压逐渐升高。
综上,二次风的中心区域形成有低压区、二次风的流速降低且静压逐渐升高,在这两个因素的作用下,二次风在逐渐向右流动时,部分二次风会流入低压区,从而在第二段122和第三段123内形成高速回流区。
由于第二出口116设在邻近高速回流区的位置,使得第二子气流在邻近高速回流区的位置喷入,从而使第二子气流在流动过程中更容易被卷吸到邻近高速回流区内,第二子气流在邻近高速回流区内回旋燃烧放热,从而形成了浓相高温回流区,这将有利于促进第二子气流的快速升温及着火,并释放出较多的热量,形成浓相高温回流区。
与此同时,第一子气流在第二子气流的左侧相距一定距离的位置喷入,第一子气流受到旋流状态下的二次风的阻隔及携带作用,从而折转方向,第一子气流在旋流状态下的二次风与第二子气流之间进入到浓相高温回流区内。
在这个过程中,尽管第一子气流中的煤粉浓度较低,不易于着火燃烧,但是:一方面,第一子气流中的较低浓度煤粉受到高温回流区的对流及辐射换热,能够促进这第一子气流升温着火。另一方面,第一出口115设在第二出口116左侧,使得第一子气流在壳体12内相对第二子气流具有较大的停留时间,以上两个方面将共同促进第一子气流的着火及燃尽效果。此时,第一子气流受到一级预热,快速升温及着火,并释放出较多的热量,形成淡相高温回流区。
同时,由于第二子气流与第一子气流间隔一定距离喷入,有利于推迟浓、淡气流的混合,在促进整体燃尽的同时,有利于深化煤粉浓淡燃烧效果,降低NOx生成。
而后,浓相高温回流区和淡相高温回流区的气流共同形成一级火焰,一级火焰经过第四段124的聚拢加速作用后,由稳燃器出口125高速喷出。
第二支管32内的第二气流经过第一送料段2211后进入第一过渡段2212内,然后与稳燃器出口125喷出的一级火焰在第一过渡段2212内混合后进入第一燃烧段2111内。第二气流携带的煤粉受到稳燃器100喷出的一级火焰的预热,并与稳燃器100喷出的高温火焰混合后快速着火,受到二级预热,形成二级火焰及高温区。
同时,第三气流经过第二过渡段2221进入整流段2121内,受到整流腔稳流作用后,第三气流向右流动并分流成第三子气流和第四子气流,第三子气流从第三通道213进入第二燃烧管内,第四子气流从第四通道214进入第二燃烧管内。
第三子气流经过第三通道213后在第二燃烧管的内周壁附近流动,此时第三子气流直接与来自于上游的二级火焰进行混合和预热,使第三子气流快速着火,受到第三级预热,形成第三级火焰及高温区。
第四子气流经过第四通道214后,直接与来自于上游的三级火焰进行混合和预热,使第四子气流快速着火,受到第四级预热,形成第四级火焰及高温区。
此外,如图8和图9所示,本申请实施例的煤电机组煤粉稳燃及浓缩装置1000的燃烧器200可为四角切圆的直流燃烧器200和墙式对冲的旋流燃烧器200。
当燃烧器200为四角切圆的直流燃烧器200时,可以在导流段2122的上部和下部,分别布置直流第一喷口231,以便为燃气器内提供三次风,用于分级供给煤粉后续燃烧所需要的氧量,在促进煤粉燃尽的同时,实现空气分级燃烧降低NOx生成。此时,垂直于燃烧器200轴向的第一燃烧段2111、第二燃烧段2112及导流段2122的截面形状均为矩形。
该段的三次风,是针对于稳燃器100中的二次风而言的,通过在燃料燃烧过程中,分批次先后供给空气参与燃烧,能够实现空气分级燃烧,降低NOx的生成量。对于应用于四角切圆的直流燃烧器200而言,该部分三次风可在燃烧器200的周围间隔一定距离处布置,直流喷入,也就是喷口为具有圆形或矩形截面的筒状结构。
当燃烧器200为墙式对冲的旋流燃烧器200时,可以在导流段2122的外侧,由内至外,依次布置环形的第三喷口233和第二喷口232,第二喷口232设在第三喷口233的外周侧,以便为燃烧器200提供三次风,并分别在第三喷口233和第二喷口232内沿周向均匀设置旋流叶片234,用于将直流气流导向成出口处的高速旋转射流。此时,垂直于燃烧器200轴向的第一燃烧段2111、第二燃烧段2112及导流段2122的截面形状均为圆形。
该段的三次风,是针对于稳燃器100中的二次风而言的,通过在燃料燃烧过程中,分批次先后供给空气参与燃烧,能够实现空气分级燃烧,降低NOx的生成量。对于应用于墙式对冲的旋流燃烧器200而言,该部分三次风可在燃烧器200周围分两层环形旋流喷入,且设置内外两层环形喷口,可通过调节叶片234角度,分别对两层喷口内气流的出口旋流强度进行调节,在实现空气分级的同时,旋流喷入的二次风,也将有助于在燃烧器200出口处形成低压区,形成高温烟气回流,促进煤粉的进一步燃尽及稳定着火。
本申请具有如下优点:
(1)显著的经济性优势
相比于传统的微油点火器及等离子体点火器,本申请具有显著的经济性优势。可以实现采用少量煤粉点燃周围大部分煤粉的作用,完全替代传统的微油点火器及等离子体点火器,采用煤作为燃料进行直接点火,实现用少量煤粉点燃周 围大量煤粉的目的,提高燃煤机组在点火过程及调峰过程中的经济性。
(2)快速点火及强低负荷稳燃能力
本申请耦合了多级煤粉浓缩及多级煤粉预热的点火及稳燃强化措施,通过在无助燃稳燃器100内部构建煤粉浓淡燃烧及二级煤粉着火预热,以及在无助燃稳燃器下游构建多级(三级及以上)的煤粉预热,依次点燃下游煤粉气流。有助于燃煤机组启动过程中的快速点火,以及灵活调峰过程中的稳定燃烧,同时促进煤粉燃烧过程中的燃尽效果。
(3)低NOx生成
通过在无助燃稳燃器100内部构建煤粉浓淡燃烧、两级高温还原区,以及在无助燃稳燃器100的出口下游,构建多级浓淡燃烧,形成沿着火焰高温区的多级强还原氛围,有助于降低燃料型NOx生成。并且,由于多级高温区的存在,使无助燃稳燃器100内部及煤粉燃烧器200内部的整体温度分布较为均匀,有助于降低热力型NOx的生成。
(4)具有灵活实用性
本申请可应用于四角切圆直流燃烧器200上,也可应用于墙式对冲旋流燃烧器200上,具有广泛的适用性,且方便在已有类型燃烧器200上进行就地改造。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了上述实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域普通技术人员对上述实施例进行的变化、修改、替换和变型均在本申请的保护范围内。

Claims (33)

  1. 一种煤电机组煤粉稳燃及浓缩装置,其特征在于,包括:
    燃烧器和浓缩器;
    稳燃器,所述稳燃器的出口端与所述燃烧器连通,所述稳燃器沿第一方向延伸,所述稳燃器包括空腔和至少部分设在所述空腔内的煤粉管组件,所述浓缩器可与所述煤粉管组件连通以便向所述煤粉管组件内导入带有煤粉的第一气流;
    所述煤粉管组件可将所述第一气流分成第一子气流和第二子气流并导入所述空腔内,所述第一子气流的煤粉浓度小于所述第二子气流的煤粉浓度,所述第二子气流的导入位置相对所述第一子气流的导入位置邻近所述稳燃器的出口端;
    二次风管,所述二次风管与所述空腔连通。
  2. 根据权利要求1所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述稳燃器包括:
    壳体,所述壳体包括所述空腔;
    所述煤粉管组件,所述煤粉管组件沿第一方向延伸,所述第一方向包括第一子方向及与所述第一子方向相反的第二子方向,所述煤粉管组件的进口端至所述煤粉管组件的出口端的方向为所述第一子方向,至少部分所述煤粉管组件设在所述空腔内,所述煤粉管组件的外周面与所述壳体密封连接;
    第一通道和第二通道,所述第一通道和所述第二通道在所述煤粉管组件内间隔设置,所述第一通道和所述第二通道均与所述空腔连通,且所述第一通道的出口相对所述第二通道的出口邻近所述煤粉管组件的进口端;
    浓缩件,所述浓缩件设在所述煤粉管组件内,所述浓缩件可将进入所述煤粉管组件内的所述第一气流分流成所述第一子气流和所述第二子气流,所述第一通道用于供所述第一子气流通过,所述第二通道用于供所述第二子气流通过;
    二次风管,所述二次风管与所述空腔连通。
  3. 根据权利要求2所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述煤粉管组件包括第一进口、第一出口和第二出口,所述第一进口、所述第一出口和所述第二出口均设在所述煤粉管组件上且沿第一子方向依次且间隔布置,所述第一进口和所述第一出口通过所述第一通道连通,所述第一进口和所述第二出口通过所述第二通道连通,所述第一出口和所述第二出口的开口均朝向所述煤粉管组件的进口端设置;
    所述稳燃器的出口端设有稳燃器出口。
  4. 根据权利要求3所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述煤粉管组件包括:
    第一管,所述第一管的进口端设有所述第一进口;
    第二管,所述第二管和所述浓缩件均设在所述第一管内,所述浓缩件与所述第二管在所述第一子方向上依次且间隔布置,所述第一管的内周壁与所述第二管的外周壁限定出第一子通道,所述第二管的内周壁限定出所述第二通道。
  5. 根据权利要求4所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述煤粉管组件还包括:
    第一回流件,所述第一回流件套设在所述第二管的外周侧且与所述第二管的出口端相连,所述第一管的出口端伸入所述第一回流件与所述第二管之间,以使所述第一回流件的内周壁与所述第一管的外周壁限定出与所述第一子通道连通的回流通道,且所述回流通道的开口朝向所述第一管的进口端以形成所述第一出口;
    第二回流件,在所述第一子方向上所述第一回流件与所述第二回流件依次且间隔布置,所述第二回流件的一部分套设在所述第一回流件的外周侧以便形成所述第二出口。
  6. 根据权利要求5所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第一回流件包括第一筒部和第一端部,所述第一筒部套设在所述第一管的外周侧,所述第一端部用于连接所述第一筒部和所述第二管,在所述第一方向上所述第一端部与所述第一管的出口端的端面间隔设置,以使所述第一子通道和所述回流通道连通从而形成所述第一通道。
  7. 根据权利要求6所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第二回流件包括第二端部和第二筒部,所述第二端部和所述第一端部在所述第一方向上间隔设置,所述第二筒部从所述第二端部的表面向所述第一端部所在方向延伸,所述第二筒部套设在所述第一筒部的外周侧,以使所述第二筒部的内周壁与所述第一筒部的外周壁之间形成开口朝向所述煤粉管组件的进口端的所述第二出口。
  8. 根据权利要求3-7中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述壳体包括在所述第一方向上依次相连的第一段、第二段、第三段和第四段,所述第一段和所述第三段均为圆柱形,所述第二段的横截面积沿所述第一子方向逐渐增大,所述第四段的横截面积沿所述第一子方向逐渐减小,所述第一出口设在所述第二段内,所述第二出口设在所述第三段内。
  9. 根据权利要求8所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述二次风管设在所述第一段的外周侧且与所述第一段相连,所述二次风管的出风方向与所述第一段的内周壁相切;
    所述二次风管为多个,多个所述二次风管沿所述第一段的周向间隔布置。
  10. 根据权利要求4-7中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述浓缩件为环形且所述浓缩件的内周壁限定出浓度调节通道,所述浓缩件的外周壁与所述第一管的内周壁贴合,所述浓缩件包括沿所述第一子方向依次布置的渐缩段和渐扩段,所述渐缩段的横截面积沿所述第一子方向逐渐增大,所述渐扩段的横截面积沿所述第一子方向逐渐减小,以使所述浓度调节通道的横截面积沿所述第一子方向先逐渐减小再逐渐增大。
  11. 根据权利要求5-7中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第二管与所述第一回流件一体成型。
  12. 根据权利要求3-11中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述燃烧器包括:
    送料管组件,所述送料管组件内设有第五通道;
    燃烧管组件,所述燃烧管组件内设有燃烧室,所述送料管组件与所述燃烧管组件相连,所述燃烧管组件沿第一方向延伸,所述燃烧管组件内设有第三通道和第四通道,所述第五通道、所述第三通道和所述第四通道均与所述燃烧室连通,所述第五通道、所述第三通道与所述第四通道在第一方向上间隔设置,所述燃烧管组件的出口端适于与燃烧炉相连,所述稳燃器与所述燃烧管组件沿所述第一子方向依次布置。
  13. 根据权利要求12所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述送料管组件适于连通气源和所述燃烧管组件,所述送料管组件包括在所述第一子方向依次且间隔设置的第一送料管和第二送料管,所述第五通道设在所述第一送料管内,所述第二送料管与所述第三通道和所述第四通道均连通。
  14. 根据权利要求13所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述燃烧管组件包括内管,所述内管内设有空腔以形成所述燃烧室,所述内管包括第一燃烧段和第二燃烧段,所述第一燃烧段和所述第二燃烧段在所述第一子方向上依次布置且连通,所述第一燃烧段的出口端伸入所述第二燃烧段的进口端内,以使所述第一燃烧段的外周壁与所述第二燃烧段的内周壁限定出所述第三通道。
  15. 根据权利要求14所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述燃烧管组件还包括外管,所述外管套设在所述内管外侧且所述外管的内周壁与所述内管的外周壁间隔设置,所述外管包括沿所述第一子方向依次布置的整流段和导流段,所述整流段的进口端与所述第一燃烧段的进口端密封连接,所述导流段的内周壁与所述第二燃烧段的外周壁限定出第四通道。
  16. 根据权利要求15所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第一送料管包括第一过渡段,所述第一过渡段与所述第一燃烧段相连,所述第一过渡段沿所述第一方向延伸,且所述第一过渡段的横截面积沿所述第一子方向逐渐减小。
  17. 根据权利要求16所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第一送料管还包括第一送料段,所述第一送料段的进口端沿第二方向延伸,所述第二方向与所述第一方向正交,所述第一送料段的出口端沿所述第一方向延伸,所述第一送料段与所述第一过渡段相连,且所述第一送料段和所述第一过渡段连通以形成所述第五通道。
  18. 根据权利要求17所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述稳燃器与所述第一送料段相连,所述稳燃器的进口端设在所述第一送料段外侧,所述稳燃器的出口端穿过所述第一送料段的侧壁并伸入所述第一送料段内,且所述稳燃器出口位于所述第一过渡段内。
  19. 根据权利要求17所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第二送料管包括第二过渡段,所述第二过渡段与所述整流段连通,且所述第二过渡段的横截面积沿所述第二方向逐渐增大。
  20. 根据权利要求15-19中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述燃烧器还包括供风管,所述燃烧器为四角切圆直流燃烧器,所述供风管套设在所述导流段的外周侧。
  21. 根据权利要求15-19中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述燃烧器还包括供风管,所述燃烧器为墙式对冲旋流燃烧器,所述供风管包括第一管和第二管,所述第一管套设在所述导流段的外周侧,所述第二管套设在所述第一管的外周侧。
  22. 根据权利要求13-19中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述燃烧器还包括连接管,所述连接管用于连通所述气源与所述第一送料管或所述第二送料管。
  23. 根据权利要求17-19中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述浓缩器包括:
    总进料管,所述总进料管沿所述第二方向延伸,所述总进料管的进口端设置总进料口,所述总进料口适于与煤粉气源连通,所述总进料管的出口端设有第一口、第二口和第三口,所述第二口与所述总进料口在所述第二方向上相对布置,所述第二口位于所述第一口和所述第三口之间,所述第一口和所述第二口在所述第一方向上相对布置;
    浓缩组件,所述浓缩组件设在所述总进料管内,从总进料口进入的一次风煤粉气流通过撞击所述浓缩组件可自动分成煤粉浓度依次降低的第一气流、第二气流和第三气流,所述第一气流从所述第一口排出,所述第二气流从所述第二口排出,所述第三气流从所述第三口排出。
  24. 根据权利要求23所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述浓缩器还包括第一支管、第二支管和第三支管,所述第一支管通过所述第一口与所述总进料管连通,所述第二支管通过所述第二口与所述总进料管连通,所述第三支管通过所述第三口与所述总进料管连通。
  25. 根据权利要求24所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第一支管与所述第一进口连通以便将所述第一气流导入所述燃烧器内,所述第二支管与所述第一送料管连通以便将所述第二气流导入所述燃烧器内,所述第三支管与所述第二送料管连通以便将所述第三气流导入所述燃烧器内。
  26. 根据权利要求24或25所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述总进料管在其周向上具有依次相连的第一侧壁、第二侧壁、第三侧壁和第四侧壁,所述第一侧壁和所述第三侧壁在所述第一方向上相对布置,所述第一口设在所述第一侧壁上,所述第三口设在所述第三侧壁上,所述第二侧壁和所述第四侧壁在第三方向上相对布置,所述第三方向与所述第二方向和所述第一方向均正交。
  27. 根据权利要求26所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述总进料管内设有呈阵列布置的第一流道、第二流道、第三流道和第四流道,在所述第一方向上,所述第一流道和所述第二流道依次布置,所述第三流道和所述第四流道依次布置,且所述第一流道相对所述第三流道邻近所述第二侧壁设置。
  28. 根据权利要求27所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述浓缩组件包括第一浓缩块、第二浓缩块和分流板,所述第一浓缩块、所述第二浓缩块和所述分流板在所述第二方向上依次且间隔布置,且所述第一浓缩块相对所述分流板邻近所述总进料口设置。
  29. 根据权利要求28所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第一浓缩块设在所述第三侧壁上以便封堵所述第二流道和所述第四流道,所述第二浓缩块设在所述第二侧壁上以便封堵所述第一流道和所述第二流道。
  30. 根据权利要求29所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第一浓缩块的形状为梯形台,所述第一浓缩块具有在第一方向间隔设置相互平行的第一端面和第二端面,所述第一端面的面积大于所述第二端面的面积,且所述第一端面与所述第三侧壁的内表面贴合。
  31. 根据权利要求28-30中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述第二浓缩块的形状为梯形台,所述第二浓缩块具有在第三方向间隔设置相互平行的第三端面和第四端面,所述第三端面的面积大于所述第四端面的面积,且所述第三端面与所述第二侧壁的内表面贴合。
  32. 根据权利要求28-31中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述分流板呈十字形以便与所述第一流道至所述第四流道适配。
  33. 根据权利要求27-32中任一项所述的煤电机组煤粉稳燃及浓缩装置,其特征在于,所述浓缩器还包括挡板,所述挡板设在所述第二支管的入口端的内周壁上,且所述挡板相对所述第三支管邻近所述第一支管布置,在所述总进料管的延伸方向上所述挡板与所述第三流道相对布置。
PCT/CN2023/141148 2023-06-25 2023-12-22 一种煤电机组煤粉稳燃及浓缩装置 WO2025000984A1 (zh)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
CN202310755873.2 2023-06-25
CN202321620820.1U CN220287427U (zh) 2023-06-25 2023-06-25 煤电机组煤粉提浓稳燃装置
CN202321625137.7U CN220119365U (zh) 2023-06-25 2023-06-25 稳燃器
CN202310754085.1 2023-06-25
CN202321620798.0 2023-06-25
CN202321625137.7 2023-06-25
CN202321624454.7U CN220397500U (zh) 2023-06-25 2023-06-25 浓缩器
CN202310755873.2A CN116772199B (zh) 2023-06-25 2023-06-25 一种稳燃器
CN202310754088.5 2023-06-25
CN202321620820.1 2023-06-25
CN202310754085.1A CN116624865A (zh) 2023-06-25 2023-06-25 一种煤电机组煤粉稳燃及浓缩装置
CN202310754088.5A CN116608462A (zh) 2023-06-25 2023-06-25 一种煤电机组稳燃装置
CN202321625146.6U CN220397504U (zh) 2023-06-25 2023-06-25 煤电机组灵活调峰煤粉多级预热无助燃稳燃装置
CN202321620798.0U CN220119364U (zh) 2023-06-25 2023-06-25 煤电机组稳燃装置
CN202321625146.6 2023-06-25
CN202321625121.6U CN220397503U (zh) 2023-06-25 2023-06-25 燃烧器
CN202321624454.7 2023-06-25
CN202321625121.6 2023-06-25

Publications (1)

Publication Number Publication Date
WO2025000984A1 true WO2025000984A1 (zh) 2025-01-02

Family

ID=93936895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/141148 WO2025000984A1 (zh) 2023-06-25 2023-12-22 一种煤电机组煤粉稳燃及浓缩装置

Country Status (1)

Country Link
WO (1) WO2025000984A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2210032C2 (ru) * 2000-12-28 2003-08-10 Карпенко Евгений Иванович Способ плазменного воспламенения пылеугольного топлива (варианты) и плазменная пылеугольная горелка (варианты)
CN1912462A (zh) * 2006-08-23 2007-02-14 傅宁娟 微油冷炉点火和超低负荷稳燃且具有低NOx排放的旋流燃烧器
CN201396787Y (zh) * 2009-04-24 2010-02-03 中国航天空气动力技术研究院 双螺旋气动雾化微油点火与稳燃装置
CN201787567U (zh) * 2010-08-09 2011-04-06 郑平安 直流煤粉燃烧器
CN109595548A (zh) * 2018-12-04 2019-04-09 清华大学 浓淡返混式旋流煤粉燃烧器
CN209084750U (zh) * 2018-09-28 2019-07-09 东方电气集团东方锅炉股份有限公司 燃煤燃烧器
CN212390405U (zh) * 2020-06-15 2021-01-22 西安西热锅炉环保工程有限公司 一种基于双调风旋流燃烧器的富氧微油点火装置
CN116624865A (zh) * 2023-06-25 2023-08-22 北京天地融创科技股份有限公司 一种煤电机组煤粉稳燃及浓缩装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2210032C2 (ru) * 2000-12-28 2003-08-10 Карпенко Евгений Иванович Способ плазменного воспламенения пылеугольного топлива (варианты) и плазменная пылеугольная горелка (варианты)
CN1912462A (zh) * 2006-08-23 2007-02-14 傅宁娟 微油冷炉点火和超低负荷稳燃且具有低NOx排放的旋流燃烧器
CN201396787Y (zh) * 2009-04-24 2010-02-03 中国航天空气动力技术研究院 双螺旋气动雾化微油点火与稳燃装置
CN201787567U (zh) * 2010-08-09 2011-04-06 郑平安 直流煤粉燃烧器
CN209084750U (zh) * 2018-09-28 2019-07-09 东方电气集团东方锅炉股份有限公司 燃煤燃烧器
CN109595548A (zh) * 2018-12-04 2019-04-09 清华大学 浓淡返混式旋流煤粉燃烧器
CN212390405U (zh) * 2020-06-15 2021-01-22 西安西热锅炉环保工程有限公司 一种基于双调风旋流燃烧器的富氧微油点火装置
CN116624865A (zh) * 2023-06-25 2023-08-22 北京天地融创科技股份有限公司 一种煤电机组煤粉稳燃及浓缩装置

Similar Documents

Publication Publication Date Title
KR100709849B1 (ko) 농축된 석탄 스트림의 NOx 감소성 연소 방법
US7717701B2 (en) Pulverized solid fuel burner
JP2544662B2 (ja) バ―ナ―
JP3077939B2 (ja) ガスタービン燃焼室及びその操作方法
US6691515B2 (en) Dry low combustion system with means for eliminating combustion noise
WO2020207318A1 (zh) 多级回流逆喷式旋流煤粉燃烧器
CN111023091B (zh) 一种高温烟气多级回流低氮燃烧器及其燃烧方法
JP2003262336A (ja) ガスタービン燃焼器
AU2011247692A1 (en) Pulverized coal burner and pulverized coal boiler
CN107062226B (zh) 一种高温烟气大回流低氮燃烧器
CN113864775A (zh) 掺氨多相燃料分级旋流燃烧器
CN116624865A (zh) 一种煤电机组煤粉稳燃及浓缩装置
CN115289473B (zh) 气粉双燃料燃烧器
US7914279B2 (en) Method and apparatus for injecting a gas into a two-phase stream
CN115451431B (zh) 一种用于燃气轮机燃烧室的燃料喷嘴预混系统
KR102014828B1 (ko) 연료 과농­희박 예혼합형 공업용 가스연소기 및 그 작동방법
CN116608462A (zh) 一种煤电机组稳燃装置
CN116481054B (zh) 一种兼顾火焰筒壁面冷却的轴向分级燃烧室
CN113124422B (zh) 轴向分级燃烧器
US20240288157A1 (en) Industrial premixed gas combustor using internal exhaust gas recirculation and operating method thereof
GB2600186A (en) Reverse-jet pulverized coal burner with preheating on annular wall
WO2025000984A1 (zh) 一种煤电机组煤粉稳燃及浓缩装置
CN220287427U (zh) 煤电机组煤粉提浓稳燃装置
CN220397504U (zh) 煤电机组灵活调峰煤粉多级预热无助燃稳燃装置
CN220119364U (zh) 煤电机组稳燃装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23943456

Country of ref document: EP

Kind code of ref document: A1