WO2024207711A1 - 一种高速电机的油冷系统 - Google Patents
一种高速电机的油冷系统 Download PDFInfo
- Publication number
- WO2024207711A1 WO2024207711A1 PCT/CN2023/126035 CN2023126035W WO2024207711A1 WO 2024207711 A1 WO2024207711 A1 WO 2024207711A1 CN 2023126035 W CN2023126035 W CN 2023126035W WO 2024207711 A1 WO2024207711 A1 WO 2024207711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- stator assembly
- cooling
- channel
- cooling system
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 106
- 238000002347 injection Methods 0.000 claims description 119
- 239000007924 injection Substances 0.000 claims description 119
- 239000007921 spray Substances 0.000 claims description 53
- 239000000446 fuel Substances 0.000 claims description 51
- 239000000463 material Substances 0.000 claims description 5
- 239000007769 metal material Substances 0.000 claims description 3
- 230000001050 lubricating effect Effects 0.000 claims 1
- 238000005507 spraying Methods 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 6
- 230000005484 gravity Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
- H02K5/203—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present application relates to the technical field of motor heat dissipation, and in particular to an oil cooling system for a high-speed motor.
- the main purpose of the present application is to provide an oil cooling system for a high-speed motor to achieve the purposes of sufficient cooling, simple manufacturing and relatively low cost.
- the present application provides an oil cooling system for a high-speed motor, comprising:
- a housing having a receiving cavity
- a stator assembly is located in the accommodating cavity, the stator assembly comprises two end surfaces and a connecting surface, the two end surfaces are arranged opposite to each other along the length direction of the stator assembly, and the connecting surface connects the two end surfaces;
- the fuel injection pipe being located outside at least one of the end faces, the fuel injection pipe having a plurality of first fuel injection ports arranged at intervals and a plurality of second fuel injection ports arranged at intervals, the first fuel injection ports being oriented toward the end face of the stator assembly, and the second fuel injection ports being oriented parallel to the length direction of the stator assembly;
- An oil guide member is installed in the housing and is provided with an oil guide channel for guiding at least a portion of the cooling oil sprayed from the second oil spray port to the connecting surface.
- the inner wall of the housing is provided with a first oil groove and a second oil groove, the first oil groove extends along the circumference of the housing, and the second oil groove is provided between the first oil groove and the end surface of the housing close to the first oil groove;
- the second oil groove is connected to the oil guide member and the first oil groove.
- one end of the oil guiding channel of the oil guiding member faces at least a portion of the second oil injection port, and the other end of the oil guiding channel of the oil guiding member is installed in the second oil groove.
- the second oil groove has a first opening and a second opening, the connecting surface abuts against the first opening to make the first opening in a closed state, and the second opening is used to guide at least part of the cooling oil sprayed from the second oil injection port into the second oil groove.
- the bottom of the shell has an oil sump, and the oil sump is connected to the first oil sump.
- the second oil groove is located above the horizontal plane where the axis of the housing is located.
- the fuel injection pipe has an annular fuel injection portion and a horizontal fuel injection portion
- the annular fuel injection portion extends around the outer side of the end surface of the stator assembly
- the first fuel injection port and the second fuel injection port are located in the annular fuel injection portion
- the horizontal fuel injection portion is located above the connecting surface and extends along the length direction of the stator assembly
- the horizontal fuel injection portion has a plurality of third fuel injection ports arranged at intervals in the vertical direction, the third fuel injection ports face the top of the connecting surface, wherein the annular fuel injection portion and the horizontal fuel injection portion are connected.
- the shell is also provided with a pipeline channel adapted to the horizontal oil spray part, and an annular boss is provided on the outer side of one end of the horizontal oil spray part away from the annular oil spray part, and the annular boss abuts against a seal, wherein the second oil spray port is located between the annular boss and the annular oil spray part.
- the oil cooling system also includes a rotor assembly, a motor end cover, a rotor oil inlet and a bearing, the rotor assembly is installed on the bearing, the rotor assembly is provided with an inner channel and a cooling oil channel along its length direction, the housing is provided with a first oil inlet channel, the motor end cover is provided with a second oil inlet channel connected to the first oil inlet channel, the rotor oil inlet has an oil inlet and an oil outlet, the oil inlet is connected to the second oil inlet channel, and the oil outlet is connected to the inner channel, wherein the inner channel is provided with a first oil-swinging hole and a second oil-swinging hole, the first oil-swinging hole is used to cool and lubricate the bearing, and the second oil-swinging hole is connected to the cooling oil channel.
- the oil cooling system also includes a two-way pipe, the inner side of the two-way pipe is made of metal material, the outer side of the two-way pipe is made of rubber material, and the two ends of the two-way pipe are respectively fixed to the first oil inlet channel on the shell and the second oil inlet channel on the motor end cover.
- the present application provides an oil cooling system for a high-speed motor, the oil cooling system comprising a housing, a stator assembly, an oil spray pipe and an oil guide.
- the stator assembly is located in a receiving cavity of the housing.
- the invention comprises two end faces and a connecting face, wherein the connecting face connects the two end faces, the oil injection pipe is located on the outside of at least one end face, the oil injection pipe has a plurality of first oil injection ports and a plurality of second oil injection ports arranged at intervals, the first oil injection ports face the end face of the stator assembly, and are used for spraying oil to cool the end face of the stator assembly, the second oil injection ports face in parallel with the length direction of the stator assembly, the oil guide member is installed in the housing, the oil guide member is provided with an oil guide channel 41, which guides at least part of the cooling oil sprayed from the second oil injection port to the connecting face, and is used for spraying oil to cool the connecting face of the stator assembly.
- FIG1 is a schematic diagram of the installation of a housing and a stator assembly provided in an embodiment of the present application
- FIG2 is a schematic diagram of the relative positions of the fuel injection pipe and the stator assembly provided in an embodiment of the present application
- FIG3 is a schematic diagram of the structure of the fuel injection pipe provided in an embodiment of the present application.
- FIG4 is a partial enlarged schematic diagram of the fuel injection pipe provided in an embodiment of the present application.
- FIG5 is a schematic diagram of the relative positions of the fuel injection pipe and the fuel guide member provided in an embodiment of the present application.
- FIG6 is a schematic diagram of the inner wall structure of a housing provided in an embodiment of the present application.
- FIG7 is a front view of a housing provided in an embodiment of the present application.
- FIG8 is a schematic cross-sectional view of a housing provided in an embodiment of the present application, showing the relative positional relationship between the two-way pipe and the housing;
- FIG9 is a schematic cross-sectional view of a housing from another perspective according to an embodiment of the present application.
- FIG10 is a schematic diagram of the relative positions of a rotor assembly, a bearing and a magnetic isolation plate provided in an embodiment of the present application;
- FIG11 is a schematic structural diagram of a first oil-slinging hole of a rotor assembly provided in an embodiment of the present application.
- FIG12 is a schematic diagram of the structure of a magnetic isolation plate provided in an embodiment of the present application.
- FIG13 is a schematic diagram of the structure of a rotor oil inlet member provided in an embodiment of the present application.
- FIG14 is a schematic diagram of the relative positions of the rotor assembly, the motor end cover and the housing provided in an embodiment of the present application;
- FIG. 15 is a schematic diagram of the relative positions of the rotor assembly and the motor end cover provided in an embodiment of the present application.
- the terms “first ⁇ second ⁇ " are only used to distinguish different objects, and do not mean that the objects have the same or related points. It should be understood that the directions “above”, “below”, “outside” and “inside” are all directions in normal use, and the directions “left” and “right” refer to the left and right directions shown in the specific corresponding schematic diagrams, which may be the left and right directions in normal use or not.
- the oil cooling system of a high-speed motor provided in the following specific embodiments can be applied to any vehicle.
- the oil cooling system of the high-speed motor can be applied to a hybrid vehicle; for example, the oil cooling system of the high-speed motor can be applied to a pure electric vehicle.
- an oil cooling system for a high-speed motor includes a housing 1, a stator assembly 2, an oil spray pipe 3, and an oil guide 4.
- the housing 1 has a housing cavity, the stator assembly 2 is located in the housing cavity, the stator assembly 2 includes two end faces and a connection surface, the two end faces are arranged relatively along the length direction of the stator assembly 2, the connection surface connects the two end faces, the oil spray pipe 3 is located outside at least one end face, the oil spray pipe 3 has a plurality of first oil spray ports 311 and a plurality of second oil spray ports 312 arranged at intervals, the first oil spray ports 311 face the end face of the stator assembly 2, and the second oil spray ports 312 face parallel to the length direction of the stator assembly 2, the oil guide 4 is installed in the housing 1, and the oil guide 4 is provided with an oil guide channel 41, which guides at least part of the cooling oil sprayed from the second oil spray ports 312 to the connection surface.
- the housing 1 has a containing cavity
- the stator assembly 2 is installed in the containing cavity of the housing 1 by interference fit.
- the stator assembly 2 includes a connecting surface and end surfaces located on both sides of the connecting surface.
- the two oil injection pipes 3 are respectively located on the outside of the two end surfaces.
- the oil injection pipe 3 is provided with a plurality of first oil injection ports 311 and a plurality of second oil injection ports 312 arranged at intervals.
- the plurality of first oil injection ports 311 face the end surface of the stator assembly 2 and are used to spray cooling oil to the two end surfaces of the stator assembly 2.
- the second oil injection ports 312 are parallel to the length direction of the stator assembly 2 and are used to spray cooling oil to the connecting surface of the stator assembly 2.
- the connecting surface is the outer surface of the stator core along the length direction
- the plurality of second oil injection ports 312 are arranged toward the length direction of the stator assembly 2 and are used to perform oil cooling and heat dissipation on the outer surface of the stator core.
- the two end surfaces are stator winding end surfaces installed on the inner side of the stator core and extending outward along the length direction of the stator core
- the plurality of first oil injection ports 311 are arranged along the inner side of the oil injection pipe 3 toward the axial direction of the stator assembly 2.
- the oil cooling system further comprises an oil guide 4, which is mounted on the inner wall of the housing 1, and is provided with an oil guide channel 41, which guides at least part of the cooling oil sprayed from the second oil spray port 312 to the connection surface, thereby preventing the cooling oil sprayed from the second oil spray port 312 from being affected by gravity and being difficult to spray to the preset position of the connection surface.
- an oil guide 4 By arranging the oil guide 4 near part of the second oil spray port 312, the cooling oil sprayed from the second oil spray port 312 is guided to one end of the oil guide channel 41, and the cooling oil flows through the other end of the oil guide channel 41 to the preset position of the connection surface, so that the cooling oil can cool the connection surface of the stator assembly 2.
- the preset position can be obtained according to the finite element simulation, and the maximum temperature value area of the connection surface of the stator assembly 2 when the motor is running, and the maximum temperature value area of the connection surface is determined as the preset position of the connection surface.
- the oil guide member 4 is connected to a part of the second oil injection ports 312, and guides the cooling oil sprayed from a part of the second oil injection ports 312 to the preset position of the connection surface of the stator assembly 2, and another part of the second oil injection ports 312 directly sprays to the non-preset position area of the connection surface of the stator assembly 2.
- the oil injection pipe 3 is also provided with a mounting portion 313, which is mounted on the inner wall of the housing 1 through the mounting hole of the mounting portion 313, and the housing 1 is also equipped with a screw plug 16 for blocking the process hole on the housing 1.
- the inner wall of the shell 1 is provided with a first oil groove 12 and a second oil groove 13, the first oil groove 12 extends along the circumference of the shell 1, and the second oil groove 13 is provided between the first oil groove 12 and the end surface of the shell 1 close to the first oil groove 12, and the second oil groove 13 connects the oil guide member 4 and the first oil groove 12.
- the first oil groove 12 is located on the inner wall of the housing 1 and extends along the circumference of the housing 1 to form a ring-shaped groove.
- the second oil groove 13 is located on the inner wall of the housing 1 and extends along the length direction of the housing 1 to form a first opening 131 and a second opening 132.
- the second opening 132 of the second oil groove 13 faces one end of the oil guide channel 41 of the oil guide member 4, and the second oil injection port 312 faces the other end of the oil guide channel 41 of the oil guide member 4.
- the second oil groove 13 passes through the first oil groove 12 along the length direction of the housing 1, and guides the cooling oil sprayed from the second oil injection port 312 to one end of the oil guide channel 41 of the oil guide member 4, and guides the cooling oil into the second oil groove 13 through the other end of the oil guide channel 41 of the oil guide member 4, so that the cooling oil is discharged from the second oil injection port
- the oil 312 flows into the first oil groove 12 to cool the connection surface area of the stator assembly 2 that abuts against the first oil groove 12 .
- one end of the oil guide channel 41 of the oil guide member 4 faces at least part of the second oil injection port 312, and the other end of the oil guide channel 41 of the oil guide member 4 is installed in the second oil groove 13.
- one end of the oil guide channel 41 of the oil guide member 4 faces at least part of the second oil injection port 312 to guide the cooling oil sprayed from the second oil injection port 312 into the oil guide channel 41
- the other end of the oil guide channel 41 of the oil guide member 4 is installed in the second oil groove 13 to guide the cooling oil in the oil guide channel 41 into the first oil groove 12, to cool the connection surface of the stator assembly 2, and to improve the service life of the stator assembly 2.
- the other end of the oil guide channel 41 of the oil guide member 4 is fixedly connected to the second oil groove 13 by an interference fit, and its installation method is simple and easy to operate.
- one end of the oil guide channel 41 of the oil guide member 4 faces at least part of the second oil injection port 312, and the other end of the oil guide channel 41 of the oil guide member 4 has a preset distance from the second oil groove 13.
- the oil guide member 4 has an oil guide channel 41 and a mounting hole, and the oil guide member 4 is mounted on the inner wall of the housing 1 through the mounting hole, one end of the oil guide channel 41 faces at least part of the second oil injection port 312, and the other end of the oil guide channel 41 faces the second oil groove 13 and has a preset distance from the second oil groove 13, and the cooling oil is sprayed from the second oil injection port 312 into the oil guide channel 41, and a part of the cooling oil in the oil guide channel 41 is guided to the second oil groove 13 by the inertia of the spraying force, and finally flows through the second oil groove 13 to the first oil groove 12, cooling the connection surface of the stator assembly 2, and another part of the cooling oil in the oil guide channel 41 flows from between the oil guide channel 41 and the second
- the second oil groove 13 has a first opening 131 and a second opening 132, the connecting surface abuts against the first opening 131 so that the first opening 131 is in a closed state, and the second opening 132 is used to guide at least part of the cooling oil sprayed from the second oil injection port 312 into the second oil groove 13.
- the housing 1 has a receiving cavity
- the second oil groove 13 is arranged on the inner wall of the receiving cavity
- the stator assembly 2 is installed in the receiving cavity by interference fit, so that the connecting surface of the stator assembly 2 abuts against the second oil injection port 312.
- the first opening 131 of the oil groove 13 is abutted to make the first opening 131 in a sealed state, so as to prevent the cooling oil entering from the second opening 132 from flowing out from the first opening 131, and ensure that at least part of the cooling oil sprayed from the second oil injection port 312 is guided from the second opening 132 of the second oil groove 13 into the second oil groove 13, so as to cool the connection surface of the stator assembly 2 in contact with the first opening 131, and at the same time, the cooling oil is guided from the second oil groove 13 to the first oil groove 12, so as to cool a part of the connection surface of the stator assembly 2 in contact with the first oil groove 12.
- a plurality of second oil grooves 13 spaced along the length direction of the housing 1 can also be designed on the housing 1. Since the cooling oil sprayed from the second oil injection port 312 of the oil injection pipe 3 is affected by gravity, a plurality of second oil grooves 13 are designed to facilitate guiding more cooling oil sprayed from the second oil injection port 312 into the first oil groove 12, so as to improve the oil cooling effect on the connection surface of the stator assembly 2.
- the bottom of the housing 1 has an oil sump 14, and the oil sump 14 is connected to the first oil sump 12.
- the cooling oil enters the two oil injection pipes 3 from the main oil inlet 11 on the housing 1, respectively, and the oil injection pipe 3 is fixedly installed in the housing 1.
- the cooling oil is sprayed from the first oil injection port 311 of the oil injection pipe 3 to the end face of the stator assembly 2 to cool the end of the stator assembly 2.
- the cooling oil can also be sprayed from the second oil injection port 312 of the oil injection pipe 3 to the second oil sump 13, and finally flows to the first oil sump 12 to cool the connection surface of the stator assembly 2.
- the oil sump 14 is located at the bottom of the housing 1, arranged along the length direction of the housing 1 and connected to the first oil sump 12, so that the cooling oil on the first oil sump 12 flows to the oil sump 14, and then the cooling oil collected in the oil sump 14 is cooled by the external oil cooling drive device and then redirected to the main oil inlet 11 of the housing 1 to realize the entire oil circuit cooling cycle.
- a contoured structure is designed on the motor end cover 6, and the cooling oil in the multiple oil sump tanks 14 is connected to an external oil cooling drive device through a sealed installation to realize oil cooling circuit circulation.
- the second oil groove 13 is located above the horizontal plane where the axis of the housing 1 is located.
- the horizontal plane divides the shell 1 into an upper part and a lower part.
- a plurality of second oil grooves 13 are arranged at intervals on the inner wall of the shell 1 and are located in the upper part of the shell 1, which is conducive to guiding the cooling oil sprayed from the plurality of second oil injection ports 312 toward the plurality of second oil grooves 13 into the first oil groove 12 through the plurality of second oil grooves 13.
- the cooling oil flows from the first oil groove 12 in the upper part of the shell 1 to the first oil groove 12 in the lower part of the shell 1 under the action of gravity, so as to cool the connection surface of the stator assembly 2 more effectively.
- the fuel injection pipe 3 has an annular fuel injection portion 31 and a horizontal fuel injection portion 32, the annular fuel injection portion 31 extends around the outer side of the end surface of the stator assembly 2, the first fuel injection port 311 and the second fuel injection port 312 are located in the annular fuel injection portion 31, the horizontal fuel injection portion 32 is located above the connecting surface and extends along the length direction of the stator assembly 2, the horizontal fuel injection portion 32 has a plurality of third fuel injection ports 321 arranged at intervals in the vertical direction, the third fuel injection ports 321 face the top of the connecting surface of the stator assembly 2, wherein the annular fuel injection portion 31 and the horizontal fuel injection portion 32 are connected.
- the annular oil spray portion 31 and the horizontal oil spray portion 32 are manufactured using an integrated molding process.
- the annular oil spray portion 31 has a plurality of first oil spray ports 311 and a plurality of second oil spray ports 312 that are spaced apart.
- the plurality of first oil spray ports 311 face the end face of the stator assembly 2 for spraying oil to cool the end face of the stator assembly 2 from multiple angles.
- the plurality of second oil spray ports 312 face the length direction of the stator assembly 2 for spraying oil to cool the connection surface of the stator assembly 2.
- the horizontal oil spray portion 32 is in the shape of a straight tube and is arranged in the horizontal direction.
- the horizontal oil spray portion 32 has a plurality of third oil spray ports 321 that are spaced apart in the vertical direction and face the top area of the connection surface of the stator assembly 2 for oil cooling the top of the connection surface of the stator assembly 2.
- the cooling oil flows from the top of the connection surface of the stator assembly 2 to the bottom of the connection surface of the stator assembly 2, so that the connection surface of the stator assembly 2 is more fully oil-cooled, thereby improving the service life of the stator assembly 2.
- an oil injection pipe 3 includes an annular oil injection portion 31 and two horizontal oil injection portions 32.
- the cooling oil enters the oil injection pipe 3 from the two horizontal oil injection portions 32 respectively.
- the oil injection pipe 3 is provided with two oil inlets to increase the oil injection pressure in the oil injection pipe 3, which is beneficial to improving the cooling efficiency of the oil injection pipe 3 on the stator assembly 2.
- the housing 1 is further provided with a pipeline channel 15 adapted to the horizontal oil injection part 32, and an annular boss 322 is provided on the outer side of one end of the horizontal oil injection part 32 away from the annular oil injection part 31, and the annular boss 322 abuts against a seal 323, wherein the second oil injection port 312 is located between the annular boss 322 and the annular oil injection part 31.
- a pipeline channel 15 is provided inside the housing 1, and the pipeline channel 15 is communicated with the main oil inlet 11 of the housing 1, and the horizontal oil injection part 32 is installed in the pipeline channel 15, and an annular boss 322 is provided on the outer side of one end of the horizontal oil injection part 32 away from the annular oil injection part 31, and the annular boss 322 abuts against a seal 323, so that the seal 323 forms a sealing state with the inner wall of the pipeline channel 15, so as to prevent the cooling oil sprayed from the main oil inlet 11 into the oil injection pipe 3 from flowing from the pipeline channel 15 to the main inlet, thereby reducing the cooling effect on the stator assembly 2.
- a fuel injection pipe 3 includes an annular fuel injection portion 31 and two horizontal fuel injection portions 32.
- the two fuel injection pipes 3 are arranged at both ends of the stator assembly 2, and four pipeline channels 15 adapted to the four horizontal fuel injection portions 32 are provided on the shell 1.
- the annular boss 322 and the sealing member 323 of the horizontal fuel injection portion 32 form seals in the four pipeline channels 15 respectively.
- the oil cooling system also includes a rotor assembly 5, a motor end cover 6, a rotor oil inlet 7 and a bearing 8.
- the rotor assembly 5 is installed on the bearing 8.
- the rotor assembly 5 is provided with an inner channel 51 and a cooling oil channel 52 along its length direction.
- the housing 1 is provided with a first oil inlet channel 17.
- the motor end cover 6 is provided with a second oil inlet channel 61 connected to the first oil inlet channel 17.
- the rotor oil inlet 7 has an oil inlet port 71 and an oil outlet port 72.
- the oil inlet port 71 is connected to the first oil inlet channel 17, and the oil outlet port 72 is connected to the inner channel 51.
- the inner channel 51 is provided with a first oil throwing hole 53 and a second oil throwing hole 54.
- the first oil throwing hole 53 is used to cool and lubricate the bearing 8, and the second oil throwing hole 54 is connected to the cooling oil channel 52.
- the stator assembly 2 is provided with an internal cavity
- the rotor assembly 5 is penetrated in the internal cavity and mounted on the bearing 8
- the housing 1 is provided with a first oil inlet passage 17 connected to the main oil inlet port 11
- the motor end cover 6 is provided with a second oil inlet passage 61 connected to the first oil inlet passage 17,
- the rotor assembly 5 is provided with an inner channel 51 and a cooling oil passage 52
- the second oil inlet passage 61 is introduced through the oil inlet port 71 of the rotor oil inlet member 7, and is guided from the oil outlet port 72 of the rotor oil inlet member 7 to the inner channel 51 of the rotor assembly 5, and the inner channel
- the inner channel 51 extends from one end of the rotor assembly 5 along the length
- the inner channel 51 is provided with a plurality of first oil-slinging holes 53, which are evenly spaced along the radial direction of the inner channel 51 and penetrate in the radial direction.
- the plurality of first oil-slinging holes 53 are arranged near the end face of the bearing 8, and are used to throw the cooling oil to the end face of the bearing 8 through the plurality of first oil-slinging holes 53 when the rotor assembly 5 is running, so as to cool the bearing 8.
- the inner channel 51 is also provided with a plurality of second oil-slinging holes 54, which are evenly spaced along the radial direction of the inner channel 51.
- the plurality of second oil-slinging holes 54 of the inner channel 51 are connected with the cooling oil channel 52 through the oil guide groove 551 of the magnetic isolation plate 55, and are used to throw the cooling oil to the cooling oil channel 52 through the plurality of second oil-slinging holes 54 when the rotor assembly 5 is running, so as to cool the rotor assembly 5 well in the axial region. Finally, the cooling oil flows out along the axis of the rotor assembly 5. Compared with radial oil throwing, the oil throwing loss is reduced, which is beneficial to the efficiency improvement of the motor.
- the oil cooling system also includes a two-way pipe 9, the inner side of the two-way pipe 9 is made of metal material, the outer side of the two-way pipe 9 is made of rubber material, and the two ends of the two-way pipe 9 are respectively fixed to the first oil inlet channel 17 located on the shell 1 and the second oil inlet channel 61 located on the motor end cover 6.
- the stator assembly 2 and the rotor assembly 5 are installed in the accommodating cavity of the shell 1, and then the motor end cover 6 and the shell 1 are connected.
- two-way pipes 9 are provided on the contact surface of the first oil inlet channel 17 and the second oil inlet channel 61, and the first oil inlet channel 17 and the second oil inlet channel 61 are connected by the two-way pipes 9.
- the inner side of the two-way pipe 9 is a metal lining, which plays a supporting and conducting role.
- the material can be aluminum alloy, stainless steel or other metals, and the outer side is rubber material, which plays a sealing role on the connecting surface of the first oil inlet channel 17 and the second oil inlet channel 61, and the entire two-way pipe 9 plays a connecting and positioning role.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
本申请提供了一种高速电机的油冷系统,该油冷系统包括壳体、定子组件、喷油管和导油件。定子组件位于壳体的容纳腔内,定子组件包括两端面和连接面,连接面连接两端面,喷油管位于至少一个端面的外侧,喷油管具有多个间隔设置的第一喷油口和多个间隔设置的第二喷油口,第一喷油口的朝向定子组件的端面,用于对定子组件的端面进行喷油冷却,第二喷油口的朝向与定子组件的长度方向平行,导油件安装于壳体内,导油件设有导油通道,将至少部分第二喷油口喷出的冷却油导向连接面,用于对定子组件的连接面进行喷油冷却。
Description
相关申请的交叉引用
本申请要求于2023年04月07日提交的中国申请202310387639.9的优先权,其内容通过全文引用并入本文。
本申请涉及电机散热技术领域,具体涉及一种高速电机的油冷系统。
随着新能源汽车的快速发展,追求车用电机的高效率、高功率密度、高转速正成为大势所趋,随之而来的电机温升挑战也愈发严峻,因此亟需更高效的冷却系统,将电机运行时产生的热量及时带走,否则容易造成电机温升过高,轻则影响性能表现,重则导致绕组烧毁、轴承损伤等后果,严重影响电机的使用寿命。
目前电动汽车使用的驱动电机大多采用水冷方案,且电机功率普遍较低,由于水冷结构导致电机体积较大,开发大功率电机继续采用水冷方案会进一步增加电机体积,不能满足整车空间要求;由于市场对大功率电机的需求以及整车安装空间的限制,需要一种功率高且体积小的电机来满足需求,而油冷电机可以很好的适应这一需求,冷却油可以与电机热源充分接触进行热交换,进一步降低电机温度以扩大电机输出功率,同时去除了复杂的水冷结构进一步缩小了电机体积,但现有油冷电机定子总成结构复
杂,结构加工具有一定的难度,成本相对较高。
发明内容
有鉴于此,本申请的主要目的在于提供一种高速电机的油冷系统,以达到冷却充分,制作简便,成本相对较低的目的。
为达到上述目的,本申请的技术方案是这样实现的:
本申请提供一种高速电机的油冷系统,包括:
壳体,所述壳体具有容纳腔;
定子组件,位于所述容纳腔内,所述定子组件包括两端面和连接面,两所述端面沿所述定子组件的长度方向相对布置,所述连接面连接两所述端面;
喷油管,所述喷油管位于至少一个所述端面的外侧,所述喷油管具有多个间隔设置的第一喷油口和多个间隔设置的第二喷油口,所述第一喷油口的朝向定子组件的所述端面,所述第二喷油口的朝向与所述定子组件的长度方向平行;
导油件,安装于所述壳体内,所述导油件设有导油通道,将至少部分所述第二喷油口喷出的冷却油导向所述连接面。
进一步地,所述壳体的内壁设有第一油槽和第二油槽,所述第一油槽沿所述壳体的周向延伸,所述第一油槽与靠近所述第一油槽的所述壳体的端面之间具有所述第二油槽;
所述第二油槽连通所述导油件与所述第一油槽。
进一步地,所述导油件的导油通道的一端朝向至少部分所述第二喷油口,所述导油件的导油通道的另一端安装于所述第二油槽。
进一步地,所述第二油槽具有第一开口和第二开口,所述连接面与所述第一开口抵接,以使第一开口处于封闭状态,所述第二开口用于将至少部分所述第二喷油口喷出的冷却油导向所述第二油槽内。
进一步地,所述壳体的底部具有油底槽,所述油底槽与所述第一油槽连通。
进一步地,所述第二油槽位于壳体的轴线所在水平面的上方。
进一步地,所述喷油管具有环形喷油部和水平喷油部,所述环形喷油部围绕定子组件的端面的外侧延伸,所述第一喷油口和第二喷油口位于所述环形喷油部,所述水平喷油部位于所述连接面的上方沿着所述定子组件的长度方向延伸,所述水平喷油部具有沿竖直方向间隔设置的多个第三喷油口,所述第三喷油口朝向所述连接面的顶部,其中,所述环形喷油部和所述水平喷油部连通。
进一步地,其中,所述壳体还设有与所述水平喷油部适配的管路通道,所述水平喷油部远离所述环形喷油部的一端的外侧设有环形凸台,所述环形凸台抵接密封件,其中,所述第二喷油口位于所述环形凸台和所述环形喷油部之间。
进一步地,所述油冷系统还包括转子组件、电机端盖、转子进油件和轴承,所述转子组件安装于所述轴承,所述转子组件沿其长度方向设有内通道和冷却油道,所述壳体设有第一进油通道,所述电机端盖设有与所述第一进油通道连通的第二进油通道,所述转子进油件具有进油口和出油口,所述进油口与所述第二进油通道,所述出油口与所述内通道连通,其中,所述内通道设有第一甩油孔和第二甩油孔,所述第一甩油孔用于对所述轴承进行冷却润滑,所述第二甩油孔与所述冷却油道连通。
进一步地,所述油冷系统还包括两通管,所述两通管的内侧为金属材料,所述两通管的外侧为橡胶材料,两通管的两端分别固定于所述壳体上的第一进油通道和所述电机端盖上的第二进油通道。
本申请提供的一种高速电机的油冷系统,该油冷系统包括包括壳体、定子组件、喷油管和导油件。定子组件位于壳体的容纳腔内,定子组件包
括两端面和连接面,连接面连接两所述端面,喷油管位于至少一个端面的外侧,喷油管具有多个间隔设置的第一喷油口和多个间隔设置的第二喷油口,第一喷油口的朝向定子组件的端面,用于对定子组件的端面进行喷油冷却,第二喷油口的朝向与定子组件的长度方向平行,导油件安装于壳体内,导油件设有导油通道41,将至少部分第二喷油口喷出的冷却油导向连接面,用于对定子组件的连接面进行喷油冷却。
图1为本申请实施例提供的壳体和定子组件的安装示意图;
图2为本申请实施例提供的喷油管和定子组件的相对位置示意图;
图3为本申请实施例提供的喷油管的结构示意图;
图4为本申请实施例提供的喷油管的局部放大示意图;
图5为本申请实施例提供的喷油管和导油件的相对位置示意图;
图6为本申请实施例提供的壳体内壁结构示意图;
图7为本申请实施例提供的壳体正视图;
图8为本申请实施例提供的壳体的断面示意图,其中,显示两通管与壳体的相对位置关系;
图9为本申请实施例提供另一视角下的壳体的断面示意图;
图10为本申请实施例提供的转子组件、轴承和隔磁板的相对位置示意图;
图11为本申请实施例提供的转子组件的第一甩油孔的结构示意图;
图12为本申请实施例提供的隔磁板的结构示意图;
图13为本申请实施例提供的转子进油件的结构示意图;
图14为本申请实施例提供的转子组件、电机端盖和壳体的相对位置示意图;
图15为本申请实施例提供的转子组件、电机端盖的相对位置示意图。
附图标记说明
1、壳体;11、主进油口;12、第一油槽;13、第二油槽;131、第一开口;132、第二开口;14、油底槽;15、管路通道;16、螺塞;17、第一进油通道;2、定子组件;3、喷油管;31、环形喷油部;311、第一喷油口;312、第二喷油口;313、安装部;32、水平喷油部;321、第三喷油口;322、环形凸台;323、密封件;4、导油件;41、导油通道;5、转子组件;51、内通道;52、冷却油道;53、第一甩油孔;54、第二甩油孔;55、隔磁板;551、导油槽;6、电机端盖;61、第二进油通道;7、转子进油件;71、进油口;72、出油口;8、轴承;9、两通管。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在具体实施例中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,例如通过不同的具体技术特征的组合可以形成不同的实施例和技术方案。为了避免不必要的重复,本申请中各个具体技术特征的各种可能的组合方式不再另行说明。
在以下的描述中,所涉及的术语“第一\第二\...”仅仅是区别不同的对象,不表示各对象之间具有相同或联系之处。应该理解的是,所涉及的方位描述“上方”、“下方”、“外”、“内”均为正常使用状态时的方位,“左”、“右”方向表示在具体对应的示意图中所示意的左右方向,可以为正常使用状态的左右方向也可以不是。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括
为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。术语“连接”在未特别说明的情况下,既包括直接连接也包括间接连接。
以下具体实施例中提供的一种高速电机的油冷系统可以为任何车辆,例如,该一种高速电机的油冷系统可以应用于混合动力型汽车;例如,该一种高速电机的油冷系统可以应用于纯电动力性汽车。
在一实施例中,如图1~图6所示,一种高速电机的油冷系统包括壳体1、定子组件2、喷油管3和导油件4。壳体1具有容纳腔,定子组件2位于容纳腔内,定子组件2包括两端面和连接面,两端面沿定子组件2的长度方向相对布置,连接面连接两端面,喷油管3位于至少一个端面的外侧,喷油管3具有多个间隔设置的第一喷油口311和多个间隔设置的第二喷油口312,第一喷油口311的朝向定子组件2的端面,第二喷油口312的朝向与定子组件2的长度方向平行,导油件4安装于壳体1内,导油件4设有导油通道41,将至少部分第二喷油口312喷出的冷却油导向连接面。
示例性的,壳体1具有容纳腔,定子组件2通过过盈配合安装于壳体1的容纳腔内,定子组件2包括连接面和位于连接面两侧的端面,两喷油管3分别位于两端面的外侧,喷油管3设有多个间隔设置的第一喷油口311和多个间隔设置的第二喷油口312,多个第一喷油口311朝向定子组件2的端面,用于向定子组件2的两个端面喷出冷却油,第二喷油口312与定子组件2的长度方向平行,用于向定子组件2的连接面喷出冷却油,例如,连接面为定子铁芯沿长度方向上的外表面,则多个第二喷油口312朝向定子组件2的长度方向设置,用于对定子铁芯的外表面进行油冷散热,例如,两端面为安装在定子铁芯内侧且沿定子铁芯长度方向向外延伸的定子绕组端面,则多个第一喷油口311沿喷油管3内侧朝向定子组件2的轴线方向
设置,用于对位于定子组件2两端的定子绕组进行喷油冷却。需要说明的是,油冷系统还包括导油件4,导油件4安装在壳体1的内壁上,导油件4设有导油通道41,将至少部分第二喷油口312喷出的冷却油导向连接面,避免了从第二喷油口312喷出的冷却油受重力作用,而难以喷向连接面的预设位置,通过在部分第二喷油口312附近设置导油件4,将第二喷油口312喷出的冷却油导向导油通道41的一端,该冷却油流经导油通道41的另一端至连接面的预设位置,以使冷却油可以对定子组件2的连接面进行冷却,例如,预设位置可以根据有限元仿真获得在电机运转时,定子组件2的连接面的最大温度值区域,将连接面的最大温度值区域确定为连接面的预设位置。可以理解的是,导油件4与一部分第二喷油口312连通,将一部分第二喷油口312喷出的冷却油导向定子组件2的连接面的预设位置,另外一部分第二喷油口312直接喷向定子组件2的连接面的非预设位置区域。需要进一步说明的是,喷油管3还设有安装部313,通过安装部313的安装孔安装在壳体1内壁上,壳体1还安装有螺塞16,用于封堵壳体1上的工艺孔。
在一实施例中,如图6所示,壳体1的内壁设有第一油槽12和第二油槽13,第一油槽12沿壳体1的周向延伸,第一油槽12与靠近第一油槽12的壳体1的端面之间具有第二油槽13,第二油槽13连通导油件4与第一油槽12。示例性的,第一油槽12位于壳体1的内壁且沿壳体1周向延伸,以形成环形状的凹槽,第二油槽13位于壳体1的内壁且沿壳体1长度方向延伸,以形成第一开口131和第二开口132,第二油槽13的第二开口132朝向导油件4的导油通道41的一端,第二喷油口312朝向导油件4的导油通道41的另一端,第二油槽13沿壳体1长度方向穿过第一油槽12,将第二喷油口312喷出的冷却油导向导油件4的导油通道41的一端,通过导油件4的导油通道41的另一端导向第二油槽13内,以使冷却油从第二喷油口
312流向第一油槽12内,对与第一油槽12抵接定子组件2的连接面区域进行油冷降温。
在一实施例中,如图5和图6所示,导油件4的导油通道41的一端朝向至少部分第二喷油口312,导油件4的导油通道41的另一端安装于第二油槽13。示例性的,导油件4的导油通道41的一端朝向至少部分第二喷油口312,以将第二喷油口312喷出的冷却油导向导油通道41内,导油件4的导油通道41的另一端安装于第二油槽13内,以将导油通道41内的冷却油导向第一油槽12内,对定子组件2的连接面进行冷却,提高定子组件2的使用寿命,例如,导油件4的导油通道41的另一端与第二油槽13通过盈配合进行固定连接,其安装方式简单,便于操作。
在一实施例中,导油件4的导油通道41的一端朝向至少部分第二喷油口312,导油件4的导油通道41的另一端与第二油槽13具有预设距离。示例性的,导油件4具有导油通道41和安装孔,导油件4通过安装孔安装于壳体1内壁,导油通道41的一端朝向至少部分第二喷油口312,导油通道41的另一端朝向第二油槽13并与第二油槽13具有预设距离,冷却油从第二喷油口312喷出向导油通道41内,导油通道41内的一部分冷却油受到喷出力的惯性作用导向第二油槽13,最后流经第二油槽13至第一油槽12内,对定子组件2的连接面进行冷却,导油通道41内的另一部分冷却油由于受到喷出力的惯性作用较小,从导油通道41与第二油槽13之间流向定子组件2的连接面,对该区域的定子组件2的连接面进行冷却降温。
在一实施例中,如图6所示,第二油槽13具有第一开口131和第二开口132,连接面与第一开口131抵接,以使第一开口131处于封闭状态,第二开口132用于将至少部分第二喷油口312喷出的冷却油导向第二油槽13内。示例性的,壳体1具有容纳腔,第二油槽13设置于容纳腔的内壁,定子组件2通过过盈配合安装于容纳腔内,从而定子组件2的连接面与第二
油槽13的第一开口131抵接,以使第一开口131处于密封状态,避免从第二开口132中进入的冷却油从第一开口131中流出,保证至少部分第二喷油口312喷出的冷却油从第二油槽13的第二开口132导向第二油槽13内,对与第一开口131接触的定子组件2的连接面进行冷却,同时冷却油通过第二油槽13导向第一油槽12,对与第一油槽12接触的定子组件2的连接面的部分区域进行冷却。需要说明的是,在壳体1上还可以设计沿壳体1长度方向间隔设置的多个第二油槽13,由于喷油管3的第二喷油口312喷出的冷却油受到重力的影响,设计多个第二油槽13,便于将更多从第二喷油口312喷出的冷却油导向第一油槽12内,提高对定子组件2的连接面的油冷降温效果。
在一实施例中,如图7所示,壳体1的底部具有油底槽14,油底槽14与第一油槽12连通。示例性的,冷却油从壳体1上的主进油口11分别进入两喷油管3内,喷油管3固定安装于壳体1内,冷却油从喷油管3的第一喷油口311喷向定子组件2的端面,对定子组件2的端部进行冷却,冷却油还可以从喷油管3的第二喷油口312喷向第二油槽13,最后流向第一油槽12,对定子组件2的连接面进行冷却,油底槽14位于壳体1的底部,沿壳体1长度方向设置且与第一油槽12连通,以使第一油槽12上的冷却油流向油底槽14,再通过外接油冷驱动装置将油底槽14收集的冷却油进行冷却处理后,重新导向壳体1的主进油口11,实现整个油路冷却循环。需要说明的是,油底槽14设有多个,多个油底槽14从壳体1底部沿壳体1圆周方向间隔设置,覆盖一定的角度范围,用于承接电机内部的冷却油,在电机端盖6设计有仿形的结构,通过密封安装将多个油底槽14内的冷却油外接油冷驱动装置,实现油冷回路循环。
在一实施例中,如图7所示,第二油槽13位于壳体1的轴线所在水平面的上方。示例性的,第二油槽13与油底槽14相对设置,壳体1的轴线
所在的水平面将壳体1分为上部分和下部分,多个第二油槽13间隔设置在壳体1的内壁上且位于壳体1的上部分,有利于将朝向多个第二油槽13的多个第二喷油口312喷出的冷却油通过多个第二油槽13导向第一油槽12内,该冷却油收到重力作用从壳体1的上部分的第一油槽12中流向壳体1的下部分的第一油槽12内,对定子组件2的连接面进行更加有效的冷却降温。
在一实施例中,如图2~图4所示,喷油管3具有环形喷油部31和水平喷油部32,环形喷油部31围绕定子组件2的端面的外侧延伸,第一喷油口311和第二喷油口312位于环形喷油部31,水平喷油部32位于连接面的上方沿着定子组件2的长度方向延伸,水平喷油部32具有沿竖直方向间隔设置的多个第三喷油口321,第三喷油口321朝向定子组件2的连接面的顶部,其中,环形喷油部31和水平喷油部32连通。示例性的,环形喷油部31和水平喷油部32采用一体成型工艺制造,环形喷油部31上具有多个间隔设置的第一喷油口311和多个间隔设置的第二喷油口312,多个第一喷油口311朝向定子组件2的端面,用于从多个角度对定子组件2的端面进行喷油冷却,多个第二喷油口312朝向定子组件2的长度方向,对定子组件2的连接面进行喷油冷却,水平喷油部32呈直管状且沿水平方向设置,水平喷油部32具有多个间隔设置的第三喷油口321,多个第三喷油口321沿竖直方向间隔设置且朝向定子组件2的连接面的顶部区域,对定子组件2的连接面的顶端进行油冷降温,同时在重力作用下,冷却油从定子组件2的连接面的顶端流向定子组件2的连接面的底端,对定子组件2的连接面进行更加充分的油冷处理,提高定子组件2的工作寿命。需要说明的是,一根喷油管3包括一个环形喷油部31和两个水平喷油部32,冷却油分别从两个水平喷油部32进入喷油管3内,喷油管3设有两个进油口提高了喷油管3内的喷油压力,有利提高喷油管3对定子组件2的冷却效率。
在一实施例中,如图4、图8和图9所示,壳体1还设有与水平喷油部32适配的管路通道15,水平喷油部32远离环形喷油部31的一端的外侧设有环形凸台322,环形凸台322抵接密封件323,其中,第二喷油口312位于环形凸台322和环形喷油部31之间。示例性的,壳体1内部设有管路通道15,管路通道15与壳体1的主进油口11连通,水平喷油部32安装于管路通道15内,水平喷油部32远离环形喷油部31的一端的外侧设有环形凸台322,环形凸台322抵接有一密封件323,以使密封件323与管路通道15的内壁形成密封状态,避免从主进油口11进入喷油管3内喷出的冷却油从管路通道15流向主进口,从而降低对定子组件2的冷却效果。需要说明的是,一根喷油管3包括一个环形喷油部31和两个水平喷油部32,两喷油管3设置在定子组件2的两端,则壳体1上设有与四个水平喷油部32适配的四个管路通道15,通过水平喷油部32的环形凸台322与密封件323,分别在四个管路通道15内形成密封。
在一实施例中,如图10~图15所示,油冷系统还包括转子组件5、电机端盖6、转子进油件7和轴承8,转子组件5安装于轴承8,转子组件5沿其长度方向设有内通道51和冷却油道52,壳体1设有第一进油通道17,电机端盖6设有与第一进油通道17连通的第二进油通道61,转子进油件7具有进油口71和出油口72,进油口71与第一进油通道17连通,出油口72与内通道51连通,其中,内通道51设有第一甩油孔53和第二甩油孔54,第一甩油孔53用于对轴承8进行冷却润滑,第二甩油孔54与冷却油道52连通。示例性的,定子组件2设有内部空腔,转子组件5穿设于内部空腔并安装于轴承8上,壳体1设有与主进油口11连通的第一进油通道17,电机端盖6设有与第一进油通道17连通的第二进油通道61,转子组件5设有内通道51和冷却油道52,第二进油通道61通过转子进油件7的进油口71导入,从转子进油件7的出油口72导向转子组件5的内通道51,内通
道51从转子组件5的一端沿转子组件5的长度方向延伸,内通道51设有多个第一甩油孔53,多个第一甩油孔53沿内通道51的径向均匀间隔设置且沿径向贯穿,同时多个第一甩油孔53靠近轴承8端面设置,用于在转子组件5运转时,通过多个第一甩油孔53将冷却油甩向轴承8端面,以对轴承8进行冷却,内通道51还设有多个第二甩油孔54,多个第二甩油孔54沿内通道51的径向均匀间隔设置,内通道51的多个第二甩油孔54通过隔磁板55的导油槽551与冷却油道52连通,用于在转子组件5运转时,通过多个第二甩油孔54将冷却油甩向冷却油道52内,可以很好对转子组件5沿轴向区域进行冷却,最终冷却油沿着转子组件5轴线流出,相比径向甩油,减小了甩油损耗,有利于电机的效率提升。
在一实施例中,如图14所示,油冷系统还包括两通管9,两通管9的内侧为金属材料,两通管9的外侧为橡胶材料,两通管9的两端分别固定于位于壳体1上的第一进油通道17和位于电机端盖6上的第二进油通道61。示例性的,定子组件2和转子组件5安装于壳体1的容纳腔内,再连接电机端盖6和壳体1,为了避免冷却油从第一进油通道17导向第二进油通道61过程中,冷却油从电机端盖6和壳体1的接触面处泄露,从而影响对转子组件5的冷却效果,在第一进油通道17和第二进油通道61的接触面设置有两通管9,通过两通管9连通第一进油通道17和第二进油通道61,两通管9的内侧为金属内衬,起支撑、导通作用,材质可以为铝合金、不锈钢等金属,外侧为橡胶材质,对第一进油通道17和第二进油通道61的连接面起到密封作用,整个两通管9起到连通及定位的作用。
以上实施例仅用以说明本申请的技术方案,而非对其进行限制;尽管参照前述实施例对本申请进行了详细的说明,对于本领域技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱
离本申请所要求保护的技术方案的精神和范围。
Claims (10)
- 一种高速电机的油冷系统,其中,包括:壳体,所述壳体具有容纳腔;定子组件,位于所述容纳腔内,所述定子组件包括两端面和连接面,两所述端面沿所述定子组件的长度方向相对布置,所述连接面连接两所述端面;喷油管,所述喷油管位于至少一个所述端面的外侧,所述喷油管具有多个间隔设置的第一喷油口和多个间隔设置的第二喷油口,所述第一喷油口的朝向定子组件的所述端面,所述第二喷油口的朝向与所述定子组件的长度方向平行;导油件,安装于所述壳体内,所述导油件设有导油通道,将至少部分所述第二喷油口喷出的冷却油导向所述连接面。
- 根据权利要求1所述的油冷系统,其中,所述壳体的内壁设有第一油槽和第二油槽,所述第一油槽沿所述壳体的周向延伸,所述第一油槽与靠近所述第一油槽的所述壳体的端面之间具有所述第二油槽;所述第二油槽连通所述导油件与所述第一油槽。
- 根据权利要求2所述的油冷系统,其中,所述导油件的导油通道的一端朝向至少部分所述第二喷油口,所述导油件的导油通道的另一端安装于所述第二油槽。
- 根据权利要求2所述的油冷系统,其中,所述第二油槽具有第一开口和第二开口,所述连接面与所述第一开口抵接,以使第一开口处于封闭状态,所述第二开口用于将至少部分所述第二喷油口喷出的冷却油导向所述第二油槽内。
- 根据权利要求2所述的油冷系统,其中,所述壳体的底部具有油底槽,所述油底槽与所述第一油槽连通。
- 根据权利要求2所述的油冷系统,其中,所述第二油槽位于壳体的轴线所在水平面的上方。
- 根据权利要求1所述的油冷系统,其中,所述喷油管具有环形喷油部和水平喷油部,所述环形喷油部围绕定子组件的端面的外侧延伸,所述第一喷油口和第二喷油口位于所述环形喷油部,所述水平喷油部位于所述连接面的上方沿着所述定子组件的长度方向延伸,所述水平喷油部具有沿竖直方向间隔设置的多个第三喷油口,所述第三喷油口朝向所述连接面的顶部,其中,所述环形喷油部和所述水平喷油部连通。
- 根据权利要求7所述的油冷系统,其中,所述壳体还设有与所述水平喷油部适配的管路通道,所述水平喷油部远离所述环形喷油部的一端的外侧设有环形凸台,所述环形凸台抵接密封件,其中,所述第二喷油口位于所述环形凸台和所述环形喷油部之间。
- 根据权利要求1所述的油冷系统,其中,所述油冷系统还包括转子组件、电机端盖、转子进油件和轴承,所述转子组件安装于所述轴承,所述转子组件沿其长度方向设有内通道和冷却油道,所述壳体设有第一进油通道,所述电机端盖设有与所述第一进油通道连通的第二进油通道,所述转子进油件具有进油口和出油口,所述进油口与所述第二进油通道,所述出油口与所述内通道连通,其中,所述内通道设有第一甩油孔和第二甩油孔,所述第一甩油孔用于对所述轴承进行冷却润滑,所述第二甩油孔与所述冷却油道连通。
- 根据权利要求9所述的油冷系统,其中,所述油冷系统还包括两通管,所述两通管的内侧为金属材料,所述两通管的外侧为橡胶材料,两通管的两端分别固定于所述壳体上的第一进油通道和所述电机端盖上的第二进油通道。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310387639.9 | 2023-04-07 | ||
CN202310387639.9A CN116566108A (zh) | 2023-04-07 | 2023-04-07 | 一种高速电机的油冷系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024207711A1 true WO2024207711A1 (zh) | 2024-10-10 |
Family
ID=87495540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/126035 WO2024207711A1 (zh) | 2023-04-07 | 2023-10-23 | 一种高速电机的油冷系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116566108A (zh) |
WO (1) | WO2024207711A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116566108A (zh) * | 2023-04-07 | 2023-08-08 | 东风汽车集团股份有限公司 | 一种高速电机的油冷系统 |
CN117353521B (zh) * | 2023-09-13 | 2025-07-04 | 东风汽车集团股份有限公司 | 一种电机驱动系统及汽车 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007159325A (ja) * | 2005-12-07 | 2007-06-21 | Shinko Electric Co Ltd | コイルの冷却機構 |
CN105637741A (zh) * | 2013-10-18 | 2016-06-01 | 丰田自动车株式会社 | 电动机 |
CN206559197U (zh) * | 2017-03-15 | 2017-10-13 | 上海汽车集团股份有限公司 | 电机冷却装置、电机冷却系统及汽车 |
CN110868022A (zh) * | 2019-11-13 | 2020-03-06 | 珠海格力电器股份有限公司 | 一种油冷电机结构、主驱电机及电机冷却系统 |
CN211880192U (zh) * | 2020-04-30 | 2020-11-06 | 比亚迪股份有限公司 | 电机定子冷却装置、单电机和双电机 |
US20220255403A1 (en) * | 2021-02-08 | 2022-08-11 | Honda Motor Co., Ltd. | Cooling structure for electric motor |
CN116566108A (zh) * | 2023-04-07 | 2023-08-08 | 东风汽车集团股份有限公司 | 一种高速电机的油冷系统 |
-
2023
- 2023-04-07 CN CN202310387639.9A patent/CN116566108A/zh active Pending
- 2023-10-23 WO PCT/CN2023/126035 patent/WO2024207711A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007159325A (ja) * | 2005-12-07 | 2007-06-21 | Shinko Electric Co Ltd | コイルの冷却機構 |
CN105637741A (zh) * | 2013-10-18 | 2016-06-01 | 丰田自动车株式会社 | 电动机 |
CN206559197U (zh) * | 2017-03-15 | 2017-10-13 | 上海汽车集团股份有限公司 | 电机冷却装置、电机冷却系统及汽车 |
CN110868022A (zh) * | 2019-11-13 | 2020-03-06 | 珠海格力电器股份有限公司 | 一种油冷电机结构、主驱电机及电机冷却系统 |
CN211880192U (zh) * | 2020-04-30 | 2020-11-06 | 比亚迪股份有限公司 | 电机定子冷却装置、单电机和双电机 |
US20220255403A1 (en) * | 2021-02-08 | 2022-08-11 | Honda Motor Co., Ltd. | Cooling structure for electric motor |
CN116566108A (zh) * | 2023-04-07 | 2023-08-08 | 东风汽车集团股份有限公司 | 一种高速电机的油冷系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116566108A (zh) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024207711A1 (zh) | 一种高速电机的油冷系统 | |
CN113364166B (zh) | 一种电机定子油冷结构 | |
CN108282056A (zh) | 一种车用液冷驱动电机 | |
CN113241880A (zh) | 内置油路结构的油冷电机 | |
CN111756133A (zh) | 电机冷却结构、电机、汽车 | |
CN111478521A (zh) | 一种混合冷却电机 | |
CN108336865A (zh) | 一种液冷驱动电机 | |
CN207939351U (zh) | 一种液冷驱动电机 | |
CN110086296B (zh) | 一种高效油冷永磁同步电机 | |
CN110138145A (zh) | 一种水冷和油冷相结合的永磁同步电机 | |
CN115276302B (zh) | 一种油冷电机及油冷电机过热保护方法 | |
CN214755873U (zh) | 内置油路结构的油冷电机 | |
CN221568918U (zh) | 一种混合冷却式空气悬浮离心压缩机 | |
CN208128076U (zh) | 一种车用液冷驱动电机 | |
CN116742879B (zh) | 风冷散热结构及磁悬浮电机 | |
CN117318395A (zh) | 一种具有自循环浸油冷却结构的电机 | |
CN113890272A (zh) | 一种油冷定子结构、电机及车辆 | |
CN212033944U (zh) | 油冷机壳以及油冷电机 | |
CN221176471U (zh) | 一种液冷电池箱及用电设备 | |
CN209435017U (zh) | 一种轴向磁场电机 | |
CN117318356A (zh) | 电机和车辆 | |
CN219041484U (zh) | 油冷电机定子及油冷电机 | |
CN116155017A (zh) | 可对转子进行防护的油冷电机 | |
CN212183329U (zh) | 一种混合冷却电机 | |
CN118264000A (zh) | 电机定子的绕组冷却结构、油冷电机及车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23931759 Country of ref document: EP Kind code of ref document: A1 |