WO2024207333A1 - 飞行平台、降落伞装置、飞行器及其控制方法和系统 - Google Patents
飞行平台、降落伞装置、飞行器及其控制方法和系统 Download PDFInfo
- Publication number
- WO2024207333A1 WO2024207333A1 PCT/CN2023/086659 CN2023086659W WO2024207333A1 WO 2024207333 A1 WO2024207333 A1 WO 2024207333A1 CN 2023086659 W CN2023086659 W CN 2023086659W WO 2024207333 A1 WO2024207333 A1 WO 2024207333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parachute
- parachute device
- aircraft
- controller
- flight
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 119
- 230000002159 abnormal effect Effects 0.000 claims abstract description 137
- 230000033001 locomotion Effects 0.000 claims abstract description 136
- 238000004891 communication Methods 0.000 claims abstract description 131
- 230000004044 response Effects 0.000 claims description 27
- 238000003745 diagnosis Methods 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 22
- 230000006870 function Effects 0.000 claims description 9
- 230000000007 visual effect Effects 0.000 claims description 9
- 229920001971 elastomer Polymers 0.000 claims description 7
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 6
- 239000006260 foam Substances 0.000 claims description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 6
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 6
- 208000012661 Dyskinesia Diseases 0.000 claims 2
- 230000005856 abnormality Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 6
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003862 health status Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 210000002304 esc Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D17/00—Parachutes
- B64D17/40—Packs
- B64D17/52—Opening, e.g. manual
- B64D17/54—Opening, e.g. manual automatic
Definitions
- the present disclosure relates to the technical field of aircraft, and in particular to a flying platform, a parachute device, an aircraft, and a control method and system thereof.
- an embodiment of the present disclosure provides a control system of a flying platform, the flying platform comprising an aircraft and a parachute device installed on the aircraft; the aircraft comprising a flight controller and a first sensing system, the parachute device comprising a parachute controller and a second sensing system, the control system of the flying platform comprising: the flight controller, which is communicatively connected to the parachute device, the flight controller being used to determine whether a motion state of the flying platform is abnormal based on sensing data of the first sensing system, and if the motion state of the flying platform is abnormal and the communication connection is normal, sending a parachute opening instruction to the parachute device through the communication connection to control the parachute device to open; and the parachute controller, which is used to determine whether the motion state of the flying platform is abnormal based on sensing data of the second sensing system, and if both the communication connection and the motion state of the flying platform are abnormal, the parachute controller controls the parachute device to open.
- an embodiment of the present disclosure provides a method for controlling a parachute device, wherein the parachute device is mounted on an aircraft and is communicatively connected to the aircraft, the parachute device comprising a sensor system, the method comprising: controlling the parachute device to open in response to receiving a parachute opening command sent by the aircraft through the communication connection; and determining whether the motion state of the parachute device is abnormal based on sensor data of the sensor system, and controlling the parachute device to open when it is determined that both the communication connection and the motion state of the parachute device are abnormal.
- an embodiment of the present disclosure provides a method for controlling an aircraft, wherein the aircraft is in communication connection with a parachute device installed on the aircraft, and the aircraft includes a sensor system, and the method includes: determining whether the motion state of the aircraft is abnormal according to sensor data of the sensor system; and after determining whether the motion state of the aircraft is abnormal, When the motion state is abnormal and the communication connection is normal, a parachute opening instruction is sent to the parachute device through the communication connection to control the opening of the parachute device; wherein the abnormal state of the communication connection can be detected by the parachute device, so that the parachute device is opened when the communication connection is abnormal and the motion state of the parachute device is detected to be abnormal.
- an embodiment of the present disclosure provides a parachute device, which is mounted on an aircraft and communicatively connected to the aircraft, and includes a sensor system and a controller; wherein the controller is configured to execute instructions to implement the method described in the second aspect.
- an embodiment of the present disclosure provides an aircraft, which is communicatively connected to a parachute device installed on the aircraft, and the aircraft includes a flight controller and a sensor system; wherein the flight controller is configured to execute instructions to implement the method described in the third aspect.
- an embodiment of the present disclosure provides a computer-readable storage medium having computer instructions stored thereon, which, when executed by a processor, implement the method described in the second aspect or the third aspect.
- an embodiment of the present disclosure provides a flying platform, comprising an aircraft and a parachute device installed on the aircraft, the aircraft comprising a flight controller and a first sensor system, the parachute device comprising a parachute controller and a second sensor system, wherein the flight controller is used to implement the functions performed by the flight controller in the control system of the flying platform of the first aspect; and the parachute controller is used to implement the functions performed by the parachute controller in the control system of the flying platform of the first aspect.
- an embodiment of the present disclosure provides a control method for a flying platform, wherein the flying platform includes an aircraft and a parachute device installed on the aircraft, the aircraft includes a flight controller and a first sensor system, the parachute device includes a parachute controller and a second sensor system, the flight controller is communicatively connected to the parachute device, and the control method for the flying platform includes: the flight controller determines whether the motion state of the flying platform is abnormal based on sensor data of the first sensor system; if the motion state of the flying platform is abnormal and the communication connection is normal, sending a parachute opening instruction to the parachute device through the communication connection to control the parachute device to open; and the parachute controller determines whether the motion state of the flying platform is abnormal based on the sensor data of the second sensor system; if both the communication connection and the motion state of the flying platform are abnormal, the parachute controller controls the parachute device to open.
- the flight controller of the aircraft obtains the motion state of the flight platform, and controls the parachute device to open when the motion state of the flight platform is abnormal. Since the flight controller can obtain relatively comprehensive information about the flight platform and the algorithm of the flight controller is highly reliable, the motion state of the flight platform obtained by the flight controller is relatively accurate, thereby reducing the rate of mis-opening and missed opening of the parachute.
- the flight controller is also connected to the parachute device in communication, and in the event of an abnormality in the above communication connection, the parachute controller can control the parachute device to open. The parachute device is opened, thus achieving redundant backup of the flight controller, so that in the event of an abnormality in the flight controller, the parachute device can still be controlled to open, further reducing the rate of missed parachute opening.
- FIG. 1 is a schematic diagram of a flying platform according to an embodiment of the present disclosure.
- FIG. 2 is a schematic diagram of the positional relationship between the aircraft and the parachute device according to an embodiment of the present disclosure.
- FIG. 3 is a schematic diagram of a parachute device according to an embodiment of the present disclosure.
- FIG. 4 is a component diagram of a parachute device according to an embodiment of the present disclosure.
- FIG. 5 is a perspective view of a parachute apparatus according to an embodiment of the present disclosure.
- FIG. 6 is a schematic diagram of a control system of a flying platform according to an embodiment of the present disclosure.
- FIG. 7 is a schematic diagram of a control system of a flying platform according to another embodiment of the present disclosure.
- FIG. 8 is a flow chart of a method for controlling a parachute device according to an embodiment of the present disclosure.
- FIG. 9 is a flow chart of a method for controlling an aircraft according to an embodiment of the present disclosure.
- FIG. 10 is an overall flow chart of the control process of the flying platform according to an embodiment of the present disclosure.
- FIG. 11 is a flow chart of a method for controlling a flying platform according to an embodiment of the present disclosure.
- first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
- word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
- FIG. 1 and FIG. 2 are schematic diagrams showing the structure of a flight platform 100 according to an embodiment of the present disclosure.
- the flight platform 100 may include an aircraft 110, a parachute device 130, and a remote control device 140.
- the aircraft 110 may include a power system 150, a flight control system 160, an energy system 170, a frame, and a gimbal 120 carried on the frame.
- the aircraft 110 may communicate wirelessly with the remote control device 140 and the parachute device 130.
- the aircraft 110 may be various types of drones such as agricultural drones or industrial application drones, which have the need for cyclic operations.
- the frame may include a fuselage and a foot frame (also referred to as a landing gear).
- the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
- the foot frame is connected to the fuselage and is used to support the aircraft 110 when it lands.
- the power system 150 may include one or more electronic speed regulators (referred to as ESCs) 151, one or more propellers 153, and one or more motors 152 corresponding to the one or more propellers 153, wherein the motor 152 is connected between the electronic speed regulator 151 and the propeller 153, and the motor 152 and the propeller 153 are arranged on the arm of the aircraft 110; the electronic speed regulator 151 is used to receive the drive signal generated by the flight control system 160, and provide a drive current to the motor 152 according to the drive signal to control the speed of the motor 152.
- the motor 152 is used to drive the propeller to rotate, thereby providing power for the flight of the aircraft 110, and the power enables the aircraft 110 to achieve one or more degrees of freedom.
- the aircraft 110 can rotate around one or more rotation axes.
- the above-mentioned rotation axes may include a roll axis (Roll), a yaw axis (Yaw) and a pitch axis (pitch).
- the motor 152 may be a DC motor or an AC motor.
- the motor 152 may be a brushless motor or a brushed motor.
- the flight control system 160 may include a flight controller 161 and a sensor system 162 of the aircraft 110.
- the sensor system 162 of the aircraft 110 is used to collect sensor data of the flight platform 100, including but not limited to the flight platform 100 in the air.
- the flight controller 161 is used to control the motion state of the flight platform 100.
- the motion state of the flight platform 100 can be controlled according to the attitude information measured by the sensor system 162 of the aircraft 110.
- the flight controller 161 can control the flight platform 100 according to pre-programmed instructions, or can control the flight platform 100 by responding to one or more remote control signals from the remote control device 140.
- the gimbal 120 may include a motor 122.
- the gimbal may be used to carry an imaging device 123.
- the flight controller 161 may control the movement of the gimbal 120 through the motor 122.
- the gimbal 120 may also include a controller for controlling the movement of the gimbal 120 by controlling the motor 122.
- the gimbal 120 may be independent of the aircraft 110 or may be a part of the aircraft 110.
- the motor 122 may be a DC motor or an AC motor.
- the motor 122 may be a brushless motor or a brushed motor.
- the imaging device 123 may be, for example, a camera or a video camera, etc., for capturing images.
- the imaging device 123 may communicate with the flight controller 161 and take photos under the control of the flight controller 161.
- the imaging device 123 of this embodiment includes at least a photosensitive element, such as a complementary metal oxide semiconductor (CMOS) sensor or a charge-coupled device (CCD) sensor. It is understood that the imaging device 123 may also be directly fixed to the aircraft 110, so that the gimbal 120 may be omitted.
- CMOS complementary metal oxide semiconductor
- CCD charge-coupled device
- the energy system 170 may include one or more batteries and a battery management system (BMS), wherein the batteries can be used to supply power to the power system 150, the flight control system 160, the gimbal 120, and the loads on the gimbal 120 (e.g., the imaging device 123), and the battery management system is used to manage and control the charging and discharging process of the batteries.
- BMS battery management system
- the parachute device 130 is located on the top of the aircraft 110 , can communicate with the aircraft 110 wirelessly, and can be opened when the motion state of the flight platform 100 is abnormal, thereby reducing the falling speed of the flight platform 100 and improving the safety of the flight platform 100 .
- the remote control device 140 is located at the ground end of the flying platform 100 and can communicate with the aircraft 110 wirelessly to remotely control the aircraft 110. In some examples, the remote control device 140 can also be wirelessly controlled.
- the control device 110 may communicate with the parachute device 130 by wire so as to control the opening of the parachute device 130 , or may communicate with the aircraft 110 by wireless so as to control the opening of the parachute device 130 through the aircraft 110 .
- the parachute device 130 of the embodiment of the present disclosure may include a parachute body 1301 and a parachute controller 1302, wherein the parachute body 1301 may include a canopy 13011, a canopy compartment 13012, parachute ropes (not shown) and parachute cloth (not shown), and the canopy 13011 is covered on the canopy compartment 13012.
- the canopy compartment 13012 includes a storage space for storing the parachute ropes and parachute cloth.
- a plurality of parachute rope hooks 13016 may be provided in the canopy compartment 13012, and the parachute ropes may be hung on the parachute rope hooks 13016.
- the parachute compartment 13012 may also include a gas generator 13017 and an ignition device (not shown). When the parachute device needs to be opened, the ignition device is ignited, so that the gas generator 13017 generates gas, fills the airbag 13014, and the parachute rope and the parachute cloth are ejected from the parachute compartment 13012. When not ignited, the airbag 13014 can be pressed down under the airbag cloth pressure strip 13018 in the parachute compartment 13012, so as to facilitate the storage of the airbag 13014.
- the parachute compartment 13012 may also include a PET sheet 13015. Since the parachute cloth is fluffy, the use of the PET sheet can prevent the parachute cloth from being exposed, which is convenient for storage.
- the parachute controller 1302 can obtain the sensor data of the sensor system 1303 of the parachute device 130, and determine the motion state of the flying platform 100 based on the sensor data.
- the sensor system 1303 of the parachute device 130 may be disposed in the parachute compartment 13012 , including but not limited to a barometer, a velocity sensor, an acceleration sensor, etc.
- the parachute controller 1302 may be disposed in a control box of the parachute device 130 , and the control box may be fixed on the outer wall of the parachute compartment 13012 .
- the decision to open the parachute is generally made through the parachute controller 1302, that is, the controller of the parachute device 130 can determine whether the motion state of the flying platform 100 is abnormal based on the sensing information of the sensor system 1303 of the parachute device 130, and control the parachute device 130 to open when the motion state of the flying platform 100 is determined to be abnormal.
- the information that the parachute device 130 can interact with the aircraft 110 is relatively limited.
- the parachute device 130 is usually not strongly coupled with the aircraft 110, so that the parachute device 130 can be applied to aircraft 110 of different manufacturers and different models at the same time. This further leads to insufficient interaction between the parachute device 130 and the aircraft 110, and the parachute device 130 cannot obtain enough information to determine the motion state of the flying platform 100.
- the reliability of the algorithm of the parachute controller 1302 itself may not be high enough, when the parachute opening decision is made solely through the parachute controller 1302, the error opening rate and the missed opening rate are high.
- the embodiment of the present disclosure provides a control system of a flying platform 100, wherein the flying platform 100 includes an aircraft 110 and a parachute device 130 installed on the aircraft 110, and the aircraft 110 includes a flight controller 161. and a first sensor system, the parachute device 130 includes a parachute controller 1302 and a second sensor system; referring to FIGS. 6 and 7 , the control system of the flight platform 100 includes:
- a flight controller 161 is connected in communication with the parachute device 130.
- the flight controller 161 is used to determine whether the motion state of the flight platform 100 is abnormal according to the sensing data of the first sensing system. If the motion state of the flight platform 100 is abnormal and the communication connection is normal, the flight controller 161 sends a parachute opening instruction to the parachute device 130 through the communication connection to control the parachute device 130 to open; and
- the parachute controller 1302 is used to determine whether the motion state of the flight platform 100 is abnormal based on the sensing data of the second sensing system. If both the communication connection and the motion state of the flight platform 100 are abnormal, the parachute controller 1302 controls the parachute device 130 to open.
- the flight controller 161 can obtain the motion state of the flight platform 100, and control the parachute device 130 to open when the motion state of the flight platform 100 is abnormal. Since the information that the flight controller 161 can obtain is relatively comprehensive, and the algorithm reliability of the flight controller 161 is relatively high, the parachute opening decision made by the flight controller 161 can reduce the rate of wrong parachute opening and the rate of missed parachute opening.
- the flight controller 161 is also connected to the parachute controller 1302 in communication. In the case of abnormal communication connection, the parachute device 130 can be controlled to open through the parachute controller 1302. In this way, redundant backup of the flight controller 161 is achieved, so that the parachute device 130 can still be controlled to open when the flight controller 161 is abnormal, further reducing the rate of missed parachute opening.
- the flight platform 100 may include a sensor system 162 (hereinafter referred to as the first sensor system) of the aircraft 110, which is used to collect state parameters of the aircraft 110 (i.e., the state parameters of the flight platform 100), and the state parameters can be used to characterize the motion state of the flight platform 100.
- the first sensor system includes a speedometer, an accelerometer, an IMU, and a barometer, which are respectively used to collect state parameters such as speed information, acceleration information, attitude information of the aircraft 110, and the air pressure value of the environment where the aircraft 110 is located.
- the flight controller 161 can communicate with the first sensor system in a wired or wireless manner to obtain the state parameters collected by the first sensor system, and determine whether the motion state of the flight platform 100 is abnormal based on the state parameters. For example, the flight controller 161 can determine whether the flight altitude of the flight platform 100 is lower than a preset altitude threshold based on the air pressure value collected by the barometer, determine whether the descent speed of the flight platform 100 is greater than a preset speed threshold based on the speed information collected by the speedometer, and determine whether the attitude of the flight platform 100 is abnormal based on the attitude information collected by the IMU.
- the flight controller 161 may determine that the motion state of the flight platform 100 is abnormal.
- the flight controller 161 can control the parachute device 130 to open.
- the flight controller 161 can be connected to the ignition device of the parachute device 130 in communication to control the ignition device of the parachute device 130 to ignite.
- the flight controller 161 can be connected to the parachute controller 1302 in communication to notify the parachute controller 1302 to control the ignition device of the parachute device 130 to ignite.
- the parachute controller 1302 can obtain the motion state of the flight platform 100. Specifically, the parachute controller 1302 can determine the motion state of the flight platform 100 based on the state parameters collected by the sensor system 1303 (hereinafter referred to as the second sensor system) of the parachute device 130.
- the second sensor system may include a barometer for collecting the air pressure value of the environment where the parachute device 130 is located.
- the parachute controller 1302 can determine that the motion state of the flight platform 100 is abnormal when it is determined based on the air pressure value that the height of the parachute device 130 is less than a preset height threshold.
- the parachute controller 1302 can obtain the state parameters collected by the second sensor system, and determine whether the motion state of the flight platform 100 is abnormal based on the state parameters. In another implementation, regardless of whether the communication connection between the flight controller 161 and the parachute device 130 is normal, the parachute controller 1302 can continue to obtain the state parameters collected by the second sensor system, but only when the communication connection between the flight controller 161 and the parachute device 130 is abnormal, the parachute controller 1302 will determine whether the motion state of the flight platform 100 is abnormal based on the state parameters collected by the second sensor system.
- the parachute controller 1302 only when the communication connection between the flight controller 161 and the parachute device 130 is abnormal, the parachute controller 1302 will obtain the state parameters collected by the second sensor system, and determine whether the motion state of the flight platform 100 is abnormal based on the state parameters.
- the flight controller 161 is communicatively connected with the parachute device 130 , which may include the flight controller 161 being communicatively connected with the parachute controller 1302 , or the flight controller 161 being communicatively connected with other functional units of the parachute device 130 .
- the parachute device 130 can be controlled to open by the parachute controller 1302. That is to say, in this embodiment, the priority of the flight controller 161 in making parachute opening decisions is higher than that of the parachute controller 1302.
- the parachute opening decision can be made by the flight controller 161 first. In the case of abnormal communication connection, the parachute opening decision is made by the parachute controller 1302.
- the parachute opening decision made by the flight controller 161 is more accurate, thereby reducing the rate of wrong parachute opening and the rate of missed parachute opening.
- the monitoring information of the aircraft 110 by the first sensor system can be transmitted to the parachute controller 1302, and/or the sensing data of the parachute device 130 by the second sensor system can be transmitted to the flight controller 161 through the communication connection between the flight controller 161 and the parachute device 130.
- the parachute controller 1302 can obtain the motion state of the flight platform 100 based on the received sensing data of the first sensor system and the sensing data of the second sensor system.
- the flight controller 161 can obtain the motion state of the flight platform 100 based on the received sensing data of the first sensor system and the sensing data of the second sensor system.
- the sensor data of the first sensor system received by the parachute controller 1302 when the communication connection is abnormal refers to the sensor data collected by the first sensor system before time t1 and sent to the parachute controller 1302 through the communication connection.
- the sensor data of the second sensor system received by the parachute controller 1302 may include the sensor data collected by the second sensor system at and after time t1.
- the sensor data of the first sensor system received by the flight controller 161 may include the sensor data collected by the first sensor system at and after time t1.
- the sensor data of the second sensor system received by the flight controller 161 refers to the sensor data collected by the second sensor system before time t1 and sent to the flight controller 161 through the communication connection.
- the above embodiment acquires the motion state of the flying platform 100 by fusing the sensing data of the first sensing system and the second sensing system, which can further improve the types and redundancy of sensors, thereby further improving the detection accuracy of the motion state.
- the flight controller 161 may send a heartbeat signal to the parachute controller 1302 at a preset frequency.
- the parachute controller 1302 may determine whether the above communication connection is abnormal based on the heartbeat signal. If the parachute controller 1302 does not receive the heartbeat signal within a preset time period determined based on the preset frequency, it is determined that the above communication connection is abnormal.
- the parachute controller 1302 may also send a heartbeat signal to the flight controller 161 at a preset frequency, and the flight controller 161 returns a response signal to the parachute controller 1302 in response to the received heartbeat signal.
- the parachute controller 1302 does not receive the response signal within a preset time period determined based on the preset frequency, it is determined that the above communication connection is abnormal.
- the flight controller 161 may also send a heartbeat signal to the other functional units, and the other functional units may send a response signal to the parachute controller 1302, so that the parachute controller 1302 determines whether the communication connection between the flight controller 161 and the parachute device 130 is abnormal based on the response signal sent by the other functional units.
- other methods may be used to determine the relationship between the flight controller 161 and the parachute. Whether the communication connection between the devices 130 is abnormal is not given one by one here.
- the parachute device 130 may be controlled to open after the power system 150 is turned off.
- the operation of turning off the power system 150 may be performed by the flight controller 161 when the motion state of the flight platform 100 is detected to be abnormal, or by the parachute controller 1302 when the motion state of the flight platform 100 is detected to be abnormal.
- the parachute controller 1302 may request the flight controller 161 to turn off the power system 150. If the parachute controller 1302 is connected to the power system 150 by communication (as shown in FIG.
- the parachute controller 1302 may control the power system 150 to be turned off through the communication connection.
- the parachute device 130 By turning off the power system 150 first and then controlling the parachute device 130 to open, the physical interference or entanglement between the parachute rope or parachute cloth and the motor or blade when the parachute is opened can be effectively reduced, thereby improving the effectiveness of the parachute opening.
- An embodiment of the overall control process of the power system 150 and the parachute device 130 is as follows: First, the flight controller 161 obtains the motion state of the flight platform 100. If the motion state of the flight platform 100 is abnormal, the flight controller 161 controls the power system 150 to be turned off, and then controls the parachute device 130 to be turned on. At the same time, the parachute controller 1302 obtains the motion state of the flight platform 100 and the communication connection between the flight controller 161 and the parachute device 130. If both the communication connection and the motion state of the flight platform 100 are abnormal, the parachute controller 1302 requests the flight controller 161 to turn off the power system 150, or the parachute controller 1302 turns off the power system 150 by itself.
- the abnormal communication connection between the flight controller 161 and the parachute device 130 may be due to an abnormality in the downlink communication link from the flight controller 161 to the parachute device 130, that is, the parachute device 130 cannot receive the signal sent by the flight controller 161, while the uplink communication link from the parachute device 130 to the flight controller 161 is normal, that is, the flight controller 161 can receive the signal sent by the parachute device 130, or the communication connection between the flight controller 161 and the parachute device 130 returns to normal after a short abnormality. Therefore, in the case of an abnormal communication connection between the flight controller 161 and the parachute device 130, it is still possible to try to request the flight controller 161 to shut down the power system 150.
- the energy system of the flight platform 100 can also be turned off.
- the energy system of the flight platform 100 may include the energy system 170 of the aircraft 110, and may also include the energy system of the parachute device 130.
- the energy system 170 of the aircraft 110 may include a battery and a battery management system for supplying power to various functional units on the aircraft 110 (e.g., the flight controller 161, the power system 150, etc.); the energy system of the parachute device 130 may be used to supply power to various functional units on the parachute device 130 (e.g., the parachute controller 1302).
- the flight controller 161 may control the flight platform 100 to open after controlling the parachute device 130 to open.
- the parachute controller 1302 may control the energy system of the flying platform 100 to be turned off after controlling the parachute device 130 to be turned on.
- the energy system of the flying platform 100 is shut down when a preset condition is met; the preset condition includes at least one of the following: the speed of the flying platform 100 is greater than a preset speed threshold, the flying platform 100 descends below a preset height, a first preset time has passed after the parachute device 130 is opened, and a second preset time has passed after the power system 150 is shut down.
- the preset condition includes at least one of the following: the speed of the flying platform 100 is greater than a preset speed threshold, the flying platform 100 descends below a preset height, a first preset time has passed after the parachute device 130 is opened, and a second preset time has passed after the power system 150 is shut down.
- the parachute controller 1302 may first request the flight controller 161 to shut down the power system, and then open the parachute device 130. If the flight controller 161 times out and fails to respond to the request to shut down the power system 150, the parachute controller 1302 may also shut down the energy system of the flight platform 100, and after shutting down the energy system of the platform 100, control the parachute device 130 to open.
- the advantage of doing so is that, in the event that the flight controller 161 fails to shut down the power system 150 in time due to an abnormality, by directly shutting down the energy system of the flight platform 100, it is ensured that the power system 150 is in a closed state before the parachute device 130 is opened, thereby improving the effectiveness of parachute opening.
- the flight controller 161 may return a response signal to the parachute controller 1302.
- the parachute controller 1302 may start timing after requesting the flight controller 161 to shut down the power system 150. If the flight controller 161 still does not return a response signal when the timing reaches the third preset time, it is determined that the flight controller 161 has timed out and has not responded to the request to shut down the power system 150.
- the third preset time length may be smaller than the second preset time length in the aforementioned embodiment. That is, if the power system 150 is successfully shut down and the parachute device 130 is controlled to open, the energy system of the flight platform 100 may be shut down after a relatively long time (i.e., the second preset time length).
- the flight controller 161 can record as many logs related to the motion state of the flight platform 100 as possible, so as to facilitate the subsequent determination of fault states and system maintenance operations by consulting the logs; on the other hand, since an indicator light is usually installed on the aircraft 110, when the energy system of the flight platform 100 is not shut down, the flight controller 161 can be more accurately observed through the indicator light. The position of the aircraft 110 is determined, especially in dark scenes such as at night, reducing the risk of losing the aircraft 110. If the power system 150 is not successfully shut down, the energy system of the flying platform 100 can be shut down after a short time (i.e., the first preset time), thereby ensuring that the power system 150 is in a shut-down state.
- a short time i.e., the first preset time
- the parachute controller 1302 is in communication connection with the power system 150.
- the parachute controller 1302 can send a control signal to the power system 150 so that the power system 150 maintains the current motion state of the flight platform 100.
- the power system 150 By controlling the power system 150 to shut down through two independent links of the flight controller 161 and the parachute controller 1302, it can be better ensured that the power system 150 is in a closed state before the parachute device 130 is opened, thereby improving the effectiveness of the parachute opening.
- the current motion state includes the current flight altitude, the current flight direction, the current flight speed and/or the current flight attitude. Further, if the above communication connection does not return to normal within the preset time period, the parachute controller 1302 can control the flight platform 100 to land. Further, if the above communication connection does not return to normal within the preset time period, and the motion state of the flight platform 100 is abnormal, the parachute controller 1302 can control the parachute device 130 to open.
- the parachute controller 1302 can communicate directly with the power system 150. In this way, when an abnormality occurs in the flight controller 161, the parachute controller 1302 can act as a backup flight controller, temporarily take over the aircraft 110, maintain the current motion state of the flight platform 100, and wait for the flight controller 161 to recover, thereby improving the safety of the flight platform 100. If the flight controller 161 times out and does not recover, the parachute controller 1302 can control the flight platform 100 to land slowly, and make a decision to open the parachute when it is found that the attitude of the flight platform 100 cannot be controlled. In this way, a step-by-step degraded safety redundant system is formed.
- the control system of the flight platform 100 of the embodiment of the present disclosure further includes a remote control device 140 for controlling the opening of the parachute device 130.
- the remote control device 140 may be a remote control dedicated to the aircraft 110, or may be an electronic device installed with control software for the aircraft 110, such as a mobile phone, a tablet computer, a laptop computer, etc.
- the remote control device 140 may be connected to the flight controller 161 or the parachute controller 1302 for communication, thereby sending a remote control signal for controlling the opening of the parachute device 130 to the parachute device 130 through the flight controller 161 or the parachute controller 1302.
- three control sources for controlling the opening of the parachute device 130 namely the remote control device 140, the flight controller 161 and the parachute controller 1302, are provided for mixed control, thereby improving the robustness of the control decision.
- the control priorities of the remote control device 140, the flight controller 161 and the parachute controller 1302 are reduced in sequence.
- the flight controller 161 has more sensor redundancy and types, and has stronger perception ability than the parachute controller 1302.
- the flight controller 161 makes the decision to open the parachute.
- the flight controller 161 is abnormal and the aircraft 110 floats away, the user can manually control the parachute device 130 to open through the remote control device 140.
- the parachute controller 1302 When the flight controller 161 is disconnected from the parachute device 130 during flight (i.e., the communication connection is abnormal), the parachute controller 1302 will switch to its own parachute opening algorithm to make the decision to open the parachute. In this way, through the cooperation of multiple control sources, the success rate of parachute opening is effectively improved.
- the flight controller 161 or the parachute controller 1302 may first control the power system 150 to close and then control the parachute device 130 to open after receiving the remote control signal, thereby improving the effectiveness of parachute opening.
- a sound and light alarm device e.g., a buzzer
- a barometer is provided in the parachute compartment 13012 of the parachute device 130, wherein the sound and light alarm device is used to send out sound and light alarm signals to remind and warn ground personnel during the falling process of the aircraft 110 and to indicate the position of the aircraft 110; the barometer is used to determine the height information of the parachute device 130.
- the air permeability of the parachute device 130 is poor due to the waterproof requirement, which will affect the alarm effect of the sound and light alarm device and the sensing accuracy of the barometer.
- the embodiment of the present disclosure adopts a waterproof and breathable material in the parachute device 130.
- the waterproof and breathable material can be provided in at least one of the following places: the connection between the parachute cover 13011 of the parachute device 130 and the parachute compartment 13012, around the airbag of the barometer, and the connection between the control box of the parachute device 130 and the parachute compartment 13012.
- the waterproof and breathable material includes but is not limited to foam, thermoplastic polyurethane rubber or polytetrafluoroethylene film, etc.
- control box of the parachute device 130 may also be provided with an alarm indicator light for outputting a visual alarm signal to alert ground personnel when the aircraft 110 is falling.
- the parachute device 130 of the embodiment of the present disclosure includes a plurality of parachute ropes, wherein the plurality of parachute ropes include at least one elastic rope and at least one inelastic rope, and the length of the elastic rope is less than the length of the inelastic rope.
- the elastic rope is a nylon rope
- the inelastic rope is a rubber rope.
- the number of elastic ropes and inelastic ropes can be equal or unequal. For example, in a non-limiting embodiment, the number of elastic ropes and inelastic ropes are both 4.
- the elastic rope is stressed first, and after the elastic rope absorbs a part of the energy, the inelastic rope is stressed, thereby reducing the damage to the parachute during the opening process.
- the impact force of the rope can reduce the risk of rope breakage and failure, further improving the effectiveness of parachute opening.
- the parachute controller 1302 can also perform fault diagnosis on the parachute device 130. Through fault diagnosis, the health status of the parachute device 130 can be determined, so that the user can be notified in time when a fault occurs.
- fault diagnosis includes but is not limited to fault diagnosis of the ignition device, the second sensor system and/or the communication connection.
- the fault diagnosis of the ignition device may include the diagnosis of the ignition voltage and resistance value of the ignition device;
- the fault diagnosis of the second sensor system may include the diagnosis of the connection status of each sensor in the second sensor system and the parachute controller 1302;
- the diagnosis of the communication link includes the diagnosis of the communication link between the parachute device 130 and the flight controller 161 and the communication link between the parachute device 130 and the remote control device 140.
- the fault diagnosis result can be sent to the remote control device 140 through the parachute controller 1302 and displayed on the display interface of the remote control device 140.
- a status indicator light can also be provided on the parachute device 130 to indicate the fault diagnosis result.
- the number of indicator lights is greater than or equal to 1. For example, different faults can be indicated by different indicator lights. Alternatively, different faults are indicated by different colors of indicator lights. By setting the status indicator light, the user can intuitively observe the health status of the parachute device 130 without checking the remote control device 140.
- the embodiment of the present disclosure further provides a control method of a parachute device 130 , wherein the parachute device 130 is mounted on the aircraft 110 and is in communication connection with the aircraft 110 , and the parachute device 130 includes a sensor system.
- the method includes:
- Step S801 in response to receiving a parachute opening instruction sent by the aircraft 110 via the communication connection, controlling the parachute device 130 to open;
- Step S802 determining whether the motion state of the parachute device 130 is abnormal according to the sensing data of the sensing system, and when it is determined that both the communication connection and the motion state of the parachute device 130 are abnormal, controlling the parachute device 130 to open.
- the disclosed embodiment may be performed by the parachute device 130, which may be in communication connection with the aircraft 110. If the motion state of the aircraft 110 is abnormal and the communication connection is normal, the aircraft 110 may send a parachute opening instruction to the parachute controller 1302, so that the parachute controller 1302 controls the parachute device 130 to open.
- the parachute controller 1302 itself can also control the opening of the parachute device 130. Specifically, the parachute controller 1302 can determine whether the motion state of the parachute device 130 is abnormal based on the sensor data of the sensor system of the parachute device 130 (i.e., the second sensor system mentioned above), and control the opening of the parachute device 130 when both the communication connection and the motion state of the parachute device 130 are abnormal.
- the algorithm of the control device 110 is highly reliable, so the parachute opening decision is made by the aircraft 110, which can reduce the rate of false opening and the rate of missed opening.
- the parachute device 130 itself makes the parachute opening decision, so that the parachute device 130 can still be controlled to open when an abnormality occurs in the aircraft 110, further reducing the rate of missed opening.
- parachute device 130 is deployed after the power system of aircraft 110 is shut down.
- the power system 150 is shut down by the aircraft 110 when an abnormal motion state of the parachute device 130 is detected.
- the method further includes: when it is detected that the motion state of the parachute device 130 is abnormal, the parachute device 130 controls the power system 150 to shut down.
- controlling the power system 150 to shut down includes: requesting the aircraft 110 to shut down the power system 150 .
- the energy system of the aircraft 110 is shut down after the parachute device 130 is deployed.
- the aircraft 110 is requested to shut down the energy system of the aircraft 110 .
- the parachute controller is in communication with the energy system; the method further includes: after the parachute device 130 is opened, controlling the energy system to close.
- the energy system is shut down when preset conditions are met; the preset conditions include at least one of the following: the speed of the aircraft 110 is greater than a preset speed threshold, the aircraft 110 descends below a preset altitude, a first preset time has passed after the parachute device 130 is opened, and a second preset time has passed after the power system 150 of the aircraft 110 is shut down.
- the controlling the parachute device 130 to open includes: if the aircraft 110 does not respond to the request to shut down the power system 150 within a timeout period, controlling the energy system of the aircraft 110 to shut down; after controlling the energy system of the aircraft 110 to shut down, controlling the parachute device 130 to open.
- the method further includes: if the communication connection is abnormal and the motion state of the parachute device 130 is normal, sending a control signal to the power system 150 of the aircraft 110 so that the power system 150 maintains the current motion state of the aircraft 110 .
- the method further includes: if the communication connection does not return to normal within a preset time period, controlling the aircraft 110 to land.
- controlling the parachute device 130 to open includes: if the communication connection does not return to normal within a preset time period and the movement state of the parachute device 130 is abnormal, controlling the parachute device 130 to open.
- the parachute device 130 can be opened in response to a remote control signal sent by the remote control device 140 .
- the remote control device 140 is in communication with the aircraft 110 , and the remote control signal is sent to the parachute device 130 via the aircraft 110 .
- the method further includes: receiving a heartbeat signal sent by the aircraft 110 at a preset frequency; and determining whether the communication connection between the parachute device 130 and the aircraft 110 is abnormal based on the heartbeat signal.
- the parachute device 130 includes a parachute compartment 13012 and a parachute cover 13011, and a waterproof and breathable material is provided at the connection between the parachute compartment 13012 and the parachute cover 13011; and/or a barometer is provided in the parachute compartment 13012 of the parachute device 130, and a waterproof and breathable material is provided around the air bag of the barometer.
- the waterproof and breathable material is foam, thermoplastic polyurethane rubber or polytetrafluoroethylene film.
- the parachute device 130 further includes an audible and visual alarm device, which is contained in a control box of the parachute device 130 and is used to output audible alarm information after the parachute device 130 is opened.
- the parachute device 130 includes a plurality of parachute lines, the plurality of parachute lines including at least one elastic line and at least one inelastic line, the length of the elastic line being shorter than the length of the inelastic line.
- the method further includes: performing fault diagnosis on the parachute device 130 .
- a status indicator light is provided on the parachute device 130 to indicate the fault diagnosis result.
- the parachute device 130 and the aircraft 110 of the embodiment of the present disclosure can constitute the flight platform 100, and the flight platform 100 may include other components in addition to the parachute device 130 and the aircraft 110. It can be understood that since the parachute device 130 is installed on the aircraft 110, the motion state of the parachute device 130 can be used to characterize the motion state of the aircraft 110; and the parachute device 130 and the aircraft 110 constitute the flight platform 100, therefore, the motion state of the parachute device 130 and the motion state of the aircraft 110 can both characterize the motion state of the flight platform 100.
- the parachute device 130 may include a parachute controller 1302, and the method of the embodiment of the present disclosure may be executed by the parachute controller 1302. The details of each step in the method of the embodiment of the present disclosure are detailed in the functions implemented by the parachute controller 1302 in the embodiment of the control system of the aforementioned flight platform 100, which will not be repeated here.
- step S801 is performed when the communication connection is normal, while step S802 is performed when the communication connection is abnormal. Therefore, step S801 can be performed before step S802 or after step S802.
- an embodiment of the present disclosure further provides a control method of an aircraft 110, wherein the aircraft 110 is in communication connection with a parachute device 130 installed on the aircraft 110, and the aircraft 110 includes a sensor system.
- the method includes:
- Step S901 determining whether the motion state of the aircraft 110 is abnormal according to the sensor data of the sensor system of the aircraft 110;
- Step S902 When it is determined that the motion state of the aircraft 110 is abnormal and the communication connection is normal, a parachute opening instruction is sent to the parachute device 130 through the communication connection to control the parachute device 130 to open; wherein the abnormal state of the communication connection can be detected by the parachute device 130, so that the parachute device 130 opens when the communication connection is abnormal and the motion state of the parachute device 130 is detected to be abnormal.
- the parachute device 130 is deployed after the power system 150 of the aircraft 110 is shut down.
- the method further includes: when an abnormal motion state of the aircraft 110 is detected, controlling the power system 150 to shut down.
- the power system 150 is shut down when an abnormal motion state of the aircraft 110 is detected.
- the power system 150 in response to a request from the parachute device 130 , the power system 150 is controlled to shut down; the request is sent when the motion state of the aircraft 110 is abnormal.
- the energy system of the aircraft 110 is shut down after the parachute device 130 is deployed.
- the method further includes: shutting down an energy system of the aircraft 110 after controlling the parachute device 130 to open.
- the parachute device 130 is in communication with the energy system; the aircraft 110 shuts down the energy system in response to the request of the parachute device 130 .
- the energy system is shut down when preset conditions are met; the preset conditions include at least one of the following: the speed of the parachute device 130 is greater than a preset speed threshold, the parachute device 130 descends below a preset height, a first preset time has passed after the parachute device 130 is opened, and a second preset time has passed after the power system 150 of the aircraft 110 is shut down.
- the parachute device 130 can be opened and closed in response to a remote control signal sent by the remote control device 140. start.
- the method further includes: forwarding the remote control signal sent by the remote control device 140 to the parachute device 130 to control the parachute device 130 to open.
- the parachute device 130 includes a parachute controller 1302, a parachute compartment 13012 and a parachute cover 13011, the parachute controller 1302 is used to control the opening of the parachute device 130, and a waterproof and breathable material is provided at the connection between the parachute compartment 13012 and the parachute cover 13011; and/or a barometer is provided in the parachute compartment 13012 of the parachute device 130, and a waterproof and breathable material is provided around the airbag of the barometer; and/or the parachute device 130 includes a control box for accommodating the parachute controller 1302, and a waterproof and breathable material is provided at the connection between the control box and the parachute compartment 13012.
- the waterproof and breathable material is foam, thermoplastic polyurethane rubber or polytetrafluoroethylene film.
- the parachute device 130 further includes an audible and visual alarm device, which is contained in a control box of the parachute device 130 and is used to output audible alarm information after the parachute device 130 is opened.
- the parachute device 130 includes a plurality of parachute lines, the plurality of parachute lines including at least one elastic line and at least one inelastic line, the length of the elastic line being shorter than the length of the inelastic line.
- the sensing system of the aircraft 110 may be the first sensing system in the control system of the aforementioned flight platform 100. Since the parachute device 130 is installed on the aircraft 110, the motion state of the parachute device 130 may be used to characterize the motion state of the aircraft 110. Further, the aircraft 110 and the parachute device 130 may constitute the flight platform 100, and the motion state of the parachute device 130 and the motion state of the aircraft 110 may both be used to characterize the motion state of the flight platform 100.
- the parachute device 130 may include a second sensing system and a parachute controller 1302, and the parachute controller 1302 may determine whether the motion state of the parachute device 130 is abnormal based on the sensing data of the second sensing system.
- the aircraft 110 may include a flight controller 161, and the method of this embodiment may be executed by the flight controller 161.
- the details of each step in the method of the embodiment of the present disclosure are detailed in the functions implemented by the flight controller 161 in the embodiment of the control system of the aforementioned flight platform 100, and will not be repeated here.
- steps S1001 to S1005 may be executed by the flight controller 161
- steps S1006 to S1012 may be executed by the parachute controller 1302 .
- step S1001 the flight controller 161 may obtain the motion state of the flight platform 100 .
- step S1002 the flight controller 161 may determine whether the motion state of the flight platform 100 is abnormal. If the motion state of the flight platform 100 is abnormal and the communication connection between the flight controller 161 and the parachute device 130 is normal, step S1003 is executed, otherwise, the process returns to step S1001.
- step S1003 the flight controller 161 may shut down the power system 150 of the flight platform 100 and execute step S1004 .
- step S1004 the flight controller 161 may control the parachute device 130 to open through the communication connection, and execute step S1005 .
- step S1005 the flight controller 161 may shut down the energy system of the flight platform 100 .
- step S1006 the parachute controller 1302 may obtain the motion state of the flying platform 100. This step may be performed in parallel with step S1001.
- step S1007 the parachute controller 1302 may determine whether the motion state of the flying platform 100 is abnormal. If so, step S1008 is executed, otherwise, the process returns to step S1006.
- step S1008 the parachute controller 1302 can determine whether the communication connection between the parachute device 130 and the flight controller 161 is abnormal. If so, execute step S1009, otherwise return to step S1006.
- the execution order of step S1007 and step S1008 is not limited by the present disclosure. In addition to the order shown in the figure, it is also possible to judge in parallel whether the communication connection between the parachute device 130 and the flight controller 161 and the motion state of the flight platform 100 are abnormal, or first judge whether the communication connection between the parachute device 130 and the flight controller 161 is abnormal, and when the judgment result is "yes", then judge whether the motion state of the flight platform 100 is abnormal.
- step S1009 the parachute controller 1302 may request the flight controller 161 to shut down the power system 150 and execute step S1010 .
- step S1010 the parachute controller 1302 may determine whether the flight controller 161 has timed out in response to the request to shut down the power system 150. If so, step S1011 is executed, otherwise, step S1012 is executed. Alternatively, if the result of the determination is no, the flight controller 161 may also execute steps S1004 and S1005, thereby opening the parachute device 130 and shutting down the energy system of the flight platform 100.
- step S1011 the parachute controller 1302 may shut down the energy system of the flying platform 100 and execute step S1012 .
- step S1012 the parachute controller 1302 may control the parachute device 130 to open.
- the embodiment of the present disclosure further provides a parachute device 130 , which is mounted on the aircraft 110 and is in communication connection with the aircraft 110 , and includes a sensor system and a controller; The controller is configured to execute instructions to implement the method performed by the parachute controller 1302 in any embodiment of the present disclosure.
- an embodiment of the present disclosure further provides an aircraft 110, which is communicatively connected to a parachute device 130 installed on the aircraft 110, and the aircraft 110 includes a flight controller 161 and a sensor system; wherein the flight controller 161 is configured to execute instructions to implement the method executed by the flight controller 161 in any embodiment of the present disclosure.
- An embodiment of the present disclosure provides a flying platform 100, which includes an aircraft 110 and a parachute device 130 installed on the aircraft 110, wherein the aircraft 110 includes a flight controller 161 and a first sensor system, and the parachute device 130 includes a parachute controller 1302 and a second sensor system, wherein the flight controller 161 is used to implement the functions performed by the flight controller 161 in the control system of the flying platform 100 of the first aspect; and the parachute controller 1302 is used to implement the functions performed by the parachute controller 1302 in the control system of the flying platform 100 of the first aspect.
- the present disclosure also provides a computer-readable storage medium on which a computer program is stored.
- a computer program is stored on which a computer program is stored.
- the program is executed by a processor, the method described in any of the above embodiments is implemented.
- Computer readable media include permanent and non-permanent, removable and non-removable media that can be implemented by any method or technology to store information.
- Information can be computer readable instructions, data structures, program modules or other data.
- Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device.
- computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.
- the embodiment of the present disclosure further provides a control method of a flying platform 100, wherein the flying platform 100 includes an aircraft 110 and a parachute device 130 installed on the aircraft 110, wherein the aircraft 110 includes a flight controller 161 and a first sensor system, and the parachute device 130 includes a parachute controller 1302 and a second sensor system, and the flight controller 161 is in communication with the parachute device 130.
- the control method of the flying platform includes:
- Step S1101 The flight controller 161 determines whether the motion state of the flight platform 100 is abnormal based on the sensor data of the first sensor system. If the motion state of the flight platform 100 is abnormal and the communication connection is normal, the flight controller 161 sends a signal to the flight platform 100 through the communication connection. Sending a parachute opening instruction to the parachute device 130 to control the parachute device 130 to open; and
- Step S1102 the parachute controller 1302 determines whether the motion state of the flying platform 100 is abnormal based on the sensing data of the second sensing system. If both the communication connection and the motion state of the flying platform 100 are abnormal, the parachute controller 1302 controls the parachute device 130 to open.
- the parachute device 130 is opened after the power system of the flying platform 100 is shut down.
- the method further includes: when an abnormal motion state of the flying platform 100 is detected, controlling the power system to shut down.
- the power system is shut down when the parachute device 130 detects that the motion state of the flying platform 100 is abnormal; and/or the power system is shut down when the aircraft 110 detects that the motion state of the flying platform 100 is abnormal.
- the power system in response to a request from the parachute controller 1302, the power system is controlled to be shut down, and the request from the parachute controller 1302 is sent when the parachute device 130 detects that the motion state of the flight platform 100 is abnormal; and/or in response to a request from the flight controller 161, the power system is controlled to be shut down, and the request from the flight controller 161 is sent when the aircraft 110 detects that the motion state of the flight platform 100 is abnormal.
- the energy system of the flying platform 100 is shut down after the parachute device 130 is deployed.
- the method further includes: shutting down the energy system after controlling the parachute device 130 to open.
- the parachute device 130 is in communication with an energy system; the energy system is controlled by the parachute controller 1302 to open and then close the parachute device 130.
- the energy system is shut down when preset conditions are met; the preset conditions include at least one of the following: the speed of the flying platform 100 is greater than a preset speed threshold, the flying platform 100 descends below a preset height, a first preset time has passed after the parachute device 130 is opened, and a second preset time has passed after the power system of the flying platform 100 is shut down.
- the parachute device 130 can be opened in response to a remote control signal sent by the remote control device 140 .
- the method further includes: performing fault diagnosis on the parachute device 130 .
- a status indicator light is provided on the parachute device 130 to indicate the fault diagnosis result.
- a typical implementation device is a computer, which may be in the form of a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email transceiver, a game console, a tablet computer, a wearable device or a combination of any of these devices.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Selective Calling Equipment (AREA)
Abstract
一种飞行平台、降落伞装置、飞行器及其控制方法和系统,飞行平台包括飞行器和安装在飞行器上的降落伞装置;飞行器包括飞行控制器和第一传感系统,降落伞装置包括降落伞控制器和第二传感系统,飞行平台的控制系统包括:飞行控制器,与降落伞装置通信连接,飞行控制器用于根据第一传感系统的传感数据确定飞行平台的运动状态是否异常,若飞行平台的运动状态异常且通信连接正常,通过通信连接向降落伞装置发送开伞指令以控制降落伞装置开启;以及降落伞控制器,用于根据第二传感系统的传感数据确定飞行平台的运动状态是否异常,若通信连接和飞行平台的运动状态均异常,降落伞控制器控制降落伞装置开启。
Description
本公开涉及飞行器技术领域,尤其涉及一种飞行平台、降落伞装置、飞行器及其控制方法和系统。
飞行器从高空坠落时,如果没有减速装置,会对飞行器本体及地面的生命及物体造成严重损害(物理伤害或起火)。降落伞可以通过空气阻力降低飞行器落地时的速度,从而降低损害。然而,相关技术在控制降落伞装置开伞时,误开伞率和漏开伞率较高。
发明内容
第一方面,本公开实施例提供一种飞行平台的控制系统,所述飞行平台包括飞行器和安装在所述飞行器上的降落伞装置;所述飞行器包括飞行控制器和第一传感系统,所述降落伞装置包括降落伞控制器和第二传感系统,所述飞行平台的控制系统包括:所述飞行控制器,与所述降落伞装置通信连接,所述飞行控制器用于根据所述第一传感系统的传感数据确定所述飞行平台的运动状态是否异常,若所述飞行平台的运动状态异常且通信连接正常,通过所述通信连接向所述降落伞装置发送开伞指令以控制所述降落伞装置开启;以及所述降落伞控制器,用于根据所述第二传感系统的传感数据确定所述飞行平台的运动状态是否异常,若所述通信连接和所述飞行平台的运动状态均异常,所述降落伞控制器控制所述降落伞装置开启。
第二方面,本公开实施例提供一种降落伞装置的控制方法,所述降落伞装置安装在飞行器上且与所述飞行器通信连接,所述降落伞装置包括传感系统,所述方法包括:响应接收到所述飞行器通过所述通信连接发送的开伞指令,控制所述降落伞装置开启;以及根据所述传感系统的传感数据确定所述降落伞装置的运动状态是否异常,并在确定所述通信连接和所述降落伞装置的运动状态均异常时,控制所述降落伞装置开启。
第三方面,本公开实施例提供一种飞行器的控制方法,所述飞行器与安装在所述飞行器上的降落伞装置通信连接,所述飞行器包括传感系统,所述方法包括:根据所述传感系统的传感数据确定所述飞行器的运动状态是否异常;在确定所述飞行器的运
动状态异常且所述通信连接正常时,通过所述通信连接向所述降落伞装置发送开伞指令以控制所述降落伞装置开启;其中,所述通信连接的异常状态能够被所述降落伞装置检测到,以使所述降落伞装置在所述通信连接异常,且检测到所述降落伞装置的运动状态异常的情况下开启。
第四方面,本公开实施例提供一种降落伞装置,所述降落伞装置安装在飞行器上且与所述飞行器通信连接,所述降落伞装置包括传感系统和控制器;其中,所述控制器被配置为执行指令,以实现第二方面所述的方法。
第五方面,本公开实施例提供一种飞行器,所述飞行器与安装在所述飞行器上的降落伞装置通信连接,所述飞行器包括飞行控制器和传感系统;其中,所述飞行控制器被配置为执行指令,以实现第三方面所述的方法。
第六方面,本公开实施例提供一种计算机可读存储介质,其上存储有计算机指令,所述指令被处理器执行时实现第二方面或第三方面所述的方法。
第七方面,本公开实施例提供一种飞行平台,所述飞行平台包括飞行器和安装在所述飞行器上的降落伞装置,所述飞行器包括飞行控制器和第一传感系统,所述降落伞装置包括降落伞控制器和第二传感系统,其中,所述飞行控制器用于实现第一方面的飞行平台的控制系统中由飞行控制器执行的功能;所述降落伞控制器用于实现第一方面的飞行平台的控制系统中由降落伞控制器执行的功能。
第八方面,本公开实施例提供一种飞行平台的控制方法,所述飞行平台包括飞行器和安装在所述飞行器上的降落伞装置,所述飞行器包括飞行控制器和第一传感系统,所述降落伞装置包括降落伞控制器和第二传感系统,所述飞行控制器与所述降落伞装置通信连接,所述飞行平台的控制方法包括:所述飞行控制器根据所述第一传感系统的传感数据确定所述飞行平台的运动状态是否异常,若所述飞行平台的运动状态异常且通信连接正常,通过所述通信连接向所述降落伞装置发送开伞指令以控制所述降落伞装置开启;以及所述降落伞控制器根据所述第二传感系统的传感数据确定所述飞行平台的运动状态是否异常,若所述通信连接和所述飞行平台的运动状态均异常,所述降落伞控制器控制所述降落伞装置开启。
本公开实施例中,通过飞行器的飞行控制器获取飞行平台的运动状态,并在飞行平台的运动状态异常时控制降落伞装置开启。由于飞行控制器能够获取到的飞行平台的信息比较全面,且飞行控制器的算法可靠性较高,因此,飞行控制器获取的飞行平台的运动状态比较准确,从而能够降低误开伞率和漏开伞率。此外,飞行控制器还与降落伞装置通信连接,在上述通信连接异常的情况下,能够通过降落伞控制器控制降
落伞装置开启,这样,实现了对飞行控制器的冗余备份,从而使得在飞行控制器发生异常的情况下仍然能够控制降落伞装置开启,进一步降低了漏开伞率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例的飞行平台的示意图。
图2是本公开实施例的飞行器与降落伞装置的位置关系的示意图。
图3是本公开实施例的降落伞装置的轮廓图。
图4是本公开实施例的降落伞装置的组件图。
图5是本公开实施例的降落伞装置的透视图。
图6是本公开实施例的飞行平台的控制系统的示意图。
图7是本公开另一实施例的飞行平台的控制系统的示意图。
图8是本公开实施例的降落伞装置的控制方法的流程图。
图9是本公开实施例的飞行器的控制方法的流程图。
图10是本公开实施例的飞行平台的控制过程的总体流程图。
图11是本公开实施例的飞行平台的控制方法的流程图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1和图2示出了本公开实施例的飞行平台100的结构的示意图。飞行平台100可以包括飞行器110、降落伞装置130和遥控装置140。其中,飞行器110可以包括动力系统150、飞控系统160、能源系统170、机架和承载在机架上的云台120。飞行器110可以与遥控装置140和降落伞装置130进行无线通信。飞行器110可以是农业无人机或行业应用无人机等各种类型的无人机,有循环作业的需求。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在飞行器110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152,其中电机152连接在电子调速器151与螺旋桨153之间,电机152和螺旋桨153设置在飞行器110的机臂上;电子调速器151用于接收飞控系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动螺旋桨旋转,从而为飞行器110的飞行提供动力,该动力使得飞行器110能够实现一个或多个自由度的运动。在某些实施例中,飞行器110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
飞控系统160可以包括飞行控制器161和飞行器110的传感系统162。飞行器110的传感系统162用于采集飞行平台100的传感数据,包括但不限于飞行平台100在空
间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。飞行器110的传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器161用于控制飞行平台100的运动状态,例如,可以根据飞行器110的传感系统162测量的姿态信息控制飞行平台100的运动状态。应理解,飞行控制器161可以按照预先编好的程序指令对飞行平台100进行控制,也可以通过响应来自遥控装置140的一个或多个遥控信号对飞行平台100进行控制。
云台120可以包括电机122。云台可用于携带成像装置123。飞行控制器161可以通过电机122控制云台120的运动。可选的,作为另一实施例,云台120还可以包括控制器,用于通过控制电机122来控制云台120的运动。应理解,云台120可以独立于飞行器110,也可以为飞行器110的一部分。应理解,电机122可以是直流电机,也可以是交流电机。另外,电机122可以是无刷电机,也可以是有刷电机。
成像装置123例如可以是照相机或摄像机等用于捕获图像的设备,成像装置123可以与飞行控制器161通信,并在飞行控制器161的控制下进行拍摄。本实施例的成像装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。可以理解,成像装置123也可直接固定于飞行器110上,从而云台120可以省略。
能源系统170可以包括一个或多个电池,以及电池管理系统(Battery Management System,BMS),其中,电池可用于向动力系统150、飞控系统160、云台120以及云台120上的负载(例如,成像装置123)供电,电池管理系统用于对电池的充放电过程进行管理和控制。
如图2所示,降落伞装置130位于飞行器110的顶部,可以通过无线方式与飞行器110进行通信,并且可以在飞行平台100的运动状态异常时开启,从而降低飞行平台100的坠落速度,提高飞行平台100的安全性。
遥控装置140位于飞行平台100的地面端,可以通过无线方式与飞行器110进行通信,用于对飞行器110进行远程操纵。在一些例子中,遥控装置140还可以通过无
线方式与降落伞装置130进行通信,以便控制降落伞装置130开启,或者通过无线方式与飞行器110进行通信,以便通过飞行器110控制降落伞装置130开启。
应理解,上述对于飞行平台100各组成部分的命名仅是出于标识的目的,并不应理解为对本公开的限制。
请参阅图3、图4和图5,本公开实施例的降落伞装置130可包括降落伞本体1301和降落伞控制器1302,其中,降落伞本体1301可以包括伞盖13011、伞仓13012、伞绳(图未示)和伞布(图未示),伞盖13011盖设在伞仓13012上。伞仓13012包括一收纳空间,用于收纳降伞绳和伞布。参见图5,伞仓13012内可以设置多个伞绳挂耳13016,伞绳可以挂设在伞绳挂耳13016上。伞仓13012内还可以包括气体发生器13017和点火装置(图未示),在需要开启降落伞装置时,点火装置点火,从而使得气体发生器13017产生气体,将气囊13014充满,使得伞绳和伞布从伞仓13012弹出。在未点火时,气囊13014可以下压在伞仓13012内的气囊布压条13018之下,从而方便气囊13014的收纳。伞仓13012内还可包括PET片13015,由于伞布是蓬松的,采用PET片能够防止伞布露出,方便收纳。降落伞控制器1302可以获取降落伞装置130的传感系统1303的传感数据,并基于该传感数据确定飞行平台100的运动状态。降落伞装置130的传感系统1303可以设于伞仓13012内,包括但不限于气压计、速度传感器、加速度传感器等。降落伞控制器1302可以设于降落伞装置130的控制盒内,控制盒可以固定在伞仓13012的外壁上。
在相关技术中,一般通过降落伞控制器1302进行开伞决策,即,降落伞装置130的控制器可以基于降落伞装置130的传感系统1303的感测信息来判断飞行平台100的运动状态是否异常,并在判定飞行平台100的运动状态异常时控制降落伞装置130开启。然而,由于飞行器110的厂商对飞行器110的数据接口的限制,降落伞装置130能够与飞行器110交互的信息比较有限。此外,为了保证降落伞装置130的通用性,降落伞装置130通常与飞行器110没有强耦合,这样能够使降落伞装置130能够同时适用于不同厂商、不同型号的飞行器110。这进一步导致了降落伞装置130与飞行器110之间的交互不充分,降落伞装置130无法获取到足够的信息来确定飞行平台100的运动状态。此外,由于降落伞控制器1302自身的算法可靠性可能不够高,因此,在单独通过降落伞控制器1302进行开伞决策时,误开伞率和漏开伞率较高。
基于此,本公开实施例提供一种飞行平台100的控制系统,飞行平台100包括飞行器110和安装在飞行器110上的降落伞装置130,飞行器110包括飞行控制器161
和第一传感系统,降落伞装置130包括降落伞控制器1302和第二传感系统;参见图6和图7,飞行平台100的控制系统包括:
飞行控制器161,与降落伞装置130通信连接,飞行控制器161用于根据第一传感系统的传感数据确定飞行平台100的运动状态是否异常,若飞行平台100的运动状态异常且通信连接正常,通过通信连接向降落伞装置130发送开伞指令以控制降落伞装置130开启;以及
降落伞控制器1302,用于根据第二传感系统的传感数据确定飞行平台100的运动状态是否异常,若通信连接和飞行平台100的运动状态均异常,降落伞控制器1302控制降落伞装置130开启。
在上述实施例中,飞行控制器161能够获取飞行平台100的运动状态,并在飞行平台100的运动状态异常时控制降落伞装置130开启。由于飞行控制器161能够获取到的信息比较全面,且飞行控制器161的算法可靠性较高,因此,通过飞行控制器161进行开伞决策,能够降低误开伞率和漏开伞率。此外,飞行控制器161还与降落伞控制器1302通信连接,在上述通信连接异常的情况下,能够通过降落伞控制器1302控制降落伞装置130开启,这样,实现了对飞行控制器161的冗余备份,从而使得在飞行控制器161发生异常的情况下仍然能够控制降落伞装置130开启,进一步降低了漏开伞率。
在一些实施例中,飞行平台100上可以包括飞行器110的传感系统162(以下称第一传感系统),用于采集飞行器110的状态参数(即飞行平台100的状态参数),该状态参数可以用于表征飞行平台100的运动状态。例如,第一传感系统包括速度计、加速度计、IMU和气压计,分别用于采集飞行器110的速度信息、加速度信息、姿态信息和飞行器110所在环境的气压值等状态参数。飞行控制器161可以与第一传感系统通过有线或无线方式进行通信,从而获取第一传感系统采集的状态参数,并基于该状态参数确定飞行平台100的运动状态是否异常。例如,飞行控制器161可以基于气压计采集的气压值确定飞行平台100的飞行高度是否低于预设高度阈值,可以基于速度计采集的速度信息确定飞行平台100的下降速度是否大于预设速度阈值,还可以基于IMU采集的姿态信息确定飞行平台100的姿态是否异常。在飞行平台100的下降速度大于预设速度阈值,飞行高度低于预设高度阈值,和/或飞行平台100的姿态异常时,飞行控制器161可以判定飞行平台100的运动状态异常。
在飞行控制器161判定飞行平台100的运动状态异常的情况下,飞行控制器161可以控制降落伞装置130开启。可选地,飞行控制器161可以与降落伞装置130的点火装置通信连接,以控制降落伞装置130的点火装置点火。或者,飞行控制器161可以与降落伞控制器1302通信连接,以通知降落伞控制器1302控制降落伞装置130的点火装置点火。
降落伞控制器1302可以获取飞行平台100的运动状态。具体来说,降落伞控制器1302可以基于降落伞装置130的传感系统1303(以下称第二传感系统)采集的状态参数确定飞行平台100的运动状态。例如,第二传感系统可包括气压计,用于采集降落伞装置130所在环境的气压值。降落伞控制器1302可以在基于该气压值确定降落伞装置130的高度小于预设高度阈值的情况下,确定飞行平台100的运动状态异常。
在一种实现方式中,无论飞行控制器161与降落伞装置130之间的通信连接是否正常,降落伞控制器1302都可以获取第二传感系统采集的状态参数,并基于该状态参数确定飞行平台100的运动状态是否异常。在另一种实现方式中,无论飞行控制器161与降落伞装置130之间的通信连接是否正常,降落伞控制器1302都可以持续获取第二传感系统采集的状态参数,但仅在飞行控制器161与降落伞装置130之间的通信连接异常的情况下,降落伞控制器1302才会基于第二传感系统采集的状态参数确定飞行平台100的运动状态是否异常。在再一种实现方式中,仅在飞行控制器161与降落伞装置130之间的通信连接异常的情况下,降落伞控制器1302才会获取第二传感系统采集的状态参数,并基于该状态参数确定飞行平台100的运动状态是否异常。
飞行控制器161与降落伞装置130通信连接,可以包括飞行控制器161与降落伞控制器1302通信连接,也可以包括飞行控制器161与降落伞装置130的其他功能单元通信连接。
在同时满足降落伞装置130与飞行控制器161的通信连接异常,以及降落伞控制器1302检测到飞行平台100的运动状态异常这两个条件的情况下,可以通过降落伞控制器1302控制降落伞装置130开启。也就是说,在本实施例中,飞行控制器161进行开伞决策的优先级高于降落伞控制器1302。在飞行控制器161与降落伞装置130之间的通信连接正常的情况下,可以优先通过飞行控制器161进行开伞决策。在上述通信连接异常的情况下,再由降落伞控制器1302进行开伞决策。由于飞行控制器161获取的信息比较全面,且飞行控制器161的算法可靠性较高,因此,飞行控制器161做出的开伞决策更加准确,从而能够降低误开伞率和漏开伞率。
在上述实施例中,还可以通过飞行控制器161与降落伞装置130之间的通信连接,将第一传感系统对飞行器110的监测信息传输给降落伞控制器1302,和/或将第二传感系统对降落伞装置130的传感数据传输给飞行控制器161。在上述通信连接异常时,降落伞控制器1302可以基于已接收的第一传感系统的传感数据以及第二传感系统的传感数据获取飞行平台100的运动状态。在上述通信连接异常时,飞行控制器161可以基于已接收的第一传感系统的传感数据以及第二传感系统的传感数据获取飞行平台100的运动状态。
假设通信连接在t1时刻发生异常,则在上述通信连接异常时,降落伞控制器1302已接收的第一传感系统的传感数据,是指在t1时刻之前由第一传感系统采集,并通过通信连接发送到降落伞控制器1302的传感数据。在上述通信连接异常时,降落伞控制器1302已接收的第二传感系统的传感数据可以包括t1时刻及t1时刻之后,由第二传感系统采集的传感数据。
同理,在上述通信连接异常时,飞行控制器161已接收的第一传感系统的传感数据可以包括t1时刻及t1时刻之后,由第一传感系统采集的传感数据。在上述通信连接异常时,飞行控制器161已接收的第二传感系统的传感数据是指在t1时刻之前由第二传感系统采集,并通过通信连接发送到飞行控制器161的传感数据。
上述实施例通过融合第一传感系统和第二传感系统的传感数据来获取飞行平台100的运动状态,能够进一步提高传感器的种类和余度,从而进一步提高运动状态的检测准确度。
在一些实施例中,飞行控制器161可以按照预设频率向降落伞控制器1302发送心跳信号。降落伞控制器1302可以基于该心跳信号确定上述通信连接是否异常。若降落伞控制器1302在基于该预设频率确定的预设时间段内未接收到心跳信号,则确定上述通信连接异常。在其他实施例中,也可以由降落伞控制器1302按照预设频率向飞行控制器161发送心跳信号,并由飞行控制器161响应于接收到的心跳信号向降落伞控制器1302返回响应信号。若降落伞控制器1302在基于该预设频率确定的预设时间段内未接收到响应信号,则确定上述通信连接异常。在飞行控制器161与降落伞装置130的其他功能单元通信连接的情况下,也可以由飞行控制器161向其他功能单元发送心跳信号,并由其他功能单元向降落伞控制器1302发送响应信号,以使降落伞控制器1302基于其他功能单元发送的响应信号确定飞行控制器161与降落伞装置130的通信连接是否异常。在其他实施例中,也可以采用其他方式确定飞行控制器161与降落伞
装置130之间的通信连接是否异常,此处不再一一举例。
在一些实施例中,可以在动力系统150关闭之后,再控制降落伞装置130开启。其中,关闭动力系统150的操作可以由飞行控制器161在检测到飞行平台100的运动状态异常的情况下执行,也可以由降落伞控制器1302在检测到飞行平台100的运动状态异常的情况下执行。在由降落伞控制器1302关闭动力系统150的情况下,若降落伞控制器1302未与动力系统150通信连接(如图6所示),降落伞控制器1302可以请求飞行控制器161关闭动力系统150。若降落伞控制器1302与动力系统150通信连接(如图7所示),则降落伞控制器1302可以通过该通信连接控制动力系统150关闭。通过先关闭动力系统150,再控制降落伞装置130开启,能够有效减少开伞时伞绳或伞布与电机或桨叶产生物理干涉或缠绕的情况,从而提高开伞有效性。
对动力系统150和降落伞装置130的总体控制过程的一个实施例如下:首先,飞行控制器161获取飞行平台100的运动状态,若飞行平台100的运动状态异常,飞行控制器161控制动力系统150关闭,然后控制降落伞装置130开启。与此同时,降落伞控制器1302获取飞行平台100的运动状态以及飞行控制器161与降落伞装置130之间的通信连接,若该通信连接与飞行平台100的运动状态均异常,降落伞控制器1302请求飞行控制器161关闭动力系统150,或者降落伞控制器1302自行关闭动力系统150。需要说明的是,飞行控制器161与降落伞装置130之间的通信连接异常,可能只是飞行控制器161到降落伞装置130的下行通信链路存在异常,即,降落伞装置130无法接收到飞行控制器161发送的信号,而降落伞装置130到飞行控制器161的上行通信链路正常,即,飞行控制器161能够接收到降落伞装置130发送的信号,或者,飞行控制器161与降落伞装置130之间的通信连接在短暂异常之后又恢复正常。因此,在飞行控制器161与降落伞装置130之间的通信连接异常的情况下,仍然能够尝试请求飞行控制器161关闭动力系统150。
在一些实施例中,在降落伞装置130开启之后,还可以关闭飞行平台100的能源系统。其中,飞行平台100的能源系统可以包括飞行器110的能源系统170,也可以包括降落伞装置130的能源系统。其中,飞行器110的能源系统170可以包括电池和电池管理系统,用于为飞行器110上的各功能单元(例如,飞行控制器161、动力系统150等)供电;降落伞装置130的能源系统可用于为降落伞装置130上的各功能单元(例如,降落伞控制器1302)供电。
例如,可以由飞行控制器161在控制降落伞装置130开启之后,控制飞行平台100
的能源系统关闭。或者,在降落伞控制器1302与飞行平台100的能源系统通信连接的情况下,也可以由降落伞控制器1302在控制降落伞装置130开启之后,控制飞行平台100的能源系统关闭。通过在开启降落伞装置130之后关闭飞行平台100的动力系统,能够降低飞行平台100触地后由于外部接口短路产生二次灾害的概率,提高飞行平台100的安全性。
在一些实施例中,在满足预设条件的情况下,飞行平台100的能源系统被关闭;预设条件包括以下至少一者:飞行平台100的速度大于预设速度阈值,飞行平台100下降到预设高度以下,降落伞装置130开启之后经过第一预设时长,动力系统150关闭之后经过第二预设时长。在满足以上至少任一条件的情况下,表明飞行平台100当前可能处于危险状态,例如,若飞行平台100的速度大于预设速度阈值,表明飞行平台100可能已经下坠了一段时间,即将触地,因此,关闭飞行平台100的能源系统,从而减少二次灾害的概率。
如上所述,降落伞控制器1302可以先请求飞行控制器161关闭动力系统,再开启降落伞装置130。若飞行控制器161超时未响应关闭动力系统150的请求,则降落伞控制器1302也可以关闭飞行平台100的能源系统,并在关闭平台100的能源系统之后,控制降落伞装置130开启。这样做的好处是,在飞行控制器161发生异常未能及时关闭动力系统150的情况下,通过直接关闭飞行平台100的能源系统,保证在开启降落伞装置130之前,动力系统150处于关闭状态,从而提高开伞有效性。
在一些实施例中,飞行控制器161若成功响应关闭动力系统150的请求,可以向降落伞控制器1302返回响应信号。降落伞控制器1302可以在请求飞行控制器161关闭动力系统150之后开始计时,若在计时时间达到第三预设时长的情况下,飞行控制器161仍未返回响应信号,确定飞行控制器161超时未响应关闭动力系统150的请求。
其中,第三预设时长可以小于前述实施例中的第二预设时长。即,若成功关闭动力系统150,再控制降落伞装置130开启,则可以经过较长的时间(即第二预设时长),再关闭飞行平台100的能源系统。这样,一方面,由于降落伞装置130已成功开启,在较长时间之后关闭飞行平台100的能源系统对飞行平台100的安全性的影响较小;另一方面,能够通过在较长时间之后关闭飞行平台100的能源系统,使得飞行控制器161尽可能多地记录与飞行平台100的运动状态相关的日志,便于后续通过查阅日志确定故障状态以及系统维护等操作;再一方面,由于飞行器110上通常安装有指示灯,因此,在未关闭飞行平台100的能源系统时,能够通过指示灯更为准确地观察到飞行
器110的位置,尤其是在夜晚等光线较暗的场景中,降低了飞行器110丢失的风险。若未能成功关闭动力系统150,则可以在经过较短的时间(即第一预设时长)之后关闭飞行平台100的能源系统,从而保证动力系统150处于关闭状态。
在一些实施例中,如图7所示,降落伞控制器1302与动力系统150通信连接。在这种情况下,若飞行控制器161与降落伞装置130之间的通信连接异常,降落伞控制器1302可以向动力系统150发送控制信号,以使动力系统150维持飞行平台100的当前运动状态。通过飞行控制器161与降落伞控制器1302两条独立的链路来控制动力系统150关闭,能够较好地保证开启降落伞装置130之前动力系统150处于关闭状态,从而提高开伞有效性。
其中,当前运动状态包括当前飞行高度、当前飞行方向、当前飞行速度和/或当前飞行姿态。进一步地,若上述通信连接在预设时间段之内未恢复正常,则降落伞控制器1302可以控制飞行平台100降落。进一步地,若上述通信连接在预设时间段之内未恢复正常,且飞行平台100的运动状态异常,则降落伞控制器1302可以控制降落伞装置130开启。
在上述实施例中,降落伞控制器1302可以与动力系统150直接通信,这样,在飞行控制器161出现异常时,降落伞控制器1302可以充当备用飞控,临时接管飞行器110,维持飞行平台100的当前运动状态,并等待飞行控制器161恢复,提高了飞行平台100的安全性。如果飞行控制器161超时未恢复,降落伞控制器1302则可以控制飞行平台100缓慢降落,当发现飞行平台100的姿态控制不住的时候再做开伞决策。这样就形成了一个逐级退化的安全冗余系统。
在一些实施例中,如图6和图7所示,本公开实施例的飞行平台100的控制系统还包括遥控装置140,用于控制降落伞装置130开启。遥控装置140可以是飞行器110专用的遥控器,也可以是安装有飞行器110的控制软件的电子设备,例如,手机、平板电脑、笔记本电脑等。遥控装置140可以与飞行控制器161或降落伞控制器1302通信连接,从而通过飞行控制器161或降落伞控制器1302向降落伞装置130发送用于控制降落伞装置130开启的遥控信号。
本实施例中同时提供遥控装置140、飞行控制器161和降落伞控制器1302这三种用于控制降落伞装置130开启的控制源进行混控,提高了控制决策的鲁棒性。其中,遥控装置140、飞行控制器161和降落伞控制器1302的控制优先级依次降低。由于飞
行控制器161的传感器余度和种类更多,感知能力比降落伞控制器1302更强,在降落伞装置130与飞行控制器161之间的通信连接正常的情况下,由飞行控制器161进行开伞决策。在飞行控制器161出现异常,飞行器110飘走时,用户可通过遥控装置140手动控制降落伞装置130开启。当飞行控制器161在飞行过程中与降落伞装置130断连(即通信连接异常),降落伞控制器1302将切换到自身的开伞算法进行开伞决策。这样,通过多控制源互相配合,有效提高了开伞成功率。
在通过遥控装置140控制降落伞装置130开启的情况下,飞行控制器161或者降落伞控制器1302在接收到遥控信号之后,也可以先控制动力系统150关闭,再控制降落伞装置130开启,从而提高开伞有效性。
在相关技术中,降落伞装置130的伞仓13012内设有声光报警装置(例如,蜂鸣器)和气压计,其中,声光报警装置用于发出声音报警信号和光报警信号,以在飞行器110坠落过程中提醒和警示地面人员,并起到指示飞行器110位置的作用;气压计用于确定降落伞装置130的高度信息。但降落伞装置130因防水要求而导致透气性不佳,这会影响声光报警装置的报警效果和气压计的感测准确度。为了解决上述问题,本公开实施例在降落伞装置130中采用了防水透气材料。具体来说,可以在以下至少一处设置防水透气材料:降落伞装置130的伞盖13011和伞仓13012的连接处、气压计的气囊周围、降落伞装置130的控制盒与伞仓13012的连接处。
其中,防水透气材料包括但不限于泡棉、热塑性聚氨酯橡胶或聚四氟乙烯膜等。通过采用防水透气材料,能够在保证防水性的同时,提高降落伞装置130的透气性,从而提高声光报警装置的报警效果,并提高降落伞装置130的气压计的感测准确度。
在一些实施例中,降落伞装置130的控制盒上还可以设有报警指示灯,用于输出视觉报警信号,以在飞行器110坠落过程中警示地面人员。
在相关技术中,降落伞装置130在开启时冲击力较大,容易造成伞绳断裂失效。为解决上述问题,本公开实施例的降落伞装置130包括多根伞绳,其中,多根伞绳包括至少一根弹性绳和至少一根非弹性绳,且弹性绳的长度小于非弹性绳的长度。可选地,弹性绳为尼龙绳,非弹性绳为橡胶绳。弹性绳和非弹性绳的数量可以相等,也可以不相等。例如,在一非限制性实施例中,弹性绳和非弹性绳的数量均为4。通过设置较长的非弹性绳和较短的弹性绳,能够使得降落伞装置130在开启时,弹性绳先受力,在弹性绳吸收掉一部分能量之后,再由非弹性绳受力,从而减少开伞过程中对伞
绳的冲击力,减少伞绳断裂失效的风险,进一步提高了开伞有效性。
在一些实施例中,降落伞控制器1302还能够对降落伞装置130进行故障诊断。通过故障诊断,能够确定降落伞装置130的健康状态,从而在出现故障时及时通知使用者。具体来说,故障诊断包括但不限于对点火装置、第二传感系统和/或通信连接的故障诊断。其中,对点火装置的故障诊断可以包括对点火装置的点火电压和电阻阻值的诊断;对第二传感系统的故障诊断可以包括对第二传感系统中各传感器与降落伞控制器1302的连接状态的诊断;对通信链路的诊断包括对降落伞装置130与飞行控制器161之间的通信链路以及降落伞装置130与遥控装置140之间的通信链路的诊断。
故障诊断结果可以通过降落伞控制器1302发送到遥控装置140,并在遥控装置140的显示界面上进行显示。或者,降落伞装置130上也可以设有状态指示灯,用于指示故障诊断结果。其中,指示灯的数量大于或等于1。例如,可以通过不同的指示灯来指示不同的故障。或者,通过指示灯的不同颜色指示不同的故障。通过设置状态指示灯,能够使用户在无需查看遥控装置140的情况下就能直观地观察到降落伞装置130的健康状态。
参见图8,本公开实施例还提供一种降落伞装置130的控制方法,降落伞装置130安装在飞行器110上且与飞行器110通信连接,降落伞装置130包括传感系统,参见图8,所述方法包括:
步骤S801:响应接收到飞行器110通过通信连接发送的开伞指令,控制降落伞装置130开启;以及
步骤S802:根据传感系统的传感数据确定降落伞装置130的运动状态是否异常,并在确定通信连接和降落伞装置130的运动状态均异常时,控制降落伞装置130开启。
本公开实施例可由降落伞装置130执行,降落伞装置130可以与飞行器110通信连接。若飞行器110的运动状态异常且通信连接正常,飞行器110可以向降落伞控制器1302发送开伞指令,以使降落伞控制器1302控制降落伞装置130开启。
除了响应于飞行器110发送的开伞指令来控制降落伞装置130开启之外,降落伞控制器1302自身也可以控制降落伞装置130开启。具体来说,降落伞控制器1302可以基于降落伞装置130的传感系统(即上述第二传感系统)的传感数据确定降落伞装置130的运动状态是否异常,并在通信连接和降落伞装置130的运动状态均异常的情况下,控制降落伞装置130开启。由于飞行器110能够获取到的信息比较全面,且飞
行器110的算法可靠性较高,因此,通过飞行器110进行开伞决策,能够降低误开伞率和漏开伞率。而在通信连接异常的情况下,通过降落伞装置130自身进行开伞决策,从而使得在飞行器110发生异常的情况下仍然能够控制降落伞装置130开启,进一步降低了漏开伞率。
在一些实施例中,降落伞装置130在飞行器110的动力系统关闭之后被开启。
在一些实施例中,动力系统150在检测到降落伞装置130的运动状态异常的情况下,由飞行器110关闭。
在一些实施例中,所述方法还包括:在检测到降落伞装置130的运动状态异常的情况下,由降落伞装置130控制动力系统150关闭。
在一些实施例中,所述控制动力系统150关闭,包括:请求飞行器110关闭动力系统150。
在一些实施例中,飞行器110的能源系统在降落伞装置130开启之后被关闭。
在一些实施例中,在降落伞装置130开启之后,请求飞行器110关闭飞行器110的能源系统。
在一些实施例中,降落伞控制器与能源系统通信连接;所述方法还包括:在降落伞装置130开启之后,控制能源系统关闭。
在一些实施例中,在满足预设条件的情况下,能源系统被关闭;预设条件包括以下至少一者:飞行器110的速度大于预设速度阈值,飞行器110下降到预设高度以下,降落伞装置130开启之后经过第一预设时长,飞行器110的动力系统150关闭之后经过第二预设时长。
在一些实施例中,所述控制降落伞装置130开启,包括:若飞行器110超时未响应关闭动力系统150的请求,控制飞行器110的能源系统关闭;在控制飞行器110的能源系统关闭之后,控制降落伞装置130开启。
在一些实施例中,所述方法还包括:若通信连接异常且降落伞装置130的运动状态正常,向飞行器110的动力系统150发送控制信号,以使动力系统150维持飞行器110的当前运动状态。
在一些实施例中,所述方法还包括:若通信连接在预设时间段之内未恢复正常,控制飞行器110降落。
在一些实施例中,所述控制降落伞装置130开启,包括:若通信连接在预设时间段之内未恢复正常,且降落伞装置130的运动状态异常,控制降落伞装置130开启。
在一些实施例中,降落伞装置130能够响应于遥控装置140发送的遥控信号而开启。
在一些实施例中,遥控装置140与飞行器110通信连接,遥控信号通过飞行器110发送至降落伞装置130。
在一些实施例中,所述方法还包括:接收飞行器110按照预设频率发送的心跳信号;基于心跳信号确定降落伞装置130与飞行器110之间的通信连接是否异常。
在一些实施例中,降落伞装置130包括伞仓13012和伞盖13011,伞仓13012和伞盖13011的连接处设有防水透气材料;和/或降落伞装置130的伞仓13012内设有气压计,气压计的气囊周围设有防水透气材料。
在一些实施例中,防水透气材料为泡棉、热塑性聚氨酯橡胶或聚四氟乙烯膜。
在一些实施例中,降落伞装置130还包括声光报警装置,容纳在降落伞装置130的控制盒中,用于在降落伞装置130开启后,输出声音报警信息。
在一些实施例中,降落伞装置130包括多根伞绳,多根伞绳包括至少一根弹性绳和至少一根非弹性绳,弹性绳的长度小于非弹性绳的长度。
在一些实施例中,所述方法还包括:对降落伞装置130进行故障诊断。
在一些实施例中,降落伞装置130上设有状态指示灯,用于指示故障诊断结果。
本公开实施例的降落伞装置130和飞行器110可以组成飞行平台100,且该飞行平台100除了包括降落伞装置130和飞行器110之外,还可以包括其他组成部分。可以理解,由于降落伞装置130安装在飞行器110上,因此,降落伞装置130的运动状态可用于表征飞行器110的运动状态;而降落伞装置130和飞行器110组成飞行平台100,因此,降落伞装置130的运动状态和飞行器110的运动状态均可以表征飞行平台100的运动状态。在一些实施例中,降落伞装置130中可以包括降落伞控制器1302,本公开实施例的方法可以由降落伞控制器1302执行。本公开实施例的方法中各步骤的细节详见前述飞行平台100的控制系统的实施例中由降落伞控制器1302实现的功能,此处不再赘述。
此外,可以理解,上述步骤S801和步骤S802是在不同的情况下执行的步骤,步
骤S801在通信连接正常的情况下执行,而步骤S802在通信连接异常的情况下执行。因此,步骤S801可以在步骤S802之前执行,也可以在步骤S802之后执行。
参见图9,本公开实施例还提供一种飞行器110的控制方法,飞行器110与安装在飞行器110上的降落伞装置130通信连接,飞行器110包括传感系统,参见图9,所述方法包括:
步骤S901:根据飞行器110的传感系统的传感数据确定飞行器110的运动状态是否异常;
步骤S902:在确定飞行器110的运动状态异常且通信连接正常时,通过通信连接向降落伞装置130发送开伞指令以控制降落伞装置130开启;其中,通信连接的异常状态能够被降落伞装置130检测到,以使降落伞装置130在通信连接异常,且检测到降落伞装置130的运动状态异常的情况下开启。
在一些实施例中,降落伞装置130在飞行器110的动力系统150关闭之后被开启。
在一些实施例中,所述方法还包括:在检测到飞行器110的运动状态异常的情况下,控制动力系统150关闭。
在一些实施例中,动力系统150在检测到飞行器110的运动状态异常的情况下被关闭。
在一些实施例中,响应于降落伞装置130的请求,控制动力系统150关闭;该请求在飞行器110的运动状态异常的情况下发送。
在一些实施例中,飞行器110的能源系统在降落伞装置130开启之后被关闭。
在一些实施例中,所述方法还包括:在控制降落伞装置130开启之后,关闭飞行器110的能源系统。
在一些实施例中,在降落伞装置130开启之后,降落伞装置130与能源系统通信连接;飞行器110响应于降落伞装置130的请求关闭能源系统。
在一些实施例中,在满足预设条件的情况下,能源系统被关闭;预设条件包括以下至少一者:降落伞装置130的速度大于预设速度阈值,降落伞装置130下降到预设高度以下,降落伞装置130开启之后经过第一预设时长,飞行器110的动力系统150关闭之后经过第二预设时长。
在一些实施例中,降落伞装置130能够响应于遥控装置140发送的遥控信号而开
启。
在一些实施例中,所述方法还包括:将遥控装置140发送的遥控信号转发至降落伞装置130,以控制降落伞装置130开启。
在一些实施例中,降落伞装置130包括降落伞控制器1302、伞仓13012和伞盖13011,降落伞控制器1302用于控制降落伞装置130开启,伞仓13012和伞盖13011的连接处设有防水透气材料;和/或降落伞装置130的伞仓13012内设有气压计,气压计的气囊周围设有防水透气材料;和/或降落伞装置130包括控制盒,用于容纳降落伞控制器1302,控制盒与伞仓13012的连接处设有防水透气材料。
在一些实施例中,防水透气材料为泡棉、热塑性聚氨酯橡胶或聚四氟乙烯膜。
在一些实施例中,降落伞装置130还包括声光报警装置,容纳在降落伞装置130的控制盒中,用于在降落伞装置130开启后,输出声音报警信息。
在一些实施例中,降落伞装置130包括多根伞绳,多根伞绳包括至少一根弹性绳和至少一根非弹性绳,弹性绳的长度小于非弹性绳的长度。
上述实施例中飞行器110的传感系统可以是前述飞行平台100的控制系统中的第一传感系统。由于降落伞装置130安装在飞行器110上,因此,降落伞装置130的运动状态可以用于表征飞行器110的运动状态。进一步地,飞行器110和降落伞装置130可以组成飞行平台100,降落伞装置130的运动状态和飞行器110的运动状态均可以用于表征飞行平台100的运动状态。降落伞装置130上可以包括第二传感系统和降落伞控制器1302,降落伞控制器1302可以基于第二传感系统的传感数据确定降落伞装置130的运动状态是否异常。在一些实施例中,飞行器110可以包括飞行控制器161,本实施例的方法可由飞行控制器161执行。本公开实施例的方法中各步骤的细节详见前述飞行平台100的控制系统的实施例中由飞行控制器161实现的功能,此处不再赘述。
图10示出了飞行控制器161与降落伞控制器1302的总体控制流程图。其中,步骤S1001至步骤S1005可由飞行控制器161执行,步骤S1006至步骤S1012可由降落伞控制器1302执行。
在步骤S1001中,飞行控制器161可以获取飞行平台100的运动状态。
在步骤S1002中,飞行控制器161可以判断飞行平台100的运动状态是否异常。
若飞行平台100的运动状态异常且飞行控制器161与降落伞装置130的通信连接正常,则执行步骤S1003,否则返回步骤S1001。
在步骤S1003中,飞行控制器161可以关闭飞行平台100的动力系统150,并执行步骤S1004。
在步骤S1004中,飞行控制器161可以通过通信连接控制降落伞装置130开启,并执行步骤S1005。
在步骤S1005中,飞行控制器161可以关闭飞行平台100的能源系统。
在步骤S1006中,降落伞控制器1302可以获取飞行平台100的运动状态。本步骤可以与步骤S1001并行地执行。
在步骤S1007中,降落伞控制器1302可以判断飞行平台100的运动状态是否异常。若是,则执行步骤S1008,否则返回步骤S1006。
在步骤S1008中,降落伞控制器1302可以判断降落伞装置130与飞行控制器161之间的通信连接是否异常。若是,执行步骤S1009,否则返回步骤S1006。其中,步骤S1007与步骤S1008的执行顺序本公开不做限制,除了图中所示的顺序之外,也可以并行地判断降落伞装置130与飞行控制器161之间的通信连接以及飞行平台100的运动状态是否异常,或者先判断降落伞装置130与飞行控制器161之间的通信连接是否异常,在判断结果为“是”的情况下,再判断飞行平台100的运动状态是否异常。
在步骤S1009中,降落伞控制器1302可以请求飞行控制器161关闭动力系统150,并执行步骤S1010。
在步骤S1010中,降落伞控制器1302可以判断飞行控制器161是否对关闭动力系统150的请求响应超时。若是,执行步骤S1011,否则,执行步骤S1012。或者,若判断结果为否,也可以由飞行控制器161执行步骤S1004和步骤S1005,从而开启降落伞装置130并关闭飞行平台100的能源系统。
在步骤S1011中,降落伞控制器1302可以关闭飞行平台100的能源系统,并执行步骤S1012。
在步骤S1012中,降落伞控制器1302可以控制降落伞装置130开启。
参见图3至图5,本公开实施例还提供一种降落伞装置130,降落伞装置130安装在飞行器110上且与飞行器110通信连接,降落伞装置130包括传感系统和控制器;
其中,控制器被配置为执行指令,以实现本公开任一实施例中由降落伞控制器1302所执行的方法。
参见图1,本公开实施例还提供一种飞行器110,飞行器110与安装在飞行器110上的降落伞装置130通信连接,飞行器110包括飞行控制器161和传感系统;其中,飞行控制器161被配置为执行指令,以实现本公开任一实施例中由飞行控制器161所执行的方法。
本公开实施例提供一种飞行平台100,飞行平台100包括飞行器110和安装在飞行器110上的降落伞装置130,飞行器110包括飞行控制器161和第一传感系统,降落伞装置130包括降落伞控制器1302和第二传感系统,其中,飞行控制器161用于实现第一方面的飞行平台100的控制系统中由飞行控制器161执行的功能;降落伞控制器1302用于实现第一方面的飞行平台100的控制系统中由降落伞控制器1302执行的功能。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述任一实施例所述的方法。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
参见图11,本公开实施例还提供一种飞行平台100的控制方法,飞行平台100包括飞行器110和安装在飞行器110上的降落伞装置130,所述飞行器110包括飞行控制器161和第一传感系统,降落伞装置130包括降落伞控制器1302和第二传感系统,飞行控制器161与降落伞装置130通信连接,所述飞行平台的控制方法包括:
步骤S1101:飞行控制器161根据第一传感系统的传感数据确定飞行平台100的运动状态是否异常,若飞行平台100的运动状态异常且通信连接正常,通过通信连接
向降落伞装置130发送开伞指令以控制降落伞装置130开启;以及
步骤S1102:降落伞控制器1302根据第二传感系统的传感数据确定飞行平台100的运动状态是否异常,若通信连接和飞行平台100的运动状态均异常,降落伞控制器1302控制降落伞装置130开启。
在一些实施例中,降落伞装置130在飞行平台100的动力系统关闭之后被开启。
在一些实施例中,所述方法还包括:在检测到飞行平台100的运动状态异常的情况下,控制动力系统关闭。
在一些实施例中,动力系统在降落伞装置130检测到飞行平台100的运动状态异常的情况下被关闭;和/或动力系统在飞行器110检测到飞行平台100的运动状态异常的情况下被关闭。
在一些实施例中,响应于降落伞控制器1302的请求,控制动力系统关闭,且降落伞控制器1302的请求在降落伞装置130检测到飞行平台100的运动状态异常的情况下发送;和/或响应于飞行控制器161的请求,控制动力系统关闭,且飞行控制器161的请求在飞行器110检测到飞行平台100的运动状态异常的情况下发送。
在一些实施例中,飞行平台100的能源系统在降落伞装置130开启之后被关闭。
在一些实施例中,所述方法还包括:在控制降落伞装置130开启之后,关闭能源系统。
在一些实施例中,降落伞装置130与能源系统通信连接;能源系统由降落伞控制器1302控制降落伞装置130开启之后关闭。
在一些实施例中,在满足预设条件的情况下,能源系统被关闭;预设条件包括以下至少一者:飞行平台100的速度大于预设速度阈值,飞行平台100下降到预设高度以下,降落伞装置130开启之后经过第一预设时长,飞行平台100的动力系统关闭之后经过第二预设时长。
在一些实施例中,降落伞装置130能够响应于遥控装置140发送的遥控信号而开启。
在一些实施例中,所述方法还包括:对降落伞装置130进行故障诊断。
在一些实施例中,降落伞装置130上设有状态指示灯,用于指示故障诊断结果。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本说明书实施例可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本说明书实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本说明书实施例各个实施例或者实施例的某些部分所述的方法。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
以上实施例中的各种技术特征可以任意进行组合,只要特征之间的组合不存在冲突或矛盾,但是限于篇幅,未进行一一描述,因此上述实施方式中的各种技术特征的任意进行组合也属于本公开的范围。
本领域技术人员在考虑公开及实践这里公开的说明书后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。
Claims (77)
- 一种飞行平台的控制系统,其特征在于,所述飞行平台包括飞行器和安装在所述飞行器上的降落伞装置,所述飞行器包括飞行控制器和第一传感系统,所述降落伞装置包括降落伞控制器和第二传感系统,所述飞行平台的控制系统包括:所述飞行控制器,与所述降落伞装置通信连接,所述飞行控制器用于根据所述第一传感系统的传感数据确定所述飞行平台的运动状态是否异常,若所述飞行平台的运动状态异常且通信连接正常,通过所述通信连接向所述降落伞装置发送开伞指令以控制所述降落伞装置开启;以及所述降落伞控制器,用于根据所述第二传感系统的传感数据确定所述飞行平台的运动状态是否异常,若所述通信连接和所述飞行平台的运动状态均异常,所述降落伞控制器控制所述降落伞装置开启。
- 根据权利要求1所述的飞行平台的控制系统,其特征在于,所述降落伞装置在所述飞行平台的动力系统关闭之后被开启。
- 根据权利要求2所述的飞行平台的控制系统,其特征在于,所述飞行控制器,用于:在检测到所述飞行平台的运动状态异常的情况下,控制所述动力系统关闭。
- 根据权利要求2所述的飞行平台的控制系统,其特征在于,所述降落伞控制器,用于:在检测到所述飞行平台的运动状态异常的情况下,控制所述动力系统关闭。
- 根据权利要求4所述的飞行平台的控制系统,其特征在于,所述降落伞控制器,用于:在检测到所述飞行平台的运动状态异常的情况下,请求所述飞行控制器关闭所述动力系统。
- 根据权利要求1所述的飞行平台的控制系统,其特征在于,所述飞行平台的能源系统在所述降落伞装置开启之后被关闭。
- 根据权利要求6所述的飞行平台的控制系统,其特征在于,所述飞行控制器,还用于:在控制所述降落伞装置开启之后,控制所述能源系统关闭。
- 根据权利要求6所述的飞行平台的控制系统,其特征在于,所述降落伞控制器与所述能源系统通信连接;所述降落伞控制器,还用于:在控制所述降落伞装置开启之后,控制所述能源系统关闭。
- 根据权利要求6至8任一项所述的飞行平台的控制系统,其特征在于,在满足预设条件的情况下,所述能源系统被关闭;所述预设条件包括以下至少一者:所述飞行平台的速度大于预设速度阈值,所述飞行平台下降到预设高度以下,所述降落伞装置开启之后经过第一预设时长,所述飞行平台的动力系统关闭之后经过第二预设时长。
- 根据权利要求5所述的飞行平台的控制系统,其特征在于,所述降落伞控制器,用于:若所述飞行控制器超时未响应所述请求,控制所述飞行平台的能源系统关闭;在控制所述能源系统关闭之后,控制所述降落伞装置开启。
- 根据权利要求1所述的飞行平台的控制系统,其特征在于,所述降落伞控制器,还用于:若所述通信连接异常,向所述飞行平台的动力系统发送控制信号,以使所述动力系统维持所述飞行平台的当前运动状态。
- 根据权利要求11所述的飞行平台的控制系统,其特征在于,所述降落伞控制器,还用于:若所述通信连接在预设时间段之内未恢复正常,控制所述飞行器降落。
- 根据权利要求11或12所述的飞行平台的控制系统,其特征在于,所述降落伞控制器,用于:若所述通信连接在预设时间段之内未恢复正常,且所述飞行平台的运动状态异常,控制所述降落伞装置开启。
- 根据权利要求1所述的飞行平台的控制系统,其特征在于,还包括:遥控装置,用于控制所述降落伞装置开启。
- 根据权利要求14所述的飞行平台的控制系统,其特征在于,所述遥控装置与所述飞行控制器通信连接,以通过所述飞行控制器向所述降落伞装置发送用于控制所述降落伞装置开启的遥控信号;或者所述遥控装置与所述降落伞控制器通信连接,以通过所述降落伞控制器向所述降落伞装置发送用于控制所述降落伞装置开启的遥控信号。
- 根据权利要求1所述的飞行平台的控制系统,其特征在于,所述降落伞控制器,用于:接收所述飞行控制器按照预设频率发送的心跳信号;基于所述心跳信号确定所述降落伞装置与所述飞行控制器之间的通信连接是否异常。
- 根据权利要求1所述的飞行平台的控制系统,其特征在于,所述降落伞装置包括伞舱和伞盖,所述伞舱和伞盖的连接处设有防水透气材料;和/或所述降落伞装置的伞舱内设有气压计,所述气压计的气囊周围设有防水透气材料;和/或所述降落伞装置包括控制盒,用于容纳所述降落伞控制器,所述控制盒与所述伞舱的连接处设有防水透气材料。
- 根据权利要求17所述的飞行平台的控制系统,其特征在于,所述防水透气材料为泡棉、热塑性聚氨酯橡胶或聚四氟乙烯膜。
- 根据权利要求17所述的飞行平台的控制系统,其特征在于,所述降落伞装置还包括声光报警装置,容纳在所述降落伞装置的控制盒中,用于在所述降落伞装置开启后,输出声光报警信息。
- 根据权利要求1所述的飞行平台的控制系统,其特征在于,所述降落伞装置包括多根伞绳,所述多根伞绳包括至少一根弹性绳和至少一根非弹性绳,弹性绳的长度小于非弹性绳的长度。
- 根据权利要求1所述的飞行平台的控制系统,其特征在于,所述降落伞控制器,还用于:对所述降落伞装置进行故障诊断。
- 根据权利要求21所述的飞行平台的控制系统,其特征在于,所述降落伞装置上设有状态指示灯,用于指示故障诊断结果。
- 根据权利要求1所述的飞行平台的控制系统,其特征在于,所述通信连接用于传输所述第一传感系统的传感数据和所述第二传感系统的传感数据。
- 根据权利要求23所述的飞行平台的控制系统,其特征在于,当所述通信连接异常时,所述降落伞控制器基于已接收的所述第一传感系统的传感数据和所述第二传感系统的传感数据获取所述飞行平台的运动状态;和/或所述飞行控制器,用于:基于已接收的所述第一传感系统的传感数据和所述第二传感系统的传感数据获取所述飞行平台的运动状态。
- 一种降落伞装置的控制方法,所述降落伞装置安装在飞行器上且与所述飞行器通信连接,其特征在于,所述降落伞装置包括传感系统,所述方法包括:响应接收到所述飞行器通过所述通信连接发送的开伞指令,控制所述降落伞装置 开启;以及根据所述传感系统的传感数据确定所述降落伞装置的运动状态是否异常,并在确定所述通信连接和所述降落伞装置的运动状态均异常时,控制所述降落伞装置开启。
- 根据权利要求25所述的方法,其特征在于,所述降落伞装置在所述飞行器的动力系统关闭之后被开启。
- 根据权利要求26所述的方法,其特征在于,所述动力系统在检测到所述降落伞装置的运动状态异常的情况下,由所述飞行器关闭。
- 根据权利要求26所述的方法,其特征在于,所述方法还包括:在检测到所述降落伞装置的运动状态异常的情况下,由所述降落伞装置控制所述动力系统关闭。
- 根据权利要求28所述的方法,其特征在于,所述控制所述动力系统关闭,包括:请求所述飞行器关闭所述动力系统。
- 根据权利要求25所述的方法,其特征在于,所述飞行器的能源系统在所述降落伞装置开启之后被关闭。
- 根据权利要求30所述的方法,其特征在于,在所述降落伞装置开启之后,请求所述飞行器关闭所述能源系统。
- 根据权利要求30所述的方法,其特征在于,所述降落伞装置与所述能源系统通信连接;所述方法还包括:在所述降落伞装置开启之后,控制所述能源系统关闭。
- 根据权利要求30至32任一项所述的方法,其特征在于,在满足预设条件的情况下,所述能源系统被关闭;所述预设条件包括以下至少一者:所述飞行器的速度大于预设速度阈值,所述飞行器下降到预设高度以下,所述降落伞装置开启之后经过第一预设时长,所述飞行器的动力系统关闭之后经过第二预设时长。
- 根据权利要求29所述的方法,其特征在于,所述控制所述降落伞装置开启,包括:若所述飞行器超时未响应关闭所述动力系统的请求,控制所述飞行器的能源系统关闭;在控制所述能源系统关闭之后,控制所述降落伞装置开启。
- 根据权利要求25所述的方法,其特征在于,所述方法还包括:若所述通信连接异常且所述降落伞装置的运动状态正常,向所述飞行器的动力系统发送控制信号,以使所述动力系统维持所述飞行器的当前运动状态。
- 根据权利要求35所述的方法,其特征在于,所述方法还包括:若所述通信连接在预设时间段之内未恢复正常,控制所述飞行器降落。
- 根据权利要求35或36所述的方法,其特征在于,所述控制所述降落伞装置开启,包括:若所述通信连接在预设时间段之内未恢复正常,且所述降落伞装置的运动状态异常,控制所述降落伞装置开启。
- 根据权利要求25所述的方法,其特征在于,所述降落伞装置能够响应于遥控装置发送的遥控信号而开启。
- 根据权利要求38所述的方法,其特征在于,所述遥控装置与所述飞行器通信连接,所述遥控信号通过所述飞行器发送至所述降落伞装置。
- 根据权利要求25所述的方法,其特征在于,所述方法还包括:接收所述飞行器按照预设频率发送的心跳信号;基于所述心跳信号确定所述降落伞装置与所述飞行器之间的通信连接是否异常。
- 根据权利要求25所述的方法,其特征在于,所述降落伞装置包括伞舱和伞盖,所述伞舱和伞盖的连接处设有防水透气材料;和/或所述降落伞装置的伞舱内设有气压计,所述气压计的气囊周围设有防水透气材料。
- 根据权利要求41所述的方法,其特征在于,所述防水透气材料为泡棉、热塑性聚氨酯橡胶或聚四氟乙烯膜。
- 根据权利要求41所述的方法,其特征在于,所述降落伞装置还包括声光报警装置,容纳在所述降落伞装置的控制盒中,用于在所述降落伞装置开启后,输出声光报警信息。
- 根据权利要求25所述的方法,其特征在于,所述降落伞装置包括多根伞绳,所述多根伞绳包括至少一根弹性绳和至少一根非弹性绳,弹性绳的长度小于非弹性绳的长度。
- 根据权利要求25所述的方法,其特征在于,所述方法还包括:对所述降落伞装置进行故障诊断。
- 根据权利要求45所述的方法,其特征在于,所述降落伞装置上设有状态指示灯,用于指示故障诊断结果。
- 一种飞行器的控制方法,所述飞行器与安装在所述飞行器上的降落伞装置通 信连接,其特征在于,所述飞行器包括传感系统,所述方法包括:根据所述传感系统的传感数据确定所述飞行器的运动状态是否异常;在确定所述飞行器的运动状态异常且所述通信连接正常时,通过所述通信连接向所述降落伞装置发送开伞指令以控制所述降落伞装置开启;其中,所述通信连接的异常状态能够被所述降落伞装置检测到,以使所述降落伞装置在所述通信连接异常,且检测到所述降落伞装置的运动状态异常的情况下开启。
- 根据权利要求47所述的方法,其特征在于,所述降落伞装置在所述飞行器的动力系统关闭之后被开启。
- 根据权利要求48所述的方法,其特征在于,所述方法还包括:在检测到所述飞行器的运动状态异常的情况下,控制所述动力系统关闭。
- 根据权利要求48所述的方法,其特征在于,所述动力系统在检测到所述飞行器的运动状态异常的情况下被关闭。
- 根据权利要求50所述的方法,其特征在于,响应于所述降落伞装置的请求,控制所述动力系统关闭;所述请求在所述飞行器的运动状态异常的情况下发送。
- 根据权利要求47所述的方法,其特征在于,所述飞行器的能源系统在所述降落伞装置开启之后被关闭。
- 根据权利要求52所述的方法,其特征在于,所述方法还包括:在控制所述降落伞装置开启之后,关闭所述能源系统。
- 根据权利要求52所述的方法,其特征在于,在所述降落伞装置开启之后,所述降落伞装置通过与所述能源系统通信连接;所述飞行器响应于所述降落伞装置的请求关闭所述能源系统。
- 根据权利要求52至54任一项所述的方法,其特征在于,在满足预设条件的情况下,所述能源系统被关闭;所述预设条件包括以下至少一者:所述降落伞装置的速度大于预设速度阈值,所述降落伞装置下降到预设高度以下,所述降落伞装置开启之后经过第一预设时长,所述飞行器的动力系统关闭之后经过第二预设时长。
- 根据权利要求48所述的方法,其特征在于,所述降落伞装置能够响应于遥控装置发送的遥控信号而开启。
- 根据权利要求56所述的方法,其特征在于,所述方法还包括:将所述遥控装置发送的所述遥控信号转发至所述降落伞装置,以控制所述降落伞装置开启。
- 根据权利要求47所述的方法,其特征在于,所述降落伞装置包括降落伞控制器、伞舱和伞盖,所述降落伞控制器用于控制所述降落伞装置开启,所述伞舱和伞盖的连接处设有防水透气材料;和/或所述降落伞装置的伞舱内设有气压计,所述气压计的气囊周围设有防水透气材料;和/或所述降落伞装置包括控制盒,用于容纳所述降落伞控制器,所述控制盒与所述伞舱的连接处设有防水透气材料。
- 根据权利要求58所述的方法,其特征在于,所述防水透气材料为泡棉、热塑性聚氨酯橡胶或聚四氟乙烯膜。
- 根据权利要求58所述的方法,其特征在于,所述降落伞装置还包括声光报警装置,容纳在所述降落伞装置的控制盒中,用于在所述降落伞装置开启后,输出声光报警信息。
- 根据权利要求47所述的方法,其特征在于,所述降落伞装置包括多根伞绳,所述多根伞绳包括至少一根弹性绳和至少一根非弹性绳,弹性绳的长度小于非弹性绳的长度。
- 一种降落伞装置,所述降落伞装置安装在飞行器上且与所述飞行器通信连接,其特征在于,所述降落伞装置包括传感系统和控制器;其中,所述控制器被配置为执行指令,以实现权利要求25至46任一项所述的方法。
- 一种飞行器,所述飞行器与安装在所述飞行器上的降落伞装置通信连接,其特征在于,所述飞行器包括飞行控制器和传感系统;其中,所述飞行控制器被配置为执行指令,以实现权利要求47至61任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,其上存储有计算机指令,所述指令被处理器执行时实现权利要求25至61任一项所述的方法。
- 一种飞行平台,其特征在于,所述飞行平台包括飞行器和安装在所述飞行器上的降落伞装置,所述飞行器包括飞行控制器和第一传感系统,所述降落伞装置包括降落伞控制器和第二传感系统,其中,所述飞行控制器用于实现权利要求1至24任一项所述的飞行平台的控制系统中由飞行控制器执行的功能;所述降落伞控制器用于实现权利要求1至24任一项所述的飞行平台的控制系统中由降落伞控制器执行的功能。
- 一种飞行平台的控制方法,其特征在于,所述飞行平台包括飞行器和安装在 所述飞行器上的降落伞装置,所述飞行器包括飞行控制器和第一传感系统,所述降落伞装置包括降落伞控制器和第二传感系统,所述飞行控制器与所述降落伞装置通信连接,所述飞行平台的控制方法包括:所述飞行控制器根据所述第一传感系统的传感数据确定所述飞行平台的运动状态是否异常,若所述飞行平台的运动状态异常且通信连接正常,通过所述通信连接向所述降落伞装置发送开伞指令以控制所述降落伞装置开启;以及所述降落伞控制器根据所述第二传感系统的传感数据确定所述飞行平台的运动状态是否异常,若所述通信连接和所述飞行平台的运动状态均异常,所述降落伞控制器控制所述降落伞装置开启。
- 根据权利要求66所述的方法,其特征在于,所述降落伞装置在所述飞行平台的动力系统关闭之后被开启。
- 根据权利要求67所述的方法,其特征在于,所述方法还包括:在检测到所述飞行平台的运动状态异常的情况下,控制所述动力系统关闭。
- 根据权利要求67所述的方法,其特征在于,所述动力系统在所述降落伞装置检测到所述飞行平台的运动状态异常的情况下被关闭;和/或所述动力系统在所述飞行器检测到所述飞行平台的运动状态异常的情况下被关闭。
- 根据权利要求69所述的方法,其特征在于,响应于所述降落伞控制器的请求,控制所述动力系统关闭,且所述请求在所述降落伞装置检测到所述飞行平台的运动状态异常的情况下发送;和/或响应于所述飞行控制器的请求,控制所述动力系统关闭,且所述请求在所述飞行器检测到所述飞行平台的运动状态异常的情况下发送。
- 根据权利要求66所述的方法,其特征在于,所述飞行平台的能源系统在所述降落伞装置开启之后被关闭。
- 根据权利要求71所述的方法,其特征在于,所述方法还包括:在控制所述降落伞装置开启之后,关闭所述能源系统。
- 根据权利要求71所述的方法,其特征在于,所述降落伞装置与所述能源系统通信连接;所述能源系统由所述降落伞控制器控制所述降落伞装置开启之后关闭。
- 根据权利要求71至73任一项所述的方法,其特征在于,在满足预设条件的情况下,所述能源系统被关闭;所述预设条件包括以下至少一者:所述飞行平台的速度大于预设速度阈值,所述飞行平台下降到预设高度以下,所 述降落伞装置开启之后经过第一预设时长,所述飞行平台的动力系统关闭之后经过第二预设时长。
- 根据权利要求67所述的方法,其特征在于,所述降落伞装置能够响应于遥控装置发送的遥控信号而开启。
- 根据权利要求66所述的方法,其特征在于,所述方法还包括:对所述降落伞装置进行故障诊断。
- 根据权利要求76所述的方法,其特征在于,所述降落伞装置上设有状态指示灯,用于指示故障诊断结果。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380053857.7A CN119546520A (zh) | 2023-04-06 | 2023-04-06 | 飞行平台、降落伞装置、飞行器及其控制方法和系统 |
PCT/CN2023/086659 WO2024207333A1 (zh) | 2023-04-06 | 2023-04-06 | 飞行平台、降落伞装置、飞行器及其控制方法和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/086659 WO2024207333A1 (zh) | 2023-04-06 | 2023-04-06 | 飞行平台、降落伞装置、飞行器及其控制方法和系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024207333A1 true WO2024207333A1 (zh) | 2024-10-10 |
Family
ID=92970957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/086659 WO2024207333A1 (zh) | 2023-04-06 | 2023-04-06 | 飞行平台、降落伞装置、飞行器及其控制方法和系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN119546520A (zh) |
WO (1) | WO2024207333A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9145212B1 (en) * | 2014-06-12 | 2015-09-29 | Shenzhen Hubsan Intelligent Co., Ltd. | Parachute control system and method for an aircraft |
US20170106986A1 (en) * | 2015-10-14 | 2017-04-20 | Flirtey Holdings, Inc. | Parachute deployment system for an unmanned aerial vehicle |
CN106628194A (zh) * | 2017-02-20 | 2017-05-10 | 北京京东尚科信息技术有限公司 | 无人机的降落伞系统、安全保护方法及装置 |
CN111338377A (zh) * | 2020-03-06 | 2020-06-26 | 东莞火萤科技有限公司 | 一种飞行器、降落伞控制系统以及飞行器控制系统 |
CN112389640A (zh) * | 2020-11-27 | 2021-02-23 | 东莞火萤科技有限公司 | 一种无人机停桨控制系统 |
-
2023
- 2023-04-06 CN CN202380053857.7A patent/CN119546520A/zh active Pending
- 2023-04-06 WO PCT/CN2023/086659 patent/WO2024207333A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9145212B1 (en) * | 2014-06-12 | 2015-09-29 | Shenzhen Hubsan Intelligent Co., Ltd. | Parachute control system and method for an aircraft |
US20170106986A1 (en) * | 2015-10-14 | 2017-04-20 | Flirtey Holdings, Inc. | Parachute deployment system for an unmanned aerial vehicle |
CN106628194A (zh) * | 2017-02-20 | 2017-05-10 | 北京京东尚科信息技术有限公司 | 无人机的降落伞系统、安全保护方法及装置 |
CN111338377A (zh) * | 2020-03-06 | 2020-06-26 | 东莞火萤科技有限公司 | 一种飞行器、降落伞控制系统以及飞行器控制系统 |
CN112389640A (zh) * | 2020-11-27 | 2021-02-23 | 东莞火萤科技有限公司 | 一种无人机停桨控制系统 |
Also Published As
Publication number | Publication date |
---|---|
CN119546520A (zh) | 2025-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021244544A1 (zh) | 一种无人机故障检测方法、无人机及无人机系统 | |
US20190138005A1 (en) | Unmanned Aerial Vehicle Damage Mitigation System | |
JP6835871B2 (ja) | 飛行制御方法、無人航空機、飛行システム、プログラム、及び記録媒体 | |
US9789969B2 (en) | Impact protection apparatus | |
WO2020156079A1 (zh) | 一种飞行器电池监控方法、装置、电池及飞行器 | |
US9938008B2 (en) | Systems and methods for execution of recovery actions on an unmanned aerial vehicle | |
JP2017217942A (ja) | 無人機システム、無人機、係留装置 | |
CN106227234A (zh) | 无人机、无人机起飞控制方法及装置 | |
JP6302012B2 (ja) | 衝突保護装置 | |
CN107074377A (zh) | 一种控制方法、装置、设备及无人机 | |
CN107147710A (zh) | 一种电网无人机巡检管理控制装置 | |
WO2019183927A1 (zh) | 一种多电池供电的控制方法、装置及无人机 | |
WO2015165021A1 (zh) | 飞行器的保护控制方法、装置及飞行器 | |
JP2009223407A (ja) | 管理装置および災害情報取得システム | |
CN111752290A (zh) | 降落伞的控制方法、装置、电子设备及存储介质 | |
JP2018095051A (ja) | 無人航空機 | |
CN110109475A (zh) | 一种无人机控制方法与装置、计算机可读存储介质 | |
WO2024207333A1 (zh) | 飞行平台、降落伞装置、飞行器及其控制方法和系统 | |
CN113815871A (zh) | 载人飞行器降落伞控制方法、控制器系统及载人飞行器 | |
CN114502463B (zh) | 无人机系统的控制方法、装置、无人机系统和存储介质 | |
WO2020107465A1 (zh) | 控制方法、无人机和计算机可读存储介质 | |
CN108521810A (zh) | 无人飞行器的控制方法、设备及无人飞行器 | |
JP6932456B2 (ja) | 無人航空機およびバッテリカートリッジ | |
KR20160074297A (ko) | 추락한 멀티로터 기체 추적 및 회수방법 | |
JP6944848B2 (ja) | 発信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23931402 Country of ref document: EP Kind code of ref document: A1 |