[go: up one dir, main page]

WO2024207126A1 - Procedure for the stabilization of arsenical residues by means of the precipitation of tooeleite by thermal stabilization - Google Patents

Procedure for the stabilization of arsenical residues by means of the precipitation of tooeleite by thermal stabilization Download PDF

Info

Publication number
WO2024207126A1
WO2024207126A1 PCT/CL2023/050030 CL2023050030W WO2024207126A1 WO 2024207126 A1 WO2024207126 A1 WO 2024207126A1 CL 2023050030 W CL2023050030 W CL 2023050030W WO 2024207126 A1 WO2024207126 A1 WO 2024207126A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenical
process according
residue
generate
effluent
Prior art date
Application number
PCT/CL2023/050030
Other languages
Spanish (es)
French (fr)
Inventor
Ricardo Miguel PEZOA CONTE
Marcelo Gustavo ACUÑA GOYCOLEA
Calderón Espinoza CRISTIAN FELIPE
Original Assignee
Ecometales Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecometales Limited filed Critical Ecometales Limited
Priority to PE2024002738A priority Critical patent/PE20250811A1/en
Priority to PCT/CL2023/050030 priority patent/WO2024207126A1/en
Priority to CN202380044254.0A priority patent/CN119301076A/en
Priority to ARP240100821A priority patent/AR132308A1/en
Publication of WO2024207126A1 publication Critical patent/WO2024207126A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention solves the technical problem of removing arsenical effluents to generate stable arsenical waste, which for its synthesis does not require an oxidation step to oxidize the arsenous ion to arsenate ion, nor the application of heat in the precipitation step.
  • arsenic Since arsenic is widely distributed in more than 320 minerals, it is omnipresent in mining and metallurgical operations, as well as the acid dissolution of arsenic-containing minerals, a product of flue gas scrubbing by dilute acid as a result of the calcination and smelting present in copper concentrates.
  • the wastewater from the above two processes is characterized by extremely low pH around 1.0 and high arsenic content in the range of 3-10 g/L being the most toxic inorganic form existing in contaminated water, and its toxicity has been suggested to be 25-60 times higher than As(V).
  • Removal of As(III) during water treatment is technically more difficult due to its high mobility and solubility compared to As(V) (Paikaray, S., Gött Anlagen, J., & Peiffer, S. (2012).
  • Copper smelters use a variety of treatment practices for the removal of arsenic from weak acid effluents, of which the most widely used method is co-precipitation with iron (Fe:As molar ratio > 3) and lime neutralization to form arsenical ferrihydrite [As(V)- ferrihydrite: As(V)-Fh].
  • As(V)-Fh has been designated as the best demonstrated available technology (BDAT) by the US Environmental Protection Agency (US EPA) for the removal of arsenic from acidic mineral processing effluents.
  • Tooeleite a ferric arsenite sulfate hydrate ((Fe2O3)6(As2O3)5(SO3)2*12H2O), has been proposed as a possible removal option for the extraction and immobilization of As(III) species from weak acid effluents. Tooeleite could be considered as the As(III) equivalent of scorodite, which is considered by the industry to be the most suitable medium for arsenic removal.
  • the structure of tooeleite consists of FeO6 octahedra linked by AsO3 pyramids at the corners and edges together with sulfate tetrahedra occupying the interlayer space, which provides a firm basis for understanding its formation, suggesting a method with great potential for the removal and stabilization of As(III) at high As content (25%).
  • the chemical structure of tooeleite is (Fe2O3)6(As2O3)5(SO3)2*12H2O ), having a Fe/As ratio of 1.2.
  • Tooeleite is stable between pH 2.0 and 3.5 and transforms into arsenous ferrihydrite (As(III)-Fh) above pH 3.5. Since tooeleite is stable over a short pH range, it would be necessary to deposit it in a lined pond with continuous monitoring and maintenance of acidic conditions (Morin, G., Rousse, G., & Elkaim, E. (2007). Crystal structure of tooeleite, Fe6(AsO3) 4SO4 (OH)4 ⁇ 4H2O, a new iron arsenite oxyhydroxy-sulfate mineral relevant to acid mine drainage. American Mineralogist, 92(1), 193-197). Hydrotalcite is a mineral belonging to the carbonate family.
  • H 2 +(OH) 2 These compounds have positively charged shells of H 2 +(OH) 2 , which are balanced by water molecules (H 2 O) and anions (e.g., CO 3 2 ⁇ , NO 3 -, Cl-, etc.) in the intermediate region.
  • H 2 O water molecules
  • anions e.g., CO 3 2 ⁇ , NO 3 -, Cl-, etc.
  • LDH double layer hydroxides
  • They have a structure derived from brucite (Mg(OH) 2 ).
  • the brucite layers are neutral with Mg 2+ cations octahedrally coordinated by OH- groups, with the octahedra sharing edges.
  • divalent cations charge +2
  • charge +3 charge +3
  • hydrotalcites ideal for industrial applications in adsorption and ion exchange unit operations.
  • hydrotalcites typically have Al as a cation with charge +3 and Mg as a cation with charge +2, while the typical anion is carbonate, CO3 2- .
  • hydrotalcites it is reported in the literature that they have a high affinity for the removal of arsenic from aqueous streams. Additionally, hydrotalcites have an affinity 10 times higher for the removal of arsenic when compared to other minerals such as hematite and goethite.
  • these can be of different types (Mg, Ni, Fe, Co, Cu, Zn, Mn for divalent cations and Al, Fe, Sc, Ga, Cr, Mn, Ni, Co), while the typical anions are Cl-, NO3-, SO4 2- and CO3 2- .
  • These ions define the capacity of removal or capture of impurities by the solid.
  • the capacity of removal of the impurities of interest will depend on the size of the anion in question, its charge density (higher charge density implies greater interaction with the layer), the pH and the temperature.
  • Document CL 2620-2001 aims at the thermal conversion of amorphous ferric arsenate [basic iron (III) arsenate] into scorodite [FeAsO4 ⁇ 2H20] by thermal conversion of amorphous ferric arsenate precipitates from the treatment of arsenical effluents, foundry dusts, refinery waste, arsenical sludges and others from processes that generate any arsenical effluent.
  • Document CL 2620-2001 represents the state of the art because it aims at a procedure for the stabilisation of arsenic based on the formation of scorodite (FeAsO4 ⁇ 2H2O).
  • Document CL 50423 relates to a procedure for the abatement of liquid waste and effluents with a high content of contaminants, such as arsenic and others, in a hydrometallurgical treatment plant.
  • This document discloses an arsenic and antimony abatement procedure for the environmental stabilization of liquid effluents and solid waste with high levels of arsenic concentration, which comprises the stages of leaching the foundry dust, oxidation of the As (III) present in the rich stream to As (V), adjustment of the ratio of Fe (III) to As (T), adjustment of the pH level of the solution by incorporating neutralizing agents, solid/liquid separation, where a liquid stream free of arsenic (As) and rich in Cu is obtained which goes to an electrowinning process and the solid, stabilized in the form of scorodite and gypsum, is confined in appropriate landfills.
  • Document CL 50423 represents the state of the art, because it aims at an arsenic stabilization process, based on the formation of scorodite (FeAsO4 ⁇ 2H2O).
  • Patent application CL 1684-2021 aims to obtain a final residue with a high content of stabilized arsenic.
  • This document CL 1684-2021 discloses a process for obtaining a mining or industrial waste, comprising ferric arsenate and/or scorodite with a high arsenic content from highly acidic solutions, with an acid concentration greater than 45 g/L, comprising copper, arsenic and, optionally, iron, antimony and/or bismuth, which comprises the steps of neutralization to generate gypsum, oxidation of the arsenite ion to arsenate ion in two stages, adjustment of the molar ratio of ferric ion: arsenate ion, recirculation of scorodite pulp, heating to a temperature between 50 and 90°C, acidity adjustment, and solid-liquid separation.
  • Document CL 1684-2021 represents the state of the art, because it aims at an arsenic stabilization process based on the formation of scorodite (FeAsO4 ⁇ 2H2O).
  • Document CA 2066905 discloses a process for reducing arsenic levels in a solution comprising sulfuric acid, water and arsenic acid, comprising the steps of producing copper arsenate; separating the precipitated copper arsenate from the resulting solution; adjusting the ferric/arsenic molar ratio by adding soluble ferric in a quantity sufficient to reduce residual arsenic in the solution; separating the ferric arsenate.
  • Document CA 2066905 only represents state of the art, based on reducing arsenic levels in solutions containing them.
  • the present invention is novel and inventive since none of the cited documents of the prior art relates to a process for the formation of a stable arsenical residue based on tooeleite, which is a ferric arsenite sulphate hydrate [(Fe2O3)6(As2O3)5(SO3)2 ⁇ 12H2O], where from an initial stage consisting of contacting an effluent containing arsenic with a neutralizing slurry, and after separation-leaching-separation stages, the stage of contacting an arsenical solution with an iron solution and neutralizing agents continues, where the precipitation of a pulp of arsenical residue occurs, and then a solid-liquid separation step produces an arsenical residue, which is subjected to the sequential and essential stage of a thermal treatment, at a temperature between 450 and 650°C, to then continue with a washing and separation stage, obtaining a Stable arsenical residue based on tooeleite.
  • the present invention solves the technical problem of generating stable arsenical residues whose precipitation involves phases of compounds with arsenate ion.
  • arsenite ion such as calcium arsenite or arsenic trisulfide are known, which are arsenical residues that are not stable in terms of the leaching of As in environmental stability tests such as TCLP.
  • the present invention allows to precipitate an arsenical residue that involves arsenite ion and that by means of a stabilization stage that comprises a calcination, the arsenical residue generated is stable.
  • Stage I shows a flow diagram of a process of removal of arsenic from arsenical effluents, according to what is disclosed by the present invention.
  • Stage I shows the first step of neutralization of the arsenical effluent (1), to which a solution or slurry of neutralizer from stage A prepared by means of the neutralizer (3) and water (2) is added.
  • the solution then goes to the second step of adjustment of the Fe(III)/As(III) ratio, by adding a ferric solution which is prepared in stage B by adding water (2), an iron source (5) and eventually sulfuric acid.
  • Said adjusted solution is sent to the third step (iii) of tooeleite precipitation, whose pulp is separated in the fourth step (iv).
  • the solid obtained in the fifth step (v) is sent to a calcination stage, and subsequently to a sixth step (vi) of water washing (2) and seventh step (vii) of solid-liquid separation where the arsenical residue of stabilized tooeleite is generated (6).
  • the solution obtained in the fourth step (iv) is sent to a seventh step (vii) of purification, where a metallic solution is added that is prepared in step C by adding water (2), a salt of a first (7) and a second transition metal (8), and the solution or slurry of neutralizer from step A, to finally send the pulp to a ninth step (ix) of solid-liquid separation to generate the fourth arsenical residue (9) and a treated effluent (10).
  • Figure II shows the X-ray diffractogram (XRD) of tooeleite precipitated with NaOH by the process disclosed by the present invention
  • XRD X-ray diffractogram
  • the XRD pattern obtained for the synthesis with NaOH exhibits broad bands between 10° 2 ⁇ and 34° 2 ⁇ that can be attributed to the adsorption of As (III).
  • the XRD patterns show gradually enhanced diffraction peaks at 10.0; 32.0 and 34.0°, marked by the (020), (200) and (061) indices of the tooeleite phase, indicating the variation of the mineral composition from ferrihydrite to tooeleite.
  • Figure III shows the X-ray diffractogram (XRD) of tooeleite precipitated with calcium carbonate by the process disclosed by the present invention, the XRD pattern obtained for the synthesis with CaCO3 exhibits broad bands between 10° 2 ⁇ and 34° 2 ⁇ that can be attributed to the adsorption of As (III).
  • XRD X-ray diffractogram
  • the XRD patterns show gradually enhanced diffraction peaks at 10.0; 32.0 and 34.0°, marked by the indices (020), (200) and (061) of the tooeleite phase, indicating the variation of the mineral composition from ferrihydrite to tooeleite, in addition the characteristic diffraction peaks of gypsum at 14.0° 2 ⁇ and 24.0° 2 ⁇ are observed, natural from the precipitation of sulfate as gypsum in the presence of calcium.
  • the invention relates to a process for the removal of hazardous elements such as arsenic, which are generated from the leaching of metal concentrates or metallurgical waste, or from smelting or roasting processes of concentrates, where effluents from sulfuric acid plants containing hazardous elements are generated, or from waters contaminated with arsenic, where all said effluents are processed to generate arsenical waste that is deposited in a stable manner.
  • the invention relates to an arsenic abatement process, by means of which a stable arsenical residue is generated in accordance with the TCLP (Total characteristic leaching procedure) and SPLP (Synthetic precipitation leaching procedure) hazard tests.
  • a process for the recovery of aqueous solutions is disclosed, with particular focus on those from metallurgical operations, generating streams with an arsenic concentration of less than 200 mg/L.
  • a process for the recovery of aqueous solutions is disclosed, with particular focus on those from metallurgical operations, generating streams with an arsenic concentration of less than 10 mg/L.
  • the effluents treated by the process claimed in the present invention have an arsenic concentration ranging from 1 to 15 g/L of total arsenic.
  • the arsenic present in the effluents has an arsenite ion concentration that may vary between 10 mg/L and 15 g/L.
  • the effluents may contain sulfuric acid, the concentration of which may vary between 2 and 200 g/L.
  • the arsenic removal process consists of a first neutralization step, wherein the arsenical effluent is contacted with a first neutralizer to generate a first neutralized arsenical effluent.
  • the arsenic removal process consists of a second step ii of Fe(III)/As(III) ratio adjustment, where the first neutralized arsenical effluent is mixed with a first ferric solution, to generate a third arsenical effluent.
  • the arsenic removal process consists of a third step iii of arsenic precipitation, where the pH of the third arsenical effluent is adjusted with a second neutralizer to generate a first arsenical residue pulp.
  • the arsenic removal process consists of a fourth step iv of solid-liquid separation, where the first arsenical residue pulp is separated to generate a fourth arsenical effluent and a first arsenical residue.
  • the arsenic removal process consists of a fifth calcination step v, where the first arsenical residue is calcined to generate a second arsenical residue.
  • the arsenic removal process consists of a sixth washing step vi, where the second arsenical residue is washed with an aqueous solution to generate a second arsenical residue pulp.
  • the arsenic removal process consists of a seventh solid-liquid separation step vii, where the second arsenical residue pulp is separated to generate a fifth arsenical effluent and a third arsenical residue.
  • the arsenic removal process consists of an eighth purification step viii, where the fourth arsenical effluent and the fifth arsenical effluent are treated with a precipitating solution and a third neutralizer to generate a third arsenical residue pulp.
  • the arsenic removal process consists of a ninth solid-liquid separation step, where the third arsenical residue pulp is separated to generate a fifth arsenical effluent and a fourth arsenical residue.
  • step i of neutralization the pH is adjusted to a value that varies within the range of 0.5 to 2.
  • the first neutralizer can be selected from one of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate, calcium oxide, calcium hydroxide, calcium carbonate or dolomitic limestone.
  • the calcium-based neutralizer of step i is prepared as a neutralizer slurry with water (step A), where the concentration of the neutralizer in the neutralizer slurry varies between 15 and 25% w/w.
  • a first neutralized effluent pulp is generated in neutralization step i.
  • the first neutralized effluent pulp is sent to a first separation stage to generate a first neutralized arsenical effluent and a first residue.
  • said first separation stage consists of a first thickening, clarification or centrifugation substage, to which a first stage of separation is carried out.
  • the first neutralized effluent pulp is subjected to a leaching process to remove arsenic to generate a second residue pulp.
  • said first separation stage consists of a second filtering sub-stage, to which the first thickened pulp is subjected to generate a first filtered solution and the first residue.
  • said first separation stage consists of a third mixing sub-stage that is fed with the first overflow solution and the first filtered solution to generate the first neutralized arsenical effluent.
  • the first residue is subjected to a leaching process for the removal of arsenic to generate a second residue pulp.
  • the leaching process is carried out with an acid solution.
  • the acid solution comprises sulfuric acid.
  • the concentration of sulfuric acid in the acid solution varies between 10 and 75 g/L.
  • the leaching stage is carried out at a temperature varying between 40 and 80°C.
  • the leaching stage is carried out at a solids content in the pulp resulting from the mixture of the first residue with the acid solution of between 10 and 40%.
  • the second residue pulp is sent to a second separation stage to generate a second arsenical effluent and a second residue.
  • said second separation stage consists of a first thickening, clarification or centrifugation sub-stage, to which the second residue pulp is subjected to obtain a second overflow solution and a second thickened pulp.
  • said second separation stage consists of a second filtering sub-stage, to which the second thickened pulp is subjected to generate a second filtered solution and the second residue.
  • said second separation stage consists of a third mixing sub-stage that is fed with the second overflow solution and the second filtered solution to generate the second arsenical effluent.
  • the second residue comprises gypsum and constitutes a stable residue.
  • the sodium-based neutralizer is prepared at a concentration that varies between 1 and 10 mol/L with water. In another preferred variant of the invention, after the addition of the neutralizer, the first neutralized arsenical effluent is generated.
  • the adjustment of the Fe(III)/As(III) molar ratio in step ii is carried out by adding one of ferric sulphate, ferric sulphate heptahydrate, ferric chloride, or a leaching solution of an iron ore such as hematite, goethite or magnetite (step B).
  • the adjustment of the Fe(III)/As(III) molar ratio in step ii can be carried out with a leaching solution of magnetite iron ore that has been oxidized with an oxidant to convert all the ferrous ion into ferric ion.
  • the oxidant used to oxidize the magnetite leaching solution is selected from one of hydrogen peroxide or sodium chlorite.
  • step ii of adjusting the Fe(III)/As(III) molar ratio is carried out at a Fe(III)/As(III) molar ratio of between 1.5 and 2.
  • step ii of adjusting the Fe(III)/As(III) molar ratio is carried out at a Fe(III)/As(III) molar ratio of 1.8.
  • step iii of arsenic precipitation is carried out at a pH of between 2 and 4.
  • step iii is carried out for a time of between 1 and 24 hours. In another preferred variant of the invention, step iii is carried out at a temperature of between 15 and 80°C. In another preferred variant of the invention, step iii is carried out at a temperature of 20°C.
  • the second neutralizer is selected from one of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate, calcium oxide, calcium hydroxide, calcium carbonate or dolomitic limestone.
  • the second neutralizer of step iii is selected from one of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium oxide, magnesium hydroxide or magnesium carbonate.
  • a first thickening, clarification or centrifugation sub-stage is carried out, to which the first arsenical residue pulp is subjected to obtain a third overflow solution and a third thickened pulp.
  • a second filtering sub-stage is carried out, to which the third thickened pulp is subjected to generate a third filtered solution and the first arsenical residue.
  • step iv a third mixing sub-stage is carried out which is fed with the third overflow solution and the third filtered solution to generate the fourth arsenical effluent.
  • the first arsenical residue is subjected to a drying process to generate a second arsenical residue.
  • said drying process is carried out until the second arsenical residue reaches a moisture content on a wet basis of between 10% and 25% w/w.
  • step v is carried out at a temperature between 450 and 600°C.
  • step v is carried out for a time of between 15 and 60 minutes.
  • gypsum is added in step v.
  • gypsum is added in step v in a mass ratio of between 10 and 20% w/w with respect to the total mass of the second arsenical residue and the gypsum.
  • the gypsum added in step v corresponds to the second residue.
  • the second neutralizer in step iii is selected from one of calcium oxide, calcium hydroxide, calcium carbonate or dolomitic limestone.
  • a first thickening, clarification or centrifugation sub-stage is carried out in step iv, to which the first arsenical residue pulp is subjected to obtain a third overflow solution and a third thickened pulp.
  • a second filtering sub-stage is carried out in step iv, to which the third thickened pulp is subjected to generate a third filtered solution and the first arsenical residue.
  • a third mixing sub-stage is carried out in step iv, which is fed with the third overflow solution and the third filtered solution to generate the fourth arsenical effluent.
  • the first arsenical residue is subjected to a drying process to generate a second arsenical residue.
  • said drying process is carried out until the second arsenical residue reaches a moisture content on a wet basis of between 10% and 25% w/w.
  • step v is carried out at a temperature of between 450 and 600°C.
  • step v is carried out for a time of between 15 and 60 minutes.
  • step vi the washing of the second arsenical residue is carried out with water at a washing ratio of between 1 and 3 ton of water/ton of second arsenical residue.
  • step vii a first thickening, clarification or centrifugation sub-stage is carried out, to which the second arsenical residue pulp is subjected to obtain a fourth overflow solution and a fourth thickened pulp.
  • a second filtering sub-stage is carried out, to which the fourth thickened pulp is subjected to generate a fourth filtered solution and the third arsenical residue.
  • a third mixing sub-stage is carried out in step vii, which is fed with the fourth overflow solution and the fourth filtered solution to generate the fifth arsenical effluent.
  • the fifth arsenical effluent is recirculated to step iii.
  • the third arsenical residue is a stable residue.
  • a purification step viii is carried out, which is carried out at a pH range between 11 and 13.
  • the third neutraliser added in step viii is selected from sodium hydroxide, potassium hydroxide, calcium oxide or calcium hydroxide.
  • the precipitating solution added in step viii comprises a first transition metal and a second transition metal (step C).
  • the first transition metal added in step viii is added in the form of a ferrous salt selected from one of ferrous sulphate or ferrous chloride.
  • the second transition metal added in step viii is added in the form of a zinc salt selected from one of zinc sulphate, zinc sulphate pentahydrate or zinc chloride.
  • the first transition metal added in step viii is added in a molar ratio with respect to the arsenous ion concentration of between 2:1 and 25:1.
  • the second transition metal added in step viii is added in a molar ratio with respect to the arsenous ion concentration of between 6:1 and 20:1.
  • a step ix is carried out where a first thickening, clarification or centrifugation sub-stage is carried out, to which the second arsenical residue pulp is subjected to obtain a fifth overflow solution and a fifth thickened pulp.
  • a second filtering sub-stage is carried out, to which the fifth thickened pulp is subjected to generate a fifth filtered solution and the fourth arsenical residue.
  • a third mixing sub-stage is carried out which is fed with the fifth overflow solution and the fifth filtered solution to generate the sixth arsenical effluent.
  • the reactor was stirred at 300 rpm for 2 hours at a temperature between 20°C and 80°C. Once the reaction time was finished, the solid-liquid separation of the pulp was carried out by filtration. The solid was washed with an acidified solution at pH 1, to subsequently perform TCLP analysis. The results are presented in Table 2. Table 2.
  • the pH of the solution was adjusted to 3 by adding a sodium hydroxide solution prepared at a concentration of 10 mol/L measured with an Ag/AgCl pH electrode.
  • the reactor was stirred at 300 rpm for 20 hours at room temperature. Once the reaction time was over, the solid-liquid separation of the pulp was carried out by filtration. The solid was washed with an acidified solution at pH 3, to subsequently perform TCLP analysis. The results are presented in Table 4. Table 4.
  • the pH of the solution was adjusted within the range of 2 to 4 by adding a lime milk prepared at a concentration of 1025% w/w.
  • the pH was measured with an Ag/AgCl pH electrode.
  • the reactor was stirred at 300 rpm for 20 hours at room temperature. Once the reaction time was over, the solid-liquid separation of the pulp was carried out by filtration. The solid was washed with an acidified solution at pH 3, to subsequently perform TCLP analysis. The results are presented in Table 5. Table 5.
  • Precipitation at pH 3 at a Fe/As molar ratio shows that although it is possible to remove As, the phase generated is highly unstable and not related to tooeleite which, according to its chemical structure, requires a Fe/As molar ratio of 1.5.
  • the predominant phase is not tooeleite but iron oxyhydroxides which have an As adsorption mechanism rather than a chemical bond that fixes the As in a crystalline structure, which is why an unstable arsenical residue is generated.
  • Examples 42 to 43 20,000 mL of an arsenical solution were prepared according to the procedure indicated in example 7, which was placed in a 20 L glassed reactor, where ferric sulfate heptahydrate was added to maintain a Fe(III)/As(III) molar ratio of 1.8 mol Fe(III)/mol As(III).
  • the pH of the solution was adjusted to 3 by adding a NaOH solution at a concentration of 10 mol/L and lime milk prepared at a concentration of 25% w/w.
  • the pH was measured with an Ag/AgCl pH electrode.
  • the reactor was stirred at 300 rpm for 18 hours at room temperature. Pulp samples of 200 mL were taken at times 1, 2, 4, 7, 10, 15 and 18 h.
  • Example 43 Reaction time h 1 2 4 7 10 15 18 pH 3 3 3 3 3 3 3 3 Mol/mol ratio 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Fe(III)/As(III) Yield % 96.0 96.5 97.5 98.0 98.2 98.3 98.3 As removal As released in mg/L 58 63 64 63 59 60 62 TCLP
  • Example 44 50 L of an arsenical solution with an arsenic(III) concentration of 8 g/L and a sulfuric acid concentration of 2 g/L was prepared from a sulfuric acid plant effluent solution processed according to the conditions of Example 7 and placed in a 100 L glassed reactor, where magnetite leaching solution was added to maintain a Fe(III)/As(III) molar ratio equal to 1.8 mol Fe(III)/mol As(III).
  • Examples 51 to 56 10 g of arsenical residue precipitated according to the conditions of experiment 43 were taken at a residence time of 6 h and placed in a zirconium crucible in a muffle at a temperature of between 400 and 650°C for a time of 1 h. Once the reaction time was completed, the crucibles were removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 10. Table 10.
  • Examples 62 to 65 10 g of arsenical residue precipitated according to the conditions of experiment 43 were taken at a time of 6 h and placed in a zirconium crucible in a muffle at a temperature of 500°C for a time between 15 and 60 min. Once the reaction time had elapsed, the crucibles were removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 12. Table 12.
  • Examples 66 to 71 10 g of arsenical residue precipitated according to the conditions of experiment 42 were taken at a residence time of 6 h and placed in a zirconium crucible in a muffle at a temperature of 550°C for a time of 1 h.
  • the crucible was charged with gypsum produced according to Example 7, such that the gypsum content in the total mixture with the arsenical residue varied between 10 and 20% w/w.
  • the reaction time had elapsed, the crucibles were removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis.
  • Table 13 Table 13
  • Example 74 10 g of arsenical residue precipitated according to the conditions of experiment 44 were taken at a residence time of 6 h and placed in a zirconium crucible in a muffle at a temperature of 500°C for 1 h. Once the reaction time had elapsed, the crucible was removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 15. Table 15.
  • the pH of the solution was adjusted to 12 by adding a sodium hydroxide solution at a concentration of 10 mol/L and lime milk prepared at a concentration of 25% w/w.
  • the pH was measured with an Ag/AgCl pH electrode.
  • the reactor was stirred at 300 rpm for 1 hour at room temperature.
  • the pulp was subjected to a solid-liquid separation process by filtration, to subsequently perform TCLP analysis. The results are presented in Table 18. Table 18.
  • Examples 90 to 96 Variable/Example Unit 90 91 92 93 94 95 96 Initial As g/L 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 Initial H2SO4 g/L 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Adjustment pH 12 12 12 12 12 12 12 12 12 Precipitation time h 1 1 1 1 1 1 1 1 Precipitation Mol/mol ratio 18 18 18 18 18 18 Fe(II)/As(III) Mol/mol ratio 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 Zn(II)/As(III) Yield % 96.7 99.4 93.8 100 100 99.6 99.9 As removal As released in mg/L 0.24 0.43 0.70 0.01 0.01 0.26 0.61 TCLP Application examples 90 to 96 show that it is possible to generate stable arsenical waste from solutions obtained from the precipitation process in the form of tooeleite, and that it is possible to obtain beaten solutions with an As concentration of less than 10 mg/L.

Landscapes

  • Removal Of Specific Substances (AREA)
  • Paper (AREA)

Abstract

The invention discloses a process for the stabilization of arsenical waste by means of the precipitation of tooeleite by thermal stabilization, the process comprising the following steps: a first step of neutralization, in which the arsenical effluent is brought into contact with a first neutralizer to generate a first neutralized arsenical effluent; a second step of Fe(III)/As(III) ratio adjustment, in which the first neutralized arsenical effluent is mixed with a first ferric solution, to generate a third arsenic effluent; a third step of arsenic precipitation, in which the pH of the third arsenical effluent is adjusted with a second neutralizer to generate a first arsenical residue slurry; a fourth step of solid-liquid separation, in which the first arsenical residue slurry is separated to generate a fourth arsenical effluent and a first arsenical residue; a fifth step of calcination, in which the first arsenical residue is calcined to generate a second arsenical residue; a sixth step of washing, in which the second arsenical residue is washed with an aqueous solution to generate a second arsenical residue slurry; and a seventh step of solid-liquid separation, in which the second arsenical residue slurry is separated to generate a fifth arsenical effluent and a third stable arsenical residue in the form of tooeleite. The invention solves the technical problem of removing arsenic from arsenical effluents to generate stable arsenical residues which, for their synthesis, do not require an oxidation step to oxidize the arsenous ion to arsenate ion, nor the application of heat in the precipitation step.

Description

Procedimiento para la estabilización de residuos arsenicales mediante la precipitación de tooeleita vía estabilización térmica Campo de la invención La invención resuelve el problema técnico de remoción de arsénico desde efluentes arsenicales para generar residuos arsenicales estables, los cuales para su síntesis no requieren una etapa de oxidación para oxidar el ion arsenoso a ion arseniato, ni la aplicación de calor en la etapa de precipitación. Estado de la técnica Como el arsénico está ampliamente distribuido en más de 320 minerales, es omnipresente en operaciones mineras y metalúrgicas, así como la disolución ácida de los minerales que contienen arsénico, producto del lavado de gases de combustión por ácido diluido como resultado de la calcinación y fundición presente en los concentrados de cobre. Las aguas residuales de los dos procesos anteriores se caracterizan por un pH extremadamente bajo alrededor de 1,0 y un alto contenido de arsénico en un rango de 3-10 g/L siendo la forma inorgánica más tóxica existente en agua contaminada, y se ha sugerido que su toxicidad es 25-60 veces más alta que As(V). La eliminación de As(III) durante el tratamiento del agua es técnicamente más difícil debido a su alta movilidad y solubilidad en comparación con As(V) (Paikaray, S., Göttlicher, J., & Peiffer, S. (2012). As (III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. Chemosphere, 86(6), 557- 564). La eliminación eficiente y directa de As(III) presenta un gran desafío, especialmente a pH en torno a 1. Se han empleado diversos procesos de tratamiento para la eliminación del arsénico en distintos medios, como la precipitación, la sorción, el intercambio iónico y la separación de membranas. En cuanto a la eliminación de arsénico de alta concentración, la precipitación química parece más adecuada y económica, mientras que las otras tres se emplean comúnmente cuando el arsénico se encuentra en menor concentración esto debido a su costo y capacidad. Los métodos tradicionales de precipitación de arsénico incluyen neutralización con cal, co-precipitación con iones férricos y precipitación de sulfuros. Sin embargo, todos son escasos en cuanto a su aplicación en el tratamiento con un contenido de arsénico sobre 30%p/p. En la neutralización con cal se debe ajustar el pH a 12 para eliminar el arsénico como arseniato de calcio y arsenito de calcio, los cuales contienen concentraciones de arsénico moderadamente bajas del 5 al 15%. Por lo tanto, se requiere una gran cantidad de cal produciendo una cantidad de lodo al mismo tiempo cuyo almacenamiento no es del todo seguro y el arsénico se libera posteriormente en solución. La co-precipitación con iones férricos es especial para la eliminación de arseniato, sin embargo, se debe utilizar una gran cantidad de oxidante para pasar de As(III) a As(V). La precipitación de sulfuros puede eliminar As(III) como As2S3 directamente, sin embargo presenta desafíos operativos importantes debido a la generación de ácido sulfhídrico y a procesos adicionales para otorgarle estabilidad ambiental. Las fundiciones de cobre utilizan diversas prácticas de tratamiento para la eliminación de arsénico de efluentes ácidos débiles, de los cuales el método más utilizado consiste en la coprecipitación con hierro (Fe:As razón molar > 3) y neutralización de cal para formar ferrihidrita arsenical [As(V)- ferrihidrita: As(V)-Fh]. Sin embargo, As(V)-Fh ha sido designado como la mejor tecnología disponible demostrada (BDAT) por la US Agencia de Protección Ambiental (US EPA) para la eliminación de arsénico de efluentes de procesamiento de minerales ácidos. Sin embargo, esta opción de tratamiento está asociada a la generación de altos volúmenes de lodos, alta demanda de hierro, bajo contenido de As (6%) y la necesidad de oxidar el As(III) a especies como As(V) antes de la precipitación. Además, la estabilidad a largo plazo de As(V)-Fh ha sido motivo de preocupación debido a la probabilidad de que la ferrihidrita contenida en el As(V)-Fh se transformará en goethita y finalmente hematita liberando así arsénico en solución. Además, As(V)-Fh puede reducirse en ambientes anóxicos dando como resultado la disolución reductora de ferrihidrita o As(V) y la movilización de arsénico (Pedersen, H. D., Postma, D., & Jakobsen, R. (2006). Release of arsenic associated with the reduction and transformation of iron oxides. Geochimica et Cosmochimica Acta, 70(16), 4116-4129). La escorodita (FeAsO4*2H2O) se considera generalmente como la opción de eliminación más adecuada para la fijación de As debido a su alta eficiencia de eliminación de arsénico, alto contenido de arsénico (30%), bajos requisitos de hierro (Fe:As=1), y baja solubilidad en el rango de pH 2,8 a 5,3. Además, la escorodita tiene buenas propiedades de sedimentación y filtración debido a su naturaleza cristalina. El profesor George Demopoulos desarrolló un nuevo proceso para la fijación de arsénico de efluentes de ácidos débiles metalúrgicos por precipitación atmosférica de escorodita a 95˚C bajo presión ambiental y condiciones controladas por sobresaturación (Demopoulos, G. P. (2005). On the preparation and stability of scorodite. Arsenic metallurgy, 25-50), proceso que ha sido implementado a escala industrial por EcoMetales. Dicho proceso se encuentra actualmente operativo en la ciudad de Calama - Chile, para la remoción de arsénico de soluciones de lixiviación de polvos de fundición. No obstante, en atención a elevados costos asociados a la provisión de energía y necesita de oxidante, existe un incentivo para investigar una opción de estabilización alternativa con baja solubilidad, bajos requisitos de hierro, alta eficiencia de abatimiento de arsénico y buenas propiedades de filtración que pueden ser utilizadas por fundiciones de cobre para la eliminación de arsénico en efluentes de ácidos débiles. La tooeleita, un hidrato de sulfato de arsenito férrico ((Fe2O3)6(As2O3)5(SO3)2*12H2O), se ha propuesto como una posible opción de eliminación para la extracción e inmovilización de la especie As(III) desde efluentes de ácidos débiles. La tooeleita podría ser considerada como la equivalente de escorodita de As(III), el cual la industria considera el medio más adecuado para la eliminación de arsénico. La tooeleita tiene un alto contenido de arsénico (25 %), alta eficiencia de eliminación de arsénico, baja demanda de hierro (Fe:As=1.2) y se precipita fácilmente en condiciones ambientales. La estructura de la tooeleita está formada por octaedros de FeO6 unidos por pirámides de AsO3 en las esquinas y bordes junto a los tetraedros de sulfato que ocupan el espacio entre capas lo que sienta una base firme para comprender su formación, sugiriendo un método con un gran potencial para la eliminación y estabilización de As(III) con alto contenido de As (25%). Conforme a la investigación de Morin, la estructura química de la tooeleita es (Fe2O3)6(As2O3)5(SO3)2*12H2O ).teniendo una relación Fe/As de 1,2. La tooeleita sintética es estable entre pH 2,0 y 3,5 y se transforma en ferrihidrita arsénica (As (III) -Fh) por encima de pH 3,5. Dado que la tooeleita es estable en un corto rango de pH, sería necesario depositarla en un estanque revestido con un seguimiento continuo y el mantenimiento de las condiciones ácidas (Morin, G., Rousse, G., & Elkaim, E. (2007). Crystal structure of tooeleite, Fe6(AsO3) 4SO4 (OH)4·×4H2O, a new iron arsenite oxyhydroxy-sulfate mineral relevant to acid mine drainage. American Mineralogist, 92(1), 193-197). La hidrotalcita es un mineral que pertenece a la familia de los carbonatos. Está compuesta de carbonatos, hidroxilos, agua molecular, magnesio y aluminio, los cuales se encuentran ordenados en una estructura molecular cristalina bien definida. En la naturaleza se encuentra principalmente asociada a yacimientos de dolomita. La fórmula química general para la hidrotalcita es ([M1- x 2+Mx 3+ (OH)2]x+(An -)x/n• mH2O), donde M corresponden a cationes divalentes (carga +2) y trivalentes (carga +3); A corresponde a un anión de carga -2 y el valor de x se define según la relación: x=M^(3+)/(M^(3+)+M^(2+) ) Estos compuestos tienen capas cargadas positivamente de H2+(OH)2, que están equilibradas por moléculas de agua (H2O) y aniones (por ejemplo, CO3 2−, NO3-, Cl-, etc.) en la región intermedia. Este tipo de estructuras se conocen como hidróxidos de capa doble, LDH. Estas tienen una estructura derivada de la brucita (Mg(OH)2). Las capas de brucita son neutras con cationes Mg2+ octaédricamente coordinado por grupos OH-, con los octaedros compartiendo bordes. Al reemplazar los cationes divalentes (carga +2) por otros trivalentes (carga +3) en estas capas, se genera una carga positiva residual. Para estabilizarse, estas capas requieren incorporar aniones entre capas, lo que se usa aprovecha para la remoción de impurezas de carga negativa desde soluciones de interés. La gran área entrelazada, junto con la posibilidad de muchos aniones intercambiables, hace que las hidrotalcitas sean ideales para aplicaciones industriales en operaciones unitarias de adsorción e intercambio iónico. Típicamente las hidrotalcitas tienen como catión de carga +3 al Al y al Mg como catión de carga +2, mientras que el anión típico es el carbonato, CO3 2-. Para el caso de estos cationes, se encuentra reportado en literatura que estos tienen una alta afinidad para la remoción de arsénico desde corrientes acuosas. Adicionalmente, las hidrotalcitas presentan una afinidad 10 veces superior para la remoción de arsénico si se compara con otros minerales como la hematita y la goethita. En relación con los cationes que componen la estructura cristalina, estos pueden ser de distinto tipo (Mg, Ni, Fe, Co, Cu, Zn, Mn para cationes divalentes y Al, Fe, Sc, Ga, Cr, Mn, Ni, Co), mientras que los aniones típicos son Cl-, NO3-, SO42- y CO32-. Estos iones definen la capacidad de remoción o captación de impurezas por parte del sólido. Además, la capacidad de remoción de las impurezas de interés dependerá del tamaño del anión en cuestión, su densidad de carga (mayor densidad de carga implica una mayor interacción con la capa), el pH y la temperatura. El documento CL 2620-2001 tiene como objetivo conversión térmica de arseniato férrico amorfo, [arseniato básico de fierro (III)], en escorodita [FeAsO4×2H20], mediante la conversión térmica de precipitados de arseniatos férricos amorfos provenientes del tratamiento de efluentes arsenicales, polvos de fundición, descartes de refinerías, lodos arsenicales y otros provenientes de procesos que generen cualquier efluente arsenical. El documento CL 2620-2001 representa estado de la técnica, porque apunta a un procedimiento estabilización de arsénico, basado en la formación de escorodita (FeAsO4×2H2O). El documento CL 50423 versa sobre un procedimiento para el abatimiento en una planta de tratamiento hidrometalúrgico de residuos y efluentes líquidos con alto contenido de contaminantes, como arsénico y otros. Este documento divulga un procedimiento de abatimiento de arsénico y antimonio para la estabilización ambiental de efluentes líquidos y residuos sólidos con altos niveles de concentración de arsénico, el cual comprende las etapas de lixiviar el polvo de fundición, oxidación del As (III) presente en la corriente rica a As (V), ajuste de la razón de Fe (III) sobre As(T), ajuste del nivel de pH de la solución incorporando agente neutralizantes, separación de sólidos/líquidos, donde se obtiene una corriente líquida libre de arsénico (As) y rica en Cu que pasa a un proceso de electro obtención y el sólido, estabilizado en forma de escorodita y yeso, es confinado en vertederos apropiados. El documento CL 50423 representa estado de la técnica, porque apunta a un procedimiento estabilización de arsénico, basado en la formación de escorodita (FeAsO4×2H2O). La Solicitud patente CL 1684-2021 tiene como objetivo la obtención de un residuo final con alto contenido de arsénico estabilizado. El presente documento CL 1684-2021 divulga un procedimiento para la obtención de un residuo minero o industrial, que comprende arseniato férrico y/o escorodita con un elevado contenido de arsénico a partir de soluciones altamente ácidas, superiores en concentración de ácido a 45 g/L, que comprenden cobre, arsénico y, opcionalmente, fierro, antimonio y/o bismuto, el cual comprende las etapas de neutralización para generación de yeso, oxidación del ion arsenito en ion arseniato en dos etapas, ajuste de la relación molar de ion férrico: ion arseniato, recirculación de pulpa de escorodita, calentamiento a una temperatura entre 50 y 90°C, ajuste de acidez, y separación sólido líquido. El documento CL 1684-2021 representa estado de la técnica, porque apunta a un procedimiento estabilización de arsénico, basado en la formación de escorodita (FeAsO4×2H2O). El documento CA 2066905 divulga un proceso para reducir los niveles de arsénico en una solución que comprende ácido sulfúrico, agua y ácido arsénico, que comprende las etapas de producción de arseniato de cobre, separación del arseniato de cobre precipitado de la solución resultante, ajuste de la relación molar férrico/arsénico mediante adición de férrico soluble en una cantidad suficiente para reducir el arsénico residual en la solución; separación del arseniato férrico. El documento CA 2066905 solo representa estado de la técnica, basado en reducir los niveles de arsénico en soluciones que las contiene. El documento Opio, F. K. (2013). Investigation of Fe (III)-As (III) bearing phases and their potential for arsenic disposal. Queen's University (Canada) describe investigaciones de las fases que contienen Fe(III) – As(III), y su potencial para la eliminación de arsénico, donde el capítulo 2.11 se describe Tooeleita, asociada a sus características, síntesis, entre otros aspectos este documento solo representa estado de la técnica, basado en una investigación de las fases que contienen Fe (III)-As(III) y su potencial para la eliminación de arsénico. La presente invención es novedosa e inventiva ya que ninguno de los documentos citados del arte previo versa sobre un procedimiento para la formación de un residuo arsenical estable basado en la tooeleita, que es un hidrato de sulfato de arsenito férrico [(Fe2O3)6(As2O3)5(SO3)2×12H2O], donde a partir de una etapa inicial que consiste en contactar un efluente que contiene arsénico con una lechada neutralizante, y después de etapas de separación-lixiviación-separación, se continua con la etapa de contactar una solución arsenical con una solución de Fierro y agentes de neutralización, donde se origina la precipitación de una pulpa de residuo arsenical, para luego de un paso de separación sólido líquido, se produce un residuo arsenical, que es sometido a la etapa secuencial y esencial de un tratamiento térmico, a una temperatura entre 450 y 650°C, para a continuación continuar con una etapa de lavado y separación, obteniéndose un residuo arsenical estable basado en la tooeleita. La presente invención resuelve el problema técnico de generar residuos arsenicales estables cuya precipitación involucra fases de compuestos con ion arseniato. En el estado de la técnica son conocidos los procesos de precipitación de ion arsenito como arsenito de calcio o trisulfuro de arsénico, los cuales son residuos arsenicales que no son estables en términos de la lixiviación de As en test de estabilidad ambiental como el TCLP. La presente invención permite precipitar un residuo arsenical que involucra ion arsenito y que por medio de una etapa de estabilización que comprende una calcinación, el residuo arsenical generado es estable. Descripción de las figuras La Figura I muestra un diagrama de flujo de un proceso de remoción de arsénico desde efluentes arsenicales, de acuerdo a lo divulgado por la presente invención. La etapa I muestra el primer paso de neutralización del efluente arsenical (1), al cual se agrega una solución o lechada de neutralizante de la etapa A preparado mediante del neutralizante (3) y agua (2). Posteriormente la solución pasa al segundo paso de ajuste de relación Fe(III)/As(III), mediante adición de una solución férrica la cual se prepara en la etapa B mediante la adición de agua (2), una fuente de hierro (5) y eventualmente ácido sulfúrico (4). Dicha solución ajustada se envía al tercer paso (iii) de precipitación de tooeleita, cuya pulpa es separada en el cuarto paso (iv). El sólido obtenido en el quinto paso (v) se envía a una etapa de calcinación, y posteriormente a un sexto paso (vi) de lavado con agua (2) y séptimo paso(vii) de separación sólido líquido en donde se genera el residuo arsenical de tooeleita estabilizada (6). En un aspecto opcional, la solución obtenida en el cuarto paso (iv) se envía a un séptimo paso (vii) de depuración, en donde se agrega una solución metálica que se prepara en el paso C mediante la adición de agua (2), una sal de un primer (7) y un segundo metal de transición (8), y la solución o lechada de neutralizante de la etapa A, para finalmente enviar la pulpa a un noveno paso (ix) de separación sólido líquido para generar el cuarto residuo arsenical (9) y un efluente tratado (10). La Figura II muestra el difractograma de rayos X (XRD) de tooeleita precipitada con NaOH mediante el proceso divulgado por la presente invención, el patrón XRD obtenido para la síntesis con NaOH exhibe bandas anchas entre 10° 2θ y 34° 2θ que pueden atribuirse a la adsorción de As (III). Los patrones XRD muestran picos de difracción gradualmente mejorados a 10,0; 32,0 y 34,0°, marcados por los índices (020), (200) y (061) de la fase tooeleita, lo que indica la variación de la composición mineral de ferrihidrita a tooeleita. La Figura III muestra el difractograma de rayos X (XRD) de tooeleita precipitada con carbonato de calcio mediante el proceso divulgado por la presente invención, el patrón XRD obtenido para la síntesis con CaCO3 exhibe bandas anchas entre 10° 2θ y 34° 2θ que pueden atribuirse a la adsorción de As (III). Los patrones XRD muestran picos de difracción gradualmente mejorados a 10,0; 32,0 y 34,0°, marcados por los índices (020), (200) y (061) de la fase tooeleita, lo que indica la variación de la composición mineral de ferrihidrita a tooeleita, además se observan los picos de difracción característicos del yeso a 14,0° 2θ y 24,0° 2θ, natural de la precipitación de sulfato como yeso en presencia de calcio. Descripción de la invención La invención versa sobre un procedimiento para la remoción de elementos peligrosos tales como el arsénico, los cuales se generan a partir de la lixiviación de concentrados metálicos o de residuos metalúrgicos, o a partir de procesos de fundición o tostación de concentrados, en donde se generan efluentes de plantas de ácido sulfúrico que comprenden elementos peligrosos, o de aguas contaminadas con arsénico, en donde todos dichos efluentes se procesan para generar residuos arsenicales que se depositan de manera estable. En un aspecto más específico, la invención versa sobre un procedimiento de abatimiento de arsénico, por medio del cual se genera un residuo arsenical estable conforme a los ensayos de peligrosidad TCLP (Total characteristic leaching procedure, Procedimiento de lixiviación para caracterización total en español) y SPLP (Syntetic precipitation leaching procedure, Procedimiento de lixiviación de precipitación sintética en español). En otra variante de la invención, se divulga un procedimiento para la recuperación de soluciones acuosas, con particular foco en aquellos de operaciones metalúrgicas, generando corriente con una concentración de arsénico inferior a 200 mg/L. En otra variante de la invención, se divulga un procedimiento para la recuperación de soluciones acuosas, con particular foco en aquellos de operaciones metalúrgicas, generando corrientes con una concentración de arsénico inferior a 10 mg/L. En un aspecto más específico, los efluentes que se tratan por medio del proceso reivindicado en la presente invención, tienen una concentración de arsénico que varía entre 1 y 15 g/L de arsénico total. En un aspecto aún más específico, el arsénico presente en los efluentes tiene una concentración de ion arsenito que puede variar entre 10 mg/L y 15 g/L. En un aspecto aún más específico, los efluentes pueden contener ácido sulfúrico, cuya concentración puede variar entre 2 y 200 g/L. El proceso de remoción de arsénico consta de un primer paso i de neutralización, en donde el efluente arsenical es contactado con un primer neutralizante para generar un primer efluente arsenical neutralizado. El proceso de remoción de arsénico consta de un segundo paso ii de ajuste de relación Fe(III)/As(III), en donde el primer efluente arsenical neutralizado es mezclado con una primera solución férrica, para generar un tercer efluente arsenical. El proceso de remoción de arsénico consta de un tercer paso iii de precipitación de arsénico, en donde se ajusta el pH del tercer efluente arsenical con un segundo neutralizante para generar una primera pulpa de residuo arsenical. El proceso de remoción de arsénico consta de un cuarto paso iv de separación sólido líquido, en donde la primera pulpa de residuo arsenical se separa para generar un cuarto efluente arsenical y un primer residuo arsenical. El proceso de remoción de arsénico consta de un quinto paso v de calcinación, en donde el primer residuo arsenical se calcina para generar un segundo residuo arsenical. El proceso de remoción de arsénico consta de un sexto paso vi de lavado, en donde el segundo residuo arsenical se lava con una solución acuosa para generar una segunda pulpa de residuo arsenical. El proceso de remoción de arsénico consta de un séptimo paso vii de separación sólido líquido, en donde la segunda pulpa de residuo arsenical se separa para generar un quinto efluente arsenical y un tercer residuo arsenical. El proceso de remoción de arsénico consta de un octavo paso viii de depuración, en donde el cuarto efluente arsenical y el quinto efluente arsenical son tratados con una solución precipitante y un tercer neutralizante para generar una tercera pulpa de residuo arsenical. El proceso de remoción de arsénico consta de un noveno paso de separación sólido líquido, en donde la tercera pulpa de residuo arsenical se separa para generar un quinto efluente arsenical y un cuarto residuo arsenical. En una variante preferencial de la invención el paso i de neutralización el pH se ajusta a un valor que varía dentro del rango de 0,5 a 2. En otra variante preferencial de la invención el primer neutralizante se puede seleccionar de uno de hidróxido de sodio, carbonato de sodio, hidróxido de potasio, carbonato de potasio, óxido de magnesio, hidróxido de magnesio, carbonato de magnesio, óxido de calcio, hidróxido de calcio, carbonato de calcio o caliza dolomítica. En otra variante preferencial de la invención el neutralizante a base de calcio del paso i se prepara como una lechada de neutralizante con agua (paso A), en donde la concentración del neutralizante en la lechada de neutralizante varía entre 15 y 25%p/p. En otra variante preferencial de la invención en el paso i de neutralización se genera una primera pulpa de efluente neutralizado. En otra variante preferencial de la invención la primera pulpa de efluente neutralizado se envía a una primera etapa de separación para generar un primer efluente arsenical neutralizado y un primer residuo. En otra variante preferencial de la invención dicha primera etapa de separación consta de una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la primera pulpa de efluente neutralizado para obtener una primera solución de rebose y una primera pulpa espesada. En otra variante preferencial de la invención dicha primera etapa de separación consta de una segunda subetapa de filtrado, a la cual se somete la primera pulpa espesada para generar una primera solución filtrada y el primer residuo. En otra variante preferencial de la invención dicha primera etapa de separación consta de una tercera subetapa de mezcla que se alimenta con la primera solución de rebose y la primera solución filtrada para generar el primer efluente arsenical neutralizado. En otra variante preferencial de la invención el primer residuo se somete a un proceso de lixiviación para la remoción de arsénico para generar una segunda pulpa de residuo. En otra variante preferencial de la invención el proceso de lixiviación se realiza con una solución ácida. En otra variante preferencial de la invención la solución ácida comprende ácido sulfúrico. En otra variante preferencial de la invención la concentración de ácido sulfúrico en la solución ácida varía entre 10 y 75 g/L. En otra variante preferencial de la invención la etapa de lixiviación se lleva a cabo a una temperatura que varía entre 40 y 80°C. En otra variante preferencial de la invención la etapa de lixiviación se lleva a cabo a un contenido de sólidos en la pulpa resultante de la mezcla del primer residuo con la solución ácida de entre 10 y 40%. En otra variante preferencial de la invención la segunda pulpa de residuo se envía a una segunda etapa de separación para generar un segundo efluente arsenical y un segundo residuo. En otra variante preferencial de la invención dicha segunda etapa de separación consta de una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la segunda pulpa de residuo para obtener una segunda solución de rebose y una segunda pulpa espesada. En otra variante preferencial de la invención dicha segunda etapa de separación consta de una segunda subetapa de filtrado, a la cual se somete la segunda pulpa espesada para generar una segunda solución filtrada y el segundo residuo. En otra variante preferencial de la invención dicha segunda etapa de separación consta de una tercera subetapa de mezcla que se alimenta con la segunda solución de rebose y la segunda solución filtrada para generar el segundo efluente arsenical. En otra variante preferencial de la invención el segundo residuo comprende yeso y constituye un residuo estable. En otra variante preferencial de la invención el neutralizante a base de sodio se prepara a una concentración que varía entre 1 y 10 mol/L con agua. En otra variante preferencial de la invención posterior a la adición del neutralizante se genera el primer efluente arsenical neutralizado. En otra variante preferencial de la invención el ajuste de la relación molar Fe(III)/As(III) del paso ii se realiza adicionando uno de sulfato férrico, sulfato férrico heptahidratado, cloruro férrico, o una solución de lixiviación de un mineral de hierro tal como hematita, goetita o magnetita (paso B). En otra variante preferencial de la invención el ajuste de relación molar Fe(III)/As(III) del paso ii se puede realizar con una solución de lixiviación de mineral de hierro de magnetita que haya sido oxidada con un oxidante para convertir todo el ion ferroso en ion férrico. En otra variante preferencial de la invención el oxidante que se ocupa para oxidar la solución de lixiviación de magnetita se selecciona de uno de entre peróxido de hidrógeno o clorito de sodio. En otra variante preferencial de la invención el paso ii de ajuste de la relación molar Fe(III)/As(III) se lleva cabo a una relación molar de Fe(III)/As(III) de entre 1,5 a 2. En otra variante preferencial de la invención el paso ii de ajuste de la relación molar Fe(III)/As(III) se lleva cabo a una relación molar de Fe(III)/As(III) de 1,8. En otra variante preferencial de la invención el paso iii de precipitación de arsénico se realiza a un pH de entre 2 y 4. En otra variante preferencial de la invención el paso iii se lleva cabo por un tiempo de entre 1 y 24 horas. En otra variante preferencial de la invención el paso iii se lleva a cabo a una temperatura de entre 15 y 80°C. En otra variante preferencial de la invención el paso iii se lleva a cabo a una temperatura de 20°C. En otra variante preferencial de la invención el segundo neutralizante se selecciona de uno de entre hidróxido de sodio, carbonato de sodio, hidróxido de potasio, carbonato de potasio, óxido de magnesio, hidróxido de magnesio, carbonato de magnesio, óxido de calcio, hidróxido de calcio, carbonato de calcio o caliza dolomítica. En otra variante preferencial de la invención el segundo neutralizante del paso iii se selecciona de uno de entre hidróxido de sodio, carbonato de sodio hidróxido de potasio, carbonato de potasio, óxido de magnesio, hidróxido de magnesio o carbonato de magnesio. En otra variante preferencial de la invención en el paso iv se realiza una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la primera pulpa de residuo arsenical para obtener una tercera solución de rebose y una tercera pulpa espesada. En otra variante preferencial de la invención en el paso iv se realiza una segunda subetapa de filtrado, a la cual se somete la tercera pulpa espesada para generar una tercera solución filtrada y el primer residuo arsenical. En otra variante preferencial de la invención en el paso iv se realiza una tercera subetapa de mezcla que se alimenta con la tercera solución de rebose y la tercera solución filtrada para generar el cuarto efluente arsenical. En otra variante preferencial de la invención el primer residuo arsenical se somete a un proceso de secado para generar un segundo residuo arsenical. En otra variante preferencial de la invención dicho proceso de secado se realiza hasta que el segundo residuo arsenical alcance un contenido de humedad en base húmeda de entre 10% y 25%p/p. En otra variante preferencial de la invención el paso v se lleva a cabo a una temperatura de entre 450 y 600°C. En otra variante preferencial de la invención el paso v se lleva a cabo por un tiempo de entre 15 y 60 minutos. En otra variante preferencial de la invención en el paso v se adiciona yeso. En otra variante preferencial de la invención en el paso v se adiciona yeso en una relación másica de entre 10 a 20%p/p respecto de la cantidad total de masa del segundo residuo arsenical y el yeso. En otra variante preferencial de la invención el yeso que se adiciona en el paso v corresponde al segundo residuo. En otra variante preferencial de la invención el segundo neutralizante del paso iii se selecciona de uno de entre óxido de calcio, hidróxido de calcio, carbonato de calcio o caliza dolomítica. En otra variante preferencial de la invención en el paso iv se realiza una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la primera pulpa de residuo arsenical para obtener una tercera solución de rebose y una tercera pulpa espesada. En otra variante preferencial de la invención en el paso iv se realiza una segunda subetapa de filtrado, a la cual se somete la tercera pulpa espesada para generar una tercera solución filtrada y el primer residuo arsenical. En otra variante preferencial de la invención en el paso iv se realiza una tercera subetapa de mezcla que se alimenta con la tercera solución de rebose y la tercera solución filtrada para generar el cuarto efluente arsenical. En otra variante preferencial de la invención el primer residuo arsenical se somete a un proceso de secado para generar un segundo residuo arsenical. En otra variante preferencial de la invención dicho proceso de secado se realiza hasta que el segundo residuo arsenical alcance un contenido de humedad en base húmeda de entre 10% y 25%p/p. En otra variante preferencial de la invención el paso v se lleva a cabo a una temperatura de entre 450 y 600°C. En otra variante preferencial de la invención el paso v se lleva a cabo por un tiempo de entre 15 y 60 minutos. En otra variante preferencial de la invención en el paso vi el lavado del segundo residuo arsenical se realiza con agua a una razón de lavado de entre 1 y 3 ton de agua/ton de segundo residuo arsenical. En otra variante preferencial de la invención en el paso vii se realiza una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la segunda pulpa de residuo arsenical para obtener una cuarta solución de rebose y una cuarta pulpa espesada. En otra variante preferencial de la invención en el paso vii se realiza una segunda subetapa de filtrado, a la cual se somete la cuarta pulpa espesada para generar una cuarta solución filtrada y el tercer residuo arsenical. En otra variante preferencial de la invención en el paso vii se realiza una tercera subetapa de mezcla que se alimenta con la cuarta solución de rebose y la cuarta solución filtrada para generar el quinto efluente arsenical. En otra variante preferencial de la invención el quinto efluente arsenical se recircula al paso iii. En otra variante preferencial de la invención el tercer residuo arsenical es un residuo estable. Alternativamente en otra variante preferencial de la invención, se realiza un paso viii de depuración que se realiza a un rango de pH entre 11 y 13. En otra variante preferencial de la invención el tercer neutralizante que se agrega en el paso viii se selecciona de entre hidróxido de sodio, hidróxido de potasio, óxido de calcio o hidróxido de calcio. En otra variante preferencial de la invención la solución precipitante que se agrega en el paso viii comprende un primer metal de transición y un segundo metal de transición (paso C). En otra variante preferencial de la invención el primer metal de transición que se agrega en el paso viii se agrega en forma de sal ferrosa que se selecciona de uno de entre sulfato ferroso o cloruro ferroso. En otra variante preferencial de la invención el segundo metal de transición que se agrega en el paso viii se agrega en forma de sal de zinc que se selecciona de uno de entre sulfato de zinc, sulfato zinc pentahidratado, o cloruro de zinc. En otra variante preferencial de la invención el primer metal de transición que se agrega en el paso viii se agrega en una relación molar respecto de la concentración de ion arsenoso entre 2:1 y 25:1. En otra variante preferencial de la invención el segundo metal de transición que se agrega en el paso viii se agrega en una relación molar respecto de la concentración de ion arsenoso entre 6:1 y 20:1. Alternativamente en otra variante preferencial de la invención se realiza un paso ix donde se realiza una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la segunda pulpa de residuo arsenical para obtener una quinta solución de rebose y una quinta pulpa espesada. En otra variante preferencial de la invención en el paso ix se realiza una segunda subetapa de filtrado, a la cual se somete la quinta pulpa espesada para generar una quinta solución filtrada y el cuarto residuo arsenical. En otra variante preferencial de la invención en el paso ix se realiza una tercera subetapa de mezcla que se alimenta con la quinta solución de rebose y la quinta solución filtrada para generar el sexto efluente arsenical. La persona con conocimiento medio del área técnica comprende que podrían existir múltiples etapas de separación sólido líquido que permitirían separar fases sólidas de fases líquidas que podrían ser aplicables a la presente invención, en donde la aplicación de cualquiera de dichas alternativas no se alejaría de la materia reivindicada por la presente invención. Ejemplos de aplicación Los siguientes ejemplos deben ser considerados como modalidades de la presente invención, y en ningún caso deben ser consideradas como limitantes de ésta, ya que las distintas adaptaciones que puedan realizarse del mismo estarán cubiertas dentro de la materia reivindicada por esta invención. Neutralización Ejemplos 1 a 7 Se prepararon 3500 mL de una solución arsenical con una concentración de arsénico(III) de 12 g/L y una concentración de ácido sulfúrico de 70 y 150 g/L, la cual se dispuso en un reactor vidriado de 5 L, en donde se agregó lechada de caliza o de cal para ajustar el pH dentro del rango de 1 a 2 medido con electrodo de pH Ag/AgCl. El reactor fue agitado a 300 rpm por un tiempo de 2 horas a temperatura ambiente. Una vez terminado el tiempo de reacción se realizó la separación solido líquido de la pulpa mediante filtración. El sólido se lavó con una solución acidulada a pH 1, para posteriormente realizar análisis TCLP. Los resultados se presentan en la Tabla 1. Tabla 1. Resultados de remoción de yeso ejemplos 1 a 7 Variable/Ejemplo Unidad 1 2 3 4 5 6 7 pH 1 1,1 1,3 1,6 2 2 2 Neutralizante Ca(OH)2 Ca(OH)2 Ca(OH)2 Ca(OH)2 Ca(OH)2 CaCO3 CaCO3 Tiempo de h 2 2 2 2 2 2 2 precipitación Acidez inicial en g/L 70 70 70 70 70 70 150 solución arsenical Rendimiento % 0,29 0,54 0,33 0,41 0,42 0,35 0,37 Remoción As As liberado en mg/L 6,3 8,9 9,5 12,1 19,0 18,5 9,7 TCLP Ejemplos 8 a 21 Se prepararon 3500 mL de solución arsenical con concentración de ácido sulfúrico entre 10 y 150 g/L, los cuales se mezclaron con yeso obtenido bajo las condiciones del ejemplo 7, para ajustar el porcentaje de sólidos entre 10 y 40%p/p. El reactor fue agitado a 300 rpm por un tiempo de 2 horas a temperatura entre 20°C y 80°C. Una vez terminado el tiempo de reacción se realizó la separación solido líquido de la pulpa mediante filtración. El sólido se lavó con una solución acidulada a pH 1, para posteriormente realizar análisis TCLP. Los resultados se presentan en la Tabla 2. Tabla 2. Resultados de lixiviación de yeso ejemplos 8 a 21 Variable/Ejemplo Unidad 8 9 10 11 12 13 14 Porcentaje de %p/p 10 10 10 10 10 10 25 sólidos Temperatura °C 80 80 80 40 40 80 40 Concentración de g/L 30 50 75 50 75 10 30 ácido sulfúrico Variable/Ejemplo Unidad 8 9 10 11 12 13 14 Tiempo de h 2 2 2 2 2 2 2

Figure imgf000019_0002
Figure imgf000019_0001
Porcentaje de %p/p 40 10 25 40 10 25 40 sólidos Temperatura °C 40 80 80 80 40 40 40 Concentración de g/L 30 30 30 30 150 150 150 ácido sulfúrico Tiempo de h 2 2 2 2 2 2 2 lixiviación Ley de As en yeso tratado % 0,09 0,01 0,01 0,01 0,01 0,02 0,02 As liberado en mg/L 1,3 1,8 1,9 1,9 2,0 3,0 2,6 TCLP Abatimiento de arsénico Ejemplos 22 a 28 Se prepararon 1000 mL de una solución arsenical con una concentración de arsénico(III) de 10 g/L y una concentración de ácido sulfúrico de 2 g/L (solución a pH 2, proveniente de los ejemplos de aplicación 1 a 5), la cual se dispuso en un reactor vidriado de 2 L, en donde se agregó 70 g de sulfato férrico heptahidratado para mantener una relación molar de Fe(III)/As(III) igual a 2 mol Fe(III)/mol As(III). El pH de la solución fue ajustado mediante adición de una solución de hidróxido de sodio preparada a una concentración de 10 mol/L dentro del rango de 2 a 6 medido con electrodo de pH Ag/AgCl. El reactor fue agitado a 300 rpm por un tiempo de entre 5 y 20 horas a temperatura ambiente. Una vez terminado el tiempo de reacción se realizó la separación solido líquido de la pulpa mediante filtración. El sólido se lavó con una solución acidulada a pH 3, para posteriormente realizar análisis TCLP. Los resultados se presentan en la Tabla 3. Tabla 3. Resultados de precipitación de As ejemplos 22 a 28 Variable/Ejemplo Unidad 22 23 24 25 26 27 28 pH 2 3 3 3,5 4 5 6 Tiempo de h 20 20 5 20 5 5 5 precipitación Rendimiento % 18,0 98,9 95,0 98,3 98,7 98,5 98,6 Remoción As Variable/Ejemplo Unidad 22 23 24 25 26 27 28 As liberado en No mg/L 13,1 12,6 20,1 24,6 162 236 TCLP
Figure imgf000020_0001
Figure imgf000020_0002
Ejemplos 29
Figure imgf000020_0006
Figure imgf000020_0003
Figure imgf000020_0004
Figure imgf000020_0005
Se prepararon 1000 mL de una solución arsenical con una concentración de arsénico (III) de 10 g/L y una concentración de ácido sulfúrico de 2 g/L, la cual se dispuso en un reactor vidriado de 2 L, en donde se agregó sulfato férrico heptahidratado para mantener una relación molar de Fe(III)/As(III) igual entre 1,5 y 2 mol Fe(III)/mol As(III). El pH de la solución fue ajustado a 3 mediante adición de una solución de hidróxido de sodio preparada a una concentración de 10 mol/L medido con electrodo de pH Ag/AgCl. El reactor fue agitado a 300 rpm por un tiempo de 20 horas a temperatura ambiente. Una vez terminado el tiempo de reacción se realizó la separación sólido líquido de la pulpa mediante filtración. El sólido se lavó con una solución acidulada a pH 3, para posteriormente realizar análisis TCLP. Los resultados se presentan en la Tabla 4. Tabla 4. Resultados de precipitación de As ejemplos 29 a 34 Variable/Ejemplo Unidad 29 30 31 32 33 34 pH 3 3 3 3 3 3 Tiempo de h 20 20 20 20 20 20 precipitación Relación mol/mol 1,5 1,6 1,7 1,8 1,9 2,0 Fe(III)/As(III) Rendimiento % 93,7 97,7 97,7 99 99,1 98,7 Remoción As ,3 As liberado en TCLP mg/L 27,3 19,7 16,1 16,8 20,1 23,2 Ejemplos 35 a 41 Se prepararon 1000 mL de una solución arsenical con una concentración de arsénico(III) de 10 g/L y una concentración de ácido sulfúrico de 2 g/L, la cual se dispuso en un reactor vidriado de 2 L, en donde se agregó sulfato férrico heptahidratado para mantener una relación molar de Fe(III)/As(III) igual entre 1,5 y 2 mol Fe(III)/mol As(III). El pH de la solución fue ajustado dentro del rango de 2 a 4 mediante adición de una lechada de cal preparada a una concentración de 1025%p/p. El pH fue medido con electrodo de pH Ag/AgCl. El reactor fue agitado a 300 rpm por un tiempo de 20 horas a temperatura ambiente. Una vez terminado el tiempo de reacción se realizó la separación sólido líquido de la pulpa mediante filtración. El sólido se lavó con una solución acidulada a pH 3, para posteriormente realizar análisis TCLP. Los resultados se presentan en la Tabla 5. Tabla 5. Resultados de precipitación de As ejemplos 35 a 41 Variable/Ejemplo Unidad 35 36 37 38 39 40 41 pH 2 3 4 3 3 3 3 Tiempo de h 20 20 20 20 20 20 20 precipitación Relación mol/mol 2 2 2 1 1,5 2,0 2,5 Fe(III)/As(III) Rendimiento Remoción As % 74 98 99 88 95 98 98 As liberado en mg/L 55 62 215 670 28,5 62,0 36,2 TCLP Los ejemplos de aplicación 37 y 38 muestran condiciones mediante las cuales no es posible obtener un residuo arsenical con una concentración de As liberada en test TCLP del orden entre 25 y 70 mg/L, valores típicos de la tooeleita. La precipitación a pH 3 a relación molar Fe/As muestra que si bien es posible remover As, la fase que se genera es altamente inestable y no relacionada con la tooeleita la cual según su estructura química requiere una relación molar de Fe/As igual a 1,5. En caso de precipitación a pH 4 se observa que la fase predominante no es tooeleita sino que oxihidróxidos de hierro los cuales tienen un mecanismo de adsorción de As más que un enlace químico que fije el As en una estructura cristalina, razón por la que se genera un residuo arsenical inestable. Ejemplos 42 a 43 Se prepararon 20000 mL de una solución arsenical conforme al procedimiento indicado en el ejemplo 7, la cual se dispuso en un reactor vidriado de 20 L, en donde se agregó sulfato férrico heptahidratado para mantener una relación molar de Fe(III)/As(III) igual a 1,8 mol Fe(III)/mol As(III). El pH de la solución fue ajustado a 3 mediante adición de una solución de NaOH a una concentración de 10 mol/L y lechada de cal preparada a una concentración de 25%p/p. El pH fue medido con electrodo de pH Ag/AgCl. El reactor fue agitado a 300 rpm por un tiempo de 18 horas a temperatura ambiente. Se tomaron muestras de pulpa de 200 mL a los tiempos de 1, 2, 4, 7, 10, 15 y 18 h. Para cada muestra de pulpa se realizó la separación solido líquido mediante filtración. El sólido se lavó con una solución acidulada a pH 3, para posteriormente realizar análisis TCLP. Los resultados se presentan en las Tablas 6 y 7. Tabla 6. Resultados de precipitación de As con hidróxido de sodio, ejemplo 42 Tiempo de reacción h 1 2 4 7 10 15 18 pH 3 3 3 3 3 3 3 Tiempo de reacción h 1 2 4 7 10 15 18 Relación mol/mol 1,8 1,8 1,8 1,8 1,8 1,8 1,8 Fe(III)/As(III) Rendimiento % 97,9 98,1 98,6 98,8 99,0 99,5 99,5 Remoción As As liberado en mg/L 34,9 18,0 20,7 17,6 16,8 18,7 19,5 TCLP Tabla 7. Resultados de precipitación de As con lechada de cal, ejemplo 43 Tiempo de reacción h 1 2 4 7 10 15 18 pH 3 3 3 3 3 3 3 Relación mol/mol 1,8 1,8 1,8 1,8 1,8 1,8 1,8 Fe(III)/As(III) Rendimiento % 96,0 96,5 97,5 98,0 98,2 98,3 98,3 Remoción As As liberado en mg/L 58 63 64 63 59 60 62 TCLP Ejemplo 44 Se preparó 50 L de una solución arsenical con una concentración de arsénico(III) de 8 g/L y una concentración de ácido sulfúrico de 2 g/L a partir de una solución de efluente de planta de ácido sulfúrico procesada conforme a las condiciones del ejemplo 7, la cual se dispuso en un reactor vidriado de 100 L, en donde se agregó solución de lixiviación de magnetita para mantener una relación molar de Fe(III)/As(III) igual a 1,8 mol Fe(III)/mol As(III). El pH de la solución fue ajustado a 3 mediante adición de una lechada de caliza preparada a una concentración de 18%p/p. El pH fue medido con electrodo de pH Ag/AgCl. El reactor fue agitado a 300 rpm por un tiempo de 6 horas a temperatura ambiente. La pulpa fue filtrada en un filtro de placas y lavado con solución acidulada a pH 3. Los resultados se presentan en la Tabla 8. Tabla 8. Resultados de precipitación de As ejemplo 44 Tiempo de reacción h 6
Figure imgf000022_0002
Figure imgf000022_0001
Calcinación Ejemplos 45 a 50 Se tomaron 10 g de residuo arsenical precipitado según las condiciones del experimento 42 a un tiempo de residencia de 6 h y se dispusieron en un crisol de circonio en una mufla a una temperatura de entre 400 a 650°C por un tiempo de 1 h. Una vez cumplido el tiempo de reacción, se retiraron los crisoles de la mufla y el sólido fue lavado con agua en una relación de masa de 2:1, para posteriormente realizar análisis TCLP. Los resultados de las pruebas se presentan en la Tabla 9. Tabla 9. Resultados calcinación de ejemplos de aplicación 45 a 50 Variable/Ejemplo Unidad 45 46 47 48 49 50 Tiempo de reacción h 1 1 1 1 1 1 Temperatura °C 400 450 500 550 600 650 Pérdida de masa % 18 10,1 9,8 15,1 24 24,7 As liberado en TCLP mg/L 11,1 15,1 16,2 5,4 5,5 1,2 Los ejemplos de aplicación 45 a 50 muestran que el proceso de calcinación para residuos arsenicales de tooeleita precipitados utilizando hidróxido de sodio no es suficiente para poder estabilizar dicho residuo. Ejemplos 51 a 56 Se tomaron 10 g de residuo arsenical precipitado según las condiciones del experimento 43 a un tiempo de residencia de 6 h y se dispusieron en un crisol de circonio en una mufla a una temperatura de entre 400 a 650°C por un tiempo de 1 h. Una vez cumplido el tiempo de reacción, se retiraron los crisoles de la mufla y el sólido fue lavado con agua en una relación de masa de 2:1, para posteriormente realizar análisis TCLP. Los resultados de las pruebas se presentan en la Tabla 10. Tabla 10. Resultados calcinación de ejemplos de aplicación 51 a 56 Variable/Ejemplo Unidad 51 52 53 54 55 56 Tiempo de reacción h 1 1 1 1 1 1 Temperatura °C 400 450 500 550 600 650 Pérdida de masa % 11,0 16,8 15,0 10,7 16,0 18,0 As liberado en TCLP mg/L 4,2 3,4 2,9 5,4 5,9 13,9 Los ejemplos de aplicación 51 a 53 muestran que es posible obtener residuos arsenicales estables por medio de la calcinación de tooeleita precipitada mediante neutralización con hidróxido de calcio. Las temperaturas dentro de rango de 550 a 650ºC generan residuos arsenicales inestables debido a la generación de iones arsenito e arseniato que comienzan a volatilizarse en forma de trióxido y pentóxido de arsénico. Ejemplos 57 a 61 Se tomaron 10 g de residuo arsenical precipitado según las condiciones del experimento 42 a un tiempo de 6 h y se dispusieron en un crisol de circonio en una mufla a una temperatura de 550°C por un tiempo de entre 1 y 3 h. Una vez cumplido el tiempo de reacción, se retiraron los crisoles de la mufla y el sólido fue lavado con agua en una relación de masa de 2:1, para posteriormente realizar análisis TCLP. Los resultados de las pruebas se presentan en la Tabla 11. Tabla 11. Resultados calcinación de ejemplos de aplicación 57 a 61 Variable/Ejemplo Unidad 57 58 59 60 61 Tiempo de reacción h 1 1,5 2 2,5 3 Temperatura °C 550 550 550 550 550 Pérdida de masa % 23 23 23,5 23,7 23,2 As liberado en TCLP mg/L 5,9 5,2 44,5 60,1 98 Los ejemplos de aplicación 57 a 61 muestran que tiempos prolongados de calcinación no permiten incrementar la estabilidad de los residuos arsenicales, debido a la formación de trióxido y pentóxido de arsénico, los cuales generan gases altamente inestables. Ejemplos 62 a 65 Se tomaron 10 g de residuo arsenical precipitado según las condiciones del experimento 43 a un tiempo de 6 h y se dispusieron en un crisol de circonio en una mufla a una temperatura de 500°C por un tiempo de entre 15 y 60 min. Una vez cumplido el tiempo de reacción, se retiraron los crisoles de la mufla y el sólido fue lavado con agua en una relación de masa de 2:1, para posteriormente realizar análisis TCLP. Los resultados de las pruebas se presentan en la Tabla 12. Tabla 12. Resultados calcinación de ejemplos de aplicación 62 a 65 Variable/Ejemplo Unidad 62 63 64 65 Tiempo de reacción min 15 30 45 60 Temperatura °C 500 500 500 500 Pérdida de masa % 15,9 16,0 16,1 16,4 As liberado en TCLP mg/L 1,2 1,5 2,1 1,9 Los ejemplos de aplicación 62 a 65 muestran condiciones mediante las cuales es posible generar residuos arsenicales estables a 500°C dentro de rango de tiempo entre 15 y 60 min de calcinación, a partir de tooeleita precipitada con hidróxido de calcio. Ejemplos 66 a 71 Se tomaron 10 g de residuo arsenical precipitado según las condiciones del experimento 42 a un tiempo de residencia de 6 h y se dispusieron en un crisol de circonio en una mufla a una temperatura de entre 550°C por un tiempo de 1 h. El crisol fue cargado con yeso producido según el ejemplo 7, de forma tal que el contenido de yeso en la mezcla total con el residuo arsenical variara entre 10 y 20%p/p. Una vez cumplido el tiempo de reacción, se retiraron los crisoles de la mufla y el sólido fue lavado con agua en una relación de masa de 2:1, para posteriormente realizar análisis TCLP. Los resultados de las pruebas se presentan en la Tabla 13. Tabla 13. Resultados calcinación de ejemplos de aplicación 66 a 71 Variable/Ejemplo Unidad 66 67 68 69 70 71 Tiempo de reacción h 1 1 1 1 1 1 Temperatura °C 550 550 550 550 550 550 Contenido de yeso en mezcla con %p/p 10 12 14 16 18 20 residuo arsenical Pérdida de masa % 11,9 11,7 11,4 11,3 10,9 11,9 As liberado en TCLP mg/L 3,1 1,9 2,1 1,8 2,2 3,5 Los ejemplos de aplicación 66 a 71 muestran que es posible obtener residuos arsenicales estables, mediante la calcinación de tooeleita precipitada con hidróxido de sodio en mezclas con yeso producido mediante el ejemplo de aplicación 7, en contraste con la calcinación de tooeleita sin presencia de yeso como se divulga en los ejemplos de aplicación 45 a 50. Ejemplos 72 a 73 Se realizaron dos ensayos de abatimiento de arsénico según las condiciones del experimento 42 por un tiempo de residencia de 6 h, pero utilizando como neutralizante una lechada con una mezcla de 67% de hidróxido de calcio y 33% de hidróxido de sodio, y 87% de hidróxido de calcio y 13% de hidróxido de sodio, respectivamente. Posteriormente, se tomaron 10 g de residuo arsenical precipitado según las condiciones anteriormente descritas y se dispusieron en un crisol de circonio en una mufla a una temperatura a 550°C por un tiempo de 1 h. Una vez cumplido el tiempo de reacción, se retiraron los crisoles de la mufla y el sólido fue lavado con agua en una relación de masa de 2:1, para posteriormente realizar análisis TCLP. Los resultados de las pruebas se presentan en la Tabla 14. Tabla 14. Resultados calcinación de ejemplos de aplicación 72 a 73 Variable/Ejemplo Unidad 72 73 Tiempo de reacción h 1 1 Temperatura °C 550 550 Ca(OH)267%p/p Ca(OH)287%p/p Neutralizante NaOH 33%p/p NaOH 13%p/p Pérdida de masa % 13 12 As liberado en TCLP mg/L 4,1 1,5 Los ejemplos de aplicación 72 y 73 muestran que mediante la adición de una mezcla de neutralizante de hidróxido de sodio y lechada de cal es posible obtener residuos arsenicales estables posterior a la calcinación, lo que confirma que la presencia de yeso en el residuo arsenical es beneficiosa para su estabilización. Ejemplo 74 Se tomaron 10 g de residuo arsenical precipitado según las condiciones del experimento 44 a un tiempo de residencia de 6 h y se dispusieron en un crisol de circonio en una mufla a una temperatura de entre 500°C por un tiempo de 1 h. Una vez cumplido el tiempo de reacción, se retiró el crisol de la mufla y el sólido fue lavado con agua en una relación de masa de 2:1, para posteriormente realizar análisis TCLP. Los resultados de las pruebas se presentan en la Tabla 15. Tabla 15. Resultados calcinación de ejemplo de aplicación 74 Variable/Ejemplo Unidad 74 Tiempo de reacción h 1 Temperatura °C 500 Pérdida de masa % 9,9 As liberado en TCLP mg/L 0,39 Ejemplos 75 a 81 Se tomaron 10 g de residuo arsenical precipitado según las condiciones del experimento 44 y se dispusieron en un crisol de circonio en una mufla a una temperatura entre 400 y 500°C por un tiempo de entre 15 y 60 min. Una vez cumplido el tiempo de reacción, se retiraron los crisoles de la mufla y el sólido fue lavado con agua en una relación de masa de 2:1, para posteriormente realizar análisis TCLP. Los resultados de las pruebas se presentan en la Tabla 16. Tabla 16. Resultados calcinación de ejemplos de aplicación 75 a 80 Variable/Ejemplo Unidad 75 76 77 78 79 80 81 Tiempo de reacción min 60 60 15 30 45 60 Sin
Figure imgf000027_0001
que a una no es la estabilización del residuo arsenical en forma de tooeleita precipitada con lechada de caliza. Los ejemplos de aplicación 76 a 80 muestran cómo mediante la calcinación es posible estabilizar el residuo arsenical en contraste con el ejemplo de control 81 donde el residuo arsenical no es sometido a condiciones de calcinación. Abatimiento secundario de arsénico Ejemplos 82 a 89 Se prepararon 2000 mL de una solución arsenical, obtenida conforme a las condiciones de precipitación del ejemplo 74, la cual se dispuso en un reactor vidriado de 5 L, en donde se agregó sulfato ferroso heptahidratado y sulfato de zinc pentahidratado para ajustar las relaciones molares de Fe(II)/As(III) y Zn(II)/As(III), respectivamente. El pH de la solución fue ajustado entre 11 y 13 mediante adición de una solución de hidróxido de sodio a una concentración de 10 mol/L y lechada de cal preparada a una concentración de 25%p/p. El pH fue medido con electrodo de pH Ag/AgCl. El reactor fue agitado a 300 rpm por un tiempo de 1 hora a temperatura ambiente. La pulpa se sometió a un proceso de separación sólido líquido mediante filtración, para posteriormente realizar análisis TCLP. Los resultados se presentan en Tabla 17. Tabla 17. Resultados de precipitación de As, ejemplos 82 a 89 Variable/Ejemplo Unidad 82 83 84 85 86 87 88 89 As inicial g/L 1,0 0,20 0,20 H
Figure imgf000027_0002
2SO4 inicial g/L
Figure imgf000027_0003
1,7 2,0 2,0 pH de ajuste 11 12 13 13 12 12 12 12 Tiempo de 1 precipitación
Figure imgf000027_0005
Figure imgf000027_0004
Variable/Ejemplo Unidad 82 83 84 85 86 87 88 89 Relación mol/mol 3,0 3,0 3,0 3,0 3,0 3,0 3,4 3,4 Fe(II)/As(III) Relación mol/mol 6,0 6,0 6,0 6,0 6,0 6,0 6,0 20,0 Zn(II)/As(III) Rendimiento % 96 97 97 98 99 99 99 99 Remoción As As liberado en mg/L 3,5 2,5 0,58 0,42 2,4 1,4 1,7 0,7 TCLP Los ejemplos de aplicación 82 a 89 muestran que es posible generar residuos arsenicales estables a partir de soluciones obtenidas a partir del proceso de precipitación en forma de tooeleita, pudiendo obtener soluciones abatidas con concentración de As inferior a 10 mg/L. Ejemplos 90 a 96 Se prepararon 50 L de una solución arsenical, obtenida conforme a las condiciones de precipitación del ejemplo 74, la cual se dispuso en un reactor vidriado de 100 L, en donde se agregó sulfato ferroso heptahidratado y sulfato de zinc pentahidratado para ajustar las relaciones molares de Fe(II)/As(III) y Zn(II)/As(III), respectivamente. El pH de la solución fue ajustado a 12 mediante adición de una solución de hidróxido de sodio a una concentración de 10 mol/L y lechada de cal preparada a una concentración de 25%p/p. El pH fue medido con electrodo de pH Ag/AgCl. El reactor fue agitado a 300 rpm por un tiempo de 1 hora a temperatura ambiente. La pulpa fue sometida a un proceso de separación sólido líquido mediante filtración, para posteriormente realizar análisis TCLP. Los resultados se presentan en la Tabla 18. Tabla 18. Resultados de precipitación de As, ejemplos 90 a 96 Variable/Ejemplo Unidad 90 91 92 93 94 95 96 As inicial g/L 0,26 0,26 0,26 0,26 0,26 0,26 0,26 H2SO4 inicial g/L 2,0 2,0 2,0 2,0 2,0 2,0 2,0 pH de ajuste 12 12 12 12 12 12 12 Tiempo de h 1 1 1 1 1 1 1 precipitación Relación mol/mol 18 18 18 18 18 18 18 Fe(II)/As(III) Relación mol/mol 15 15 15 15 15 15 15 Zn(II)/As(III) Rendimiento % 96,7 99,4 93,8 100 100 99,6 99,9 Remoción As As liberado en mg/L 0,24 0,43 0,70 0,01 0,01 0,26 0,61 TCLP Los ejemplos de aplicación 90 a 96 muestran que es posible generar residuos arsenicales estables a partir de soluciones obtenidas a partir del proceso de precipitación en forma de tooeleita, pudiendo obtener soluciones abatidas con concentración de As inferior a 10 mg/L. Process for the stabilization of arsenical waste by precipitation of tooeleite via thermal stabilization Field of the invention The invention solves the technical problem of removing arsenical effluents to generate stable arsenical waste, which for its synthesis does not require an oxidation step to oxidize the arsenous ion to arsenate ion, nor the application of heat in the precipitation step. State of the art Since arsenic is widely distributed in more than 320 minerals, it is omnipresent in mining and metallurgical operations, as well as the acid dissolution of arsenic-containing minerals, a product of flue gas scrubbing by dilute acid as a result of the calcination and smelting present in copper concentrates. The wastewater from the above two processes is characterized by extremely low pH around 1.0 and high arsenic content in the range of 3-10 g/L being the most toxic inorganic form existing in contaminated water, and its toxicity has been suggested to be 25-60 times higher than As(V). Removal of As(III) during water treatment is technically more difficult due to its high mobility and solubility compared to As(V) (Paikaray, S., Göttlicher, J., & Peiffer, S. (2012). As (III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. Chemosphere, 86(6), 557- 564). Efficient and direct removal of As(III) presents a great challenge, especially at pH around 1. Various treatment processes have been employed for arsenic removal in different media, such as precipitation, sorption, ion exchange and membrane separation. For the removal of high concentration arsenic, chemical precipitation appears to be more suitable and economical, while the other three are commonly employed when arsenic is present in lower concentration due to their cost and capacity. Traditional arsenic precipitation methods include lime neutralization, co-precipitation with ferric ions and sulfide precipitation. However, all of them are scarce in terms of their application in treatment with arsenic content above 30% w/w. In lime neutralization, the pH must be adjusted to 12 to remove arsenic as calcium arsenate and calcium arsenite, which contain moderately low arsenic concentrations of 5 to 15%. Therefore, a large amount of lime is required, producing a quantity of sludge at the same time, Storage is not entirely safe and arsenic is subsequently released into solution. Co-precipitation with ferric ions is ideal for arsenate removal, however, a large amount of oxidant must be used to convert As(III) to As(V). Sulfide precipitation can remove As(III) as As2S3 directly, however it presents significant operational challenges due to the generation of hydrogen sulfide and additional processes to make it environmentally stable. Copper smelters use a variety of treatment practices for the removal of arsenic from weak acid effluents, of which the most widely used method is co-precipitation with iron (Fe:As molar ratio > 3) and lime neutralization to form arsenical ferrihydrite [As(V)- ferrihydrite: As(V)-Fh]. However, As(V)-Fh has been designated as the best demonstrated available technology (BDAT) by the US Environmental Protection Agency (US EPA) for the removal of arsenic from acidic mineral processing effluents. However, this treatment option is associated with the generation of high sludge volumes, high iron demand, low As content (6%) and the need to oxidize As(III) to species such as As(V) prior to precipitation. Furthermore, the long-term stability of As(V)-Fh has been a concern due to the likelihood that ferrihydrite contained in As(V)-Fh will transform to goethite and eventually hematite thus releasing arsenic into solution. Furthermore, As(V)-Fh can be reduced in anoxic environments resulting in reductive dissolution of ferrihydrite or As(V) and mobilization of arsenic (Pedersen, H.D., Postma, D., & Jakobsen, R. (2006). Release of arsenic associated with the reduction and transformation of iron oxides. Geochimica et Cosmochimica Acta, 70(16), 4116-4129). Scorodite (FeAsO4*2H2O) is generally considered as the most suitable removal option for As fixation due to its high arsenic removal efficiency, high arsenic content (30%), low iron requirements (Fe:As=1), and low solubility in the pH range 2.8 to 5.3. Furthermore, scorodite has good sedimentation and filtration properties due to its crystalline nature. Professor George Demopoulos developed a new process for the fixation of arsenic from metallurgical weak acid effluents by atmospheric precipitation of scorodite at 95˚C under ambient pressure and controlled supersaturation conditions (Demopoulos, GP (2005). On the preparation and stability of scorodite. Arsenic metallurgy, 25-50), a process that has been implemented on an industrial scale by EcoMetales. This process is currently operational in the city of Calama - Chile, for the removal of arsenic from solutions of leaching of smelting dusts. However, due to high energy costs and oxidant requirements, there is an incentive to investigate an alternative stabilization option with low solubility, low iron requirements, high arsenic removal efficiency and good filtration properties that can be used by copper smelters for arsenic removal from weak acid effluents. Tooeleite, a ferric arsenite sulfate hydrate ((Fe2O3)6(As2O3)5(SO3)2*12H2O), has been proposed as a possible removal option for the extraction and immobilization of As(III) species from weak acid effluents. Tooeleite could be considered as the As(III) equivalent of scorodite, which is considered by the industry to be the most suitable medium for arsenic removal. Tooeleite has high arsenic content (25%), high arsenic removal efficiency, low iron demand (Fe:As=1.2) and is easily precipitated under ambient conditions. The structure of tooeleite consists of FeO6 octahedra linked by AsO3 pyramids at the corners and edges together with sulfate tetrahedra occupying the interlayer space, which provides a firm basis for understanding its formation, suggesting a method with great potential for the removal and stabilization of As(III) at high As content (25%). According to Morin's research, the chemical structure of tooeleite is (Fe2O3)6(As2O3)5(SO3)2*12H2O ), having a Fe/As ratio of 1.2. Synthetic tooeleite is stable between pH 2.0 and 3.5 and transforms into arsenous ferrihydrite (As(III)-Fh) above pH 3.5. Since tooeleite is stable over a short pH range, it would be necessary to deposit it in a lined pond with continuous monitoring and maintenance of acidic conditions (Morin, G., Rousse, G., & Elkaim, E. (2007). Crystal structure of tooeleite, Fe6(AsO3) 4SO4 (OH)4 ×4H2O, a new iron arsenite oxyhydroxy-sulfate mineral relevant to acid mine drainage. American Mineralogist, 92(1), 193-197). Hydrotalcite is a mineral belonging to the carbonate family. It is composed of carbonates, hydroxyls, molecular water, magnesium and aluminum, which are arranged in a well-defined crystalline molecular structure. In nature it is mainly found associated with dolomite deposits. The general chemical formula for hydrotalcite is ([M1- x 2+Mx 3+ (OH) 2 ]x+(An -)x/n• mH 2 O), where M correspond to divalent (charge +2) and trivalent (charge +3) cations; A corresponds to an anion of charge -2, and the value of x is defined by the relationship: x=M^(3+)/(M^(3+)+M^(2+) ). These compounds have positively charged shells of H 2 +(OH) 2 , which are balanced by water molecules (H 2 O) and anions (e.g., CO 3 2− , NO 3 -, Cl-, etc.) in the intermediate region. These types of structures are known as double layer hydroxides, LDH. They have a structure derived from brucite (Mg(OH) 2 ). The brucite layers are neutral with Mg 2+ cations octahedrally coordinated by OH- groups, with the octahedra sharing edges. By replacing divalent cations (charge +2) by trivalent ones (charge +3) in these layers, a residual positive charge is generated. To stabilize, these layers require the incorporation of interlayer anions, which is used to remove negatively charged impurities from solutions of interest. The large cross-linked area, together with the possibility of many exchangeable anions, makes hydrotalcites ideal for industrial applications in adsorption and ion exchange unit operations. Typically hydrotalcites have Al as a cation with charge +3 and Mg as a cation with charge +2, while the typical anion is carbonate, CO3 2- . In the case of these cations, it is reported in the literature that they have a high affinity for the removal of arsenic from aqueous streams. Additionally, hydrotalcites have an affinity 10 times higher for the removal of arsenic when compared to other minerals such as hematite and goethite. Regarding the cations that make up the crystalline structure, these can be of different types (Mg, Ni, Fe, Co, Cu, Zn, Mn for divalent cations and Al, Fe, Sc, Ga, Cr, Mn, Ni, Co), while the typical anions are Cl-, NO3-, SO4 2- and CO3 2- . These ions define the capacity of removal or capture of impurities by the solid. In addition, the capacity of removal of the impurities of interest will depend on the size of the anion in question, its charge density (higher charge density implies greater interaction with the layer), the pH and the temperature. Document CL 2620-2001 aims at the thermal conversion of amorphous ferric arsenate [basic iron (III) arsenate] into scorodite [FeAsO4×2H20] by thermal conversion of amorphous ferric arsenate precipitates from the treatment of arsenical effluents, foundry dusts, refinery waste, arsenical sludges and others from processes that generate any arsenical effluent. Document CL 2620-2001 represents the state of the art because it aims at a procedure for the stabilisation of arsenic based on the formation of scorodite (FeAsO4×2H2O). Document CL 50423 relates to a procedure for the abatement of liquid waste and effluents with a high content of contaminants, such as arsenic and others, in a hydrometallurgical treatment plant. This document discloses an arsenic and antimony abatement procedure for the environmental stabilization of liquid effluents and solid waste with high levels of arsenic concentration, which comprises the stages of leaching the foundry dust, oxidation of the As (III) present in the rich stream to As (V), adjustment of the ratio of Fe (III) to As (T), adjustment of the pH level of the solution by incorporating neutralizing agents, solid/liquid separation, where a liquid stream free of arsenic (As) and rich in Cu is obtained which goes to an electrowinning process and the solid, stabilized in the form of scorodite and gypsum, is confined in appropriate landfills. Document CL 50423 represents the state of the art, because it aims at an arsenic stabilization process, based on the formation of scorodite (FeAsO4×2H2O). Patent application CL 1684-2021 aims to obtain a final residue with a high content of stabilized arsenic. This document CL 1684-2021 discloses a process for obtaining a mining or industrial waste, comprising ferric arsenate and/or scorodite with a high arsenic content from highly acidic solutions, with an acid concentration greater than 45 g/L, comprising copper, arsenic and, optionally, iron, antimony and/or bismuth, which comprises the steps of neutralization to generate gypsum, oxidation of the arsenite ion to arsenate ion in two stages, adjustment of the molar ratio of ferric ion: arsenate ion, recirculation of scorodite pulp, heating to a temperature between 50 and 90°C, acidity adjustment, and solid-liquid separation. Document CL 1684-2021 represents the state of the art, because it aims at an arsenic stabilization process based on the formation of scorodite (FeAsO4×2H2O). Document CA 2066905 discloses a process for reducing arsenic levels in a solution comprising sulfuric acid, water and arsenic acid, comprising the steps of producing copper arsenate; separating the precipitated copper arsenate from the resulting solution; adjusting the ferric/arsenic molar ratio by adding soluble ferric in a quantity sufficient to reduce residual arsenic in the solution; separating the ferric arsenate. Document CA 2066905 only represents state of the art, based on reducing arsenic levels in solutions containing them. The document Opio, FK (2013). Investigation of Fe (III)-As (III) bearing phases and their potential for arsenic disposal. Queen's University (Canada) describes investigations of Fe(III) – As(III) bearing phases, and their potential for arsenic disposal, where chapter 2.11 describes Tooeleite, associated with its characteristics, synthesis, among other aspects. This document only represents state of the art, based on an investigation of Fe (III)-As(III) bearing phases and their potential for arsenic disposal. The present invention is novel and inventive since none of the cited documents of the prior art relates to a process for the formation of a stable arsenical residue based on tooeleite, which is a ferric arsenite sulphate hydrate [(Fe2O3)6(As2O3)5(SO3)2×12H2O], where from an initial stage consisting of contacting an effluent containing arsenic with a neutralizing slurry, and after separation-leaching-separation stages, the stage of contacting an arsenical solution with an iron solution and neutralizing agents continues, where the precipitation of a pulp of arsenical residue occurs, and then a solid-liquid separation step produces an arsenical residue, which is subjected to the sequential and essential stage of a thermal treatment, at a temperature between 450 and 650°C, to then continue with a washing and separation stage, obtaining a Stable arsenical residue based on tooeleite. The present invention solves the technical problem of generating stable arsenical residues whose precipitation involves phases of compounds with arsenate ion. In the state of the art, the processes of precipitation of arsenite ion such as calcium arsenite or arsenic trisulfide are known, which are arsenical residues that are not stable in terms of the leaching of As in environmental stability tests such as TCLP. The present invention allows to precipitate an arsenical residue that involves arsenite ion and that by means of a stabilization stage that comprises a calcination, the arsenical residue generated is stable. Description of the figures Figure I shows a flow diagram of a process of removal of arsenic from arsenical effluents, according to what is disclosed by the present invention. Stage I shows the first step of neutralization of the arsenical effluent (1), to which a solution or slurry of neutralizer from stage A prepared by means of the neutralizer (3) and water (2) is added. The solution then goes to the second step of adjustment of the Fe(III)/As(III) ratio, by adding a ferric solution which is prepared in stage B by adding water (2), an iron source (5) and eventually sulfuric acid. (4). Said adjusted solution is sent to the third step (iii) of tooeleite precipitation, whose pulp is separated in the fourth step (iv). The solid obtained in the fifth step (v) is sent to a calcination stage, and subsequently to a sixth step (vi) of water washing (2) and seventh step (vii) of solid-liquid separation where the arsenical residue of stabilized tooeleite is generated (6). In an optional aspect, the solution obtained in the fourth step (iv) is sent to a seventh step (vii) of purification, where a metallic solution is added that is prepared in step C by adding water (2), a salt of a first (7) and a second transition metal (8), and the solution or slurry of neutralizer from step A, to finally send the pulp to a ninth step (ix) of solid-liquid separation to generate the fourth arsenical residue (9) and a treated effluent (10). Figure II shows the X-ray diffractogram (XRD) of tooeleite precipitated with NaOH by the process disclosed by the present invention, the XRD pattern obtained for the synthesis with NaOH exhibits broad bands between 10° 2θ and 34° 2θ that can be attributed to the adsorption of As (III). The XRD patterns show gradually enhanced diffraction peaks at 10.0; 32.0 and 34.0°, marked by the (020), (200) and (061) indices of the tooeleite phase, indicating the variation of the mineral composition from ferrihydrite to tooeleite. Figure III shows the X-ray diffractogram (XRD) of tooeleite precipitated with calcium carbonate by the process disclosed by the present invention, the XRD pattern obtained for the synthesis with CaCO3 exhibits broad bands between 10° 2θ and 34° 2θ that can be attributed to the adsorption of As (III). The XRD patterns show gradually enhanced diffraction peaks at 10.0; 32.0 and 34.0°, marked by the indices (020), (200) and (061) of the tooeleite phase, indicating the variation of the mineral composition from ferrihydrite to tooeleite, in addition the characteristic diffraction peaks of gypsum at 14.0° 2θ and 24.0° 2θ are observed, natural from the precipitation of sulfate as gypsum in the presence of calcium. Description of the invention The invention relates to a process for the removal of hazardous elements such as arsenic, which are generated from the leaching of metal concentrates or metallurgical waste, or from smelting or roasting processes of concentrates, where effluents from sulfuric acid plants containing hazardous elements are generated, or from waters contaminated with arsenic, where all said effluents are processed to generate arsenical waste that is deposited in a stable manner. In a more specific aspect, the invention relates to an arsenic abatement process, by means of which a stable arsenical residue is generated in accordance with the TCLP (Total characteristic leaching procedure) and SPLP (Synthetic precipitation leaching procedure) hazard tests. In another variant of the invention, a process for the recovery of aqueous solutions is disclosed, with particular focus on those from metallurgical operations, generating streams with an arsenic concentration of less than 200 mg/L. In another variant of the invention, a process for the recovery of aqueous solutions is disclosed, with particular focus on those from metallurgical operations, generating streams with an arsenic concentration of less than 10 mg/L. In a more specific aspect, the effluents treated by the process claimed in the present invention have an arsenic concentration ranging from 1 to 15 g/L of total arsenic. In an even more specific aspect, the arsenic present in the effluents has an arsenite ion concentration that may vary between 10 mg/L and 15 g/L. In an even more specific aspect, the effluents may contain sulfuric acid, the concentration of which may vary between 2 and 200 g/L. The arsenic removal process consists of a first neutralization step, wherein the arsenical effluent is contacted with a first neutralizer to generate a first neutralized arsenical effluent. The arsenic removal process consists of a second step ii of Fe(III)/As(III) ratio adjustment, where the first neutralized arsenical effluent is mixed with a first ferric solution, to generate a third arsenical effluent. The arsenic removal process consists of a third step iii of arsenic precipitation, where the pH of the third arsenical effluent is adjusted with a second neutralizer to generate a first arsenical residue pulp. The arsenic removal process consists of a fourth step iv of solid-liquid separation, where the first arsenical residue pulp is separated to generate a fourth arsenical effluent and a first arsenical residue. The arsenic removal process consists of a fifth calcination step v, where the first arsenical residue is calcined to generate a second arsenical residue. The arsenic removal process consists of a sixth washing step vi, where the second arsenical residue is washed with an aqueous solution to generate a second arsenical residue pulp. The arsenic removal process consists of a seventh solid-liquid separation step vii, where the second arsenical residue pulp is separated to generate a fifth arsenical effluent and a third arsenical residue. The arsenic removal process consists of an eighth purification step viii, where the fourth arsenical effluent and the fifth arsenical effluent are treated with a precipitating solution and a third neutralizer to generate a third arsenical residue pulp. The arsenic removal process consists of a ninth solid-liquid separation step, where the third arsenical residue pulp is separated to generate a fifth arsenical effluent and a fourth arsenical residue. In a preferred variant of the invention, in step i of neutralization the pH is adjusted to a value that varies within the range of 0.5 to 2. In another preferred variant of the invention, the first neutralizer can be selected from one of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate, calcium oxide, calcium hydroxide, calcium carbonate or dolomitic limestone. In another preferred variant of the invention, the calcium-based neutralizer of step i is prepared as a neutralizer slurry with water (step A), where the concentration of the neutralizer in the neutralizer slurry varies between 15 and 25% w/w. In another preferred variant of the invention, a first neutralized effluent pulp is generated in neutralization step i. In another preferred variant of the invention, the first neutralized effluent pulp is sent to a first separation stage to generate a first neutralized arsenical effluent and a first residue. In another preferred variant of the invention, said first separation stage consists of a first thickening, clarification or centrifugation substage, to which a first stage of separation is carried out. The first neutralized effluent pulp is subjected to a leaching process to remove arsenic to generate a second residue pulp. In another preferred variant of the invention, said first separation stage consists of a second filtering sub-stage, to which the first thickened pulp is subjected to generate a first filtered solution and the first residue. In another preferred variant of the invention, said first separation stage consists of a third mixing sub-stage that is fed with the first overflow solution and the first filtered solution to generate the first neutralized arsenical effluent. In another preferred variant of the invention, the first residue is subjected to a leaching process for the removal of arsenic to generate a second residue pulp. In another preferred variant of the invention, the leaching process is carried out with an acid solution. In another preferred variant of the invention, the acid solution comprises sulfuric acid. In another preferred variant of the invention, the concentration of sulfuric acid in the acid solution varies between 10 and 75 g/L. In another preferred variant of the invention, the leaching stage is carried out at a temperature varying between 40 and 80°C. In another preferred variant of the invention, the leaching stage is carried out at a solids content in the pulp resulting from the mixture of the first residue with the acid solution of between 10 and 40%. In another preferred variant of the invention, the second residue pulp is sent to a second separation stage to generate a second arsenical effluent and a second residue. In another preferred variant of the invention, said second separation stage consists of a first thickening, clarification or centrifugation sub-stage, to which the second residue pulp is subjected to obtain a second overflow solution and a second thickened pulp. In another preferred variant of the invention, said second separation stage consists of a second filtering sub-stage, to which the second thickened pulp is subjected to generate a second filtered solution and the second residue. In another preferred variant of the invention, said second separation stage consists of a third mixing sub-stage that is fed with the second overflow solution and the second filtered solution to generate the second arsenical effluent. In another preferred variant of the invention, the second residue comprises gypsum and constitutes a stable residue. In another preferred variant of the invention, the sodium-based neutralizer is prepared at a concentration that varies between 1 and 10 mol/L with water. In another preferred variant of the invention, after the addition of the neutralizer, the first neutralized arsenical effluent is generated. In another preferred variant of the invention the adjustment of the Fe(III)/As(III) molar ratio in step ii is carried out by adding one of ferric sulphate, ferric sulphate heptahydrate, ferric chloride, or a leaching solution of an iron ore such as hematite, goethite or magnetite (step B). In another preferred variant of the invention the adjustment of the Fe(III)/As(III) molar ratio in step ii can be carried out with a leaching solution of magnetite iron ore that has been oxidized with an oxidant to convert all the ferrous ion into ferric ion. In another preferred variant of the invention the oxidant used to oxidize the magnetite leaching solution is selected from one of hydrogen peroxide or sodium chlorite. In another preferred variant of the invention, step ii of adjusting the Fe(III)/As(III) molar ratio is carried out at a Fe(III)/As(III) molar ratio of between 1.5 and 2. In another preferred variant of the invention, step ii of adjusting the Fe(III)/As(III) molar ratio is carried out at a Fe(III)/As(III) molar ratio of 1.8. In another preferred variant of the invention, step iii of arsenic precipitation is carried out at a pH of between 2 and 4. In another preferred variant of the invention, step iii is carried out for a time of between 1 and 24 hours. In another preferred variant of the invention, step iii is carried out at a temperature of between 15 and 80°C. In another preferred variant of the invention, step iii is carried out at a temperature of 20°C. In another preferred variant of the invention, the second neutralizer is selected from one of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate, calcium oxide, calcium hydroxide, calcium carbonate or dolomitic limestone. In another preferred variant of the invention, the second neutralizer of step iii is selected from one of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium oxide, magnesium hydroxide or magnesium carbonate. In another preferred variant of the invention, in step iv, a first thickening, clarification or centrifugation sub-stage is carried out, to which the first arsenical residue pulp is subjected to obtain a third overflow solution and a third thickened pulp. In another preferred variant of the invention, in step iv, a second filtering sub-stage is carried out, to which the third thickened pulp is subjected to generate a third filtered solution and the first arsenical residue. In another preferred variant of the invention, in step iv, a third mixing sub-stage is carried out which is fed with the third overflow solution and the third filtered solution to generate the fourth arsenical effluent. In another preferred variant of the invention, the first arsenical residue is subjected to a drying process to generate a second arsenical residue. In another preferred variant of the invention, said drying process is carried out until the second arsenical residue reaches a moisture content on a wet basis of between 10% and 25% w/w. In another preferred variant of the invention, step v is carried out at a temperature between 450 and 600°C. In another preferred variant of the invention, step v is carried out for a time of between 15 and 60 minutes. In another preferred variant of the invention, gypsum is added in step v. In another preferred variant of the invention, gypsum is added in step v in a mass ratio of between 10 and 20% w/w with respect to the total mass of the second arsenical residue and the gypsum. In another preferred variant of the invention, the gypsum added in step v corresponds to the second residue. In another preferred variant of the invention, the second neutralizer in step iii is selected from one of calcium oxide, calcium hydroxide, calcium carbonate or dolomitic limestone. In another preferred variant of the invention, a first thickening, clarification or centrifugation sub-stage is carried out in step iv, to which the first arsenical residue pulp is subjected to obtain a third overflow solution and a third thickened pulp. In another preferred variant of the invention, a second filtering sub-stage is carried out in step iv, to which the third thickened pulp is subjected to generate a third filtered solution and the first arsenical residue. In another preferred variant of the invention, a third mixing sub-stage is carried out in step iv, which is fed with the third overflow solution and the third filtered solution to generate the fourth arsenical effluent. In another preferred variant of the invention, the first arsenical residue is subjected to a drying process to generate a second arsenical residue. In another preferred variant of the invention, said drying process is carried out until the second arsenical residue reaches a moisture content on a wet basis of between 10% and 25% w/w. In another preferred variant of the invention, step v is carried out at a temperature of between 450 and 600°C. In another preferred variant of the invention, step v is carried out for a time of between 15 and 60 minutes. In another preferred variant of the invention, in step vi, the washing of the second arsenical residue is carried out with water at a washing ratio of between 1 and 3 ton of water/ton of second arsenical residue. In another preferred variant of the invention, in step vii, a first thickening, clarification or centrifugation sub-stage is carried out, to which the second arsenical residue pulp is subjected to obtain a fourth overflow solution and a fourth thickened pulp. In another preferred variant of the invention, in step vii, a second filtering sub-stage is carried out, to which the fourth thickened pulp is subjected to generate a fourth filtered solution and the third arsenical residue. In another preferred variant of the invention, a third mixing sub-stage is carried out in step vii, which is fed with the fourth overflow solution and the fourth filtered solution to generate the fifth arsenical effluent. In another preferred variant of the invention, the fifth arsenical effluent is recirculated to step iii. In another preferred variant of the invention, the third arsenical residue is a stable residue. Alternatively, in another preferred variant of the invention, a purification step viii is carried out, which is carried out at a pH range between 11 and 13. In another preferred variant of the invention, the third neutraliser added in step viii is selected from sodium hydroxide, potassium hydroxide, calcium oxide or calcium hydroxide. In another preferred variant of the invention, the precipitating solution added in step viii comprises a first transition metal and a second transition metal (step C). In another preferred variant of the invention, the first transition metal added in step viii is added in the form of a ferrous salt selected from one of ferrous sulphate or ferrous chloride. In another preferred variant of the invention, the second transition metal added in step viii is added in the form of a zinc salt selected from one of zinc sulphate, zinc sulphate pentahydrate or zinc chloride. In another preferred variant of the invention, the first transition metal added in step viii is added in a molar ratio with respect to the arsenous ion concentration of between 2:1 and 25:1. In another preferred variant of the invention, the second transition metal added in step viii is added in a molar ratio with respect to the arsenous ion concentration of between 6:1 and 20:1. Alternatively, in another preferred variant of the invention, a step ix is carried out where a first thickening, clarification or centrifugation sub-stage is carried out, to which the second arsenical residue pulp is subjected to obtain a fifth overflow solution and a fifth thickened pulp. In another preferred variant of the invention, in step ix a second filtering sub-stage is carried out, to which the fifth thickened pulp is subjected to generate a fifth filtered solution and the fourth arsenical residue. In another preferred variant of the invention, in step ix a third mixing sub-stage is carried out which is fed with the fifth overflow solution and the fifth filtered solution to generate the sixth arsenical effluent. The person with average knowledge of the technical area understands that there could be multiple solid-liquid separation stages that would allow the separation of solid phases from liquid phases that could be applicable to the present invention, where the application of any of said alternatives would not deviate from the subject matter claimed by the present invention. Application examples The following examples should be considered as modalities of the present invention, and in no case should they be considered as limiting it, since the different adaptations that can be made of it will be covered within the subject matter claimed by this invention. Neutralization Examples 1 to 7 3500 mL of an arsenical solution with an arsenic(III) concentration of 12 g/L and a sulfuric acid concentration of 70 and 150 g/L were prepared. The solution was placed in a 5 L glass reactor, where limestone milk was added to adjust the pH within the range of 1 to 2 measured with an Ag/AgCl pH electrode. The reactor was stirred at 300 rpm for 2 hours at room temperature. Once the reaction time was over, the solid-liquid separation of the pulp was carried out by filtration. The solid was washed with an acidified solution at pH 1, to subsequently perform TCLP analysis. The results are presented in Table 1. Table 1. Gypsum removal results for examples 1 to 7 Variable/Example Unit 1 2 3 4 5 6 7 pH 1 1.1 1.3 1.6 2 2 2 Neutralizer Ca(OH)2 Ca(OH)2 Ca(OH)2 Ca(OH)2 Ca(OH)2 CaCO3 CaCO3 Precipitation time h 2 2 2 2 2 2 2 Initial acidity g/L 70 70 70 70 70 70 150 Arsenical solution Yield % 0.29 0.54 0.33 0.41 0.42 0.35 0.37 As removal As released mg/L 6.3 8.9 9.5 12.1 19.0 18.5 9.7 TCLP Examples 8 to 21 3500 mL of arsenical solution with a sulfuric acid concentration between 10 and 150 g/L was prepared, which was mixed with gypsum obtained under the conditions of example 7, to adjust the percentage of solids between 10 and 40% w/w. The reactor was stirred at 300 rpm for 2 hours at a temperature between 20°C and 80°C. Once the reaction time was finished, the solid-liquid separation of the pulp was carried out by filtration. The solid was washed with an acidified solution at pH 1, to subsequently perform TCLP analysis. The results are presented in Table 2. Table 2. Gypsum Leaching Results Examples 8 to 21 Variable/Example Unit 8 9 10 11 12 13 14 Percentage %w/w 10 10 10 10 10 10 25 Solids Temperature °C 80 80 80 40 40 80 40 Sulfuric Acid Concentration g/L 30 50 75 50 75 10 30 Variable/Example Unit 8 9 10 11 12 13 14 Time h 2 2 2 2 2 2 2
Figure imgf000019_0002
Figure imgf000019_0001
Percentage %w/w 40 10 25 40 10 25 40 solids Temperature °C 40 80 80 80 40 40 40 Sulfuric acid concentration g/L 30 30 30 30 150 150 150 Leaching time h 2 2 2 2 2 2 2 As grade in treated gypsum % 0.09 0.01 0.01 0.01 0.01 0.02 0.02 As released in mg/L 1.3 1.8 1.9 1.9 2.0 3.0 2.6 TCLP Arsenic abatement Examples 22 to 28 1000 mL of an arsenical solution with an arsenic(III) concentration of 10 g/L and a concentration of 1000 mL were prepared. The reaction mixture was stirred at 300 rpm for 5 to 20 hours at room temperature. Once the reaction time was over, the solid-liquid separation from the pulp was carried out by filtration. The solid was washed with an acidified solution at pH 3, to subsequently perform TCLP analysis. The results are presented in Table 3. Table 3. As precipitation results for examples 22 to 28 Variable/Example Unit 22 23 24 25 26 27 28 pH 2 3 3 3.5 4 5 6 Precipitation time h 20 20 5 20 5 5 5 Yield % 18.0 98.9 95.0 98.3 98.7 98.5 98.6 As removal Variable/Example Unit 22 23 24 25 26 27 28 As released in No mg/L 13.1 12.6 20.1 24.6 162 236 TCLP
Figure imgf000020_0001
Figure imgf000020_0002
Examples 29
Figure imgf000020_0006
Figure imgf000020_0003
Figure imgf000020_0004
Figure imgf000020_0005
1000 mL of an arsenic solution with an arsenic (III) concentration of 10 g/L and a sulfuric acid concentration of 2 g/L were prepared, which was placed in a 2 L glass reactor, where ferric sulfate heptahydrate was added to maintain a molar ratio of Fe(III)/As(III) equal between 1.5 and 2 mol Fe(III)/mol As(III). The pH of the solution was adjusted to 3 by adding a sodium hydroxide solution prepared at a concentration of 10 mol/L measured with an Ag/AgCl pH electrode. The reactor was stirred at 300 rpm for 20 hours at room temperature. Once the reaction time was over, the solid-liquid separation of the pulp was carried out by filtration. The solid was washed with an acidified solution at pH 3, to subsequently perform TCLP analysis. The results are presented in Table 4. Table 4. As precipitation results for examples 29 to 34 Variable/Example Unit 29 30 31 32 33 34 pH 3 3 3 3 3 3 Precipitation time h 20 20 20 20 20 20 Mol/mol ratio 1.5 1.6 1.7 1.8 1.9 2.0 Fe(III)/As(III) Yield % 93.7 97.7 97.7 99 99.1 98.7 As removal ,3 As released in TCLP mg/L 27.3 19.7 16.1 16.8 20.1 23.2 Examples 35 to 41 1000 mL of an arsenic solution with an arsenic(III) concentration of 10 The solution was heated to a temperature of 20 ° C and a sulfuric acid concentration of 2 g/L, which was placed in a 2 L glass reactor, where ferric sulfate heptahydrate was added to maintain a molar ratio of Fe(III)/As(III) equal between 1.5 and 2 mol Fe(III)/mol As(III). The pH of the solution was adjusted within the range of 2 to 4 by adding a lime milk prepared at a concentration of 1025% w/w. The pH was measured with an Ag/AgCl pH electrode. The reactor was stirred at 300 rpm for 20 hours at room temperature. Once the reaction time was over, the solid-liquid separation of the pulp was carried out by filtration. The solid was washed with an acidified solution at pH 3, to subsequently perform TCLP analysis. The results are presented in Table 5. Table 5. As precipitation results examples 35 to 41 Variable/Example Unit 35 36 37 38 39 40 41 pH 2 3 4 3 3 3 3 Precipitation time h 20 20 20 20 20 20 20 Mol/mol ratio 2 2 2 1 1.5 2.0 2.5 Fe(III)/As(III) As removal yield % 74 98 99 88 95 98 98 As released in mg/L 55 62 215 670 28.5 62.0 36.2 TCLP Application examples 37 and 38 show conditions under which it is not possible to obtain an arsenical residue with a concentration of As released in TCLP test of the order of 25 to 70 mg/L, typical values of tooeleite. Precipitation at pH 3 at a Fe/As molar ratio shows that although it is possible to remove As, the phase generated is highly unstable and not related to tooeleite which, according to its chemical structure, requires a Fe/As molar ratio of 1.5. In the case of precipitation at pH 4, it is observed that the predominant phase is not tooeleite but iron oxyhydroxides which have an As adsorption mechanism rather than a chemical bond that fixes the As in a crystalline structure, which is why an unstable arsenical residue is generated. Examples 42 to 43 20,000 mL of an arsenical solution were prepared according to the procedure indicated in example 7, which was placed in a 20 L glassed reactor, where ferric sulfate heptahydrate was added to maintain a Fe(III)/As(III) molar ratio of 1.8 mol Fe(III)/mol As(III). The pH of the solution was adjusted to 3 by adding a NaOH solution at a concentration of 10 mol/L and lime milk prepared at a concentration of 25% w/w. The pH was measured with an Ag/AgCl pH electrode. The reactor was stirred at 300 rpm for 18 hours at room temperature. Pulp samples of 200 mL were taken at times 1, 2, 4, 7, 10, 15 and 18 h. For each pulp sample, solid-liquid separation was performed by filtration. The solid was washed with an acidified solution at pH 3, to subsequently perform TCLP analysis. The results are presented in Tables 6 and 7. Table 6. Results of As precipitation with sodium hydroxide, example 42 Reaction time h 1 2 4 7 10 15 18 pH 3 3 3 3 3 3 3 Reaction time h 1 2 4 7 10 15 18 Mol/mol ratio 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Fe(III)/As(III) Yield % 97.9 98.1 98.6 98.8 99.0 99.5 99.5 As removal As released in mg/L 34.9 18.0 20.7 17.6 16.8 18.7 19.5 TCLP Table 7. As precipitation results with milk of lime, example 43 Reaction time h 1 2 4 7 10 15 18 pH 3 3 3 3 3 3 3 Mol/mol ratio 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 Fe(III)/As(III) Yield % 96.0 96.5 97.5 98.0 98.2 98.3 98.3 As removal As released in mg/L 58 63 64 63 59 60 62 TCLP Example 44 50 L of an arsenical solution with an arsenic(III) concentration of 8 g/L and a sulfuric acid concentration of 2 g/L was prepared from a sulfuric acid plant effluent solution processed according to the conditions of Example 7 and placed in a 100 L glassed reactor, where magnetite leaching solution was added to maintain a Fe(III)/As(III) molar ratio equal to 1.8 mol Fe(III)/mol As(III). The pH of the solution was adjusted to 3 by adding a limestone slurry prepared at a concentration of 18% w/w. The pH was measured with an Ag/AgCl pH electrode. The reactor was stirred at 300 rpm for 6 hours at room temperature. The pulp was filtered on a plate filter and washed with an acidified solution at pH 3. The results are presented in Table 8. Table 8. As precipitation results example 44 Reaction time h 6
Figure imgf000022_0002
Figure imgf000022_0001
Calcination Examples 45 to 50 10 g of arsenical residue precipitated according to the conditions of experiment 42 were taken at a residence time of 6 h and placed in a zirconium crucible in a muffle at a temperature of 400 to 650°C for 1 h. Once the reaction time had elapsed, the crucibles were removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 9. Table 9. Calcination results for application examples 45 to 50 Variable/Example Unit 45 46 47 48 49 50 Reaction time h 1 1 1 1 1 1 Temperature °C 400 450 500 550 600 650 Mass loss % 18 10.1 9.8 15.1 24 24.7 As released in TCLP mg/L 11.1 15.1 16.2 5.4 5.5 1.2 Application examples 45 to 50 show that the calcination process for precipitated tooeleite arsenical waste using sodium hydroxide is not sufficient to stabilize the waste. Examples 51 to 56 10 g of arsenical residue precipitated according to the conditions of experiment 43 were taken at a residence time of 6 h and placed in a zirconium crucible in a muffle at a temperature of between 400 and 650°C for a time of 1 h. Once the reaction time was completed, the crucibles were removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 10. Table 10. Calcination results of application examples 51 to 56 Variable/Example Unit 51 52 53 54 55 56 Reaction time h 1 1 1 1 1 1 Temperature °C 400 450 500 550 600 650 Mass loss % 11.0 16.8 15.0 10.7 16.0 18.0 As released in TCLP mg/L 4.2 3.4 2.9 5.4 5.9 13.9 Application examples 51 to 53 show that it is possible to obtain stable arsenical residues by calcining tooeleite precipitated by neutralization with calcium hydroxide. Temperatures within the range of 550 to 650 °C generate arsenical residues. unstable arsenicals due to the generation of arsenite and arsenate ions that begin to volatilize in the form of arsenic trioxide and pentoxide. Examples 57 to 61 10 g of arsenical residue precipitated according to the conditions of experiment 42 were taken at a time of 6 h and placed in a zirconium crucible in a muffle at a temperature of 550°C for a time of between 1 and 3 h. Once the reaction time was completed, the crucibles were removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 11. Table 11. Calcination results for application examples 57 to 61 Variable/Example Unit 57 58 59 60 61 Reaction time h 1 1.5 2 2.5 3 Temperature °C 550 550 550 550 550 Mass loss % 23 23 23.5 23.7 23.2 As released in TCLP mg/L 5.9 5.2 44.5 60.1 98 Application examples 57 to 61 show that long calcination times do not increase the stability of arsenical waste due to the formation of arsenic trioxide and pentoxide, which generate highly unstable gases. Examples 62 to 65 10 g of arsenical residue precipitated according to the conditions of experiment 43 were taken at a time of 6 h and placed in a zirconium crucible in a muffle at a temperature of 500°C for a time between 15 and 60 min. Once the reaction time had elapsed, the crucibles were removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 12. Table 12. Calcination results of application examples 62 to 65 Variable/Example Unit 62 63 64 65 Reaction time min 15 30 45 60 Temperature °C 500 500 500 500 Mass loss % 15.9 16.0 16.1 16.4 As released in TCLP mg/L 1.2 1.5 2.1 1.9 Application Examples 62 to 65 show conditions under which it is possible to generate stable arsenical residues at 500°C within a time range of 15 to 60 min of calcination, from tooeleite precipitated with calcium hydroxide. Examples 66 to 71 10 g of arsenical residue precipitated according to the conditions of experiment 42 were taken at a residence time of 6 h and placed in a zirconium crucible in a muffle at a temperature of 550°C for a time of 1 h. The crucible was charged with gypsum produced according to Example 7, such that the gypsum content in the total mixture with the arsenical residue varied between 10 and 20% w/w. After the reaction time had elapsed, the crucibles were removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 13. Table 13. Calcination results of application examples 66 to 71 Variable/Example Unit 66 67 68 69 70 71 Reaction time h 1 1 1 1 1 1 Temperature °C 550 550 550 550 550 550 Gypsum content in mixture with %w/w 10 12 14 16 18 20 arsenical residue Mass loss % 11.9 11.7 11.4 11.3 10.9 11.9 As released in TCLP mg/L 3.1 1.9 2.1 1.8 2.2 3.5 Application examples 66 to 71 show that it is possible to obtain stable arsenical residues by calcining precipitated tooeleite with Sodium hydroxide in mixtures with gypsum produced by application example 7, in contrast to the calcination of tooeleite without the presence of gypsum as disclosed in application examples 45 to 50. Examples 72 to 73 Two arsenic abatement tests were carried out according to the conditions of experiment 42 for a residence time of 6 h, but using as neutralizer a slurry with a mixture of 67% calcium hydroxide and 33% sodium hydroxide, and 87% calcium hydroxide and 13% sodium hydroxide, respectively. Subsequently, 10 g of arsenical residue precipitated according to the conditions described above were taken and placed in a zirconium crucible in a muffle at a temperature of 550 ° C for a time of 1 h. Once the reaction time had elapsed, the crucibles were removed from the muffle furnace. the muffle and the solid were washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 14. Table 14. Calcination results of application examples 72 to 73 Variable/Example Unit 72 73 Reaction time h 1 1 Temperature °C 550 550 Ca(OH)267%w/w Ca(OH)287%w/w Neutralizer NaOH 33%w/w NaOH 13%w/w Mass loss % 13 12 As released in TCLP mg/L 4.1 1.5 Application examples 72 and 73 show that by adding a mixture of sodium hydroxide neutralizer and lime milk it is possible to obtain stable arsenical residues after calcination, which confirms that the presence of gypsum in the arsenical residue is beneficial for its stabilization. Example 74 10 g of arsenical residue precipitated according to the conditions of experiment 44 were taken at a residence time of 6 h and placed in a zirconium crucible in a muffle at a temperature of 500°C for 1 h. Once the reaction time had elapsed, the crucible was removed from the muffle and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 15. Table 15. Calcination results for application example 74 Variable/Example Unit 74 Reaction time h 1 Temperature °C 500 Mass loss % 9.9 As released in TCLP mg/L 0.39 Examples 75 to 81 10 g of arsenical residue precipitated according to the conditions of experiment 44 were taken and placed in a zirconium crucible in a muffle furnace at a temperature between 400 and 500°C for a time between 15 and 60 min. Once the reaction time had elapsed, the crucibles were removed from the muffle furnace and the solid was washed with water in a mass ratio of 2:1, to subsequently perform TCLP analysis. The test results are presented in Table 16. Table 16. Calcination results of application examples 75 to 80 Variable/Example Unit 75 76 77 78 79 80 81 Reaction time min 60 60 15 30 45 60 Without
Figure imgf000027_0001
that one is not the stabilization of the arsenical residue in the form of tooeleite precipitated with limestone milk. Application examples 76 to 80 show how by means of calcination it is possible to stabilize the arsenical residue in contrast to the control example 81 where the arsenical residue is not subjected to calcination conditions. Secondary arsenic abatement Examples 82 to 89 2000 mL of an arsenical solution, obtained according to the precipitation conditions of example 74, were prepared and placed in a 5 L glassed reactor, where ferrous sulfate heptahydrate and zinc sulfate pentahydrate were added to adjust the molar ratios of Fe(II)/As(III) and Zn(II)/As(III), respectively. The pH of the solution was adjusted to between 11 and 13 by adding a sodium hydroxide solution at a concentration of 10 mol/L and lime milk prepared at a concentration of 25% w/w. The pH was measured with an Ag/AgCl pH electrode. The reactor was stirred at 300 rpm for 1 hour at room temperature. The pulp was subjected to a solid-liquid separation process by filtration, to subsequently perform TCLP analysis. The results are presented in Table 17. Table 17. As precipitation results, examples 82 to 89 Variable/Example Unit 82 83 84 85 86 87 88 89 Initial As g/L 1.0 0.20 0.20 H
Figure imgf000027_0002
Initial 2SO4 g/L
Figure imgf000027_0003
1.7 2.0 2.0 pH adjustment 11 12 13 13 12 12 12 12 Time of 1 precipitation
Figure imgf000027_0005
Figure imgf000027_0004
Variable/Example Unit 82 83 84 85 86 87 88 89 Mol/mol ratio 3.0 3.0 3.0 3.0 3.0 3.0 3.4 3.4 Fe(II)/As(III) Mol/mol ratio 6.0 6.0 6.0 6.0 6.0 6.0 6.0 20.0 Zn(II)/As(III) Yield % 96 97 97 98 99 99 99 99 As removal As released in mg/L 3.5 2.5 0.58 0.42 2.4 1.4 1.7 0.7 TCLP Application Examples 82 to 89 show that it is possible to generate stable arsenical residues from solutions obtained from the precipitation process in the form of tooeleite, Examples 90 to 96 50 L of an arsenical solution were prepared, obtained according to the precipitation conditions of example 74, which was placed in a 100 L glass reactor, where ferrous sulphate heptahydrate and zinc sulphate pentahydrate were added to adjust the molar ratios of Fe(II)/As(III) and Zn(II)/As(III), respectively. The pH of the solution was adjusted to 12 by adding a sodium hydroxide solution at a concentration of 10 mol/L and lime milk prepared at a concentration of 25% w/w. The pH was measured with an Ag/AgCl pH electrode. The reactor was stirred at 300 rpm for 1 hour at room temperature. The pulp was subjected to a solid-liquid separation process by filtration, to subsequently perform TCLP analysis. The results are presented in Table 18. Table 18. As precipitation results, Examples 90 to 96 Variable/Example Unit 90 91 92 93 94 95 96 Initial As g/L 0.26 0.26 0.26 0.26 0.26 0.26 0.26 Initial H2SO4 g/L 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Adjustment pH 12 12 12 12 12 12 12 12 Precipitation time h 1 1 1 1 1 1 1 Precipitation Mol/mol ratio 18 18 18 18 18 18 18 Fe(II)/As(III) Mol/mol ratio 15 15 15 15 15 15 15 15 Zn(II)/As(III) Yield % 96.7 99.4 93.8 100 100 99.6 99.9 As removal As released in mg/L 0.24 0.43 0.70 0.01 0.01 0.26 0.61 TCLP Application examples 90 to 96 show that it is possible to generate stable arsenical waste from solutions obtained from the precipitation process in the form of tooeleite, and that it is possible to obtain beaten solutions with an As concentration of less than 10 mg/L.

Claims

REIVINDICACIONES 1. Un proceso de remoción de arsénico desde efluentes arsenicales para la generación de residuos arsenicales estables, CARACTERIZADO porque comprende: i. un primer paso de neutralización, en donde el efluente arsenical es contactado con un primer neutralizante para generar un primer efluente arsenical neutralizado, ii. un segundo paso de ajuste de relación Fe(III)/As(III), en donde el primer efluente arsenical neutralizado es mezclado con una primera solución férrica, para generar un tercer efluente arsenical, iii. un tercer paso de precipitación de arsénico, en donde se ajusta el pH del tercer efluente arsenical con un segundo neutralizante para generar una primera pulpa de residuo arsenical, iv. un cuarto paso de separación sólido líquido, en donde la primera pulpa de residuo arsenical se separa para generar un cuarto efluente arsenical y un primer residuo arsenical, v. un quinto paso de calcinación, en donde el primer residuo arsenical se calcina para generar un segundo residuo arsenical, vi. un sexto paso de lavado, en donde el segundo residuo arsenical se lava con una solución acuosa para generar una segunda pulpa de residuo arsenical, vii. un séptimo paso de separación sólido líquido, en donde la segunda pulpa de residuo arsenical se separa para generar un quinto efluente arsenical y un tercer residuo arsenical estable en forma de tooeleita. CLAIMS 1. A process for removing arsenic from arsenical effluents for the generation of stable arsenical waste, CHARACTERIZED in that it comprises: i. a first neutralization step, wherein the arsenical effluent is contacted with a first neutralizer to generate a first neutralized arsenical effluent, ii. a second Fe(III)/As(III) ratio adjustment step, wherein the first neutralized arsenical effluent is mixed with a first ferric solution, to generate a third arsenical effluent, iii. a third arsenic precipitation step, wherein the pH of the third arsenical effluent is adjusted with a second neutralizer to generate a first arsenical waste pulp, iv. a fourth solid-liquid separation step, wherein the first arsenical waste pulp is separated to generate a fourth arsenical effluent and a first arsenical waste, v. a fifth calcination step, wherein the first arsenical residue is calcined to generate a second arsenical residue, vi. a sixth washing step, wherein the second arsenical residue is washed with an aqueous solution to generate a second arsenical residue pulp, vii. a seventh solid-liquid separation step, wherein the second arsenical residue pulp is separated to generate a fifth arsenical effluent and a third stable arsenical residue in the form of tooeleite. 2. El proceso de acuerdo con la reivindicación 1, CARACTERIZADO porque, en el paso i de neutralización el pH se ajusta a un valor que varía dentro del rango de 0,5 a 2. 2. The process according to claim 1, CHARACTERIZED in that, in step i of neutralization the pH is adjusted to a value that varies within the range of 0.5 to 2. 3. El proceso de acuerdo con las reivindicaciones 1 a 2, CARACTERIZADO porque, el primer neutralizante se puede seleccionar de uno de hidróxido de sodio, carbonato de sodio, hidróxido de potasio, carbonato de potasio, óxido de magnesio, hidróxido de magnesio, carbonato de magnesio, óxido de calcio, hidróxido de calcio, carbonato de calcio o caliza dolomítica. 3. The process according to claims 1 to 2, CHARACTERIZED in that the first neutralizer can be selected from one of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium oxide, hydroxide magnesium, magnesium carbonate, calcium oxide, calcium hydroxide, calcium carbonate or dolomitic limestone. 4. El proceso de acuerdo con las reivindicaciones 1 a 3, CARACTERIZADO porque, el primer neutralizante a base de calcio del paso i se prepara como una lechada de neutralizante con agua, en donde la concentración del neutralizante en la lechada de neutralizante varía entre 15 y 25% p/p. 4. The process according to claims 1 to 3, CHARACTERIZED in that the first calcium-based neutralizer of step i is prepared as a neutralizer slurry with water, wherein the concentration of the neutralizer in the neutralizer slurry varies between 15 and 25% w/w. 5. El proceso de acuerdo con la reivindicación 4, CARACTERIZADO porque, en el paso i de neutralización se genera una primera pulpa de efluente neutralizado. 5. The process according to claim 4, CHARACTERIZED in that, in step i of neutralization, a first neutralized effluent pulp is generated. 6. El proceso de acuerdo con la reivindicación 5, CARACTERIZADO porque, la primera pulpa de efluente neutralizado se envía a una primera etapa de separación para generar un primer efluente arsenical neutralizado y un primer residuo. 6. The process according to claim 5, CHARACTERIZED in that the first neutralized effluent pulp is sent to a first separation stage to generate a first neutralized arsenical effluent and a first residue. 7. El proceso de acuerdo con la reivindicación 6, CARACTERIZADO porque, dicha primera etapa de separación consta de una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la primera pulpa de efluente neutralizado para obtener una primera solución de rebose y una primera pulpa espesada. 7. The process according to claim 6, CHARACTERIZED in that said first separation stage consists of a first thickening, clarification or centrifugation sub-stage, to which the first neutralized effluent pulp is subjected to obtain a first overflow solution and a first thickened pulp. 8. El proceso de acuerdo con las reivindicaciones 6 a 7, CARACTERIZADO porque, dicha primera etapa de separación consta de una segunda subetapa de filtrado, a la cual se somete la primera pulpa espesada para generar una primera solución filtrada y el primer residuo. 8. The process according to claims 6 to 7, CHARACTERIZED in that said first separation stage consists of a second filtering sub-stage, to which the first thickened pulp is subjected to generate a first filtered solution and the first residue. 9. El proceso de acuerdo con las reivindicaciones 6 a 8, CARACTERIZADO porque, dicha primera etapa de separación consta de una tercera subetapa de mezcla que se alimenta con la primera solución de rebose y la primera solución filtrada para generar el primer efluente arsenical neutralizado. 9. The process according to claims 6 to 8, CHARACTERIZED in that said first separation stage consists of a third mixing sub-stage that is fed with the first overflow solution and the first filtered solution to generate the first neutralized arsenical effluent. 10. El proceso de acuerdo con las reivindicaciones 6 a 9, CARACTERIZADO porque, el primer residuo se somete a una etapa de lixiviación para la remoción de arsénico para generar una segunda pulpa de residuo. 10. The process according to claims 6 to 9, CHARACTERIZED in that the first residue is subjected to a leaching stage for the removal of arsenic to generate a second residue pulp. 11. El proceso de acuerdo con la reivindicación 10, CARACTERIZADO porque, la etapa de lixiviación se realiza con una solución ácida que comprende ácido sulfúrico en una concentración que varía entre 10 y 75 g/L. 11. The process according to claim 10, CHARACTERIZED in that the leaching stage is carried out with an acid solution comprising sulfuric acid in a concentration varying between 10 and 75 g/L. 12. El proceso de acuerdo con las reivindicaciones 10 a 11, CARACTERIZADO porque, la etapa de lixiviación se lleva a cabo a una temperatura que varía entre 40 y 80°C. 12. The process according to claims 10 to 11, CHARACTERIZED in that the leaching stage is carried out at a temperature varying between 40 and 80°C. 13. El proceso de acuerdo con las reivindicaciones 10 a 12, CARACTERIZADO porque, la etapa de lixiviación se lleva a cabo a un contenido de sólidos en la pulpa resultante de la mezcla del primer residuo con la solución ácida de entre 10 y 40%. 13. The process according to claims 10 to 12, CHARACTERIZED in that the leaching stage is carried out at a solids content in the pulp resulting from the mixture of the first residue with the acid solution of between 10 and 40%. 14. El proceso de acuerdo con las reivindicaciones 10 a 13, CARACTERIZADO porque, la segunda pulpa de residuo se envía a una segunda etapa de separación para generar un segundo efluente arsenical y un segundo residuo. 14. The process according to claims 10 to 13, CHARACTERIZED in that the second waste pulp is sent to a second separation stage to generate a second arsenical effluent and a second waste. 15. El proceso de acuerdo con la reivindicación 14, CARACTERIZADO porque, dicha segunda etapa de separación consta de una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la segunda pulpa de residuo para obtener una segunda solución de rebose y una segunda pulpa espesada. 15. The process according to claim 14, CHARACTERIZED in that said second separation stage consists of a first thickening, clarification or centrifugation sub-stage, to which the second waste pulp is subjected to obtain a second overflow solution and a second thickened pulp. 16. El proceso de acuerdo con las reivindicaciones 14 a 15, CARACTERIZADO porque, dicha segunda etapa de separación consta de una segunda subetapa de filtrado, a la cual se somete la segunda pulpa espesada para generar una segunda solución filtrada y el segundo residuo que comprende yeso y constituye un residuo estable. 16. The process according to claims 14 to 15, CHARACTERIZED in that said second separation stage consists of a second filtering sub-stage, to which the second thickened pulp is subjected to generate a second filtered solution and the second residue comprising gypsum and constituting a stable residue. 17. El proceso de acuerdo con las reivindicaciones 14 a 16, CARACTERIZADO porque, dicha segunda etapa de separación consta de una tercera subetapa de mezcla que se alimenta con la segunda solución de rebose y la segunda solución filtrada para generar el segundo efluente arsenical. 17. The process according to claims 14 to 16, CHARACTERIZED in that said second separation stage consists of a third mixing sub-stage that is fed with the second overflow solution and the second filtered solution to generate the second arsenical effluent. 18. El proceso de acuerdo con las reivindicaciones 1 a 3, CARACTERIZADO porque, el primer neutralizante a base de sodio se prepara a una concentración que varía entre 1 y 10 mol/L con agua. 18. The process according to claims 1 to 3, CHARACTERIZED in that the first sodium-based neutralizer is prepared at a concentration varying between 1 and 10 mol/L with water. 19. El proceso de acuerdo con las reivindicaciones 1 a 3 y 18, CARACTERIZADO porque, posterior a la adición del neutralizante se genera el primer efluente arsenical neutralizado. 19. The process according to claims 1 to 3 and 18, CHARACTERIZED in that, after the addition of the neutralizer, the first neutralized arsenical effluent is generated. 20. El proceso de acuerdo con las reivindicaciones 1 a 19, CARACTERIZADO porque, el ajuste de la relación molar Fe(III)/As(III) del paso ii se realiza adicionando uno de sulfato férrico, cloruro férrico, o una solución de lixiviación de un mineral de hierro tal como hematita, goetita o magnetita. 20. The process according to claims 1 to 19, CHARACTERIZED in that the adjustment of the Fe(III)/As(III) molar ratio of step ii is carried out by adding one of ferric sulfate, ferric chloride, or a leaching solution of an iron mineral such as hematite, goethite or magnetite. 21. El proceso de acuerdo con la reivindicación 20, CARACTERIZADO porque, el ajuste de relación molar Fe(III)/As(III) del paso ii se puede realizar con una solución de lixiviación de mineral de hierro de magnetita que haya sido oxidada con un oxidante para convertir todo el ion ferroso en ion férrico. 21. The process according to claim 20, CHARACTERIZED in that, the Fe(III)/As(III) molar ratio adjustment of step ii can be performed with a magnetite iron ore leaching solution that has been oxidized with an oxidant to convert all ferrous ion into ferric ion. 22. El proceso de acuerdo con la reivindicación 21, CARACTERIZADO porque, el oxidante que se ocupa para oxidar la solución de lixiviación de magnetita se selecciona de uno de entre peróxido de hidrógeno o clorito de sodio. 22. The process according to claim 21, CHARACTERIZED in that the oxidant used to oxidize the magnetite leaching solution is selected from one of hydrogen peroxide or sodium chlorite. 23. El proceso de acuerdo con las reivindicaciones 1 a 22, CARACTERIZADO porque, el paso ii de ajuste de la relación molar Fe(III)/As(III) se lleva cabo a una relación molar de Fe(III)/As(III) de entre 1,5 a 2. 23. The process according to claims 1 to 22, CHARACTERIZED in that step ii of adjusting the Fe(III)/As(III) molar ratio is carried out at a Fe(III)/As(III) molar ratio of between 1.5 and 2. 24. El proceso de acuerdo con la reivindicación 23, CARACTERIZADO porque, el paso ii de ajuste de la relación molar Fe(III)/As(III) se lleva cabo a una relación molar de Fe(III)/As(III) de 1,8. 24. The process according to claim 23, CHARACTERIZED in that step ii of adjusting the Fe(III)/As(III) molar ratio is carried out at a Fe(III)/As(III) molar ratio of 1.8. 25. El proceso de acuerdo con las reivindicaciones 1 a 24, CARACTERIZADO porque, el paso iii de precipitación de arsénico se realiza a un pH de entre 2 y 4. 25. The process according to claims 1 to 24, CHARACTERIZED in that step iii of arsenic precipitation is carried out at a pH between 2 and 4. 26. El proceso de acuerdo con las reivindicaciones 1 a 25, CARACTERIZADO porque, el paso iii se lleva cabo por un tiempo de entre 1 y 24 horas. 26. The process according to claims 1 to 25, CHARACTERIZED in that step iii is carried out for a time between 1 and 24 hours. 27. El proceso de acuerdo con las reivindicaciones 1 a 26, CARACTERIZADO porque, el paso iii se lleva a cabo a una temperatura de entre 15 y 80°C. 27. The process according to claims 1 to 26, CHARACTERIZED in that step iii is carried out at a temperature between 15 and 80°C. 28. El proceso de acuerdo con las reivindicaciones 1 a 27, CARACTERIZADO porque, el segundo neutralizante se selecciona de uno de entre hidróxido de sodio, carbonato de sodio, hidróxido de potasio, carbonato de potasio, óxido de magnesio, hidróxido de magnesio, carbonato de magnesio, óxido de calcio, hidróxido de calcio, carbonato de calcio o caliza dolomítica. 28. The process according to claims 1 to 27, CHARACTERIZED in that the second neutralizer is selected from one of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium oxide, magnesium hydroxide, magnesium carbonate, calcium oxide, calcium hydroxide, calcium carbonate or dolomitic limestone. 29. El proceso de acuerdo con la reivindicación 28, CARACTERIZADO porque, el segundo neutralizante del paso iii se selecciona de uno de entre hidróxido de sodio, carbonato de sodio hidróxido de potasio, carbonato de potasio, óxido de magnesio, hidróxido de magnesio o carbonato de magnesio. 29. The process according to claim 28, CHARACTERIZED in that the second neutralizer of step iii is selected from one of sodium hydroxide, sodium carbonate, potassium hydroxide, potassium carbonate, magnesium oxide, magnesium hydroxide or magnesium carbonate. 30. El proceso de acuerdo con la reivindicación 29, CARACTERIZADO porque, en el paso iv se realiza una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la primera pulpa de residuo arsenical para obtener una tercera solución de rebose y una tercera pulpa espesada. 30. The process according to claim 29, CHARACTERIZED in that, in step iv, a first thickening, clarification or centrifugation sub-stage is carried out, to which the first arsenical residue pulp is subjected to obtain a third overflow solution and a third thickened pulp. 31. El proceso de acuerdo con la reivindicación 30, CARACTERIZADO porque, en el paso iv se realiza una segunda subetapa de filtrado, a la cual se somete la tercera pulpa espesada para generar una tercera solución filtrada y el primer residuo arsenical. 31. The process according to claim 30, CHARACTERIZED in that, in step iv, a second filtering sub-stage is carried out, to which the third thickened pulp is subjected to generate a third filtered solution and the first arsenical residue. 32. El proceso de acuerdo con las reivindicaciones 29 a 31, CARACTERIZADO porque, en el paso iv se realiza una tercera subetapa de mezcla que se alimenta con la tercera solución de rebose y la tercera solución filtrada para generar el cuarto efluente arsenical. 32. The process according to claims 29 to 31, CHARACTERIZED in that, in step iv, a third mixing sub-stage is carried out which is fed with the third overflow solution and the third filtered solution to generate the fourth arsenical effluent. 33. El proceso de acuerdo con las reivindicaciones 29 a 32, CARACTERIZADO porque, el paso v se lleva a cabo a una temperatura de entre 450 y 600°C. 33. The process according to claims 29 to 32, CHARACTERIZED in that step v is carried out at a temperature between 450 and 600°C. 34. El proceso de acuerdo con las reivindicaciones 29 a 33, CARACTERIZADO porque, el paso v se lleva a cabo por un tiempo de entre 15 y 60 minutos. 34. The process according to claims 29 to 33, CHARACTERIZED in that step v is carried out for a time between 15 and 60 minutes. 35. El proceso de acuerdo con las reivindicaciones 29 a 34, CARACTERIZADO porque, en el paso v se adiciona yeso. 35. The process according to claims 29 to 34, CHARACTERIZED in that, in step v, gypsum is added. 36. El proceso de acuerdo con las reivindicaciones 29 a 35, CARACTERIZADO porque, en el paso v se adiciona yeso en una relación másica de entre 10 a 20%p/p respecto de la cantidad total de masa del segundo residuo arsenical y el yeso. 36. The process according to claims 29 to 35, CHARACTERIZED in that, in step v, gypsum is added in a mass ratio of between 10 to 20% w/w with respect to the total mass amount of the second arsenical residue and the gypsum. 37. El proceso de acuerdo con las reivindicaciones 29 a 35, CARACTERIZADO porque, el yeso que se adiciona en el paso v corresponde al segundo residuo. 37. The process according to claims 29 to 35, CHARACTERIZED in that the gypsum added in step v corresponds to the second residue. 38. El proceso de acuerdo con la reivindicación 28, CARACTERIZADO porque, el segundo neutralizante del paso iii se selecciona de uno de entre óxido de calcio, hidróxido de calcio, carbonato de calcio o caliza dolomítica. 38. The process according to claim 28, CHARACTERIZED in that the second neutralizer of step iii is selected from one of calcium oxide, calcium hydroxide, calcium carbonate or dolomitic limestone. 39. El proceso de acuerdo con la reivindicación 38, CARACTERIZADO porque, en el paso iv se realiza una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la primera pulpa de residuo arsenical para obtener una tercera solución de rebose y una tercera pulpa espesada. 39. The process according to claim 38, CHARACTERIZED because, in step iv, a first sub-stage of thickening, clarification or purification is carried out. centrifugation, to which the first arsenical residue pulp is subjected to obtain a third overflow solution and a third thickened pulp. 40. El proceso de acuerdo con las reivindicaciones 38 a 39, CARACTERIZADO porque, en el paso iv se realiza una segunda subetapa de filtrado, a la cual se somete la tercera pulpa espesada para generar una tercera solución filtrada y el primer residuo arsenical. 40. The process according to claims 38 to 39, CHARACTERIZED in that, in step iv, a second filtering sub-stage is carried out, to which the third thickened pulp is subjected to generate a third filtered solution and the first arsenical residue. 41. El proceso de acuerdo con las reivindicaciones 38 a 40, CARACTERIZADO porque, en el paso iv se realiza una tercera subetapa de mezcla que se alimenta con la tercera solución de rebose y la tercera solución filtrada para generar el cuarto efluente arsenical. 41. The process according to claims 38 to 40, CHARACTERIZED in that, in step iv, a third mixing sub-stage is carried out which is fed with the third overflow solution and the third filtered solution to generate the fourth arsenical effluent. 42. El proceso de acuerdo con las reivindicaciones 38 a 41, CARACTERIZADO porque, el primer residuo arsenical se somete a un paso de calcinación para generar un segundo residuo arsenical. 42. The process according to claims 38 to 41, CHARACTERIZED in that the first arsenical residue is subjected to a calcination step to generate a second arsenical residue. 43. El proceso de acuerdo con la reivindicación 42, CARACTERIZADO porque, dicho paso de calcinación se realiza hasta que el segundo residuo arsenical alcance un contenido de humedad en base húmeda de entre 10% y 25% p/p. 43. The process according to claim 42, CHARACTERIZED in that said calcination step is carried out until the second arsenical residue reaches a moisture content on a wet basis of between 10% and 25% w/w. 44. El proceso de acuerdo con las reivindicaciones 38 a 43, CARACTERIZADO porque, el paso v se lleva a cabo a una temperatura de entre 450 y 600°C. 44. The process according to claims 38 to 43, CHARACTERIZED in that step v is carried out at a temperature between 450 and 600°C. 45. El proceso de acuerdo con las reivindicaciones 38 a 44, CARACTERIZADO porque, el paso v se lleva a cabo por un tiempo de entre 15 y 60 minutos. 45. The process according to claims 38 to 44, CHARACTERIZED in that step v is carried out for a time between 15 and 60 minutes. 46. El proceso de acuerdo con las reivindicaciones 1 a 45, CARACTERIZADO porque, en el paso vi el lavado del segundo residuo arsenical se realiza con agua a una razón de lavado de entre 1 y 3 ton de agua/ton de segundo residuo arsenical. 46. The process according to claims 1 to 45, CHARACTERIZED in that, in step vi, the washing of the second arsenical residue is carried out with water at a washing ratio of between 1 and 3 tons of water/ton of second arsenical residue. 47. El proceso de acuerdo con las reivindicaciones 1 a 46, CARACTERIZADO porque, en el paso vii se realiza una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la segunda pulpa de residuo arsenical para obtener una cuarta solución de rebose y una cuarta pulpa espesada. 47. The process according to claims 1 to 46, CHARACTERIZED in that, in step vii, a first thickening, clarification or centrifugation sub-stage is carried out, to which the second arsenical residue pulp is subjected to obtain a fourth overflow solution and a fourth thickened pulp. 48. El proceso de acuerdo con la reivindicación 47, CARACTERIZADO porque, en el paso vii se realiza una segunda subetapa de filtrado, a la cual se somete la cuarta pulpa espesada para generar una cuarta solución filtrada y un tercer residuo arsenical estable. 48. The process according to claim 47, CHARACTERIZED in that, in step vii, a second filtering sub-stage is performed, to which the fourth is subjected. thickened pulp to generate a fourth filtered solution and a third stable arsenical residue. 49. El proceso de acuerdo con las reivindicaciones 48, CARACTERIZADO porque, en el paso vii se realiza una tercera subetapa de mezcla que se alimenta con la cuarta solución de rebose y la cuarta solución filtrada para generar el quinto efluente arsenical. 49. The process according to claims 48, CHARACTERIZED in that, in step vii, a third mixing sub-stage is carried out which is fed with the fourth overflow solution and the fourth filtered solution to generate the fifth arsenical effluent. 50. El proceso de acuerdo con las reivindicaciones 1 a 49, CARACTERIZADO porque, el quinto efluente arsenical se recircula al paso iii. 50. The process according to claims 1 to 49, CHARACTERIZED in that the fifth arsenical effluent is recirculated to step iii. 51. El proceso de acuerdo con la reivindicación 1, CARACTERIZADO porque adicionalmente se realiza un paso viii de depuración, en donde el cuarto efluente arsenical y el quinto efluente arsenical son tratados con una solución precipitante y un tercer neutralizante para generar una tercera pulpa de residuo arsenical, 51. The process according to claim 1, CHARACTERIZED in that an additional purification step viii is carried out, wherein the fourth arsenical effluent and the fifth arsenical effluent are treated with a precipitating solution and a third neutralizer to generate a third arsenical residue pulp, 52. El proceso de acuerdo con las reivindicaciones 51, CARACTERIZADO porque, el paso viii de depuración se realiza a un rango de pH entre 11 y 13. 52. The process according to claims 51, CHARACTERIZED in that the purification step viii is carried out at a pH range between 11 and 13. 53. El proceso de acuerdo con la reivindicación 51, CARACTERIZADO porque, el tercer neutralizante que se agrega en el paso viii se selecciona de entre hidróxido de sodio, hidróxido de potasio, óxido de calcio o hidróxido de calcio. 53. The process according to claim 51, CHARACTERIZED in that the third neutralizer that is added in step viii is selected from sodium hydroxide, potassium hydroxide, calcium oxide or calcium hydroxide. 54. El proceso de acuerdo con la reivindicación 51, CARACTERIZADO porque, la solución precipitante que se agrega en el paso viii comprende un primer metal de transición y un segundo metal de transición. 54. The process according to claim 51, CHARACTERIZED in that the precipitating solution that is added in step viii comprises a first transition metal and a second transition metal. 55. El proceso de acuerdo con la reivindicación 54, CARACTERIZADO porque, el primer metal de transición que se agrega en el paso viii se agrega en forma de sal ferrosa que se selecciona de uno de entre sulfato ferroso o cloruro ferroso. 55. The process according to claim 54, CHARACTERIZED in that the first transition metal that is added in step viii is added in the form of a ferrous salt that is selected from one of ferrous sulfate or ferrous chloride. 56. El proceso de acuerdo con la reivindicación 55, CARACTERIZADO porque, el primer metal de transición que se agrega en el paso viii se agrega en una relación molar respecto de la concentración de ion arsenoso entre 2:1 y 25:1. 56. The process according to claim 55, CHARACTERIZED in that the first transition metal that is added in step viii is added in a molar ratio with respect to the arsenous ion concentration between 2:1 and 25:1. 57. El proceso de acuerdo con la reivindicación 51, CARACTERIZADO porque, el segundo metal de transición que se agrega en el paso viii se agrega en forma de sal de zinc que se selecciona de uno de entre sulfato de zinc o cloruro de zinc. 57. The process according to claim 51, CHARACTERIZED in that the second transition metal that is added in step viii is added in the form of a zinc salt that is selected from one of zinc sulfate or zinc chloride. 58. El proceso de acuerdo con la reivindicación 57, CARACTERIZADO porque, el segundo metal de transición que se agrega en el paso viii se agrega en una relación molar respecto de la concentración de ion arsenoso entre 6:1 y 20:1. 58. The process according to claim 57, CHARACTERIZED in that the second transition metal that is added in step viii is added in a molar ratio with respect to the arsenous ion concentration between 6:1 and 20:1. 59. El proceso de acuerdo con la reivindicación 51, CARACTERIZADO porque adicionalmente se realiza un paso ix, paso de separación sólido líquido, en donde la tercera pulpa de residuo arsenical se separa para generar un sexto efluente arsenical y un cuarto residuo arsenical. 59. The process according to claim 51, CHARACTERIZED in that an additional step ix is carried out, a solid-liquid separation step, wherein the third arsenical residue pulp is separated to generate a sixth arsenical effluent and a fourth arsenical residue. 60. El proceso de acuerdo con la reivindicación 59, CARACTERIZADO porque, en el paso ix se realiza una primera subetapa de espesamiento, clarificación o de centrifugación, a la cual se somete la tercera pulpa de residuo arsenical para obtener una quinta solución de rebose y una quinta pulpa espesada. 60. The process according to claim 59, CHARACTERIZED in that, in step ix, a first thickening, clarification or centrifugation sub-stage is carried out, to which the third arsenical residue pulp is subjected to obtain a fifth overflow solution and a fifth thickened pulp. 61. El proceso de acuerdo con la reivindicación 59, CARACTERIZADO porque, en el paso ix se realiza una segunda subetapa de filtrado, a la cual se somete la quinta pulpa espesada para generar una quinta solución filtrada y el cuarto residuo arsenical. 61. The process according to claim 59, CHARACTERIZED in that, in step ix, a second filtering sub-stage is performed, to which the fifth thickened pulp is subjected to generate a fifth filtered solution and the fourth arsenical residue. 62. El proceso de acuerdo con las reivindicaciones 59, CARACTERIZADO porque, en el paso ix se realiza una tercera subetapa de mezcla que se alimenta con la quinta solución de rebose y la quinta solución filtrada para generar el sexto efluente arsenical. 62. The process according to claims 59, CHARACTERIZED in that, in step ix, a third mixing sub-stage is carried out which is fed with the fifth overflow solution and the fifth filtered solution to generate the sixth arsenical effluent.
PCT/CL2023/050030 2023-04-06 2023-04-06 Procedure for the stabilization of arsenical residues by means of the precipitation of tooeleite by thermal stabilization WO2024207126A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PE2024002738A PE20250811A1 (en) 2023-04-06 2023-04-06 PROCEDURE FOR THE STABILIZATION OF ARSENAL WASTE BY THE PRECIPITATION OF TOOELEITE VIA THERMAL STABILIZATION
PCT/CL2023/050030 WO2024207126A1 (en) 2023-04-06 2023-04-06 Procedure for the stabilization of arsenical residues by means of the precipitation of tooeleite by thermal stabilization
CN202380044254.0A CN119301076A (en) 2023-04-06 2023-04-06 Method for stabilizing arsenic-containing residues by heat-stabilizing precipitation of arsenic sulfate
ARP240100821A AR132308A1 (en) 2023-04-06 2024-04-04 PROCEDURE FOR THE STABILIZATION OF ARSENAL WASTE BY THE PRECIPITATION OF TOOELEITE VIA THERMAL STABILIZATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2023/050030 WO2024207126A1 (en) 2023-04-06 2023-04-06 Procedure for the stabilization of arsenical residues by means of the precipitation of tooeleite by thermal stabilization

Publications (1)

Publication Number Publication Date
WO2024207126A1 true WO2024207126A1 (en) 2024-10-10

Family

ID=92970707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2023/050030 WO2024207126A1 (en) 2023-04-06 2023-04-06 Procedure for the stabilization of arsenical residues by means of the precipitation of tooeleite by thermal stabilization

Country Status (4)

Country Link
CN (1) CN119301076A (en)
AR (1) AR132308A1 (en)
PE (1) PE20250811A1 (en)
WO (1) WO2024207126A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840194A (en) * 1996-01-16 1998-11-24 Mitsubishi Jukogyo Kabushiki Kaisha Process for treating arsenic-containing waste water
US6177015B1 (en) * 1999-10-18 2001-01-23 Inco Limited Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
CN108191031A (en) * 2018-01-04 2018-06-22 中南大学 A kind of no sulphur figure water hydroxyl sarmientite and its application in trivalent arsenic waste water is purified
CN108483690A (en) * 2018-02-12 2018-09-04 中南大学 A method of processing High-arsenic wastewater
US11220437B2 (en) * 2018-12-24 2022-01-11 Ecometales Limited Procedure for obtaining scorodite with a high arsenic content from acidic solutions with high content of sulfuric acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840194A (en) * 1996-01-16 1998-11-24 Mitsubishi Jukogyo Kabushiki Kaisha Process for treating arsenic-containing waste water
US6177015B1 (en) * 1999-10-18 2001-01-23 Inco Limited Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
CN108191031A (en) * 2018-01-04 2018-06-22 中南大学 A kind of no sulphur figure water hydroxyl sarmientite and its application in trivalent arsenic waste water is purified
CN108483690A (en) * 2018-02-12 2018-09-04 中南大学 A method of processing High-arsenic wastewater
US11220437B2 (en) * 2018-12-24 2022-01-11 Ecometales Limited Procedure for obtaining scorodite with a high arsenic content from acidic solutions with high content of sulfuric acid

Also Published As

Publication number Publication date
PE20250811A1 (en) 2025-03-20
AR132308A1 (en) 2025-06-11
CN119301076A (en) 2025-01-10

Similar Documents

Publication Publication Date Title
AU2019412815B2 (en) Procedure for obtaining scorodite with a high arsenic content from acidic solutions with high content of sulfuric acid
Qi et al. Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite
CN105753218A (en) Method for removing trivalent arsenic
CN102531236A (en) Treating method of arsenic in waste acid
CN102765831A (en) Purification method of wastewater containing heavy metal and arsenic
CN105060431B (en) A kind of method for handling high arsenic acid water
CN108483690B (en) A kind of method for treating high arsenic wastewater
JP2009178682A (en) Selective adsorbent and method for producing the same
BR112015003616B1 (en) METHOD AND COMPOSITION FOR ARSENIC SEPARATION
Wang et al. Fundamental research on selective arsenic removal from high-salinity alkaline wastewater
Irunde et al. The natural magnesite efficacy on arsenic extraction from water and alkaline influence on metal release in water
CA2682725C (en) Porous iron oxide and method for producing the same and method for treating solutions
WO2024207126A1 (en) Procedure for the stabilization of arsenical residues by means of the precipitation of tooeleite by thermal stabilization
JP5548956B2 (en) Arsenic sorbent and arsenic contaminant purification method
Meski et al. Elaboration of the hydroxyapatite with different precursors and application for the retention of the lead
CN110902792A (en) Treatment method of wastewater containing pentavalent arsenic
JP5039953B2 (en) Method for separating arsenic and chromium in aqueous solution
Comba Removal of arsenic from process and wastewater solutions
RU2395600C2 (en) Procedure for extracting arsenic from water solutions
JP2010083719A (en) Porous maghemite, method for producing tmaghemite and method for treating water to be treated
Choumane et al. Extraction of polyoxotantalate by Mg–Fe layered double hydroxides: elucidation of sorption mechanisms
Staszczuk et al. Methods of preparation of magnesium organic compounds from natural dolomite
ES2565559B2 (en) Hydrometallurgical procedure for zinc recovery in mine waters and solid metallurgical waste
Quiton et al. Reclamation of Cobalt and Copper from Single-and Co-contaminated Wastewater via Carbonate and Hydroxide Precipitation
Zendelska Possibilities for use of natural raw materials in treatment of mine water contaminated with heavy metals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23931207

Country of ref document: EP

Kind code of ref document: A1