[go: up one dir, main page]

WO2024116818A1 - Lens optical system and imaging device - Google Patents

Lens optical system and imaging device Download PDF

Info

Publication number
WO2024116818A1
WO2024116818A1 PCT/JP2023/040870 JP2023040870W WO2024116818A1 WO 2024116818 A1 WO2024116818 A1 WO 2024116818A1 JP 2023040870 W JP2023040870 W JP 2023040870W WO 2024116818 A1 WO2024116818 A1 WO 2024116818A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
refractive power
image
lens optical
Prior art date
Application number
PCT/JP2023/040870
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 成田
和希 染谷
勝治 木村
Original Assignee
ソニーグループ株式会社
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社, ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024116818A1 publication Critical patent/WO2024116818A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This technology relates to a lens optical system and an imaging device, and in particular to a lens optical system and an imaging device that can shorten the overall optical length of the lens optical system when compatible with a large imaging element.
  • a conventional lens optical system is a lens optical system that is composed of, in order from the object side to the image side, a first lens having positive refractive power, a second lens having negative refractive power, a third lens having positive refractive power, a fourth lens, a fifth lens having negative refractive power, a sixth lens, a seventh lens having positive refractive power, and an eighth lens having negative refractive power (see, for example, Patent Document 1).
  • the tangent angle between the sixth lens and the seventh lens is very small, making it difficult to expand the peripheral rays, and therefore the ratio of the optical total length to the maximum image height, that is, optical total length/maximum image height, is large. Therefore, if this lens optical system is adapted to a large image sensor, the optical total length will be long.
  • the compact camera module that includes that lens optical system will be tall. As a result, it will be difficult to make mobile devices such as portable terminals that incorporate such compact camera modules thinner.
  • This technology was developed in consideration of these circumstances, and makes it possible to shorten the overall optical length of a lens optical system when accommodating a large image sensor.
  • the lens optical system of the first aspect of the present technology includes, in order from the object side to the image side, a first lens with positive refractive power, a second lens with negative refractive power, a third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens with positive or negative refractive power, a sixth lens with positive or negative refractive power, a seventh lens with positive or negative refractive power, and an eighth lens with negative refractive power, the paraxial shapes of the fifth lens to the seventh lens are meniscus shapes convex toward the object side, the tangent angles of the peripheral parts of the lens effective diameter of five or more of the six surfaces consisting of the object side surface and the image side surface of each of the fifth lens to the seventh lens are 40 degrees or more, and the lens optical system is configured to form an image of a subject on the imaging surface of an imaging element.
  • a first lens having positive refractive power, a second lens having negative refractive power, a third lens having positive refractive power, a fourth lens having positive refractive power, a fifth lens having positive or negative refractive power, a sixth lens having positive or negative refractive power, a seventh lens having positive or negative refractive power, and an eighth lens having negative refractive power are provided in that order from the object side to the image side.
  • the paraxial shapes of the fifth lens to the seventh lens are meniscus shapes convex toward the object side, and the tangent angle of the peripheral portion of the lens effective diameter of five or more of the six surfaces consisting of the object side surface and the image side surface of each of the fifth lens to the seventh lens is 40 degrees or more.
  • the subject image is formed on the imaging surface of the imaging element.
  • the imaging device is an imaging device that includes, in order from the object side to the image side, a first lens with positive refractive power, a second lens with negative refractive power, a third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens with positive or negative refractive power, a sixth lens with positive or negative refractive power, a seventh lens with positive or negative refractive power, and an eighth lens with negative refractive power, in which the paraxial shapes of the fifth lens to the seventh lens are meniscus shapes convex toward the object side, and the tangent angles of the peripheral parts of the lens effective diameter of five or more of the six surfaces consisting of the object side surface and the image side surface of each of the fifth lens to the seventh lens are 40 degrees or more, and an imaging element that converts the subject image formed by the lens optical system into an electrical signal.
  • a lens optical system in a second aspect of the present technology, includes, in order from the object side to the image side, a first lens with positive refractive power, a second lens with negative refractive power, a third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens with positive or negative refractive power, a sixth lens with positive or negative refractive power, a seventh lens with positive or negative refractive power, and an eighth lens with negative refractive power, the paraxial shapes of the fifth lens to the seventh lens are meniscus shapes convex toward the object side, and the tangent angle of the peripheral portion of the lens effective diameter of five or more of the six surfaces consisting of the object side surface and the image side surface of each of the fifth lens to the seventh lens is 40 degrees or more, and an image sensor is provided that converts the subject image formed by the lens optical system into an electrical signal.
  • FIG. 1 is a cross-sectional view showing a configuration example of a first embodiment of an imaging device to which the present technology is applied.
  • FIG. 2 is a cross-sectional view showing a first configuration example of a lens optical system.
  • 3 is a table showing the number and location of inflection points of the surface of FIG. 2; 3 is a table showing lens data for the lens of FIG. 2.
  • 3 is a table showing aspheric data for the surfaces of FIG. 2; 3 is a graph showing a tangent angle of an effective portion of the lens surface of the fifth lens from the object side in FIG. 2 .
  • 3 is a graph showing a tangent angle of an effective portion of the lens surface of the sixth lens from the object side in FIG. 2 .
  • FIG. 3 is a graph showing a tangent angle of an effective portion of the lens surface of the seventh lens from the object side in FIG. 2 .
  • 3 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 2.
  • FIG. 4 is a cross-sectional view showing a second configuration example of the lens optical system.
  • 11 is a table showing the number and location of inflection points of the surface of FIG. 10 .
  • 11 is a table showing lens data for the lens of FIG. 10 .
  • 11 is a table showing aspheric data for the surfaces of FIG. 10 .
  • 11 is a graph showing a tangent angle of an effective portion of the lens surface of the fifth lens from the object side in FIG. 10 .
  • FIG. 11 is a graph showing a tangent angle of an effective portion of the lens surface of the sixth lens from the object side in FIG. 10 .
  • 11 is a graph showing a tangent angle of an effective portion of the lens surface of the seventh lens from the object side in FIG. 10 .
  • 11 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 10.
  • FIG. 11 is a cross-sectional view showing a third configuration example of the lens optical system.
  • 19 is a table showing the number and location of inflection points of the surface of FIG. 18.
  • 19 is a table showing lens data for the lens of FIG. 18.
  • 19 is a table showing aspheric data for the surfaces of FIG. 18 .
  • FIG. 19 is a graph showing a tangent angle of an effective portion of the lens surface that is the fifth lens from the object side in FIG. 18 .
  • 19 is a graph showing a tangent angle of an effective portion of the lens surface of the sixth lens from the object side in FIG. 18 .
  • 19 is a graph showing a tangent angle of an effective portion of the lens surface of the seventh lens from the object side in FIG. 18 .
  • 19 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 18.
  • FIG. 11 is a cross-sectional view showing a fourth configuration example of the lens optical system.
  • 27 is a table showing the number and location of inflection points of the surface of FIG. 26.
  • 27 is a table showing lens data for the lens of FIG. 26.
  • 27 is a table showing aspheric data for the surfaces of FIG. 26 .
  • 27 is a graph showing a tangent angle of an effective portion of the lens surface that is the fifth lens from the object side in FIG. 26 .
  • 27 is a graph showing a tangent angle of an effective portion of the lens surface of the sixth lens from the object side in FIG. 26 .
  • 27 is a graph showing a tangent angle of an effective portion of the lens surface of the seventh lens from the object side in FIG. 26 .
  • 27 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 26.
  • 35 is a table showing the number and location of inflection points of the surface of FIG. 34.
  • 35 is a table showing lens data for the lens of FIG. 34.
  • 35 is a table showing aspheric data for the surfaces of FIG. 34 .
  • 35 is a graph showing a tangent angle of an effective portion of the lens surface that is the fifth lens from the object side in FIG. 34 .
  • 35 is a graph showing a tangent angle of an effective portion of the lens surface that is the sixth lens from the object side in FIG. 34 .
  • 35 is a graph showing a tangent angle of an effective portion of the lens surface that is the seventh lens from the object side in FIG. 34 .
  • FIG. 35 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 34.
  • 1 is a table showing values of parameters or expressions in a lens optical system.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a smartphone as an electronic device to which the present technology is applied.
  • FIG. 1 is a diagram illustrating an example of use of an imaging device.
  • 1 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system.
  • 2 is a block diagram showing an example of the functional configuration of a camera head and a CCU.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system;
  • FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of an embodiment of an imaging device to which the present technology is applied.
  • the imaging device 10 in FIG. 1 is composed of a thin circuit board 14 on which a solid-state imaging device 13 is mounted, a circuit board 15, and a spacer 16.
  • the solid-state imaging device 13 has a CSP (chip size package) structure.
  • the CSP structure is one of the structures of solid-state imaging devices that realizes a high pixel count, compact size, and low height, and is an extremely small package structure that is realized with a size similar to that of a single chip.
  • the solid-state imaging device 13 is composed of a solid-state imaging element 21, adhesive 22, glass substrate 23, black resin 24, lens optical system 25, and fixing agent 26.
  • the solid-state imaging element 21 is a CCD (Charge-Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, and includes a semiconductor substrate 31 and an on-chip lens 32.
  • the lower surface of the semiconductor substrate 31 in FIG. 1 is connected to the circuit board 14.
  • a pixel array 41 and the like are formed on an imaging surface 31a, which is a partial area of the upper surface of the semiconductor substrate 31 in FIG. 1, and is made up of light receiving elements serving as photoelectric conversion units corresponding to each of a plurality of pixels arranged in a two-dimensional lattice pattern.
  • the on-chip lens 32 is formed at a position on the pixel array 41 corresponding to each pixel.
  • the adhesive 22 is a transparent adhesive that is applied to the upper surface in FIG. 1, including the imaging surface 31a of the solid-state imaging element 21.
  • the glass substrate 23 is adhered to the solid-state imaging element 21 via the adhesive 22 for the purposes of fixing the solid-state imaging element 21 and protecting the imaging surface 31a.
  • the black resin 24 is formed on the surface of the glass substrate 23 opposite the adhesive surface to which the adhesive 22 is applied, and functions as a spacer.
  • An IR (Infrared) cut filter (not shown) of the lens optical system 25 is placed on top of the glass substrate 23 via this black resin 24 so that it is parallel to the glass substrate 23. This positions the glass substrate 23 between the lens optical system 25 and the imaging surface 31a.
  • the black resin 24 black mask blocks light that is incident via the lens optical system 25 and that is outside the imaging surface 31a.
  • the lens optical system 25 collects light from the subject and forms an image of the subject on the imaging surface 31a.
  • the configuration of the lens optical system 25 will be described later with reference to Figures 2, 10, 18, 26, 34, etc.
  • the fixing agent 26 is applied to the sides of the solid-state imaging element 21, adhesive 22, glass substrate 23, black resin 24, and lens optical system 25, and to the periphery of the object side (light incident side) surface (top surface in FIG. 1) of the lens optical system 25.
  • the fixing agent 26 fixes the solid-state imaging element 21, adhesive 22, glass substrate 23, black resin 24, and lens optical system 25.
  • This fixing agent 26 can reduce light that is incident from the side of the solid-state imaging device 13 and is refracted or reflected.
  • the fixing agent 26 can also block light that is incident on the solid-state imaging device 13 from outside the area corresponding to the imaging surface 31a.
  • Each light receiving element of the pixel array 41 captures the subject image by converting it into an electrical signal.
  • the lens optical system 25 is included within the CSP structure of the solid-state imaging device 13, so the imaging device 10 can be made smaller than when the lens optical system 25 is provided separately.
  • the circuit board 14 is connected to the lower surface of the semiconductor substrate 31 in FIG. 1, and outputs a camera signal corresponding to the electrical signal generated by each light receiving element to the spacer 16.
  • Circuit board 15 is a circuit board for outputting the camera signal output from circuit board 14 via spacer 16 to the outside, and electronic components and the like are mounted on it.
  • Circuit board 15 has connector 15a for connecting to an external device, and outputs the camera signal to the external device.
  • Spacer 16 is a spacer with a built-in circuit for fixing an actuator (not shown) that drives lens optical system 25 and circuit board 15.
  • Semiconductor components 16a and 16b, etc. are mounted on spacer 16.
  • Semiconductor components 16a and 16b are semiconductor components that constitute a capacitor and an LSI (Large Scale Integration) that controls an actuator (not shown) that drives lens optical system 25.
  • Spacer 16 outputs a camera signal output from circuit board 14 to circuit board 15.
  • FIG. 2 is a cross-sectional view showing a first configuration example of the lens optical system 25. As shown in FIG.
  • the lens optical system 25 includes, in order from the object side toward the image side (light exit side), an aperture stop 70, a lens 71 (first lens), a lens 72 (second lens), a lens 73 (third lens), a lens 74 (fourth lens), a lens 75 (fifth lens), a lens 76 (sixth lens), a lens 77 (seventh lens), a lens 78 (eighth lens), and an IR cut filter 79.
  • the aperture stop 70 limits the light entering the lens optical system 25.
  • Lens 71 has an object-side surface 71a and an image-side surface 71b, and has positive refractive power.
  • the paraxial shape of lens 71 is a meniscus shape convex toward the object side.
  • the shape of lens 71 does not have to be a meniscus shape convex toward the object side on the paraxial line.
  • the paraxial shape of lens 71 may be a meniscus shape concave toward the object side. That is, the radius of curvature R101 of surface 71a and the radius of curvature R102 of surface 71b may both be negative.
  • the paraxial shape of lens 71 may be a shape convex toward both the object side and the image side. That is, the radius of curvature R1 may be positive and the radius of curvature R2 may be negative. In order to reduce the height of lens optical system 25, it is desirable for the radius of curvature R1 to be positive.
  • Lens 72 has an object-side surface 72a and an image-side surface 72b, and has negative refractive power. By arranging lens 72 with negative refractive power on the image surface side of lens 71 with positive refractive power, it is possible to effectively correct chromatic aberration while reducing the height of lens optical system 25.
  • the paraxial shape of lens 72 is a meniscus shape convex toward the object side.
  • the shape of lens 72 does not have to be a meniscus shape that is convex toward the object side on the paraxial line.
  • the paraxial shape of lens 72 may be a meniscus shape that is concave toward the object side. That is, the radius of curvature R103 of surface 72a and the radius of curvature R104 of surface 72b may both be negative.
  • the paraxial shape of lens 72 can also be a lens that is concave toward both the object side and the image side. That is, the radius of curvature R103 can be negative and the radius of curvature R104 can be positive. In order to reduce the height of lens optical system 25, it is desirable for the radius of curvature R103 to be positive.
  • Lens 73 has an object-side surface 73a and an image-side surface 73b, and has positive refractive power. Because the refractive powers of lenses 71 to 73 are positive, negative, and positive, respectively, chromatic aberration of light over a wide range of wavelengths can be effectively corrected. Lens 73 has a meniscus shape that is convex toward the object side on the paraxial line, and a concave shape toward the image side on the outer periphery of the paraxial line.
  • the shape of lens 73 is not limited to this shape.
  • the paraxial shape of lens 73 may be a meniscus shape that is concave toward the object side. That is, the radius of curvature R105 of surface 73a and the radius of curvature R106 of surface 73b may both be negative.
  • the paraxial shape of lens 73 may also be a shape that is convex toward both the object side and the image side. That is, the radius of curvature R105 may be positive and the radius of curvature R106 may be negative. In order to reduce the height of lens optical system 25, it is desirable for the radius of curvature R105 to be positive.
  • Lens 74 has an object-side surface 74a and an image-side surface 74b, and has positive refractive power. Because the refractive powers of both lenses 73 and 74 are positive, the positive refractive power can be shared by the two lenses 73 and 74, and an increase in the refractive power of lenses 73 and 74 can be suppressed. As a result, an increase in the thickness of the center and ends (edges) of lenses 73 and 74 can be suppressed, and various aberrations can be effectively corrected.
  • Lens 74 has a convex shape on both the object side and the image side paraxially, and a concave shape on the object side in the periphery.
  • Lens 73 has a concave shape on the image side in the periphery
  • lens 74 has a concave shape on the object side in the periphery, so that lenses 73 and 74 have concave surfaces facing each other in the periphery. This allows for good correction of field curvature and astigmatism. It also makes it possible to suppress a decrease in the amount of light received in the periphery, which is the part outside the center of imaging surface 31a.
  • the shape of lens 74 is not limited to the above-mentioned shape.
  • the paraxial shape of lens 74 may be a meniscus shape that is convex toward the object side. That is, the radius of curvature R107 of surface 74a and the radius of curvature R108 of surface 74b may both be positive.
  • the paraxial shape of lens 74 can also be a meniscus shape that is concave toward the object side. That is, the radii of curvature R107 and R108 may both be negative.
  • Lens 75 has an object-side surface 75a and an image-side surface 75b, and has negative refractive power.
  • the paraxial shape of lens 75 is a meniscus shape convex toward the object side. That is, the radius of curvature R109 of surface 75a and the radius of curvature R110 of surface 75b are both positive. This allows for excellent correction of spherical aberration and axial chromatic aberration near the paraxial line.
  • the total optical length TTL which is the distance from the apex of surface 71a to the imaging plane 31a, can be shortened.
  • Lens 76 has an object-side surface 76a and an image-side surface 76b, and has negative refractive power.
  • the paraxial shape of lens 76 is a meniscus shape convex toward the object side. That is, the radius of curvature R111 of surface 76a and the radius of curvature R112 of surface 76b are both positive.
  • Lens 77 has an object-side surface 77a and an image-side surface 77b, and has positive refractive power.
  • the paraxial shape of lens 77 is a meniscus shape convex toward the object side. That is, the radius of curvature R113 of surface 77a and the radius of curvature R114 of surface 76b are both positive.
  • the tangent angle of the peripheral portion of the effective lens diameter of five or more of the six surfaces consisting of surfaces 75a, 75b, 76a, 76b, 77a, and 77b is 40 degrees or more, and the peripheral portions of the five or more surfaces have a concave shape toward the object side.
  • the peripheral portion of the effective lens diameter is the portion whose perpendicular distance from the optical axis is 90% or more of the effective lens diameter.
  • the tangent angle of the peripheral portion of the effective lens diameter is the local tangent angle of the shape obtained by first-order differentiation of the shape of the peripheral portion of the effective lens diameter.
  • the peripheral part of the lens effective diameter can expand the peripheral light rays. Therefore, it is possible to reduce TTL/IH, which is the ratio of the total optical length TTL to the maximum image height IH in the lens optical system 25, and to realize a low profile of the lens optical system 25. With this configuration, it is possible to suppress the decrease in the amount of light in the peripheral part of the imaging surface 31a.
  • This configuration is suitable for correcting coma aberration and chromatic aberration of magnification in the peripheral part of the lens optical system 25.
  • the maximum image height IH is the distance from the center of the imaging surface 31a to the position where the chief ray of the light of the maximum angle of view reaches.
  • Lens 75 to 77 do not have an inflection point in the intermediate portion between the center and periphery of the lens effective diameter. This allows for a good balance of chromatic aberration of magnification at the central image height and intermediate image height. It also makes it easier to correct curvature of field.
  • Lens 78 has an object-side surface 78a and an image-side surface 78b, and has negative refractive power. Since lens 78, which is positioned closer to the image side than lenses 75 to 77, has negative refractive power, axial chromatic aberration and lateral chromatic aberration can be corrected well.
  • the paraxial shape of lens 78 is a concave shape on both the object side and the image side. That is, the radius of curvature R105 of surface 78a is negative, and the radius of curvature R106 of surface 78b is positive. This makes it possible to control marginal rays and reduce the F-number.
  • surfaces 78a and 78b have one or more inflection points and are aspheric. This makes it possible to effectively correct the field curvature and distortion in the peripheral portion of lens optical system 25.
  • the lens 78 By having the lens 78 have the above-mentioned shape, the angle of incidence of light incident on the imaging surface 31a from the lens optical system 25 can be suppressed within the range of the chief ray angle (CRA (Chief Ray Angle)). This allows for excellent correction of aberrations from the center to the periphery of the image.
  • CRA chief ray angle
  • the IR cut filter 79 transmits all light other than infrared light from the incident light. Note that the IR cut filter 79 does not necessarily have to be provided.
  • Light incident on the lens optical system 25 from the subject (object) is emitted via surfaces 71a, 71b, 72a, 72b, 73a, 73b, 74a, 74b, 75a, 75b, 76a, 76b, 77a, 77b, and IR cut filter 79.
  • the light emitted from the lens optical system 25 in this manner is focused on the imaging surface 31a via the glass substrate 23, adhesive 22, and on-chip lens 32.
  • FIG. 2 in order to simplify the drawing, only the imaging surface 31a is shown, but in reality, a glass substrate 23, adhesive 22, and on-chip lens 32 are present between the lens optical system 25 and the imaging surface 31a. This is also true in FIGS. 10, 18, 26, and 34, which will be described later.
  • FIG. 3 is a table showing the number and positions of inflection points of surfaces 71a to 78a and surfaces 71b to 78b of FIG.
  • Each row in the table in FIG. 3 corresponds to each of the faces 71a to 78a and faces 71b to 78b. From the left, each column corresponds to the face number, the number of inflection points, inflection point position #1 which is the position of the first inflection point, inflection point position #2 which is the position of the second inflection point, and inflection point position #3 which is the position of the third inflection point.
  • the surface number is a number assigned to each surface of the lens optical system 25.
  • the surface numbers 101 to 116 are assigned to surfaces 71a, 71b, 72a, 72b, 73a, 73b, 74a, 74b, 75a, 75b, 76a, 76b, 77a, 77b, 78a, and 78b, in that order.
  • the position of each inflection point represents the vertical distance from the inflection point to the optical axis of the lens optical system 25.
  • surface 71a with surface number 101 and surface 71b with surface number 102 have one inflection point.
  • Inflection point positions #1 of surfaces 71a and 71b are 1.93 and 2.06, respectively.
  • Surface 72a with surface number 103 and surface 72b with surface number 104 do not have an inflection point.
  • Surface 73a with surface number 105 and surface 73b with surface number 106 have one inflection point.
  • Inflection point positions #1 of surfaces 73a and 73b are 1.815 and 1.72, respectively.
  • Surface 77a with face number 113, has three inflection points, and inflection point positions #1 to #3 of surface 77a are 0.867, 3.204, and 3.598, respectively.
  • Surface 77b with face number 114, has one inflection point, and inflection point position #1 of surface 77b is 0.905.
  • Surface 78a with face number 115, has two inflection points, and inflection point positions #1 and #2 of surface 78a are 3.046 and 5.844, respectively.
  • Surface 78b, with face number 116 has three inflection points, and inflection point positions #1 to #3 of surface 78b are 1.157, 5.291, and 6.125, respectively.
  • FIG. 4 is a table showing lens data for lenses 71 to 78.
  • each column indicates the surface number i, the radius of curvature Ri, the surface spacing Di, which is the distance between the centers of the surfaces closest to the image side, the refractive index Ndi for the d line, and the Abbe number vdi for the d line.
  • the radius of curvature R101 of surface 71a whose surface number i is 101, is 3.37305, the surface distance D101 to surface 71b is 0.66, and the refractive index Nd101 is 1.6211.
  • the Abbe number vd101 of surface 71a i.e., the Abbe number v101 of lens 71, is 63.733.
  • the radius of curvature R102 of surface 71b, whose surface number i is 102, is 7.18706, and the surface distance D102 to surface 72a is 0.015.
  • the radius of curvature R103 of surface 72a whose surface number i is 103, is 4.75295, the surface distance D103 from surface 72b is 0.35, and the refractive index Nd103 is 1.7123.
  • the Abbe number vd103 of surface 72a i.e., the Abbe number v102 of lens 72, is 15.499.
  • the radius of curvature R104 of surface 72b, whose surface number i is 104, is 3.64512, and the surface distance D104 from surface 73a is 0.385.
  • the radius of curvature R105 of surface 73a whose surface number i is 105, is 5.71517, the surface distance D105 to surface 73b is 0.6, and the refractive index Nd105 is 1.5248.
  • the Abbe number vd105 of surface 73a i.e., the Abbe number v103 of lens 73, is 70.100.
  • the radius of curvature R106 of surface 73b, whose surface number i is 106, is 1.23027 ⁇ 10, and the surface distance D106 to surface 74a is 0.36.
  • the radius of curvature R109 of surface 75a whose surface number i is 109, is 7.84777, the surface distance D109 from surface 75b is 0.4, and the refractive index Nd109 is 1.5468.
  • the Abbe number vd109 of surface 75a i.e., the Abbe number v105 of lens 75, is 55.987.
  • the radius of curvature R110 of surface 75b, whose surface number i is 110, is 5.83417, and the surface distance D110 from surface 76a is 0.65.
  • the radius of curvature R111 of surface 76a whose surface number i is 111, is 9.29925, the surface distance D111 from surface 76b is 0.425, and the refractive index Nd111 is 1.7123.
  • the Abbe number vd111 of surface 76a i.e., the Abbe number v106 of lens 76, is 15.499.
  • the radius of curvature R112 of surface 76b whose surface number i is 112, is 7.18602, and the surface distance D112 from surface 77a is 0.345.
  • the radius of curvature R113 of surface 77a whose surface number i is 113, is 4.89673, the surface distance D113 from surface 77b is 0.567, and the refractive index Nd113 is 1.5468.
  • the Abbe number vd113 of surface 77a i.e., the Abbe number v107 of lens 77, is 55.987.
  • the radius of curvature R114 of surface 77b, whose surface number i is 114, is 2.46257 ⁇ 10, and the surface distance D114 from surface 78a is 0.91.
  • the radius of curvature R115 of surface 78a whose surface number i is 115, is -5.40813, the surface distance D115 to surface 78b is 0.775, and the refractive index Nd115 is 1.5187.
  • the Abbe number vd115 of surface 78a i.e., the Abbe number v108 of lens 78, is 64.167.
  • the radius of curvature R116 of surface 78b, whose surface number i is 116, is 8.83766.
  • FIG. 5 is a table showing the aspheric data of the surfaces 71a to 78a and the surfaces 71b to 78b.
  • the conic coefficient K of the surface 71a whose surface number i is 101, is -4.95284 ⁇ 10-1 .
  • the fourth-order aspheric coefficient, the sixth-order aspheric coefficient, the eighth-order aspheric coefficient, and the tenth-order aspheric coefficient are 6.96986 ⁇ 10-4 , -1.66086 ⁇ 10-4 , 3.65417 ⁇ 10-5 , and -2.62433 ⁇ 10-5 , respectively.
  • the conic coefficient K of the surface 71b, whose surface number i is 102, is 3.31278 ⁇ 10-2 .
  • the fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, and tenth-order aspherical coefficients are 7.44670 ⁇ 10 ⁇ 4 , 6.18249 ⁇ 10 ⁇ 4 , ⁇ 2.51522 ⁇ 10 ⁇ 4 , and 1.87226 ⁇ 10 ⁇ 5 , respectively.
  • the cone coefficient K of the surface 72a whose surface number i is 103, is 0.
  • the fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, and tenth-order aspherical coefficients are -4.29618 ⁇ 10-3 , 1.30831 ⁇ 10-3 , -3.23642 ⁇ 10-4 , and 6.12907 ⁇ 10-5 , respectively.
  • the fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, and tenth-order aspherical coefficients are -4.42726 ⁇ 10-3 , 6.00904 ⁇ 10-4 , 3.16490 ⁇ 10-6 , and 3.46712 ⁇ 10-5 , respectively.
  • the conic coefficient K of the surface 73a having the surface number i of 105 is 4.85133 ⁇ 10-1 .
  • the fourth-order aspheric coefficients, sixth-order aspheric coefficients, eighth-order aspheric coefficients, tenth-order aspheric coefficients, twelfth-order aspheric coefficients, and fourteenth-order aspheric coefficients are 2.63348 ⁇ 10-3 , 1.63497 ⁇ 10-3 , -9.45412 ⁇ 10-4 , 4.35987 ⁇ 10-4 , -4.40573 ⁇ 10-5 , and -5.55863 ⁇ 10-6 , respectively.
  • the conic coefficient K of the surface 73b having the surface number i of 106 is -2.62404.
  • the fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, tenth-order aspherical coefficients, twelfth-order aspherical coefficients, and fourteenth-order aspherical coefficients are -1.38846 ⁇ 10-3 , 1.82913 ⁇ 10-3 , -1.51971 ⁇ 10-3 , 5.36228 ⁇ 10-4 , -4.95679 ⁇ 10-5 , and -4.18754 ⁇ 10-6 , respectively.
  • the conic coefficient K of the surface 74a whose surface number i is 107, is 0.
  • the fourth-order aspheric coefficients, sixth-order aspheric coefficients, eighth-order aspheric coefficients, tenth-order aspheric coefficients, twelfth-order aspheric coefficients, and fourteenth-order aspheric coefficients are -1.18276 ⁇ 10-2 , 2.53617 ⁇ 10-3 , -1.82642 ⁇ 10-3 , 3.99737 ⁇ 10-4 , -1.10814 ⁇ 10-5 , and 9.66034 ⁇ 10-6 , respectively.
  • the fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, tenth-order aspherical coefficients, twelfth-order aspherical coefficients, fourteenth-order aspherical coefficients, and sixteenth-order aspherical coefficients are -1.39840 ⁇ 10-2 , 2.79166 ⁇ 10-3 , -1.27439 ⁇ 10-3 , 2.26747 ⁇ 10-4 , -5.23498 ⁇ 10-6 , 4.20564 ⁇ 10-6 , and 1.41108 ⁇ 10-6 , respectively.
  • the conic coefficient K of the surface 75a whose surface number i is 109 is 1.01521 ⁇ 10.
  • the fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, tenth-order aspherical coefficients, twelfth-order aspherical coefficients, fourteenth-order aspherical coefficients, sixteenth-order aspherical coefficients, eighteenth-order aspherical coefficients, and twentieth-order aspherical coefficients are -3.88282 ⁇ 10-2 , 7.45360 ⁇ 10-3 , -2.59247 ⁇ 10-3 , 4.82240 ⁇ 10-4 , -8.15685 ⁇ 10-5 , 3.44451 ⁇ 10-6 , 2.83837 ⁇ 10-6 , -7.08217 ⁇ 10-7 , and 4.73193 ⁇ 10-8 , respectively.
  • the conic coefficient K of the surface 75b whose surface number i is 110 is -2.55436.
  • the fourth-order aspheric coefficients, sixth-order aspheric coefficients, eighth-order aspheric coefficients, tenth-order aspheric coefficients, twelfth-order aspheric coefficients, fourteenth-order aspheric coefficients, sixteenth-order aspheric coefficients, eighteenth-order aspheric coefficients and twentieth-order aspheric coefficients are -3.48681 ⁇ 10-2 , 6.88464 ⁇ 10-3 , -1.31931 ⁇ 10-3 , 9.51289 ⁇ 10-5 , 2.14256 ⁇ 10-6 , -2.32314 ⁇ 10-7 , 1.95319 ⁇ 10-10 , -1.02794 ⁇ 10-9 and -3.29117 ⁇ 10-11 , respectively.
  • the conic coefficient K of the surface 76a whose surface number i is 111 is -4.15826.
  • the fourth-order aspheric coefficients, sixth-order aspheric coefficients, eighth-order aspheric coefficients, tenth-order aspheric coefficients, twelfth-order aspheric coefficients, fourteenth-order aspheric coefficients, sixteenth-order aspheric coefficients, eighteenth-order aspheric coefficients, and twentieth-order aspheric coefficients are -1.62397 ⁇ 10-2 , 1.17595 ⁇ 10-3 , -3.52818 ⁇ 10-4 , 6.41724 ⁇ 10-5 , -1.22211 ⁇ 10-5 , 8.99911 ⁇ 10-7 , 6.68589 ⁇ 10-8 , -1.48203 ⁇ 10-8 , and 7.27188 ⁇ 10-10 , respectively.
  • the conic coefficient K of the surface 75b whose surface number i is 112 is 3.17157.
  • the fourth-order aspherical coefficients, the sixth-order aspherical coefficients, the eighth-order aspherical coefficients, the tenth-order aspherical coefficients, the twelfth-order aspherical coefficients, the fourteenth-order aspherical coefficients, the sixteenth-order aspherical coefficients, the eighteenth-order aspherical coefficients, and the twentieth-order aspherical coefficients are -2.94869 ⁇ 10-2 , 5.00192 ⁇ 10-3 , -6.79952 ⁇ 10-4 , -5.91024 ⁇ 10-5 , 3.66196 ⁇ 10-5 , -6.27076 ⁇ 10-6 , 5.59740 ⁇ 10-7 , -2.60232 ⁇ 10-8 , and 4.95132 ⁇ 10-10 , respectively.
  • the conic coefficient K of the surface 77a having the surface number i of 113 is ⁇ 1.46957 ⁇ 10.
  • the third-order to twentieth-order aspheric coefficients are 2.37555 ⁇ 10 ⁇ 2 , -3.33412 ⁇ 10 ⁇ 2 , 3.32604 ⁇ 10 ⁇ 3 , 6.21486 ⁇ 10 ⁇ 4 , -8.67657 ⁇ 10 ⁇ 5 , -5.14782 ⁇ 10 ⁇ 5, -5.94732 ⁇ 10 ⁇ 6 , 1.10587 ⁇ 10 ⁇ 6 , 2.02809 ⁇ 10 ⁇ 7 , 1.03199 ⁇ 10 ⁇ 7 , 2.86612 ⁇ 10 ⁇ 8 , 5.00438 ⁇ 10 ⁇ 9 , 1.07987 ⁇ 10 ⁇ 9 , 9.51144 ⁇ 10 ⁇ 11 , and 1.14768 ⁇ 10
  • the conic coefficient K of the surface 77b having the surface number i of 114 is -1.00000 ⁇ 10 .
  • the third order aspheric coefficients to the twentieth order aspheric coefficients are 2.30425 ⁇ 10-2 , -1.26804 ⁇ 10-2 , -4.40676 ⁇ 10-3 , 1.10374 ⁇ 10-3 , 9.50750 ⁇ 10-5 , -5.17186 ⁇ 10-7 , -2.63207 ⁇ 10-6 , -4.72756 ⁇ 10-7 , -2.44504 ⁇ 10-8 , -5.71115 ⁇ 10-9 , -1.67620 ⁇ 10-10 , 1.23809 ⁇ 10-10 , 6.20177 ⁇ 10-11 , 2.02389 ⁇ 10-11 , 2.96427 ⁇ 10-12 , 4.60982 ⁇ 10-13 , -1.25766 ⁇ 10-13 , -6.20547 ⁇ 10-14 .
  • the conic coefficient K of the surface 78a having the surface number i of 115 is -2.89279 ⁇ 10 -1 .
  • the third-order to twentieth-order aspheric coefficients are 3.72196 ⁇ 10 ⁇ 3 , -3.64799 ⁇ 10 ⁇ 3 , 8.75848 ⁇ 10 ⁇ 5 , 3.14071 ⁇ 10 ⁇ 4 , 8.24842 ⁇ 10 ⁇ 6 , -4.58837 ⁇ 10 ⁇ 6 , -7.90490 ⁇ 10 ⁇ 7 , -3.72671 ⁇ 10 ⁇ 8 , 5.62579 ⁇ 10 ⁇ 9 , 1.19330 ⁇ 10 ⁇ 9 , 1.87695 ⁇ 10 ⁇ 10 , 2.29236 ⁇ 10 ⁇ 11 , 3.40439 ⁇ 10 ⁇ 12 , 6.25482 ⁇ 10 ⁇ 13 ,
  • the conic coefficient K of the surface 78b having the surface number i of 116 is -4.49224 .
  • the third-order to twentieth-order aspheric coefficients are, respectively, -6.80841 ⁇ 10-3 , -5.44595 ⁇ 10-3 , 3.53342 ⁇ 10-4 , 4.74096 ⁇ 10-4 , -8.19325 ⁇ 10-5 , -9.97757 ⁇ 10-6, 5.80642 ⁇ 10-7, 3.88535 ⁇ 10-7 , 3.09123 ⁇ 10-8 , -5.32922 ⁇ 10-9 , -1.43008 ⁇ 10-9 , -1.51847 ⁇ 10-10 , 1.39741 ⁇ 10-11 , 6.88740 ⁇ 10-12 , 7.03860 ⁇ 10-13 , -5.23531 ⁇ 10-14 , -3.16249 ⁇ 10-14 , 2.21611 ⁇ 10-15 .
  • ⁇ First Example of Tangent Angle of Lens Effective Portion> 6 to 8 are graphs showing the tangent angles of the lens effective portions of the surfaces 75a and 75b, the surfaces 76a and 76b, and the surfaces 77a and 77b, respectively, whose perpendicular distances from the optical axis of the lens optical system 25 are within the range of the lens effective diameter.
  • the horizontal axis represents the vertical position [mm] when the position of the optical axis of the lens optical system 25 is set to 0, and the vertical axis represents the tangent angle [deg]. This also applies to Figures 14 to 16, 22 to 24, 30 to 32, and 38 to 40, which will be described later.
  • a in Figure 6 shows the relationship between the vertical position and the tangent angle of surface 75a
  • B in Figure 6 shows the relationship between the vertical position and the tangent angle of surface 75b
  • a in Figure 7 shows the relationship between the vertical position and the tangent angle of surface 76a
  • B in Figure 7 shows the relationship between the vertical position and the tangent angle of surface 76b
  • a in Figure 8 shows the relationship between the vertical position and the tangent angle of surface 77a
  • B in Figure 8 shows the relationship between the vertical position and the tangent angle of surface 77b.
  • the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 75a, 75b, 76a, 76b, 77a, and 77b are 40 degrees or greater.
  • FIG. 9 is a graph showing spherical aberration, field curvature, and distortion occurring in the lens optical system 25 of FIG.
  • a of FIG. 9 is a graph showing the vertical spherical aberration for each wavelength of light having wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 ⁇ m that occurs in the lens optical system 25 of FIG. 2.
  • the horizontal axis represents the spherical aberration [mm]
  • the vertical axis represents the normalized pupil coordinate. This also applies to FIG. 17A, FIG. 25A, FIG. 33A, and FIG. 41A, which will be described later.
  • the pupil radius is 2.0000 mm.
  • FIG. 9B is a graph showing the field curvature of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 of FIG. 2.
  • the horizontal axis shows the field curvature [mm]
  • the vertical axis shows the angle [degree] corresponding to the incident position of the light ray in the sagittal or tangential direction.
  • the solid line shows the relationship between the incident position in the tangential direction and the field curvature
  • the dotted line shows the relationship between the field curvature in the sagittal direction.
  • FIG. 17B, FIG. 25B, FIG. 33B, and FIG. 41B which will be described later.
  • the difference between the field curvature in the sagittal direction and the tangential direction is astigmatism.
  • FIG. 9C is a graph showing the distortion aberration of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 of FIG. 2.
  • the horizontal axis shows the distortion aberration [%]
  • the vertical axis shows the angle of incidence of the light ray [degrees]. This also applies to FIG. 17C, FIG. 25C, FIG. 33C, and FIG. 41C, which will be described later.
  • FIG. 10 is a cross-sectional view showing a second configuration example of the lens optical system 25. As shown in FIG.
  • lens optical system 25 of FIG. 10 differs from the lens optical system 25 of FIG. 2 in that lenses 71 to 78 are replaced by lenses 171 to 178, and is otherwise configured in the same way as the lens optical system 25 of FIG. 2.
  • Lens 171 to 178 differ from lenses 71 to 78 in the number and position of inflection points on each surface, aspheric data, and lens data, but are otherwise configured in the same manner as lenses 71 to 78. Therefore, the following describes the number and position of inflection points and aspheric data on object-side surfaces 171a to 178a and image-side surfaces 171b to 178b of lenses 171 to 178, as well as the lens data of lenses 171 to 178.
  • FIG. 11 is a table showing the number and positions of inflection points of surfaces 171a to 178a and surfaces 171b to 178b of FIG.
  • the rows in the table in FIG. 11 correspond to faces 171a to 178a and faces 171b to 178b, respectively.
  • the columns correspond, from the left, to the face number, the number of inflection points, inflection point position #1, inflection point position #2, and inflection point position #3.
  • surface numbers from 201 to 216 are assigned to surfaces 171a, 171b, 172a, 172b, 173a, 173b, 174a, 174b, 175a, 175b, 176a, 176b, 177a, 177b, 178a, and 178b in order. See FIG. 11 for the values in each column of the table in FIG. 11.
  • FIG. 12 is a table showing lens data for lenses 171 to 178.
  • Each row in the table in FIG. 12 corresponds to surfaces 171a to 178a and surfaces 171b to 178b. From the left, each column indicates the surface number i, the radius of curvature Ri, the surface spacing Di, the refractive index Ndi for the d line, and the Abbe number vdi for the d line. For the numerical values in each column of the table in FIG. 12, see FIG. 12.
  • FIG. 13 is a table showing the aspheric surface data of the surfaces 171a to 178a and the surfaces 171b to 178b.
  • Each row in the table in FIG. 13 corresponds to surfaces 171a to 178a and surfaces 171b to 178b. From the left, each column indicates the surface number i, the conic coefficient K, and the third-order to twentieth-order aspheric coefficients. For the numerical values in each column of the table in FIG. 13, see FIG. 13.
  • a of Figure 14 shows the relationship between the vertical position and the tangent angle of surface 175a
  • B of Figure 14 shows the relationship between the vertical position and the tangent angle of surface 175b
  • a of Figure 15 shows the relationship between the vertical position and the tangent angle of surface 176a
  • B of Figure 15 shows the relationship between the vertical position and the tangent angle of surface 176b
  • a of Figure 16 shows the relationship between the vertical position and the tangent angle of surface 177a
  • B of Figure 16 shows the relationship between the vertical position and the tangent angle of surface 177b.
  • the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 175a, 175b, 176a, 176b, 177a, and 177b are 40 degrees or more.
  • FIG. 17 is a graph showing the spherical aberration, the field curvature, and the distortion that occur in the lens optical system 25 of FIG.
  • a in Figure 17 is a graph showing the longitudinal spherical aberration for light with wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 ⁇ m that occurs in the lens optical system 25 in Figure 10.
  • the pupil radius is 2.0000 mm.
  • B in FIG. 17 is a graph showing the field curvature of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 in FIG. 10.
  • C in FIG. 17 is a graph showing the distortion aberration of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 in FIG. 10.
  • FIG. 18 is a cross-sectional view showing a third configuration example of the lens optical system 25. As shown in FIG.
  • lens optical system 25 of FIG. 18 differs from the lens optical system 25 of FIG. 2 in that lenses 71 to 78 are replaced by lenses 271 to 278, and is otherwise configured in the same way as the lens optical system 25 of FIG. 2.
  • Lens 271 to 278 differ from lenses 71 to 78 in that lens 275 has a positive refractive power, the number and positions of inflection points on each surface, aspheric data, and lens data, but are otherwise configured in the same manner as lenses 71 to 78. Therefore, the following describes the number and positions of inflection points on object-side surfaces 271a to 278a and image-side surfaces 271b to 278b of lenses 271 to 278, as well as the aspheric data and lens data.
  • FIG. 19 is a table showing the number and positions of inflection points of surfaces 271a to 278a and surfaces 271b to 278b of FIG.
  • the rows in the table in FIG. 19 correspond to faces 271a to 278a and faces 271b to 278b, respectively.
  • the columns correspond, from the left, to the face number, the number of inflection points, inflection point position #1, inflection point position #2, and inflection point position #3.
  • the faces 271a, 271b, 272a, 272b, 273a, 273b, 274a, 274b, 275a, 275b, 276a, 276b, 277a, 277b, 278a, and 278b are assigned face numbers from 301 to 316, in that order. See FIG. 19 for the values in each column of the table in FIG. 19.
  • FIG. 20 is a table showing lens data for lenses 271 to 278.
  • Each row in the table in FIG. 20 corresponds to surfaces 271a to 278a and surfaces 271b to 278b. From the left, each column indicates the surface number i, the radius of curvature Ri, the surface spacing Di, the refractive index Ndi for the d line, and the Abbe number vdi for the d line. For the numerical values in each column of the table in FIG. 20, see FIG. 20.
  • FIG. 21 is a table showing the aspheric surface data of the surfaces 271a to 278a and the surfaces 271b to 278b.
  • Each row in the table in FIG. 21 corresponds to surfaces 271a to 278a and surfaces 271b to 278b. From the left, each column indicates the surface number i, the conic coefficient K, and the third-order to twentieth-order aspheric coefficients. For the numerical values in each column of the table in FIG. 21, see FIG. 21.
  • ⁇ Third Example of Tangent Angle at Periphery of Lens Effective Diameter> 22 to 24 are graphs showing the tangent angles of the lens effective portions of the surfaces 275a and 275b, the surfaces 276a and 276b, and the surfaces 277a and 277b, respectively.
  • a in Figure 22 shows the relationship between the vertical position and the tangent angle of surface 275a
  • B in Figure 22 shows the relationship between the vertical position and the tangent angle of surface 275b
  • a in Figure 23 shows the relationship between the vertical position and the tangent angle of surface 276a
  • B in Figure 23 shows the relationship between the vertical position and the tangent angle of surface 276b
  • a in Figure 24 shows the relationship between the vertical position and the tangent angle of surface 277a
  • B in Figure 24 shows the relationship between the vertical position and the tangent angle of surface 277b.
  • the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 275a, 275b, 276a, 276b, 277a, and 277b are 40 degrees or greater.
  • FIG. 25 is a graph showing spherical aberration, field curvature, and distortion occurring in the lens optical system 25 of FIG.
  • a in Figure 25 is a graph showing the longitudinal spherical aberration for light with wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 ⁇ m that occurs in the lens optical system 25 in Figure 18.
  • the pupil radius is 1.9800 mm.
  • B in Figure 25 is a graph showing the field curvature of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 in Figure 18.
  • C in Figure 25 is a graph showing the distortion aberration of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 in Figure 18.
  • FIG. 26 is a cross-sectional view showing a fourth configuration example of the lens optical system 25. As shown in FIG.
  • lens optical system 25 of FIG. 26 differs from the lens optical system 25 of FIG. 2 in that lenses 71 to 78 are replaced by lenses 371 to 378, and is otherwise configured in the same way as the lens optical system 25 of FIG. 2.
  • Lens 371 to 378 differ from lenses 71 to 78 in the number and position of inflection points on each surface, aspheric data, and lens data, but are otherwise configured in the same manner as lenses 71 to 78. Therefore, the following describes the number and position of inflection points, aspheric data, and lens data on object-side surfaces 371a to 378a and image-side surfaces 371b to 378b of lenses 371 to 378.
  • FIG. 27 is a table showing the number and positions of inflection points of surfaces 371a to 378a and surfaces 371b to 378b of FIG.
  • the rows in the table in FIG. 27 correspond to faces 371a to 378a and faces 371b to 378b, respectively.
  • the columns correspond, from the left, to the face number, the number of inflection points, inflection point position #1, inflection point position #2, and inflection point position #3.
  • surface numbers from 401 to 416 are assigned to surfaces 371a, 371b, 372a, 372b, 373a, 373b, 374a, 374b, 375a, 375b, 376a, 376b, 377a, 377b, 378a, and 378b in order. See FIG. 27 for the values in each column of the table in FIG. 27.
  • FIG. 28 is a table showing lens data for lenses 371 to 378.
  • Each row in the table in FIG. 28 corresponds to surfaces 371a to 378a and surfaces 371b to 378b. From the left, each column indicates the surface number i, the radius of curvature Ri, the surface spacing Di, the refractive index Ndi for the d line, and the Abbe number vdi for the d line. For the numerical values in each column of the table in FIG. 28, see FIG. 28.
  • FIG. 29 is a table showing the aspheric surface data of each of the surfaces 371a to 378a and the surfaces 371b to 378b.
  • Each row in the table in FIG. 29 corresponds to surfaces 371a to 378a and surfaces 371b to 378b. From the left, each column indicates the surface number i, the conic coefficient K, and the third-order to twentieth-order aspheric coefficients. For the numerical values in each column of the table in FIG. 29, see FIG. 29.
  • ⁇ Fourth Example of Tangent Angle at Periphery of Lens Effective Diameter> 30 to 32 are graphs showing the tangent angles of the lens effective portions of surfaces 375a and 375b, surfaces 376a and 376b, and surfaces 377a and 377b, respectively.
  • a of Figure 30 shows the relationship between the vertical position and the tangent angle of surface 375a
  • B of Figure 30 shows the relationship between the vertical position and the tangent angle of surface 375b
  • a of Figure 31 shows the relationship between the vertical position and the tangent angle of surface 376a
  • B of Figure 31 shows the relationship between the vertical position and the tangent angle of surface 376b
  • a of Figure 32 shows the relationship between the vertical position and the tangent angle of surface 377a
  • B of Figure 32 shows the relationship between the vertical position and the tangent angle of surface 377b.
  • the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 375a, 375b, 376a, 376b, 377a, and 377b are 40 degrees or greater.
  • FIG. 33 is a graph showing the spherical aberration, the field curvature, and the distortion that occur in the lens optical system 25 of FIG.
  • a in Figure 33 is a graph showing the longitudinal spherical aberration for light with wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 ⁇ m that occurs in the lens optical system 25 in Figure 26.
  • the pupil radius is 1.9500 mm.
  • B in Figure 33 is a graph showing the field curvature of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 in Figure 26.
  • C in Figure 33 is a graph showing the distortion aberration of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 in Figure 26.
  • FIG. 34 is a cross-sectional view showing a fifth configuration example of the lens optical system 25.
  • lens optical system 25 of FIG. 34 parts corresponding to those in the lens optical system 25 of FIG. 2 are given the same reference numerals. Therefore, the description of those parts will be omitted as appropriate, and the description will focus on the parts that differ from the lens optical system 25 of FIG. 2.
  • the lens optical system 25 of FIG. 34 differs from the lens optical system 25 of FIG. 2 in that lenses 71 to 78 are replaced by lenses 471 to 478, and is otherwise configured in the same way as the lens optical system 25 of FIG. 2.
  • Lens 471 to 478 differ from lenses 71 to 78 in that the refractive powers of lenses 475 to 477 are positive, positive, and negative, respectively, and in the number and positions of inflection points on each surface, as well as the aspheric data and lens data, but are otherwise configured in the same manner as lenses 71 to 78. Therefore, the following will explain the number and positions of inflection points on the object-side surfaces 471a to 478a and the image-side surfaces 471b to 478b of lenses 471 to 478, as well as the aspheric data and lens data.
  • FIG. 35 is a table showing the number and positions of inflection points of surfaces 471a to 478a and surfaces 471b to 478b of FIG.
  • the rows in the table in FIG. 35 correspond to faces 471a to 478a and faces 471b to 478b, respectively.
  • the columns correspond, from the left, to the face number, the number of inflection points, inflection point position #1, inflection point position #2, and inflection point position #3.
  • surface numbers from 501 to 516 are assigned to surfaces 471a, 471b, 472a, 472b, 473a, 473b, 474a, 474b, 475a, 475b, 476a, 476b, 477a, 477b, 478a, and 478b in order. See FIG. 35 for the values in each column of the table in FIG. 35.
  • FIG. 37 is a table showing the aspheric surface data of each of the surfaces 471a to 478a and the surfaces 471b to 478b.
  • Each row in the table in FIG. 37 corresponds to surfaces 471a to 478a and surfaces 471b to 478b. From the left, each column indicates the surface number i, the conic coefficient K, and the third-order to twentieth-order aspheric coefficients. For the numerical values in each column of the table in FIG. 37, see FIG. 37.
  • ⁇ Fifth Example of Tangent Angle at Periphery of Lens Effective Diameter> 38 to 40 are graphs showing the tangent angles of the lens effective portions of the surfaces 475a and 475b, the surfaces 476a and 476b, and the surfaces 477a and 477b, respectively.
  • a in Figure 38 shows the relationship between the vertical position and the tangent angle of surface 475a
  • B in Figure 38 shows the relationship between the vertical position and the tangent angle
  • a in Figure 39 shows the relationship between the vertical position and the tangent angle of surface 476a
  • B in Figure 39 shows the relationship between the vertical position and the tangent angle of surface 476b
  • a in Figure 40 shows the relationship between the vertical position and the tangent angle of surface 477a
  • B in Figure 40 shows the relationship between the vertical position and the tangent angle of surface 477b.
  • the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 475a, 475b, 476a, 476b, 477a, and 477b are 40 degrees or greater.
  • FIG. 41 is a graph showing the spherical aberration, the field curvature, and the distortion that occur in the lens optical system 25 of FIG.
  • a in Figure 41 is a graph showing the longitudinal spherical aberration for light with wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 ⁇ m that occurs in the lens optical system 25 in Figure 34.
  • the pupil radius is 1.9800 mm.
  • B in Figure 41 is a graph showing the field curvature of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 in Figure 34.
  • C in Figure 41 is a graph showing the distortion aberration of light with a wavelength of 0.5461 ⁇ m that occurs in the lens optical system 25 in Figure 34.
  • FIG. 42 is a table showing values of parameters or equations for the lens optical system 25 of FIGS.
  • the rows in the table in Figure 42 correspond, from top to bottom, to (R9+R10)/f, (R15+R16)/(R15-R16), dL/da, v1/v3, v2/v3, f, f1, f2, f3, f4, f5, f6, f7, f8, Fno, TTL, IH, FOV, and CRA.
  • the columns correspond, from left to right, to the lens optical system 25 in Figures 2, 10, 18, 26, and 34.
  • R9 is a collective term for the radii of curvature R109, R209, R309, R409, and R509.
  • R10 is a collective term for the radii of curvature R110, R210, R310, R410, and R510.
  • f is the focal length of the entire lens optical system 25.
  • R15 is a collective term for the radii of curvature R115, R215, R315, R415, and R515.
  • R16 is a collective term for R116, R216, R316, R416, and R516.
  • dL is a collective term for the sum of the central thicknesses of lenses 75 to 78, the sum of the central thicknesses of lenses 175 to 178, the sum of the central thicknesses of lenses 275 to 278, the sum of the central thicknesses of lenses 375 to 378, and the sum of the central thicknesses of lenses 475 to 478.
  • da is a collective term for the sum of the air spacing between lenses 74 to 78, the sum of the air spacing between lenses 174 to 178, the sum of the air spacing between lenses 274 to 278, the sum of the air spacing between lenses 374 to 378, and the sum of the air spacing between lenses 474 to 478.
  • the sum of the air spacing is the sum of the air spacing (air thickness) at the centers between the opposing surfaces of each pair of adjacent lenses.
  • surfaces 74b and 75a face each other.
  • surfaces 75b and 76a face each other.
  • surfaces 76b and 77a face each other.
  • surfaces 77b and 78a face each other. Therefore, the total air spacing of lenses 74 to 78 is the sum of the spacing between surfaces 74b and 75a, the spacing between surfaces 75b and 76a, the spacing between surfaces 76b and 77a, and the spacing between surfaces 77b and 78a.
  • the total air spacing of lenses 174 to 178 is the sum of the spacing between surfaces 174b and 175a, the spacing between surfaces 175b and 176a, the spacing between surfaces 176b and 177a, and the spacing between surfaces 177b and 178a.
  • the total air spacing of lenses 274 to 278 is the sum of the spacing between surfaces 274b and 275a, the spacing between surfaces 275b and 276a, the spacing between surfaces 276b and 277a, and the spacing between surfaces 277b and 278a.
  • the total air spacing of lenses 374 to 378 is the sum of the spacing between surfaces 374b and 375a, the spacing between surfaces 375b and 376a, the spacing between surfaces 376b and 377a, and the spacing between surfaces 377b and 378a.
  • the total air spacing of lenses 474 to 478 is the sum of the spacing between surfaces 474b and 475a, the spacing between surfaces 475b and 476a, the spacing between surfaces 476b and 477a, and the spacing between surfaces 477b and 478a.
  • v1 is a general term for Abbe numbers v101, v201, v301, v401, and v501.
  • v2 is a general term for Abbe numbers v102, v202, v302, v402, and v502.
  • v3 is a general term for Abbe numbers v103, v203, v303, v403, and v503.
  • f1 to f8 are the focal lengths of lenses 71 (171, 271, 371, 471) to 78 (178, 278, 378, 478).
  • Fno is the F-number of the lens optical system 25.
  • FOV is the field of view of the lens optical system 25.
  • CRA is the chief ray angle of light incident on the imaging surface 31a from the lens optical system 25.
  • the radii of curvature R109 and R110 of the lens optical system 25 of Figure 2 are 7.84777 and 5.83417, respectively.
  • the focal length f of the entire lens optical system 25 of Figure 2 is 7.459. Therefore, when the radius of curvature R109 is R9 and R110 is R10, (R9 + R10)/f is 1.834, as shown in Figure 42.
  • the radii of curvature R209 and R210 of the lens optical system 25 of FIG. 10 are 7.93464 and 6.28921, respectively.
  • the focal length f of the entire lens optical system 25 of FIG. 10 is 7.441. Therefore, when the radius of curvature R109 is R9 and R210 is R10, (R9+R10)/f is 1.912, as shown in FIG. 42.
  • the radii of curvature R309 and R310 of the lens optical system 25 of Figure 18 are 13.82899851 and 14.99934326, respectively.
  • the focal length f of the entire lens optical system 25 of Figure 18 is 7.567. Therefore, when the radius of curvature R309 is R9 and R310 is R10, (R9 + R10)/f is 3.810, as shown in Figure 42.
  • the radii of curvature R409 and 410 of the lens optical system 25 in FIG. 26 are 7.988562627 and 6.714847072, respectively.
  • the focal length f of the entire lens optical system 25 in FIG. 26 is 7.528. Therefore, when the radius of curvature R409 is R9 and R410 is R10, (R9+R10)/f is 1.953, as shown in FIG. 42.
  • the radii of curvature R509 and R510 of the lens optical system 25 in FIG. 34 are 8.038008142 and 7.99601597, respectively.
  • the focal length f of the entire lens optical system 25 in FIG. 34 is 7.653. Therefore, when the radius of curvature R509 is R9 and R510 is R10, (R9+R10)/f is 2.095, as shown in FIG. 42.
  • the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expression (1).
  • the radii of curvature R215 and R216 of the lens optical system 25 in Figure 10 are -5.31417 and 8.30836, respectively. Therefore, when the radii of curvature R215 is R15 and R216 is R16, (R15 + R16) / (R15 - R16) is -0.220, as shown in Figure 42.
  • the radii of curvature R315 and R316 of the lens optical system 25 in Figure 18 are -5.309355273 and 8.918428979, respectively. Therefore, when the radii of curvature R315 is R15 and R316 is R16, (R15 + R16) / (R15 - R16) is -0.254, as shown in Figure 42.
  • the radii of curvature R415 and R416 of the lens optical system 25 in Figure 26 are -5.390047902 and 9.580518471, respectively. Therefore, when the radii of curvature R415 is R15 and R416 is R16, (R15 + R16) / (R15 - R16) is -0.280, as shown in Figure 42.
  • the radii of curvature R515 and R516 of the lens optical system 25 in Figure 34 are -5.795915929 and 87.92952819, respectively. Therefore, when the radius of curvature R515 is R15 and R516 is R16, (R15 + R16) / (R15 - R16) is -0.876, as shown in Figure 42.
  • the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expression (2).
  • the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expression (3).
  • the Abbe numbers v101 to v103 of the lens optical system 25 in Figure 2 are 63.733, 15.499, and 70.100, respectively. Therefore, when the Abbe numbers v101 to v103 are taken as Abbe numbers v1 to v3, v1/v3 and v2/v3 are 0.909 and 0.221, respectively, as shown in Figure 42.
  • the Abbe numbers v201 to v203 of the lens optical system 25 in Figure 10 are 63.733, 15.499, and 70.330, respectively. Therefore, when the Abbe numbers v201 to v203 are Abbe numbers v1 to v3, v1/v3 and v2/v3 are 0.906 and 0.220, respectively, as shown in Figure 42.
  • the Abbe numbers v301 to v303 of the lens optical system 25 in FIG. 18 are the same as the Abbe numbers v201 to v203. Therefore, as shown in FIG. 42, when the Abbe numbers v301 to v303 are the Abbe numbers v1 to v3, v1/v3 and v2/v3 are the same as when the Abbe numbers v201 to v203 are the Abbe numbers v1 to v3.
  • the Abbe numbers v401 to v403 of the lens optical system 25 in Figure 26 are 59.050, 15.499, and 81.350, respectively. Therefore, when the Abbe numbers v401 to v403 are Abbe numbers v1 to v3, v1/v3 and v2/v3 are 0.726 and 0.191, respectively, as shown in Figure 42.
  • the Abbe numbers v501 to v503 of the lens optical system 25 in FIG. 34 are the same as the Abbe numbers v201 to v203. Therefore, as shown in FIG. 42, when the Abbe numbers v501 to v503 are the Abbe numbers v1 to v3, v1/v3 and v2/v3 are the same as when the Abbe numbers v201 to v203 are the Abbe numbers v1 to v3.
  • the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expressions (4) and (5).
  • the focal lengths f1 to f8 of lenses 71 to 78 are 9.597, -25.276, 19.721, 30.821, -44.723, -48.445, 11.065, and -6.020, respectively.
  • the focal lengths f1 to f8 of lenses 171 to 178 are 9.236, -24.403, 17.422, 61.296, -60.055, -86.440, 12.031, and -5.819, respectively.
  • the focal lengths f1 to f8 of lenses 271 to 278 are 10.550, -25.840, 15.332, 71.836, 291.123, -46.175, 12.991, and -5.948, respectively.
  • the focal lengths f1 to f8 of lenses 371 to 378 are 9.594, -22.948, 16.807, 51.343, -84.890, -56.340, 11.646, and -6.168, respectively.
  • the focal lengths f1 to f8 of lenses 471 to 478 are 11.351, -24.328, 14.036, 36.974, 1323.920, 47.052, -47.565, and -9.910, respectively.
  • the Fno of the lens optical system 25 in FIG. 2, FIG. 10, FIG. 18, FIG. 26, and FIG. 34 is small, being 1.841, 1.833, 1.832, 1.834, and 1.85, respectively.
  • the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expression (6).
  • the total optical length TTL can be made small even when the maximum image height IH is large.
  • a low-profile lens optical system 25 can be realized even when the solid-state imaging element 21 is enlarged.
  • the thickness of the lens optical system 25 is 11 mm or less even for a 1/1 inch solid-state imaging element 21.
  • the thickness of a typical mobile device is about 8 to 9 mm, and if the mounting portion of the lens optical system 25 has a convex shape, the total thickness of the mounting portion is about 11 mm. Therefore, a 1/1 inch solid-state imaging element 21 can be mounted in a typical mobile device. By suppressing the convexity of the mounting portion of the lens optical system 25 of a mobile device equipped with a 1/1 inch solid-state imaging element 21, the thickness of the mobile device can be reduced.
  • the field of view FOV of the lens optical system 25 in FIG. 2, FIG. 10, FIG. 18, FIG. 26, and FIG. 34 are 92.450, 92.332, 92.000, 92.048, and 90.940, respectively.
  • the chief ray angles CRA of the lens optical systems 25 in Figures 2, 10, 18, 26, and 34 are 39.200, 39.900, 39.200, 39.200, and 39.800, respectively. Therefore, the lens optical systems 25 in Figures 2, 10, 18, 26, and 34 satisfy the following conditional expression (7).
  • the lens optical system 25 comprises, in order from the object side to the image side, lenses 71 (171, 271, 371, 471) to 78 (178, 278, 378, 478).
  • Lens 71 (171, 271, 371, 471) has positive refractive power.
  • Lens 72 (172, 272, 372, 472) has negative refractive power.
  • Lens 73 (173, 273, 373, 473) has positive refractive power.
  • Lens 74 (174, 274, 374, 474) has positive refractive power.
  • Lens 75 (175, 275, 375, 475) has positive or negative refractive power.
  • Lens 76 (176, 276, 376, 476) has positive or negative refractive power.
  • the lens 77 (177, 277, 377, 477) has positive or negative refractive power.
  • the lens 78 (178, 278, 378, 478) has negative refractive power.
  • the paraxial shapes of the lenses 75 (175, 275, 375, 475) to 77 (177, 277, 377, 477) are meniscus shapes convex toward the object side.
  • the tangent angle of the peripheral portion of the lens effective diameter of five or more surfaces is 40 degrees or more.
  • TTL/IH which is the ratio of the total optical length TTL to the maximum image height IH in the lens optical system 25.
  • the imaging device 10 described above can be applied to various electronic devices, such as digital still cameras, digital video cameras, and mobile devices such as mobile phones and smartphones equipped with an imaging function.
  • Figure 43 is a block diagram showing an example of the hardware configuration of a smartphone as an electronic device to which this technology is applied.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input/output interface 1005 is further connected to the bus 1004.
  • An imaging unit 1006, an input unit 1007, an output unit 1008, and a communication unit 1009 are connected to the input/output interface 1005.
  • the imaging unit 1006 is composed of the imaging device 10 described above, etc.
  • the imaging unit 1006 captures an image of a subject and obtains an image. This image is stored in the RAM 1003 and/or displayed on the output unit 1008.
  • the input unit 1007 is composed of a touchpad, which is a position input device constituting a touch panel, a microphone, etc.
  • the output unit 1008 is composed of a liquid crystal panel constituting a touch panel, a speaker, etc.
  • the communication unit 1009 is composed of a network interface, etc.
  • the smartphone 1000 configured as described above, by applying the imaging device 10 as the imaging section 1006, the total optical length TTL of the lens optical system 25 can be shortened when compatible with a large solid-state imaging element 21. As a result, the smartphone 1000 equipped with a large solid-state imaging element 21 can be made low-profile.
  • FIG. 44 is a diagram showing an example of using the imaging device 10 described above.
  • the imaging device 10 described above can be used in various cases to sense light, such as visible light, infrared light, ultraviolet light, and X-rays, for example, as follows:
  • - Devices that take images for viewing such as digital cameras and mobile devices with camera functions
  • - Devices used for traffic purposes such as in-vehicle sensors that take images of the front and rear of a car, the surroundings, and the interior of the car for safe driving such as automatic stopping and for recognizing the driver's state, surveillance cameras that monitor moving vehicles and roads, and distance measuring sensors that measure the distance between vehicles, etc.
  • - Devices used in home appliances such as TVs, refrigerators, and air conditioners to capture images of user gestures and operate devices in accordance with those gestures
  • - Devices used for medical and healthcare purposes such as endoscopes and devices that take images of blood vessels by receiving infrared light
  • - Devices used for security purposes such as surveillance cameras for crime prevention and cameras for person authentication
  • - Devices used for beauty purposes such as skin measuring devices that take images of the skin and microscopes that take images of the scalp
  • - Devices used for sports such as action cameras and wearable cameras for sports purposes, etc.
  • the technology according to the present disclosure (the present technology) can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 45 is a diagram showing an example of the general configuration of an endoscopic surgery system to which the technology disclosed herein (the present technology) can be applied.
  • an operator (doctor) 11131 is shown using an endoscopic surgery system 11000 to perform surgery on a patient 11132 on a patient bed 11133.
  • the endoscopic surgery system 11000 is composed of an endoscope 11100, other surgical tools 11110 such as an insufflation tube 11111 and an energy treatment tool 11112, a support arm device 11120 that supports the endoscope 11100, and a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 is composed of a lens barrel 11101, the tip of which is inserted into the body cavity of the patient 11132 at a predetermined length, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 is configured as a so-called rigid scope having a rigid lens barrel 11101, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible lens barrel.
  • the tip of the tube 11101 has an opening into which an objective lens is fitted.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the tube by a light guide extending inside the tube 11101, and is irradiated via the objective lens towards an object to be observed inside the body cavity of the patient 11132.
  • the endoscope 11100 may be a direct-viewing endoscope, an oblique-viewing endoscope, or a side-viewing endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the object of observation is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the image sensor to generate an electrical signal corresponding to the observation light, i.e., an image signal corresponding to the observed image.
  • the image signal is sent to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the overall operation of the endoscope 11100 and the display device 11202. Furthermore, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal, such as development processing (demosaic processing), in order to display an image based on the image signal.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 under the control of the CCU 11201, displays an image based on the image signal that has been subjected to image processing by the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode) and supplies irradiation light to the endoscope 11100 when photographing the surgical site, etc.
  • a light source such as an LED (Light Emitting Diode) and supplies irradiation light to the endoscope 11100 when photographing the surgical site, etc.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) of the endoscope 11100.
  • the treatment tool control device 11205 controls the operation of the energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, etc.
  • the insufflation device 11206 sends gas into the body cavity of the patient 11132 via the insufflation tube 11111 to inflate the body cavity in order to ensure a clear field of view for the endoscope 11100 and to ensure a working space for the surgeon.
  • the recorder 11207 is a device capable of recording various types of information related to the surgery.
  • the printer 11208 is a device capable of printing various types of information related to the surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies illumination light to the endoscope 11100 when photographing the surgical site can be composed of a white light source composed of, for example, an LED, a laser light source, or a combination of these.
  • a white light source composed of, for example, an LED, a laser light source, or a combination of these.
  • the white light source is composed of a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so that the white balance of the captured image can be adjusted in the light source device 11203.
  • the light source device 11203 may be controlled to change the intensity of the light it outputs at predetermined time intervals.
  • the image sensor of the camera head 11102 may be controlled to acquire images in a time-division manner in synchronization with the timing of the change in the light intensity, and the images may be synthesized to generate an image with a high dynamic range that is free of so-called blackout and whiteout.
  • the light source device 11203 may be configured to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependency of light absorption in body tissue, a narrow band of light is irradiated compared to the light irradiated during normal observation (i.e., white light), and a predetermined tissue such as blood vessels on the surface of the mucosa is photographed with high contrast, so-called narrow band imaging is performed.
  • fluorescent observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • excitation light is irradiated to the body tissue and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and excitation light corresponding to the fluorescent wavelength of the reagent is irradiated to the body tissue to obtain a fluorescent image.
  • the light source device 11203 may be configured to supply narrow band light and/or excitation light corresponding to such special light observation.
  • FIG. 46 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 45.
  • the camera head 11102 has a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other via a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at the connection with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is composed of a combination of multiple lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 is composed of an imaging element.
  • the imaging element constituting the imaging unit 11402 may be one (so-called single-plate type) or multiple (so-called multi-plate type).
  • each imaging element may generate an image signal corresponding to each of RGB, and a color image may be obtained by combining these.
  • the imaging unit 11402 may be configured to have a pair of imaging elements for acquiring image signals for the right eye and the left eye corresponding to 3D (dimensional) display. By performing 3D display, the surgeon 11131 can more accurately grasp the depth of the biological tissue in the surgical site.
  • 3D dimensional
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101, immediately after the objective lens.
  • the driving unit 11403 is composed of an actuator, and moves the zoom lens and focus lens of the lens unit 11401 a predetermined distance along the optical axis under the control of the camera head control unit 11405. This allows the magnification and focus of the image captured by the imaging unit 11402 to be adjusted appropriately.
  • the communication unit 11404 is configured with a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 also receives control signals for controlling the operation of the camera head 11102 from the CCU 11201, and supplies them to the camera head control unit 11405.
  • the control signals include information on the imaging conditions, such as information specifying the frame rate of the captured image, information specifying the exposure value during imaging, and/or information specifying the magnification and focus of the captured image.
  • the above-mentioned frame rate, exposure value, magnification, focus, and other imaging conditions may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls the operation of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured with a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 also transmits to the camera head 11102 a control signal for controlling the operation of the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, etc.
  • the image processing unit 11412 performs various image processing operations on the image signal, which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site, etc. by the endoscope 11100, and the display of the captured images obtained by imaging the surgical site, etc. For example, the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
  • the control unit 11413 also causes the display device 11202 to display the captured image showing the surgical site, etc., based on the image signal that has been image-processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 can recognize surgical tools such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc., by detecting the shape and color of the edges of objects included in the captured image. When the control unit 11413 causes the display device 11202 to display the captured image, it may use the recognition result to superimpose various types of surgical support information on the image of the surgical site. By superimposing the surgical support information and presenting it to the surgeon 11131, the burden on the surgeon 11131 can be reduced and the surgeon 11131 can proceed with the surgery reliably.
  • various image recognition techniques such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc.
  • the transmission cable 11400 that connects the camera head 11102 and the CCU 11201 is an electrical signal cable that supports electrical signal communication, an optical fiber that supports optical communication, or a composite cable of these.
  • communication is performed wired using a transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may also be performed wirelessly.
  • the above describes an example of an endoscopic surgery system to which the technology disclosed herein can be applied.
  • the technology disclosed herein can be applied to the lens unit 11401, the imaging unit 11402, and the like, among the configurations described above.
  • the imaging device 10 described above can be applied to the lens unit 11401, the imaging unit 11402, and the drive unit 11403.
  • the total optical length TTL of the lens optical system 25 when compatible with a large solid-state imaging element 21 can be shortened.
  • a surgeon can reliably check the surgical site with a high-quality image of the surgical site without enlarging the size of the camera head 11102.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility device, an airplane, a drone, a ship, or a robot.
  • FIG. 47 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050.
  • Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
  • the body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs.
  • the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps.
  • radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020.
  • the body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
  • the outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image capturing unit 12031 is connected to the outside-vehicle information detection unit 12030.
  • the outside-vehicle information detection unit 12030 causes the image capturing unit 12031 to capture images outside the vehicle and receives the captured images.
  • the outside-vehicle information detection unit 12030 may perform object detection processing or distance detection processing for people, cars, obstacles, signs, or characters on the road surface based on the received images.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of light received.
  • the imaging unit 12031 can output the electrical signal as an image, or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light, or may be invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects information inside the vehicle.
  • a driver state detection unit 12041 that detects the state of the driver is connected.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
  • the microcomputer 12051 can calculate the control target values of the driving force generating device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output a control command to the drive system control unit 12010.
  • the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including avoiding or mitigating vehicle collisions, following based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
  • the microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
  • the audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
  • FIG. 48 shows an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100.
  • the imaging unit 12101 provided at the front nose and the imaging unit 12105 provided at the top of the windshield inside the vehicle cabin mainly acquire images of the front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided at the side mirrors mainly acquire images of the sides of the vehicle 12100.
  • the imaging unit 12104 provided at the rear bumper or back door mainly acquires images of the rear of the vehicle 12100.
  • the images of the front acquired by the imaging units 12101 and 12105 are mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, etc.
  • FIG. 48 shows an example of the imaging ranges of the imaging units 12101 to 12104.
  • Imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • imaging range 12114 indicates the imaging range of the imaging unit 12104 provided on the rear bumper or back door.
  • an overhead image of the vehicle 12100 viewed from above is obtained by superimposing the image data captured by the imaging units 12101 to 12104.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera consisting of multiple imaging elements, or an imaging element having pixels for detecting phase differences.
  • the microcomputer 12051 can obtain the distance to each solid object within the imaging ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest solid object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance information obtained from the imaging units 12101 to 12104, and can use the data to automatically avoid obstacles.
  • the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk, which indicates the risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering to avoid a collision via the drive system control unit 12010.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed, for example, by a procedure of extracting feature points in the captured image of the imaging units 12101 to 12104 as infrared cameras, and a procedure of performing pattern matching processing on a series of feature points that indicate the contour of an object to determine whether or not it is a pedestrian.
  • the audio/image output unit 12052 controls the display unit 12062 to superimpose a rectangular contour line for emphasis on the recognized pedestrian.
  • the audio/image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 and the like of the configuration described above.
  • the imaging device 10 described above can be applied to the imaging unit 12031.
  • the total optical length TTL of the lens optical system 25 when compatible with a large solid-state imaging element 21 can be shortened. As a result, it becomes possible to reduce, for example, driver fatigue by capturing high-quality images without enlarging the size of the imaging unit 12031.
  • the embodiments of the present technology are not limited to the above-mentioned embodiments, and various modifications are possible within the scope of the gist of the present technology.
  • the number and positions of inflection points of each surface, lens data of each lens, aspheric data of each surface, and tangent angles of the peripheral parts of the effective diameter of the lens are not limited to the above-mentioned examples. It is also possible to adopt a form that combines all or part of the above-mentioned embodiments.
  • the present technology can take the following configurations. (1) From the object side to the image side, a first lens having a positive refractive power; a second lens having a negative refractive power; a third lens having a positive refractive power; a fourth lens having a positive refractive power; a fifth lens having a positive or negative refractive power; a sixth lens having a positive or negative refractive power; a seventh lens having a positive or negative refractive power; an eighth lens having a negative refractive power; the paraxial shape of each of the fifth lens to the seventh lens is a meniscus shape convex toward an object side, a tangent angle of a peripheral portion of a lens effective diameter of five or more of the six surfaces consisting of the object-side surface and the image-side surface of each of the fifth lens to the seventh lens is 40 degrees or more; A lens optical system configured to form an image of a subject on the imaging surface of an image sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

The present technology pertains to a lens optical system and an imaging device, the lens optical system making it possible to reduce the optical total length of the lens optical system when corresponding to a large-sized imaging element. This lens optical system comprises, in order from the object side to the image side: a lens having positive refractive power; a lens having negative refractive power, a lens having positive refractive power; a lens having positive refractive power; a lens having positive or negative refractive power; a lens having positive or negative refractive power; a lens having positive or negative refractive power; and a lens having negative refractive power. The paraxial shape of each of the fifth to seventh lenses from the object side is a meniscus shape protruding toward the object side. The tangent angle of a lens effective diameter peripheral portion of each of five or more surfaces among six surfaces comprising object-side surfaces and image-side surfaces of the fifth to seventh lenses from the object side is 40 degrees or more. The lens optical system forms a subject image on an imaging surface of an imaging element. The present technology can be applied to, for example, an imaging device.

Description

レンズ光学系および撮像装置Lens optical system and imaging device
 本技術は、レンズ光学系および撮像装置に関し、特に、大型の撮像素子に対応する場合のレンズ光学系の光学全長を短縮することができるようにしたレンズ光学系および撮像装置に関する。 This technology relates to a lens optical system and an imaging device, and in particular to a lens optical system and an imaging device that can shorten the overall optical length of the lens optical system when compatible with a large imaging element.
 近年、小型カメラモジュールのイメージセンサのサイズが大型化している。従って、1/1.3インチよりも大きな1/1インチ等の大型のイメージセンサに対応するレンズ光学系が必要とされている。 In recent years, the size of image sensors in small camera modules has been increasing. Therefore, there is a need for lens optical systems that can accommodate larger image sensors, such as 1/1 inch, which is larger than 1/1.3 inch.
 しかしながら、従来のレンズ光学系を単純にスケーリングすることにより大型のイメージセンサに対応するレンズ光学系が設計される場合、レンズ光学系の光学全長が長くなる。 However, when a lens optical system that is compatible with a large image sensor is designed by simply scaling a conventional lens optical system, the total optical length of the lens optical system becomes long.
 例えば、従来のレンズ光学系としては、物体側から像側に向かって順に、正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズ、第4レンズ、負の屈折力を有する第5レンズ、第6レンズ、正の屈折力を有する第7レンズ、および負の屈折力を有する第8レンズから構成されるレンズ光学系がある(例えば、特許文献1参照)。 For example, a conventional lens optical system is a lens optical system that is composed of, in order from the object side to the image side, a first lens having positive refractive power, a second lens having negative refractive power, a third lens having positive refractive power, a fourth lens, a fifth lens having negative refractive power, a sixth lens, a seventh lens having positive refractive power, and an eighth lens having negative refractive power (see, for example, Patent Document 1).
 特許文献1に記載されているレンズ光学系では、第6レンズと第7レンズの接線角度が非常に小さいため周辺光線を広げることが困難であるため、光学全長と最大像高の比である光学全長/最大像高が大きい。従って、このレンズ光学系を大型のイメージセンサに対応させる場合、光学全長が長くなる。 In the lens optical system described in Patent Document 1, the tangent angle between the sixth lens and the seventh lens is very small, making it difficult to expand the peripheral rays, and therefore the ratio of the optical total length to the maximum image height, that is, optical total length/maximum image height, is large. Therefore, if this lens optical system is adapted to a large image sensor, the optical total length will be long.
 レンズ光学系の光学全長が長い場合、そのレンズ光学系を有する小型カメラモジュールが高背化する。その結果、このような小型カメラモジュールを搭載する携帯端末等のモバイル機器の薄型化を困難にする。 If the overall optical length of the lens optical system is long, the compact camera module that includes that lens optical system will be tall. As a result, it will be difficult to make mobile devices such as portable terminals that incorporate such compact camera modules thinner.
特開2021-189427号公報JP 2021-189427 A
 そこで、大型のイメージセンサ等の撮像素子に対応する場合のレンズ光学系の光学全長を短縮することが要望されているが、そのような要望に十分にこたえられていない状況である。 Therefore, there is a demand to shorten the overall optical length of lens optical systems when compatible with imaging elements such as large image sensors, but this demand has not yet been fully met.
 本技術は、このような状況に鑑みてなされたものであり、大型の撮像素子に対応する場合のレンズ光学系の光学全長を短縮することができるようにするものである。 This technology was developed in consideration of these circumstances, and makes it possible to shorten the overall optical length of a lens optical system when accommodating a large image sensor.
 本技術の第1の側面のレンズ光学系は、物体側から像側に向かって順に、正の屈折力をする第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、正の屈折力を有する第4のレンズと、正または負の屈折力を有する第5のレンズと、正または負の屈折力を有する第6のレンズと、正または負の屈折力を有する第7のレンズと、負の屈折力を有する第8のレンズとを備え、前記第5のレンズ乃至前記第7のレンズの近軸形状は物体側に凸のメニスカス形状であり、前記第5のレンズ乃至前記第7のレンズそれぞれの前記物体側の面および前記像側の面からなる6つの前記面のうちの5つ以上の前記面のレンズ有効径周辺部の接線角度が40度以上であり、被写体像を撮像素子の撮像面に結像させるように構成されたレンズ光学系である。 The lens optical system of the first aspect of the present technology includes, in order from the object side to the image side, a first lens with positive refractive power, a second lens with negative refractive power, a third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens with positive or negative refractive power, a sixth lens with positive or negative refractive power, a seventh lens with positive or negative refractive power, and an eighth lens with negative refractive power, the paraxial shapes of the fifth lens to the seventh lens are meniscus shapes convex toward the object side, the tangent angles of the peripheral parts of the lens effective diameter of five or more of the six surfaces consisting of the object side surface and the image side surface of each of the fifth lens to the seventh lens are 40 degrees or more, and the lens optical system is configured to form an image of a subject on the imaging surface of an imaging element.
 本技術の第1の側面においては、物体側から像側に向かって順に、正の屈折力をする第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、正の屈折力を有する第4のレンズと、正または負の屈折力を有する第5のレンズと、正または負の屈折力を有する第6のレンズと、正または負の屈折力を有する第7のレンズと、負の屈折力を有する第8のレンズとが設けられる。前記第5のレンズ乃至前記第7のレンズの近軸形状は物体側に凸のメニスカス形状であり、前記第5のレンズ乃至前記第7のレンズそれぞれの前記物体側の面および前記像側の面からなる6つの前記面のうちの5つ以上の前記面のレンズ有効径周辺部の接線角度が40度以上である。被写体像は撮像素子の撮像面に結像される。 In a first aspect of the present technology, a first lens having positive refractive power, a second lens having negative refractive power, a third lens having positive refractive power, a fourth lens having positive refractive power, a fifth lens having positive or negative refractive power, a sixth lens having positive or negative refractive power, a seventh lens having positive or negative refractive power, and an eighth lens having negative refractive power are provided in that order from the object side to the image side. The paraxial shapes of the fifth lens to the seventh lens are meniscus shapes convex toward the object side, and the tangent angle of the peripheral portion of the lens effective diameter of five or more of the six surfaces consisting of the object side surface and the image side surface of each of the fifth lens to the seventh lens is 40 degrees or more. The subject image is formed on the imaging surface of the imaging element.
 本技術の第2の側面の撮像装置は、物体側から像側に向かって順に、正の屈折力をする第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、正の屈折力を有する第4のレンズと、正または負の屈折力を有する第5のレンズと、正または負の屈折力を有する第6のレンズと、正または負の屈折力を有する第7のレンズと、負の屈折力を有する第8のレンズとを備え、前記第5のレンズ乃至前記第7のレンズの近軸形状は物体側に凸のメニスカス形状であり、前記第5のレンズ乃至前記第7のレンズそれぞれの前記物体側の面および前記像側の面からなる6つの前記面のうちの5つ以上の前記面のレンズ有効径周辺部の接線角度が40度以上であるように構成されたレンズ光学系と、前記レンズ光学系により結像された被写体像を電気信号に変換する撮像素子とを備える撮像装置である。 The imaging device according to the second aspect of the present technology is an imaging device that includes, in order from the object side to the image side, a first lens with positive refractive power, a second lens with negative refractive power, a third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens with positive or negative refractive power, a sixth lens with positive or negative refractive power, a seventh lens with positive or negative refractive power, and an eighth lens with negative refractive power, in which the paraxial shapes of the fifth lens to the seventh lens are meniscus shapes convex toward the object side, and the tangent angles of the peripheral parts of the lens effective diameter of five or more of the six surfaces consisting of the object side surface and the image side surface of each of the fifth lens to the seventh lens are 40 degrees or more, and an imaging element that converts the subject image formed by the lens optical system into an electrical signal.
 本技術の第2の側面においては、物体側から像側に向かって順に、正の屈折力をする第1のレンズと、負の屈折力を有する第2のレンズと、正の屈折力を有する第3のレンズと、正の屈折力を有する第4のレンズと、正または負の屈折力を有する第5のレンズと、正または負の屈折力を有する第6のレンズと、正または負の屈折力を有する第7のレンズと、負の屈折力を有する第8のレンズとを備え、前記第5のレンズ乃至前記第7のレンズの近軸形状は物体側に凸のメニスカス形状であり、前記第5のレンズ乃至前記第7のレンズそれぞれの前記物体側の面および前記像側の面からなる6つの前記面のうちの5つ以上の前記面のレンズ有効径周辺部の接線角度が40度以上であるように構成されたレンズ光学系と、前記レンズ光学系により結像された被写体像を電気信号に変換する撮像素子とが設けられる。 In a second aspect of the present technology, a lens optical system is provided that includes, in order from the object side to the image side, a first lens with positive refractive power, a second lens with negative refractive power, a third lens with positive refractive power, a fourth lens with positive refractive power, a fifth lens with positive or negative refractive power, a sixth lens with positive or negative refractive power, a seventh lens with positive or negative refractive power, and an eighth lens with negative refractive power, the paraxial shapes of the fifth lens to the seventh lens are meniscus shapes convex toward the object side, and the tangent angle of the peripheral portion of the lens effective diameter of five or more of the six surfaces consisting of the object side surface and the image side surface of each of the fifth lens to the seventh lens is 40 degrees or more, and an image sensor is provided that converts the subject image formed by the lens optical system into an electrical signal.
本技術を適用した撮像装置の第1実施の形態の構成例を示す断面図である。1 is a cross-sectional view showing a configuration example of a first embodiment of an imaging device to which the present technology is applied. レンズ光学系の第1の構成例を示す断面図である。FIG. 2 is a cross-sectional view showing a first configuration example of a lens optical system. 図2の面の変曲点の数および位置を示す表である。3 is a table showing the number and location of inflection points of the surface of FIG. 2; 図2のレンズのレンズデータを示す表である。3 is a table showing lens data for the lens of FIG. 2. 図2の面の非球面データを示す表である。3 is a table showing aspheric data for the surfaces of FIG. 2; 図2の物体側から5番目のレンズの面のレンズ有効部の接線角度を示すグラフである。3 is a graph showing a tangent angle of an effective portion of the lens surface of the fifth lens from the object side in FIG. 2 . 図2の物体側から6番目のレンズの面のレンズ有効部の接線角度を示すグラフである。3 is a graph showing a tangent angle of an effective portion of the lens surface of the sixth lens from the object side in FIG. 2 . 図2の物体側から7番目のレンズの面のレンズ有効部の接線角度を示すグラフである。3 is a graph showing a tangent angle of an effective portion of the lens surface of the seventh lens from the object side in FIG. 2 . 図2のレンズ光学系における球面収差、像面湾曲、および歪曲収差を示すグラフである。3 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 2. レンズ光学系の第2の構成例を示す断面図である。FIG. 4 is a cross-sectional view showing a second configuration example of the lens optical system. 図10の面の変曲点の数および位置を示す表である。11 is a table showing the number and location of inflection points of the surface of FIG. 10 . 図10のレンズのレンズデータを示す表である。11 is a table showing lens data for the lens of FIG. 10 . 図10の面の非球面データを示す表である。11 is a table showing aspheric data for the surfaces of FIG. 10 . 図10の物体側から5番目のレンズの面のレンズ有効部の接線角度を示すグラフである。11 is a graph showing a tangent angle of an effective portion of the lens surface of the fifth lens from the object side in FIG. 10 . 図10の物体側から6番目のレンズの面のレンズ有効部の接線角度を示すグラフである。11 is a graph showing a tangent angle of an effective portion of the lens surface of the sixth lens from the object side in FIG. 10 . 図10の物体側から7番目のレンズの面のレンズ有効部の接線角度を示すグラフである。11 is a graph showing a tangent angle of an effective portion of the lens surface of the seventh lens from the object side in FIG. 10 . 図10のレンズ光学系における球面収差、像面湾曲、および歪曲収差を示すグラフである。11 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 10. レンズ光学系の第3の構成例を示す断面図である。FIG. 11 is a cross-sectional view showing a third configuration example of the lens optical system. 図18の面の変曲点の数および位置を示す表である。19 is a table showing the number and location of inflection points of the surface of FIG. 18. 図18のレンズのレンズデータを示す表である。19 is a table showing lens data for the lens of FIG. 18. 図18の面の非球面データを示す表である。19 is a table showing aspheric data for the surfaces of FIG. 18 . 図18の物体側から5番目のレンズの面のレンズ有効部の接線角度を示すグラフである。19 is a graph showing a tangent angle of an effective portion of the lens surface that is the fifth lens from the object side in FIG. 18 . 図18の物体側から6番目のレンズの面のレンズ有効部の接線角度を示すグラフである。19 is a graph showing a tangent angle of an effective portion of the lens surface of the sixth lens from the object side in FIG. 18 . 図18の物体側から7番目のレンズの面のレンズ有効部の接線角度を示すグラフである。19 is a graph showing a tangent angle of an effective portion of the lens surface of the seventh lens from the object side in FIG. 18 . 図18のレンズ光学系における球面収差、像面湾曲、および歪曲収差を示すグラフである。19 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 18. レンズ光学系の第4の構成例を示す断面図である。FIG. 11 is a cross-sectional view showing a fourth configuration example of the lens optical system. 図26の面の変曲点の数および位置を示す表である。27 is a table showing the number and location of inflection points of the surface of FIG. 26. 図26のレンズのレンズデータを示す表である。27 is a table showing lens data for the lens of FIG. 26. 図26の面の非球面データを示す表である。27 is a table showing aspheric data for the surfaces of FIG. 26 . 図26の物体側から5番目のレンズの面のレンズ有効部の接線角度を示すグラフである。27 is a graph showing a tangent angle of an effective portion of the lens surface that is the fifth lens from the object side in FIG. 26 . 図26の物体側から6番目のレンズの面のレンズ有効部の接線角度を示すグラフである。27 is a graph showing a tangent angle of an effective portion of the lens surface of the sixth lens from the object side in FIG. 26 . 図26の物体側から7番目のレンズの面のレンズ有効部の接線角度を示すグラフである。27 is a graph showing a tangent angle of an effective portion of the lens surface of the seventh lens from the object side in FIG. 26 . 図26のレンズ光学系における球面収差、像面湾曲、および歪曲収差を示すグラフである。27 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 26. レンズ光学系の第5の構成例を示す断面図である。FIG. 11 is a cross-sectional view showing a fifth configuration example of the lens optical system. 図34の面の変曲点の数および位置を示す表である。35 is a table showing the number and location of inflection points of the surface of FIG. 34. 図34のレンズのレンズデータを示す表である。35 is a table showing lens data for the lens of FIG. 34. 図34の面の非球面データを示す表である。35 is a table showing aspheric data for the surfaces of FIG. 34 . 図34の物体側から5番目のレンズの面のレンズ有効部の接線角度を示すグラフである。35 is a graph showing a tangent angle of an effective portion of the lens surface that is the fifth lens from the object side in FIG. 34 . 図34の物体側から6番目のレンズの面のレンズ有効部の接線角度を示すグラフである。35 is a graph showing a tangent angle of an effective portion of the lens surface that is the sixth lens from the object side in FIG. 34 . 図34の物体側から7番目のレンズの面のレンズ有効部の接線角度を示すグラフである。35 is a graph showing a tangent angle of an effective portion of the lens surface that is the seventh lens from the object side in FIG. 34 . 図34のレンズ光学系における球面収差、像面湾曲、および歪曲収差を示すグラフである。35 is a graph showing spherical aberration, field curvature, and distortion in the lens optical system of FIG. 34. レンズ光学系におけるパラメータまたは式の値を示す表である。1 is a table showing values of parameters or expressions in a lens optical system. 本技術を適用した電子機器としてのスマートフォンのハードウエア構成例を示すブロック図である。FIG. 1 is a block diagram showing an example of a hardware configuration of a smartphone as an electronic device to which the present technology is applied. 撮像装置の使用例を説明する図である。FIG. 1 is a diagram illustrating an example of use of an imaging device. 内視鏡手術システムの概略的な構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。2 is a block diagram showing an example of the functional configuration of a camera head and a CCU. FIG. 車両制御システムの概略的な構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; 撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit.
 以下、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.一実施の形態(撮像装置)
2.電子機器への適用例
3.撮像装置の使用例
4.内視鏡手術システムへの応用例
5.移動体への応用例
Hereinafter, modes for carrying out the present technology (hereinafter, referred to as embodiments) will be described in the following order.
1. One embodiment (imaging device)
2. Application examples to electronic devices 3. Use examples of imaging devices 4. Application examples to endoscopic surgery systems 5. Application examples to moving objects
 なお、以下の説明で参照する図面において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は実際のものとは異なる。また、図面相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 In the drawings referred to in the following description, the same or similar parts are given the same or similar reference numerals. However, the drawings are schematic, and the relationship between thickness and planar dimensions, the thickness ratio of each layer, etc., differ from the actual ones. Furthermore, there may be parts in which the dimensional relationships and ratios differ between the drawings.
 また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本開示の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれる。 Furthermore, the definitions of directions such as up and down in the following explanation are merely for the convenience of explanation and do not limit the technical ideas of this disclosure. For example, if an object is rotated 90 degrees and observed, up and down are converted into left and right and read, and if it is rotated 180 degrees and observed, up and down are read inverted.
<1.一実施の形態>
<撮像装置の構成例>
 図1は、本技術を適用した撮像装置の一実施の形態の構成例を示す断面図である。
1. One embodiment
<Configuration example of imaging device>
FIG. 1 is a cross-sectional view showing an example of the configuration of an embodiment of an imaging device to which the present technology is applied.
 図1の撮像装置10は、固体撮像装置13が設置される薄型の回路基板14、回路基板15、およびスペーサ16により構成される。 The imaging device 10 in FIG. 1 is composed of a thin circuit board 14 on which a solid-state imaging device 13 is mounted, a circuit board 15, and a spacer 16.
 固体撮像装置13は、CSP(chip size package)構造を有する。CSP構造は、多画素化、小型化、および低背化を実現する固体撮像装置の構造の1つであり、チップ単体と同程度のサイズで実現された極めて小型のパッケージ構造である。固体撮像装置13は、固体撮像素子21、接着剤22、ガラス基板23、黒樹脂24、レンズ光学系25、および固定剤26により構成される。 The solid-state imaging device 13 has a CSP (chip size package) structure. The CSP structure is one of the structures of solid-state imaging devices that realizes a high pixel count, compact size, and low height, and is an extremely small package structure that is realized with a size similar to that of a single chip. The solid-state imaging device 13 is composed of a solid-state imaging element 21, adhesive 22, glass substrate 23, black resin 24, lens optical system 25, and fixing agent 26.
 固体撮像素子21は、CCD(Charge-Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサであり、半導体基板31とオンチップレンズ32を備える。半導体基板31の図1中下側の面は回路基板14と接続する。半導体基板31の図1中上側の面の一部の領域である撮像面31aには、2次元格子状に配列された複数の各画素に対応する光電変換部としての受光素子からなる画素アレイ41等が形成される。オンチップレンズ32は、画素アレイ41上の各画素に対応する位置に形成される。 The solid-state imaging element 21 is a CCD (Charge-Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor, and includes a semiconductor substrate 31 and an on-chip lens 32. The lower surface of the semiconductor substrate 31 in FIG. 1 is connected to the circuit board 14. A pixel array 41 and the like are formed on an imaging surface 31a, which is a partial area of the upper surface of the semiconductor substrate 31 in FIG. 1, and is made up of light receiving elements serving as photoelectric conversion units corresponding to each of a plurality of pixels arranged in a two-dimensional lattice pattern. The on-chip lens 32 is formed at a position on the pixel array 41 corresponding to each pixel.
 接着剤22は、固体撮像素子21の撮像面31aを含む図1中上側の面上に設けられる透明な接着剤である。ガラス基板23は、固体撮像素子21の固定、撮像面31aの保護などの目的で、接着剤22を介して固体撮像素子21に接着される。 The adhesive 22 is a transparent adhesive that is applied to the upper surface in FIG. 1, including the imaging surface 31a of the solid-state imaging element 21. The glass substrate 23 is adhered to the solid-state imaging element 21 via the adhesive 22 for the purposes of fixing the solid-state imaging element 21 and protecting the imaging surface 31a.
 黒樹脂24は、ガラス基板23の接着剤22の接着面と反対側の面に形成され、スペーサの機能を有する。この黒樹脂24を介して、ガラス基板23の上にレンズ光学系25のIR(Infrared)カットフィルタ(図示せず)がガラス基板23と平行になるように設置される。これにより、ガラス基板23は、レンズ光学系25と撮像面31aとの間に配置されることになる。黒樹脂24(ブラックマスク)は、レンズ光学系25を介して入射される光のうちの、撮像面31aの外側の光を遮光する。 The black resin 24 is formed on the surface of the glass substrate 23 opposite the adhesive surface to which the adhesive 22 is applied, and functions as a spacer. An IR (Infrared) cut filter (not shown) of the lens optical system 25 is placed on top of the glass substrate 23 via this black resin 24 so that it is parallel to the glass substrate 23. This positions the glass substrate 23 between the lens optical system 25 and the imaging surface 31a. The black resin 24 (black mask) blocks light that is incident via the lens optical system 25 and that is outside the imaging surface 31a.
 レンズ光学系25は、被写体からの光を集光し、被写体像を撮像面31aに結像させる。レンズ光学系25の構成については、後述する図2、図10、図18、図26、図34等を用いて説明する。 The lens optical system 25 collects light from the subject and forms an image of the subject on the imaging surface 31a. The configuration of the lens optical system 25 will be described later with reference to Figures 2, 10, 18, 26, 34, etc.
 固定剤26は、固体撮像素子21、接着剤22、ガラス基板23、黒樹脂24、およびレンズ光学系25の側面と、レンズ光学系25の物体側(光の入射側)の面(図1中上面)の周囲とに塗布される。固定剤26は、固体撮像素子21、接着剤22、ガラス基板23、黒樹脂24、およびレンズ光学系25を固定する。この固定剤26により、固体撮像装置13の側面から入射され、屈折されたり反射されたりする光を軽減させることができる。また、固定剤26により、撮像面31aに対応する領域の外側から固体撮像装置13に入射される光を遮光することができる。 The fixing agent 26 is applied to the sides of the solid-state imaging element 21, adhesive 22, glass substrate 23, black resin 24, and lens optical system 25, and to the periphery of the object side (light incident side) surface (top surface in FIG. 1) of the lens optical system 25. The fixing agent 26 fixes the solid-state imaging element 21, adhesive 22, glass substrate 23, black resin 24, and lens optical system 25. This fixing agent 26 can reduce light that is incident from the side of the solid-state imaging device 13 and is refracted or reflected. The fixing agent 26 can also block light that is incident on the solid-state imaging device 13 from outside the area corresponding to the imaging surface 31a.
 被写体からの光は、レンズ光学系25、ガラス基板23、接着剤22、およびオンチップレンズ32を介して撮像面31aに入射され、これにより撮像面31aに被写体像が結像される。画素アレイ41の各受光素子は、その被写体像を電気信号に変換することにより、撮像する。 Light from the subject is incident on the imaging surface 31a via the lens optical system 25, the glass substrate 23, the adhesive 22, and the on-chip lens 32, and an image of the subject is formed on the imaging surface 31a. Each light receiving element of the pixel array 41 captures the subject image by converting it into an electrical signal.
 以上のように、固体撮像装置13のCSP構造内にレンズ光学系25が含まれるので、別体でレンズ光学系25が設けられる場合に比べて、撮像装置10を小型化することができる。 As described above, the lens optical system 25 is included within the CSP structure of the solid-state imaging device 13, so the imaging device 10 can be made smaller than when the lens optical system 25 is provided separately.
 回路基板14は、半導体基板31の図1中下側の面と接続し、各受光素子により生成された電気信号に対応するカメラ信号をスペーサ16に出力する回路基板である。 The circuit board 14 is connected to the lower surface of the semiconductor substrate 31 in FIG. 1, and outputs a camera signal corresponding to the electrical signal generated by each light receiving element to the spacer 16.
 回路基板15は、回路基板14からスペーサ16を介して出力されたカメラ信号を外部に出力するための回路基板であり、電子部品等が実装される。回路基板15は、外部の装置と接続するためのコネクタ15aを有し、カメラ信号を外部の装置に出力する。 Circuit board 15 is a circuit board for outputting the camera signal output from circuit board 14 via spacer 16 to the outside, and electronic components and the like are mounted on it. Circuit board 15 has connector 15a for connecting to an external device, and outputs the camera signal to the external device.
 スペーサ16は、レンズ光学系25を駆動する図示せぬアクチュエータと回路基板15を固定するための回路内蔵のスペーサである。スペーサ16には、半導体部品16aおよび16b等が実装されている。半導体部品16aおよび16bは、コンデンサ、レンズ光学系25を駆動する図示せぬアクチュエータを制御するLSI(Large Scale Integration)を構成する半導体部品等である。スペーサ16は、回路基板14から出力されたカメラ信号を回路基板15に出力する。 Spacer 16 is a spacer with a built-in circuit for fixing an actuator (not shown) that drives lens optical system 25 and circuit board 15. Semiconductor components 16a and 16b, etc. are mounted on spacer 16. Semiconductor components 16a and 16b are semiconductor components that constitute a capacitor and an LSI (Large Scale Integration) that controls an actuator (not shown) that drives lens optical system 25. Spacer 16 outputs a camera signal output from circuit board 14 to circuit board 15.
<レンズ光学系の第1の構成例>
 図2は、レンズ光学系25の第1の構成例を示す断面図である。
<First Configuration Example of Lens Optical System>
FIG. 2 is a cross-sectional view showing a first configuration example of the lens optical system 25. As shown in FIG.
 図2に示すように、レンズ光学系25は、物体側から像側(光の出射側)に向かって順に、開口絞り70、レンズ71(第1のレンズ)、レンズ72(第2のレンズ)、レンズ73(第3のレンズ)、レンズ74(第4のレンズ)、レンズ75(第5のレンズ)、レンズ76(第6のレンズ)、レンズ77(第7のレンズ)、レンズ78(第8のレンズ)、およびIRカットフィルタ79を備える。 As shown in FIG. 2, the lens optical system 25 includes, in order from the object side toward the image side (light exit side), an aperture stop 70, a lens 71 (first lens), a lens 72 (second lens), a lens 73 (third lens), a lens 74 (fourth lens), a lens 75 (fifth lens), a lens 76 (sixth lens), a lens 77 (seventh lens), a lens 78 (eighth lens), and an IR cut filter 79.
 開口絞り70は、レンズ光学系25に入射される光を制限する。 The aperture stop 70 limits the light entering the lens optical system 25.
 レンズ71は、物体側の面71aと像側の面71bを有し、正の屈折力を有する。レンズ71の近軸形状は物体側に凸のメニスカス形状である。 Lens 71 has an object-side surface 71a and an image-side surface 71b, and has positive refractive power. The paraxial shape of lens 71 is a meniscus shape convex toward the object side.
 なお、レンズ71の形状は、近軸において物体側に凸のメニスカス形状でなくてもよい。例えば、レンズ71の近軸形状は、物体側に凹のメニスカス形状であってもよい。即ち、面71aの曲率半径R101および面71bの曲率半径R102がともに負であるようにしてもよい。レンズ71の近軸形状は、物体側と像側の両方に凸の形状であってもよい。即ち、曲率半径R1が正であり、曲率半径R2が負であるようにしてもよい。レンズ光学系25の低背化を図るためには、曲率半径R1が正である方が望ましい。 The shape of lens 71 does not have to be a meniscus shape convex toward the object side on the paraxial line. For example, the paraxial shape of lens 71 may be a meniscus shape concave toward the object side. That is, the radius of curvature R101 of surface 71a and the radius of curvature R102 of surface 71b may both be negative. The paraxial shape of lens 71 may be a shape convex toward both the object side and the image side. That is, the radius of curvature R1 may be positive and the radius of curvature R2 may be negative. In order to reduce the height of lens optical system 25, it is desirable for the radius of curvature R1 to be positive.
 レンズ72は、物体側の面72aと像側の面72bを有し、負の屈折力を有する。正の屈折力を有するレンズ71の像面側に、負の屈折力を有するレンズ72が配置されることにより、レンズ光学系25の低背化を図りつつ、色収差を良好に補正することができる。レンズ72の近軸形状は、物体側に凸のメニスカス形状である。 Lens 72 has an object-side surface 72a and an image-side surface 72b, and has negative refractive power. By arranging lens 72 with negative refractive power on the image surface side of lens 71 with positive refractive power, it is possible to effectively correct chromatic aberration while reducing the height of lens optical system 25. The paraxial shape of lens 72 is a meniscus shape convex toward the object side.
 なお、レンズ72の形状は、近軸において物体側に凸のメニスカス形状でなくてもよい。例えば、レンズ72の近軸形状は、物体側に凹のメニスカス形状であってもよい。即ち、面72aの曲率半径R103および面72bの曲率半径R104がともに負であるようにしてもよい。レンズ72の近軸形状は、物体側と像側の両方に凹のレンズであるようにすることもできる。即ち、曲率半径R103が負であり、曲率半径R104が正であるようにすることもできる。レンズ光学系25の低背化を図るためには、曲率半径R103が正である方が望ましい。 The shape of lens 72 does not have to be a meniscus shape that is convex toward the object side on the paraxial line. For example, the paraxial shape of lens 72 may be a meniscus shape that is concave toward the object side. That is, the radius of curvature R103 of surface 72a and the radius of curvature R104 of surface 72b may both be negative. The paraxial shape of lens 72 can also be a lens that is concave toward both the object side and the image side. That is, the radius of curvature R103 can be negative and the radius of curvature R104 can be positive. In order to reduce the height of lens optical system 25, it is desirable for the radius of curvature R103 to be positive.
 レンズ73は、物体側の面73aと像側の面73bを有し、正の屈折力を有する。レンズ71乃至73の屈折力が、それぞれ、正、負、正であるため、広範囲の波長の光の色収差を良好に補正することができる。レンズ73は、近軸において物体側に凸のメニスカス形状を有し、近軸の外側の周辺部において像側に凹の形状を有する。 Lens 73 has an object-side surface 73a and an image-side surface 73b, and has positive refractive power. Because the refractive powers of lenses 71 to 73 are positive, negative, and positive, respectively, chromatic aberration of light over a wide range of wavelengths can be effectively corrected. Lens 73 has a meniscus shape that is convex toward the object side on the paraxial line, and a concave shape toward the image side on the outer periphery of the paraxial line.
 なお、レンズ73の形状は、この形状に限定されない。例えば、レンズ73の近軸形状は、物体側に凹のメニスカス形状であるようにしてもよい。即ち、面73aの曲率半径R105および面73bの曲率半径R106がともに負であるようにしてもよい。レンズ73の近軸形状は、物体側と像側の両方に凸の形状であるようにすることもできる。即ち、曲率半径R105が正であり、曲率半径R106が負であるようにすることもできる。レンズ光学系25の低背化を図るためには、曲率半径R105が正である方が望ましい。 The shape of lens 73 is not limited to this shape. For example, the paraxial shape of lens 73 may be a meniscus shape that is concave toward the object side. That is, the radius of curvature R105 of surface 73a and the radius of curvature R106 of surface 73b may both be negative. The paraxial shape of lens 73 may also be a shape that is convex toward both the object side and the image side. That is, the radius of curvature R105 may be positive and the radius of curvature R106 may be negative. In order to reduce the height of lens optical system 25, it is desirable for the radius of curvature R105 to be positive.
 レンズ74は、物体側の面74aと像側の面74bを有し、正の屈折力を有する。レンズ73と74の両方の屈折力が正であることにより、レンズ73と74の2枚のレンズによって正の屈折力を分担することができるため、レンズ73と74の屈折力の増大を抑制することができる。その結果、レンズ73と74の中心部や端部(エッジ)の厚みの増大を抑制することできるとともに、各種の収差を良好に補正することができる。 Lens 74 has an object-side surface 74a and an image-side surface 74b, and has positive refractive power. Because the refractive powers of both lenses 73 and 74 are positive, the positive refractive power can be shared by the two lenses 73 and 74, and an increase in the refractive power of lenses 73 and 74 can be suppressed. As a result, an increase in the thickness of the center and ends (edges) of lenses 73 and 74 can be suppressed, and various aberrations can be effectively corrected.
 レンズ74は、近軸において物体側と像側の両方に凸の形状を有し、周辺部において物体側に凹の形状を有する。レンズ73は周辺部において像側に凹の形状を有し、レンズ74は周辺部において物体側に凹の形状を有するので、レンズ73と74は、周辺部において凹部が対向する。これにより、像面湾曲および非点収差を良好に補正することができる。また、撮像面31aの中心部の外側の部分である周辺部の受光量の低下を抑制することができる。 Lens 74 has a convex shape on both the object side and the image side paraxially, and a concave shape on the object side in the periphery. Lens 73 has a concave shape on the image side in the periphery, and lens 74 has a concave shape on the object side in the periphery, so that lenses 73 and 74 have concave surfaces facing each other in the periphery. This allows for good correction of field curvature and astigmatism. It also makes it possible to suppress a decrease in the amount of light received in the periphery, which is the part outside the center of imaging surface 31a.
 なお、レンズ74の形状は、上述した形状に限定されない。例えば、レンズ74の近軸形状は、物体側に凸のメニスカス形状であるようにしてもよい。即ち、面74aの曲率半径R107と面74bの曲率半径R108がともに正であるようにしてもよい。レンズ74の近軸形状は、物体側に凹のメニスカス形状であるようにすることもできる。即ち、曲率半径R107およびR108がともに負であるようにすることもできる。 The shape of lens 74 is not limited to the above-mentioned shape. For example, the paraxial shape of lens 74 may be a meniscus shape that is convex toward the object side. That is, the radius of curvature R107 of surface 74a and the radius of curvature R108 of surface 74b may both be positive. The paraxial shape of lens 74 can also be a meniscus shape that is concave toward the object side. That is, the radii of curvature R107 and R108 may both be negative.
 レンズ75は、物体側の面75aと像側の面75bを有し、負の屈折力を有する。レンズ75の近軸形状は物体側に凸のメニスカス形状である。即ち、面75aの曲率半径R109および面75bの曲率半径R110がともに正である。これにより、近軸付近において球面収差や軸上色収差を良好に補正することができる。また、面71aの頂点から撮像面31aまでの距離である光学全長TTLを短縮することができる。 Lens 75 has an object-side surface 75a and an image-side surface 75b, and has negative refractive power. The paraxial shape of lens 75 is a meniscus shape convex toward the object side. That is, the radius of curvature R109 of surface 75a and the radius of curvature R110 of surface 75b are both positive. This allows for excellent correction of spherical aberration and axial chromatic aberration near the paraxial line. In addition, the total optical length TTL, which is the distance from the apex of surface 71a to the imaging plane 31a, can be shortened.
 レンズ76は、物体側の面76aと像側の面76bを有し、負の屈折力を有する。レンズ76の近軸形状は物体側に凸のメニスカス形状である。即ち、面76aの曲率半径R111および面76bの曲率半径R112がともに正である。 Lens 76 has an object-side surface 76a and an image-side surface 76b, and has negative refractive power. The paraxial shape of lens 76 is a meniscus shape convex toward the object side. That is, the radius of curvature R111 of surface 76a and the radius of curvature R112 of surface 76b are both positive.
 レンズ77は、物体側の面77aと像側の面77bを有し、正の屈折力を有する。レンズ77の近軸形状は物体側に凸のメニスカス形状である。即ち、面77aの曲率半径R113および面76bの曲率半径R114がともに正である。 Lens 77 has an object-side surface 77a and an image-side surface 77b, and has positive refractive power. The paraxial shape of lens 77 is a meniscus shape convex toward the object side. That is, the radius of curvature R113 of surface 77a and the radius of curvature R114 of surface 76b are both positive.
 面75a,75b,76a,76b,77a、および77bからなる6つの面のうちの5つ以上の面のレンズ有効径周辺部の接線角度が40度以上であり、その5つ以上の面の周辺部が物体側に凹の形状を有する。なお、レンズ有効径周辺部とは光軸からの垂直距離がレンズ有効径の9.0割以上である部分である。レンズ有効径周辺部の接線角度とは、レンズ有効径周辺部の形状を1階微分することにより得られる、その形状の局所接線角度である。 The tangent angle of the peripheral portion of the effective lens diameter of five or more of the six surfaces consisting of surfaces 75a, 75b, 76a, 76b, 77a, and 77b is 40 degrees or more, and the peripheral portions of the five or more surfaces have a concave shape toward the object side. The peripheral portion of the effective lens diameter is the portion whose perpendicular distance from the optical axis is 90% or more of the effective lens diameter. The tangent angle of the peripheral portion of the effective lens diameter is the local tangent angle of the shape obtained by first-order differentiation of the shape of the peripheral portion of the effective lens diameter.
 面75a,75b,76a,76b,77a、および77bからなる6つの面のうちの5つ以上の面のレンズ有効径周辺部の形状の接線角度が40度以上である構成により、レンズ75乃至77の中心部において球面収差および非点収差を良好に補正することができる。この構成により、レンズ有効径周辺部は周辺光線を広げることができる。従って、レンズ光学系25における光学全長TTLと最大像高IHの比であるTTL/IHを小さくし、レンズ光学系25の低背化を実現することができる。この構成により、撮像面31aの周辺部の光量の低下を抑制することができる。この構成は、レンズ光学系25の周辺部におけるコマ収差および倍率色収差の補正に適している。なお、最大像高IHとは、撮像面31aの中心から最大画角の光線の主光線が到達する位置までの距離である。 By configuring the tangent angle of the shape of the peripheral part of the lens effective diameter of five or more of the six surfaces consisting of surfaces 75a, 75b, 76a, 76b, 77a, and 77b to be 40 degrees or more, spherical aberration and astigmatism can be well corrected in the center of lenses 75 to 77. With this configuration, the peripheral part of the lens effective diameter can expand the peripheral light rays. Therefore, it is possible to reduce TTL/IH, which is the ratio of the total optical length TTL to the maximum image height IH in the lens optical system 25, and to realize a low profile of the lens optical system 25. With this configuration, it is possible to suppress the decrease in the amount of light in the peripheral part of the imaging surface 31a. This configuration is suitable for correcting coma aberration and chromatic aberration of magnification in the peripheral part of the lens optical system 25. Note that the maximum image height IH is the distance from the center of the imaging surface 31a to the position where the chief ray of the light of the maximum angle of view reaches.
 レンズ75乃至77は、レンズ有効径の中心部と周辺部の間の中間部に変曲点を有さない。これにより、中心像高と中間像高の倍率色収差バランスを良好にすることができる。また、像面湾曲の補正が容易になる。 Lens 75 to 77 do not have an inflection point in the intermediate portion between the center and periphery of the lens effective diameter. This allows for a good balance of chromatic aberration of magnification at the central image height and intermediate image height. It also makes it easier to correct curvature of field.
 レンズ78は、物体側の面78aと像側の面78bを有し、負の屈折力を有する。レンズ75乃至77より像側に配置されるレンズ78が負の屈折力を有するので、軸上色収差および倍率色収差を良好に補正することができる。 Lens 78 has an object-side surface 78a and an image-side surface 78b, and has negative refractive power. Since lens 78, which is positioned closer to the image side than lenses 75 to 77, has negative refractive power, axial chromatic aberration and lateral chromatic aberration can be corrected well.
 レンズ78の近軸形状は、物体側と像側の両方に凹の形状である。即ち、面78aの曲率半径R105が負であり、面78bの曲率半径R106が正である。これにより、マージナル光線をコントロールし、Fナンバーを小さくすることができる。また、面78aおよび面78bは変曲点を1点以上有し、非球面である。これにより、レンズ光学系25の周辺部における像面湾曲および歪曲収差を良好に補正することができる。 The paraxial shape of lens 78 is a concave shape on both the object side and the image side. That is, the radius of curvature R105 of surface 78a is negative, and the radius of curvature R106 of surface 78b is positive. This makes it possible to control marginal rays and reduce the F-number. In addition, surfaces 78a and 78b have one or more inflection points and are aspheric. This makes it possible to effectively correct the field curvature and distortion in the peripheral portion of lens optical system 25.
 レンズ78が上述した形状を有することにより、レンズ光学系25から撮像面31aに入射される光の入射角度を主光線角度(CRA(Chief Ray Angle))の範囲内に抑制することができる。これにより、画像の中心部から周辺部までの収差を良好に補正することができる。 By having the lens 78 have the above-mentioned shape, the angle of incidence of light incident on the imaging surface 31a from the lens optical system 25 can be suppressed within the range of the chief ray angle (CRA (Chief Ray Angle)). This allows for excellent correction of aberrations from the center to the periphery of the image.
 IRカットフィルタ79は、入射された光のうちの赤外光以外の光を透過させる。なお、IRカットフィルタ79は設けられなくてもよい。 The IR cut filter 79 transmits all light other than infrared light from the incident light. Note that the IR cut filter 79 does not necessarily have to be provided.
 被写体(物体)からレンズ光学系25に入射された光は、面71a、71b、72a,72b,73a,73b,74a,74b,75a,75b,76a,76b,77a,77b、およびIRカットフィルタ79を介して出射される。このようにしてレンズ光学系25から出射された光は、ガラス基板23、接着剤22、およびオンチップレンズ32を介して、撮像面31aに集光される。 Light incident on the lens optical system 25 from the subject (object) is emitted via surfaces 71a, 71b, 72a, 72b, 73a, 73b, 74a, 74b, 75a, 75b, 76a, 76b, 77a, 77b, and IR cut filter 79. The light emitted from the lens optical system 25 in this manner is focused on the imaging surface 31a via the glass substrate 23, adhesive 22, and on-chip lens 32.
 図2では、図を簡略化するため、撮像面31aのみを図示しているが、実際には、レンズ光学系25と撮像面31aの間には、ガラス基板23、接着剤22、およびオンチップレンズ32が存在する。このことは、後述する図10、図18、図26、および図34においても同様である。 In FIG. 2, in order to simplify the drawing, only the imaging surface 31a is shown, but in reality, a glass substrate 23, adhesive 22, and on-chip lens 32 are present between the lens optical system 25 and the imaging surface 31a. This is also true in FIGS. 10, 18, 26, and 34, which will be described later.
<各面の変曲点の第1の例>
 図3は、図2の面71a乃至78aおよび面71b乃至78bの変曲点の数および位置を示す表である。
<First example of inflection points on each surface>
FIG. 3 is a table showing the number and positions of inflection points of surfaces 71a to 78a and surfaces 71b to 78b of FIG.
 図3の表の各行は、面71a乃至78aおよび面71b乃至78bそれぞれに対応する。各列は、左側から順に、面番号、変曲点の数、1番目の変曲点の位置である変曲点位置#1、2番目の変曲点の位置である変曲点位置#2、3番目の変曲点の位置である変曲点位置#3に対応する。 Each row in the table in FIG. 3 corresponds to each of the faces 71a to 78a and faces 71b to 78b. From the left, each column corresponds to the face number, the number of inflection points, inflection point position #1 which is the position of the first inflection point, inflection point position #2 which is the position of the second inflection point, and inflection point position #3 which is the position of the third inflection point.
 面番号とは、レンズ光学系25の各面に付与された番号である。本明細書では、面71a,71b,72a,72b,73a,73b,74a,74b,75a,75b,76a,76b,77a,77b,78a,78bに対して、順に、101から116までの面番号が付与されているものとする。各変曲点の位置は、その変曲点からレンズ光学系25の光軸までの垂直距離を表す。 The surface number is a number assigned to each surface of the lens optical system 25. In this specification, the surface numbers 101 to 116 are assigned to surfaces 71a, 71b, 72a, 72b, 73a, 73b, 74a, 74b, 75a, 75b, 76a, 76b, 77a, 77b, 78a, and 78b, in that order. The position of each inflection point represents the vertical distance from the inflection point to the optical axis of the lens optical system 25.
 図3に示すように、面番号が101である面71aと面番号が102である面71bは1つの変曲点を有する。面71aおよび71bの変曲点位置#1はそれぞれ1.93,2.06である。面番号が103である面72aと面番号が104である面72bは変曲点を有しない。面番号が105である面73aと面番号が106である面73bは1つの変曲点を有する。面73aおよび73bの変曲点位置#1はそれぞれ1.815,1.72である。 As shown in Figure 3, surface 71a with surface number 101 and surface 71b with surface number 102 have one inflection point. Inflection point positions #1 of surfaces 71a and 71b are 1.93 and 2.06, respectively. Surface 72a with surface number 103 and surface 72b with surface number 104 do not have an inflection point. Surface 73a with surface number 105 and surface 73b with surface number 106 have one inflection point. Inflection point positions #1 of surfaces 73a and 73b are 1.815 and 1.72, respectively.
 面番号が107である面74aは2つの変曲点を有し、面74aの変曲点位置#1および#2はそれぞれ0.431,1.50である。面番号が108である面74bと面番号が109である面75aは1つの変曲点を有する。面74bおよび75aの変曲点位置#1はそれぞれ1.56,0.59である。面番号が110である面75bは3つの変曲点を有し、面75bの変曲点位置#1乃至#3はそれぞれ0.71,2.58,2.63である。面番号が111である面76aと面番号が112である面76bは2つの変曲点を有する。面76aの変曲点位置#1および#2はそれぞれ0.748,2.871であり、面76bの変曲点位置#1および#2はそれぞれ0.696,3.261である。 Surface 74a, with face number 107, has two inflection points, and inflection point positions #1 and #2 of surface 74a are 0.431 and 1.50, respectively. Surface 74b, with face number 108, and surface 75a, with face number 109, have one inflection point. Inflection point positions #1 of surfaces 74b and 75a are 1.56 and 0.59, respectively. Surface 75b, with face number 110, has three inflection points, and inflection point positions #1 to #3 of surface 75b are 0.71, 2.58, and 2.63, respectively. Surface 76a, with face number 111, and surface 76b, with face number 112, have two inflection points. The inflection point positions #1 and #2 of surface 76a are 0.748 and 2.871, respectively, and the inflection point positions #1 and #2 of surface 76b are 0.696 and 3.261, respectively.
 面番号が113である面77aは3つの変曲点を有し、面77aの変曲点位置#1乃至#3はそれぞれ0.867,3.204,3.598である。面番号が114である面77bは1つの変曲点を有し、面77bの変曲点位置#1は0.905である。面番号が115である面78aは2つの変曲点を有し、面78aの変曲点位置#1および2はそれぞれ3.046,5.844である。面番号が116である面78bは3つの変曲点を有し、面78bの変曲点位置#1乃至#3はそれぞれ1.157,5.291,6.125である。 Surface 77a, with face number 113, has three inflection points, and inflection point positions #1 to #3 of surface 77a are 0.867, 3.204, and 3.598, respectively. Surface 77b, with face number 114, has one inflection point, and inflection point position #1 of surface 77b is 0.905. Surface 78a, with face number 115, has two inflection points, and inflection point positions #1 and #2 of surface 78a are 3.046 and 5.844, respectively. Surface 78b, with face number 116, has three inflection points, and inflection point positions #1 to #3 of surface 78b are 1.157, 5.291, and 6.125, respectively.
<各レンズのレンズデータの第1の例>
 図4は、レンズ71乃至78のレンズデータを示す表である。
<First example of lens data for each lens>
FIG. 4 is a table showing lens data for lenses 71 to 78.
 図4の表の各行は、面71a乃至78aおよび面71b乃至78bそれぞれに対応する。各列は、左側から順に、面番号i、曲率半径Ri、最も近い像側の面との中心の間隔である面間隔Di、d線に対する屈折率Ndi、およびd線に対するアッベ数vdiを示している。 The rows in the table in FIG. 4 correspond to surfaces 71a to 78a and surfaces 71b to 78b, respectively. From the left, each column indicates the surface number i, the radius of curvature Ri, the surface spacing Di, which is the distance between the centers of the surfaces closest to the image side, the refractive index Ndi for the d line, and the Abbe number vdi for the d line.
 図4に示すように、面番号iが101である面71aの曲率半径R101は、3.37305であり、面71bとの面間隔D101は0.66であり、屈折率Nd101は1.6211である。面71aのアッベ数vd101、即ちレンズ71のアッベ数v101は63.733である。面番号iが102である面71bの曲率半径R102は、7.18706であり、面72aとの面間隔D102は0.015である。 As shown in FIG. 4, the radius of curvature R101 of surface 71a, whose surface number i is 101, is 3.37305, the surface distance D101 to surface 71b is 0.66, and the refractive index Nd101 is 1.6211. The Abbe number vd101 of surface 71a, i.e., the Abbe number v101 of lens 71, is 63.733. The radius of curvature R102 of surface 71b, whose surface number i is 102, is 7.18706, and the surface distance D102 to surface 72a is 0.015.
 面番号iが103である面72aの曲率半径R103は、4.75295であり、面72bとの面間隔D103は0.35であり、屈折率Nd103は1.7123である。面72aのアッベ数vd103、即ちレンズ72のアッベ数v102は15.499である。面番号iが104である面72bの曲率半径R104は、3.64512であり、面73aとの面間隔D104は0.385である。 The radius of curvature R103 of surface 72a, whose surface number i is 103, is 4.75295, the surface distance D103 from surface 72b is 0.35, and the refractive index Nd103 is 1.7123. The Abbe number vd103 of surface 72a, i.e., the Abbe number v102 of lens 72, is 15.499. The radius of curvature R104 of surface 72b, whose surface number i is 104, is 3.64512, and the surface distance D104 from surface 73a is 0.385.
 面番号iが105である面73aの曲率半径R105は、5.71517であり、面73bとの面間隔D105は0.6であり、屈折率Nd105は1.5248である。面73aのアッベ数vd105、即ちレンズ73のアッベ数v103は70.100である。面番号iが106である面73bの曲率半径R106は、1.23027×10であり、面74aとの面間隔D106は0.36である。 The radius of curvature R105 of surface 73a, whose surface number i is 105, is 5.71517, the surface distance D105 to surface 73b is 0.6, and the refractive index Nd105 is 1.5248. The Abbe number vd105 of surface 73a, i.e., the Abbe number v103 of lens 73, is 70.100. The radius of curvature R106 of surface 73b, whose surface number i is 106, is 1.23027×10, and the surface distance D106 to surface 74a is 0.36.
 面番号iが107である面74aの曲率半径R107は、4.00345×10であり、面74bとの面間隔D107は0.425であり、屈折率Nd107は1.5468である。面74aのアッベ数vd107、即ちレンズ74のアッベ数v104は55.987である。面番号iが108である面74bの曲率半径R108は、-2.89967×10であり、面75aとの面間隔D108は0.81である。 The radius of curvature R107 of surface 74a, whose surface number i is 107, is 4.00345×10, the surface distance D107 from surface 74b is 0.425, and the refractive index Nd107 is 1.5468. The Abbe number vd107 of surface 74a, i.e., the Abbe number v104 of lens 74, is 55.987. The radius of curvature R108 of surface 74b, whose surface number i is 108, is -2.89967×10, and the surface distance D108 from surface 75a is 0.81.
 面番号iが109である面75aの曲率半径R109は、7.84777であり、面75bとの面間隔D109は0.4であり、屈折率Nd109は1.5468である。面75aのアッベ数vd109、即ちレンズ75のアッベ数v105は55.987である。面番号iが110である面75bの曲率半径R110は、5.83417であり、面76aとの面間隔D110は0.65である。 The radius of curvature R109 of surface 75a, whose surface number i is 109, is 7.84777, the surface distance D109 from surface 75b is 0.4, and the refractive index Nd109 is 1.5468. The Abbe number vd109 of surface 75a, i.e., the Abbe number v105 of lens 75, is 55.987. The radius of curvature R110 of surface 75b, whose surface number i is 110, is 5.83417, and the surface distance D110 from surface 76a is 0.65.
 面番号iが111である面76aの曲率半径R111は、9.29925であり、面76bとの面間隔D111は0.425であり、屈折率Nd111は1.7123である。面76aのアッベ数vd111、即ちレンズ76のアッベ数v106は15.499である。面番号iが112である面76bの曲率半径R112は、7.18602であり、面77aとの面間隔D112は0.345である。 The radius of curvature R111 of surface 76a, whose surface number i is 111, is 9.29925, the surface distance D111 from surface 76b is 0.425, and the refractive index Nd111 is 1.7123. The Abbe number vd111 of surface 76a, i.e., the Abbe number v106 of lens 76, is 15.499. The radius of curvature R112 of surface 76b, whose surface number i is 112, is 7.18602, and the surface distance D112 from surface 77a is 0.345.
 面番号iが113である面77aの曲率半径R113は、4.89673であり、面77bとの面間隔D113は0.567であり、屈折率Nd113は1.5468である。面77aのアッベ数vd113、即ちレンズ77のアッベ数v107は55.987である。面番号iが114である面77bの曲率半径R114は、2.46257×10であり、面78aとの面間隔D114は0.91である。 The radius of curvature R113 of surface 77a, whose surface number i is 113, is 4.89673, the surface distance D113 from surface 77b is 0.567, and the refractive index Nd113 is 1.5468. The Abbe number vd113 of surface 77a, i.e., the Abbe number v107 of lens 77, is 55.987. The radius of curvature R114 of surface 77b, whose surface number i is 114, is 2.46257×10, and the surface distance D114 from surface 78a is 0.91.
 面番号iが115である面78aの曲率半径R115は、-5.40813であり、面78bとの面間隔D115は0.775であり、屈折率Nd115は1.5187である。面78aのアッベ数vd115、即ちレンズ78のアッベ数v108は64.167である。面番号iが116である面78bの曲率半径R116は、8.83766である。 The radius of curvature R115 of surface 78a, whose surface number i is 115, is -5.40813, the surface distance D115 to surface 78b is 0.775, and the refractive index Nd115 is 1.5187. The Abbe number vd115 of surface 78a, i.e., the Abbe number v108 of lens 78, is 64.167. The radius of curvature R116 of surface 78b, whose surface number i is 116, is 8.83766.
<各面の非球面データの第1の例>
 図5は、面71a乃至78aおよび面71b乃至78bの非球面データを示す表である。
<First Example of Aspheric Data for Each Surface>
FIG. 5 is a table showing the aspheric data of the surfaces 71a to 78a and the surfaces 71b to 78b.
 図5の表の各行は、面71a乃至78aおよび面71b乃至78bそれぞれに対応する。各列は、左側から順に、面番号i、円錐係数K、および3次非球面係数乃至20次非球面係数を示している。 The rows in the table in FIG. 5 correspond to surfaces 71a to 78a and surfaces 71b to 78b, respectively. From the left, the columns indicate the surface number i, the conic coefficient K, and the third-order to twentieth-order aspheric coefficients.
 図5に示すように、面番号iが101である面71aの円錐係数Kは、-4.95284×10-1である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数は、それぞれ、6.96986×10-4, -1.66086×10-4, 3.65417×10-5, -2.62433×10-5である。面番号iが102である面71bの円錐係数Kは、3.31278×10-2である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数は、それぞれ、7.44670×10-4, 6.18249×10-4,-2.51522×10-4, 1.87226×10-5である。 5, the conic coefficient K of the surface 71a, whose surface number i is 101, is -4.95284× 10-1 . The fourth-order aspheric coefficient, the sixth-order aspheric coefficient, the eighth-order aspheric coefficient, and the tenth-order aspheric coefficient are 6.96986× 10-4 , -1.66086× 10-4 , 3.65417× 10-5 , and -2.62433× 10-5 , respectively. The conic coefficient K of the surface 71b, whose surface number i is 102, is 3.31278× 10-2 . The fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, and tenth-order aspherical coefficients are 7.44670×10 −4 , 6.18249×10 −4 , −2.51522×10 −4 , and 1.87226×10 −5 , respectively.
 面番号iが103である面72aの円錐係数Kは0である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数は、それぞれ、-4.29618×10-3, 1.30831×10-3, -3.23642×10-4, 6.12907×10-5である。面番号iが104である面72bの円錐係数Kは0である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数は、それぞれ、-4.42726×10-3, 6.00904×10-4,3.16490×10-6, 3.46712×10-5である。 The cone coefficient K of the surface 72a, whose surface number i is 103, is 0. The fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, and tenth-order aspherical coefficients are -4.29618× 10-3 , 1.30831× 10-3 , -3.23642× 10-4 , and 6.12907× 10-5 , respectively. The cone coefficient K of the surface 72b, whose surface number i is 104, is 0. The fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, and tenth-order aspherical coefficients are -4.42726× 10-3 , 6.00904× 10-4 , 3.16490× 10-6 , and 3.46712× 10-5 , respectively.
 面番号iが105である面73aの円錐係数Kは4.85133×10-1である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数、12次非球面係数、14次非球面係数は、それぞれ、2.63348×10-3, 1.63497×10-3, -9.45412×10-4, 4.35987×10-4,-4.40573×10-5, -5.55863×10-6である。面番号iが106である面73bの円錐係数Kは-2.62404である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数、12次非球面係数、14次非球面係数は、それぞれ、-1.38846×10-3, 1.82913×10-3,-1.51971×10-3, 5.36228×10-4,-4.95679×10-5, -4.18754×10-6である。 The conic coefficient K of the surface 73a having the surface number i of 105 is 4.85133× 10-1 . The fourth-order aspheric coefficients, sixth-order aspheric coefficients, eighth-order aspheric coefficients, tenth-order aspheric coefficients, twelfth-order aspheric coefficients, and fourteenth-order aspheric coefficients are 2.63348× 10-3 , 1.63497× 10-3 , -9.45412× 10-4 , 4.35987× 10-4 , -4.40573× 10-5 , and -5.55863× 10-6 , respectively. The conic coefficient K of the surface 73b having the surface number i of 106 is -2.62404. The fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, tenth-order aspherical coefficients, twelfth-order aspherical coefficients, and fourteenth-order aspherical coefficients are -1.38846× 10-3 , 1.82913× 10-3 , -1.51971× 10-3 , 5.36228× 10-4 , -4.95679× 10-5 , and -4.18754× 10-6 , respectively.
 面番号iが107である面74aの円錐係数Kは0である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数、12次非球面係数、14次非球面係数は、それぞれ、-1.18276×10-2, 2.53617×10-3, -1.82642×10-3, 3.99737×10-4,-1.10814×10-5, 9.66034×10-6である。面番号iが108である面74bの円錐係数Kは0である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数、12次非球面係数、14次非球面係数、16次非球面係数は、それぞれ、-1.39840×10-2, 2.79166×10-3,-1.27439×10-3, 2.26747×10-4,-5.23498×10-6, 4.20564×10-6, 1.41108×10-6である。 The conic coefficient K of the surface 74a, whose surface number i is 107, is 0. The fourth-order aspheric coefficients, sixth-order aspheric coefficients, eighth-order aspheric coefficients, tenth-order aspheric coefficients, twelfth-order aspheric coefficients, and fourteenth-order aspheric coefficients are -1.18276× 10-2 , 2.53617× 10-3 , -1.82642× 10-3 , 3.99737× 10-4 , -1.10814× 10-5 , and 9.66034× 10-6 , respectively. The conic coefficient K of the surface 74b, whose surface number i is 108, is 0. The fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, tenth-order aspherical coefficients, twelfth-order aspherical coefficients, fourteenth-order aspherical coefficients, and sixteenth-order aspherical coefficients are -1.39840× 10-2 , 2.79166× 10-3 , -1.27439× 10-3 , 2.26747× 10-4 , -5.23498× 10-6 , 4.20564× 10-6 , and 1.41108× 10-6 , respectively.
 面番号iが109である面75aの円錐係数Kは1.01521×10である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数、12次非球面係数、14次非球面係数、16次非球面係数、18次非球面係数、20次非球面係数は、それぞれ、-3.88282×10-2, 7.45360×10-3, -2.59247×10-3, 4.82240×10-4,-8.15685×10-5, 3.44451×10-6, 2.83837×10-6,-7.08217×10-7, 4.73193×10-8である。面番号iが110である面75bの円錐係数Kは-2.55436である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数、12次非球面係数、14次非球面係数、16次非球面係数、18次非球面係数、20次非球面係数は、それぞれ、-3.48681×10-2, 6.88464×10-3,-1.31931×10-3, 9.51289×10-5,2.14256×10-6, -2.32314×10-7, 1.95319×10-10, -1.02794×10-9, -3.29117×10-11である。 The conic coefficient K of the surface 75a whose surface number i is 109 is 1.01521×10. The fourth-order aspherical coefficients, sixth-order aspherical coefficients, eighth-order aspherical coefficients, tenth-order aspherical coefficients, twelfth-order aspherical coefficients, fourteenth-order aspherical coefficients, sixteenth-order aspherical coefficients, eighteenth-order aspherical coefficients, and twentieth-order aspherical coefficients are -3.88282× 10-2 , 7.45360× 10-3 , -2.59247× 10-3 , 4.82240× 10-4 , -8.15685× 10-5 , 3.44451× 10-6 , 2.83837× 10-6 , -7.08217× 10-7 , and 4.73193× 10-8 , respectively. The conic coefficient K of the surface 75b whose surface number i is 110 is -2.55436. The fourth-order aspheric coefficients, sixth-order aspheric coefficients, eighth-order aspheric coefficients, tenth-order aspheric coefficients, twelfth-order aspheric coefficients, fourteenth-order aspheric coefficients, sixteenth-order aspheric coefficients, eighteenth-order aspheric coefficients and twentieth-order aspheric coefficients are -3.48681× 10-2 , 6.88464× 10-3 , -1.31931× 10-3 , 9.51289× 10-5 , 2.14256× 10-6 , -2.32314× 10-7 , 1.95319× 10-10 , -1.02794× 10-9 and -3.29117× 10-11 , respectively.
 面番号iが111である面76aの円錐係数Kは-4.15826である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数、12次非球面係数、14次非球面係数、16次非球面係数、18次非球面係数、20次非球面係数は、それぞれ、-1.62397×10-2, 1.17595×10-3, -3.52818×10-4, 6.41724×10-5,-1.22211×10-5, 8.99911×10-7, 6.68589×10-8,-1.48203×10-8, 7.27188×10-10である。面番号iが112である面75bの円錐係数Kは3.17157である。4次非球面係数、6次非球面係数、8次非球面係数、10次非球面係数、12次非球面係数、14次非球面係数、16次非球面係数、18次非球面係数、20次非球面係数は、それぞれ、-2.94869×10-2, 5.00192×10-3,-6.79952×10-4, -5.91024×10-5,3.66196×10-5, -6.27076×10-6, 5.59740×10-7, -2.60232×10-8, 4.95132×10-10である。 The conic coefficient K of the surface 76a whose surface number i is 111 is -4.15826. The fourth-order aspheric coefficients, sixth-order aspheric coefficients, eighth-order aspheric coefficients, tenth-order aspheric coefficients, twelfth-order aspheric coefficients, fourteenth-order aspheric coefficients, sixteenth-order aspheric coefficients, eighteenth-order aspheric coefficients, and twentieth-order aspheric coefficients are -1.62397× 10-2 , 1.17595× 10-3 , -3.52818× 10-4 , 6.41724× 10-5 , -1.22211× 10-5 , 8.99911× 10-7 , 6.68589× 10-8 , -1.48203× 10-8 , and 7.27188× 10-10 , respectively. The conic coefficient K of the surface 75b whose surface number i is 112 is 3.17157. The fourth-order aspherical coefficients, the sixth-order aspherical coefficients, the eighth-order aspherical coefficients, the tenth-order aspherical coefficients, the twelfth-order aspherical coefficients, the fourteenth-order aspherical coefficients, the sixteenth-order aspherical coefficients, the eighteenth-order aspherical coefficients, and the twentieth-order aspherical coefficients are -2.94869× 10-2 , 5.00192× 10-3 , -6.79952× 10-4 , -5.91024× 10-5 , 3.66196× 10-5 , -6.27076× 10-6 , 5.59740× 10-7 , -2.60232× 10-8 , and 4.95132× 10-10 , respectively.
 面番号iが113である面77aの円錐係数Kは-1.46957×10である。3次非球面係数乃至20次非球面係数は、それぞれ、2.37555×10-2,-3.33412×10-2, 3.32604×10-3, 6.21486×10-4,-8.67657×10-5, -5.14782×10-5, -5.94732×10-6,1.10587×10-6, 2.02809×10-7,1.03199×10-7, 2.86612×10-8,5.00438×10-9,1.07987×10-9, 9.51144×10-11, 1.14768×10-12,-3.54930×10-12, -5.81113×10-12, -2.17931×10-12である。面番号iが114である面77bの円錐係数Kは-1.00000×10である。3次非球面係数乃至20次非球面係数は、それぞれ、2.30425×10-2, -1.26804×10-2,-4.40676×10-3, 1.10374×10-3,9.50750×10-5, -5.17186×10-7, -2.63207×10-6, -4.72756×10-7, -2.44504×10-8, -5.71115×10-9,-1.67620×10-10, 1.23809×10-10,6.20177×10-11, 2.02389×10-11, 2.96427×10-12, 4.60982×10-13, -1.25766×10-13, -6.20547×10-14である。 The conic coefficient K of the surface 77a having the surface number i of 113 is −1.46957×10. The third-order to twentieth-order aspheric coefficients are 2.37555× 10−2 , -3.33412× 10−2 , 3.32604× 10−3 , 6.21486× 10−4 , -8.67657× 10−5 , -5.14782×10−5, -5.94732× 10−6 , 1.10587× 10−6 , 2.02809× 10−7 , 1.03199× 10−7 , 2.86612× 10−8 , 5.00438× 10−9 , 1.07987× 10−9 , 9.51144× 10−11 , and 1.14768×10 The conic coefficient K of the surface 77b having the surface number i of 114 is -1.00000× 10 . The third order aspheric coefficients to the twentieth order aspheric coefficients are 2.30425× 10-2 , -1.26804× 10-2 , -4.40676× 10-3 , 1.10374× 10-3 , 9.50750× 10-5 , -5.17186× 10-7 , -2.63207× 10-6 , -4.72756× 10-7 , -2.44504× 10-8 , -5.71115× 10-9 , -1.67620× 10-10 , 1.23809× 10-10 , 6.20177× 10-11 , 2.02389× 10-11 , 2.96427× 10-12 , 4.60982× 10-13 , -1.25766× 10-13 , -6.20547× 10-14 .
 面番号iが115である面78aの円錐係数Kは-2.89279×10-1である。3次非球面係数乃至20次非球面係数は、それぞれ、3.72196×10-3,-3.64799×10-3, 8.75848×10-5, 3.14071×10-4,8.24842×10-6, -4.58837×10-6, -7.90490×10-7,-3.72671×10-8, 5.62579×10-9,1.19330×10-9, 1.87695×10-10,2.29236×10-11,3.40439×10-12, 6.25482×10-13, -4.94140×10-14,-4.59111×10-14, -8.56942×10-15, 1.61360×10-15である。面番号iが116である面78bの円錐係数Kは-4.49224である。3次非球面係数乃至20次非球面係数は、それぞれ、-6.80841×10-3, -5.44595×10-3,3.53342×10-4, 4.74096×10-4,-8.19325×10-5, -9.97757×10-6, 5.80642×10-7, 3.88535×10-7, 3.09123×10-8, -5.32922×10-9,-1.43008×10-9, -1.51847×10-10,1.39741×10-11, 6.88740×10-12, 7.03860×10-13, -5.23531×10-14, -3.16249×10-14, 2.21611×10-15である。 The conic coefficient K of the surface 78a having the surface number i of 115 is -2.89279×10 -1 . The third-order to twentieth-order aspheric coefficients are 3.72196× 10−3 , -3.64799× 10−3 , 8.75848× 10−5 , 3.14071× 10−4 , 8.24842× 10−6 , -4.58837× 10−6 , -7.90490× 10−7 , -3.72671× 10−8 , 5.62579× 10−9 , 1.19330× 10−9 , 1.87695× 10−10 , 2.29236× 10−11 , 3.40439× 10−12 , 6.25482× 10−13 , The conic coefficient K of the surface 78b having the surface number i of 116 is -4.49224 . The third-order to twentieth-order aspheric coefficients are, respectively, -6.80841× 10-3 , -5.44595× 10-3 , 3.53342× 10-4 , 4.74096× 10-4 , -8.19325× 10-5 , -9.97757×10-6, 5.80642×10-7, 3.88535× 10-7 , 3.09123× 10-8 , -5.32922× 10-9 , -1.43008 × 10-9 , -1.51847× 10-10 , 1.39741× 10-11 , 6.88740× 10-12 , 7.03860× 10-13 , -5.23531× 10-14 , -3.16249× 10-14 , 2.21611× 10-15 .
<レンズ有効部の接線角度の第1の例>
 図6乃至図8は、それぞれ、面75aおよび75b、面76aおよび76b、面77aおよび面77bの、レンズ光学系25の光軸からの垂直距離がレンズ有効径の範囲内であるレンズ有効部の接線角度を示すグラフである。
<First Example of Tangent Angle of Lens Effective Portion>
6 to 8 are graphs showing the tangent angles of the lens effective portions of the surfaces 75a and 75b, the surfaces 76a and 76b, and the surfaces 77a and 77b, respectively, whose perpendicular distances from the optical axis of the lens optical system 25 are within the range of the lens effective diameter.
 図6乃至図8において、横軸は、レンズ光学系25の光軸の位置を0としたときの垂直方向の位置[mm]を表し、縦軸は、接線角度[deg]を表す。このことは、後述する図14乃至図16、図22乃至図24、図30乃至図32、および図38乃至図40においても同様である。 In Figures 6 to 8, the horizontal axis represents the vertical position [mm] when the position of the optical axis of the lens optical system 25 is set to 0, and the vertical axis represents the tangent angle [deg]. This also applies to Figures 14 to 16, 22 to 24, 30 to 32, and 38 to 40, which will be described later.
 図6のAは、面75aの垂直方向の位置と接線角度の関係を表し、図6のBは、面75bの垂直方向の位置と接線角度の関係を表している。図7のAは、面76aの垂直方向の位置と接線角度の関係を表し、図7のBは、面76bの垂直方向の位置と接線角度の関係を表している。図8のAは、面77aの垂直方向の位置と接線角度の関係を表し、図8のBは、面77bの垂直方向の位置と接線角度の関係を表している。 A in Figure 6 shows the relationship between the vertical position and the tangent angle of surface 75a, and B in Figure 6 shows the relationship between the vertical position and the tangent angle of surface 75b. A in Figure 7 shows the relationship between the vertical position and the tangent angle of surface 76a, and B in Figure 7 shows the relationship between the vertical position and the tangent angle of surface 76b. A in Figure 8 shows the relationship between the vertical position and the tangent angle of surface 77a, and B in Figure 8 shows the relationship between the vertical position and the tangent angle of surface 77b.
 図6乃至図8に示すように、面75a,75b,76a,76b,77a、および77bの全てのレンズ有効径周辺部の接線角度は40度以上になっている。 As shown in Figures 6 to 8, the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 75a, 75b, 76a, 76b, 77a, and 77b are 40 degrees or greater.
<球面収差、像面湾曲、および歪曲収差の第1の例>
 図9は、図2のレンズ光学系25において発生する球面収差、像面湾曲、および歪曲収差を示すグラフである。
<First Example of Spherical Aberration, Field Curvature, and Distortion>
FIG. 9 is a graph showing spherical aberration, field curvature, and distortion occurring in the lens optical system 25 of FIG.
 図9のAは、図2のレンズ光学系25において発生する、波長が0.444,0.486,0.546,0.588,0.656μmである光の波長ごとの縦方向の球面収差を表すグラフである。図9のAのグラフにおいて、横軸は、球面収差[mm]を表し、縦軸は、正規化瞳座標を表す。このことは、後述する図17のA、図25のA、図33のA、および図41のAにおいても同様である。瞳半径は2.0000mmである。 A of FIG. 9 is a graph showing the vertical spherical aberration for each wavelength of light having wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 μm that occurs in the lens optical system 25 of FIG. 2. In the graph of FIG. 9A, the horizontal axis represents the spherical aberration [mm], and the vertical axis represents the normalized pupil coordinate. This also applies to FIG. 17A, FIG. 25A, FIG. 33A, and FIG. 41A, which will be described later. The pupil radius is 2.0000 mm.
 図9のBは、図2のレンズ光学系25において発生する、波長が0.5461μmである光の像面湾曲を表すグラフである。図9のBのグラフにおいて、横軸は、像面湾曲[mm]を表し、縦軸は、光線のサジタル方向またはタンジェンシャル方向の入射位置に対応する角度[degree]を表す。図9のBにおいて、実線はタンジェンシャル方向の入射位置と像面湾曲の関係を表し、点線はサジタル方向の像面湾曲の関係を表す。これらのことは、後述する図17のB、図25のB、図33のB、および図41のBにおいても同様である。サジタル方向とタンジェント方向の像面湾曲の差が非点収差である。 FIG. 9B is a graph showing the field curvature of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 of FIG. 2. In the graph of FIG. 9B, the horizontal axis shows the field curvature [mm], and the vertical axis shows the angle [degree] corresponding to the incident position of the light ray in the sagittal or tangential direction. In FIG. 9B, the solid line shows the relationship between the incident position in the tangential direction and the field curvature, and the dotted line shows the relationship between the field curvature in the sagittal direction. The same is true for FIG. 17B, FIG. 25B, FIG. 33B, and FIG. 41B, which will be described later. The difference between the field curvature in the sagittal direction and the tangential direction is astigmatism.
 図9のCは、図2のレンズ光学系25において発生する、波長が0.5461μmである光の歪曲収差を表すグラフである。図9のCのグラフにおいて、横軸は、歪曲収差[%]を表し、縦軸は、光線の入射角度[degree]を表す。このことは、後述する図17のC、図25のC、図33のC、および図41のCにおいても同様である。 FIG. 9C is a graph showing the distortion aberration of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 of FIG. 2. In the graph of FIG. 9C, the horizontal axis shows the distortion aberration [%], and the vertical axis shows the angle of incidence of the light ray [degrees]. This also applies to FIG. 17C, FIG. 25C, FIG. 33C, and FIG. 41C, which will be described later.
<レンズ光学系の第2の構成例>
 図10は、レンズ光学系25の第2の構成例を示す断面図である。
<Second Configuration Example of Lens Optical System>
FIG. 10 is a cross-sectional view showing a second configuration example of the lens optical system 25. As shown in FIG.
 図10のレンズ光学系25において、図2のレンズ光学系25と対応する部分については同一の符号を付してある。従って、その部分の説明は適宜省略し、図2のレンズ光学系25と異なる部分に着目して説明する。図10のレンズ光学系25は、レンズ71乃至78がレンズ171乃至178に代わる点が、図2のレンズ光学系25と異なっており、その他は図2のレンズ光学系25と同様に構成されている。 In the lens optical system 25 of FIG. 10, parts corresponding to those in the lens optical system 25 of FIG. 2 are given the same reference numerals. Therefore, the description of those parts will be omitted as appropriate, and the description will focus on the parts that differ from the lens optical system 25 of FIG. 2. The lens optical system 25 of FIG. 10 differs from the lens optical system 25 of FIG. 2 in that lenses 71 to 78 are replaced by lenses 171 to 178, and is otherwise configured in the same way as the lens optical system 25 of FIG. 2.
 レンズ171乃至178は、各面の変曲点の数や位置および非球面データ並びにレンズデータが、レンズ71乃至78と異なっており、その他はレンズ71乃至78と同様に構成されている。従って、以下では、レンズ171乃至178の物体側の面171a乃至178aおよび像側の面171b乃至178bの変曲点の数および位置並びに非球面データとレンズ171乃至178のレンズデータについて説明する。 Lens 171 to 178 differ from lenses 71 to 78 in the number and position of inflection points on each surface, aspheric data, and lens data, but are otherwise configured in the same manner as lenses 71 to 78. Therefore, the following describes the number and position of inflection points and aspheric data on object-side surfaces 171a to 178a and image-side surfaces 171b to 178b of lenses 171 to 178, as well as the lens data of lenses 171 to 178.
<各面の変曲点の第2の例>
 図11は、図10の面171a乃至178aおよび面171b乃至178bの変曲点の数および位置を示す表である。
<Second example of inflection points on each surface>
FIG. 11 is a table showing the number and positions of inflection points of surfaces 171a to 178a and surfaces 171b to 178b of FIG.
 図11の表の各行は、面171a乃至178aおよび面171b乃至178bそれぞれに対応する。各列は、左側から順に、面番号、変曲点の数、変曲点位置#1、変曲点位置#2、変曲点位置#3に対応する。 The rows in the table in FIG. 11 correspond to faces 171a to 178a and faces 171b to 178b, respectively. The columns correspond, from the left, to the face number, the number of inflection points, inflection point position #1, inflection point position #2, and inflection point position #3.
 本明細書では、面171a,171b,172a,172b,173a,173b,174a,174b,175a,175b,176a,176b,177a,177b,178a,178bに対して、順に、201から216までの面番号が付与されているものとする。図11の表の各欄の数値については図11を参照。 In this specification, surface numbers from 201 to 216 are assigned to surfaces 171a, 171b, 172a, 172b, 173a, 173b, 174a, 174b, 175a, 175b, 176a, 176b, 177a, 177b, 178a, and 178b in order. See FIG. 11 for the values in each column of the table in FIG. 11.
<各レンズのレンズデータの第2の例>
 図12は、レンズ171乃至178のレンズデータを示す表である。
<Second example of lens data for each lens>
FIG. 12 is a table showing lens data for lenses 171 to 178.
 図12の表の各行は、面171a乃至178aおよび面171b乃至178bそれぞれに対応する。各列は、左側から順に、面番号i、曲率半径Ri、面間隔Di、d線に対する屈折率Ndi、およびd線に対するアッベ数vdiを示している。図12の表の各欄の数値については図12を参照。 Each row in the table in FIG. 12 corresponds to surfaces 171a to 178a and surfaces 171b to 178b. From the left, each column indicates the surface number i, the radius of curvature Ri, the surface spacing Di, the refractive index Ndi for the d line, and the Abbe number vdi for the d line. For the numerical values in each column of the table in FIG. 12, see FIG. 12.
<各面の非球面データの第2の例>
 図13は、面171a乃至178aおよび面171b乃至178bの非球面データを示す表である。
<Second Example of Aspheric Data for Each Surface>
FIG. 13 is a table showing the aspheric surface data of the surfaces 171a to 178a and the surfaces 171b to 178b.
 図13の表の各行は、面171a乃至178aおよび面171b乃至178bそれぞれに対応する。各列は、左側から順に、面番号i、円錐係数K、および3次非球面係数乃至20次非球面係数を示している。図13の表の各欄の数値については図13を参照。 Each row in the table in FIG. 13 corresponds to surfaces 171a to 178a and surfaces 171b to 178b. From the left, each column indicates the surface number i, the conic coefficient K, and the third-order to twentieth-order aspheric coefficients. For the numerical values in each column of the table in FIG. 13, see FIG. 13.
<レンズ有効径周辺部の接線角度の第2の例>
 図14乃至図16は、それぞれ、面175aおよび175b、面176aおよび176b、面177aおよび面177bの、レンズ有効部の接線角度を示すグラフである。
<Second Example of Tangent Angle at Periphery of Lens Effective Diameter>
14 to 16 are graphs showing the tangent angles of the lens effective portions of the surfaces 175a and 175b, the surfaces 176a and 176b, and the surfaces 177a and 177b, respectively.
 図14のAは、面175aの垂直方向の位置と接線角度の関係を表し、図14のBは、面175bの垂直方向の位置と接線角度の関係を表している。図15のAは、面176aの垂直方向の位置と接線角度の関係を表し、図15のBは、面176bの垂直方向の位置と接線角度の関係を表している。図16のAは、面177aの垂直方向の位置と接線角度の関係を表し、図16のBは、面177bの垂直方向の位置と接線角度の関係を表している。 A of Figure 14 shows the relationship between the vertical position and the tangent angle of surface 175a, and B of Figure 14 shows the relationship between the vertical position and the tangent angle of surface 175b. A of Figure 15 shows the relationship between the vertical position and the tangent angle of surface 176a, and B of Figure 15 shows the relationship between the vertical position and the tangent angle of surface 176b. A of Figure 16 shows the relationship between the vertical position and the tangent angle of surface 177a, and B of Figure 16 shows the relationship between the vertical position and the tangent angle of surface 177b.
 図14乃至図16に示すように、面175a,175b,176a,176b,177a、および177bの全てのレンズ有効径周辺部の接線角度は40度以上になっている。 As shown in Figures 14 to 16, the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 175a, 175b, 176a, 176b, 177a, and 177b are 40 degrees or more.
<球面収差、像面湾曲、および歪曲収差の第2の例>
 図17は、図10のレンズ光学系25において発生する球面収差、像面湾曲、および歪曲収差を示すグラフである。
<Second Example of Spherical Aberration, Field Curvature, and Distortion>
FIG. 17 is a graph showing the spherical aberration, the field curvature, and the distortion that occur in the lens optical system 25 of FIG.
 図17のAは、図10のレンズ光学系25において発生する、波長が0.444,0.486,0.546,0.588,0.656μmである光の波長ごとの縦方向の球面収差を表すグラフである。瞳半径は2.0000mmである。 A in Figure 17 is a graph showing the longitudinal spherical aberration for light with wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 μm that occurs in the lens optical system 25 in Figure 10. The pupil radius is 2.0000 mm.
 図17のBは、図10のレンズ光学系25において発生する、波長が0.5461μmである光の像面湾曲を表すグラフである。 B in FIG. 17 is a graph showing the field curvature of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 in FIG. 10.
 図17のCは、図10のレンズ光学系25において発生する、波長が0.5461μmである光の歪曲収差を表すグラフである。 C in FIG. 17 is a graph showing the distortion aberration of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 in FIG. 10.
<レンズ光学系の第3の構成例>
 図18は、レンズ光学系25の第3の構成例を示す断面図である。
<Third Configuration Example of Lens Optical System>
FIG. 18 is a cross-sectional view showing a third configuration example of the lens optical system 25. As shown in FIG.
 図18のレンズ光学系25において、図2のレンズ光学系25と対応する部分については同一の符号を付してある。従って、その部分の説明は適宜省略し、図2のレンズ光学系25と異なる部分に着目して説明する。図18のレンズ光学系25は、レンズ71乃至78がレンズ271乃至278に代わる点が、図2のレンズ光学系25と異なっており、その他は図2のレンズ光学系25と同様に構成されている。 In the lens optical system 25 of FIG. 18, parts corresponding to those in the lens optical system 25 of FIG. 2 are given the same reference numerals. Therefore, the description of those parts will be omitted as appropriate, and the description will focus on the parts that differ from the lens optical system 25 of FIG. 2. The lens optical system 25 of FIG. 18 differs from the lens optical system 25 of FIG. 2 in that lenses 71 to 78 are replaced by lenses 271 to 278, and is otherwise configured in the same way as the lens optical system 25 of FIG. 2.
 レンズ271乃至278は、レンズ275の屈折力が正である点と各面の変曲点の数や位置および非球面データ並びにレンズデータとが、レンズ71乃至78と異なっており、その他はレンズ71乃至78と同様に構成されている。従って、以下では、レンズ271乃至278の物体側の面271a乃至278aおよび像側の面271b乃至278bの変曲点の数および位置並びに非球面データとレンズデータについて説明する。 Lens 271 to 278 differ from lenses 71 to 78 in that lens 275 has a positive refractive power, the number and positions of inflection points on each surface, aspheric data, and lens data, but are otherwise configured in the same manner as lenses 71 to 78. Therefore, the following describes the number and positions of inflection points on object-side surfaces 271a to 278a and image-side surfaces 271b to 278b of lenses 271 to 278, as well as the aspheric data and lens data.
<各面の変曲点の第3の例>
 図19は、図18の面271a乃至278aおよび面271b乃至278bの変曲点の数および位置を示す表である。
<Third example of inflection points on each surface>
FIG. 19 is a table showing the number and positions of inflection points of surfaces 271a to 278a and surfaces 271b to 278b of FIG.
 図19の表の各行は、面271a乃至278aおよび面271b乃至278bそれぞれに対応する。各列は、左側から順に、面番号、変曲点の数、変曲点位置#1、変曲点位置#2、変曲点位置#3に対応する。 The rows in the table in FIG. 19 correspond to faces 271a to 278a and faces 271b to 278b, respectively. The columns correspond, from the left, to the face number, the number of inflection points, inflection point position #1, inflection point position #2, and inflection point position #3.
 本明細書では、面271a,271b,272a,272b,273a,273b,274a,274b,275a,275b,276a,276b,277a,277b,278a,278bに対して、順に、301から316までの面番号が付与されているものとする。図19の表の各欄の数値については図19を参照。 In this specification, the faces 271a, 271b, 272a, 272b, 273a, 273b, 274a, 274b, 275a, 275b, 276a, 276b, 277a, 277b, 278a, and 278b are assigned face numbers from 301 to 316, in that order. See FIG. 19 for the values in each column of the table in FIG. 19.
<各レンズのレンズデータの第3の例>
 図20は、レンズ271乃至278のレンズデータを示す表である。
<Third example of lens data for each lens>
FIG. 20 is a table showing lens data for lenses 271 to 278.
 図20の表の各行は、面271a乃至278aおよび面271b乃至278bそれぞれに対応する。各列は、左側から順に、面番号i、曲率半径Ri、面間隔Di、d線に対する屈折率Ndi、およびd線に対するアッベ数vdiを示している。図20の表の各欄の数値については図20を参照。 Each row in the table in FIG. 20 corresponds to surfaces 271a to 278a and surfaces 271b to 278b. From the left, each column indicates the surface number i, the radius of curvature Ri, the surface spacing Di, the refractive index Ndi for the d line, and the Abbe number vdi for the d line. For the numerical values in each column of the table in FIG. 20, see FIG. 20.
<各面の非球面データの第3の例>
 図21は、面271a乃至278aおよび面271b乃至278bの非球面データを示す表である。
<Third example of aspheric data for each surface>
FIG. 21 is a table showing the aspheric surface data of the surfaces 271a to 278a and the surfaces 271b to 278b.
 図21の表の各行は、面271a乃至278aおよび面271b乃至278bそれぞれに対応する。各列は、左側から順に、面番号i、円錐係数K、および3次非球面係数乃至20次非球面係数を示している。図21の表の各欄の数値については図21を参照。 Each row in the table in FIG. 21 corresponds to surfaces 271a to 278a and surfaces 271b to 278b. From the left, each column indicates the surface number i, the conic coefficient K, and the third-order to twentieth-order aspheric coefficients. For the numerical values in each column of the table in FIG. 21, see FIG. 21.
<レンズ有効径周辺部の接線角度の第3の例>
 図22乃至図24は、それぞれ、面275aおよび275b、面276aおよび276b、面277aおよび面277bの、レンズ有効部の接線角度を示すグラフである。
<Third Example of Tangent Angle at Periphery of Lens Effective Diameter>
22 to 24 are graphs showing the tangent angles of the lens effective portions of the surfaces 275a and 275b, the surfaces 276a and 276b, and the surfaces 277a and 277b, respectively.
 図22のAは、面275aの垂直方向の位置と接線角度の関係を表し、図22のBは、面275bの垂直方向の位置と接線角度の関係を表している。図23のAは、面276aの垂直方向の位置と接線角度の関係を表し、図23のBは、面276bの垂直方向の位置と接線角度の関係を表している。図24のAは、面277aの垂直方向の位置と接線角度の関係を表し、図24のBは、面277bの垂直方向の位置と接線角度の関係を表している。 A in Figure 22 shows the relationship between the vertical position and the tangent angle of surface 275a, and B in Figure 22 shows the relationship between the vertical position and the tangent angle of surface 275b. A in Figure 23 shows the relationship between the vertical position and the tangent angle of surface 276a, and B in Figure 23 shows the relationship between the vertical position and the tangent angle of surface 276b. A in Figure 24 shows the relationship between the vertical position and the tangent angle of surface 277a, and B in Figure 24 shows the relationship between the vertical position and the tangent angle of surface 277b.
 図22乃至図24に示すように、面275a,275b,276a,276b,277a、および277bの全てのレンズ有効径周辺部の接線角度は40度以上になっている。 As shown in Figures 22 to 24, the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 275a, 275b, 276a, 276b, 277a, and 277b are 40 degrees or greater.
<球面収差、像面湾曲、および歪曲収差の第3の例>
 図25は、図18のレンズ光学系25において発生する球面収差、像面湾曲、および歪曲収差を示すグラフである。
<Third Example of Spherical Aberration, Field Curvature, and Distortion>
FIG. 25 is a graph showing spherical aberration, field curvature, and distortion occurring in the lens optical system 25 of FIG.
 図25のAは、図18のレンズ光学系25において発生する、波長が0.444,0.486,0.546,0.588,0.656μmである光の波長ごとの縦方向の球面収差を表すグラフである。瞳半径は1.9800mmである。 A in Figure 25 is a graph showing the longitudinal spherical aberration for light with wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 μm that occurs in the lens optical system 25 in Figure 18. The pupil radius is 1.9800 mm.
 図25のBは、図18のレンズ光学系25において発生する、波長が0.5461μmである光の像面湾曲を表すグラフである。 B in Figure 25 is a graph showing the field curvature of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 in Figure 18.
 図25のCは、図18のレンズ光学系25において発生する、波長が0.5461μmである光の歪曲収差を表すグラフである。 C in Figure 25 is a graph showing the distortion aberration of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 in Figure 18.
<レンズ光学系の第4の構成例>
 図26は、レンズ光学系25の第4の構成例を示す断面図である。
<Fourth Configuration Example of Lens Optical System>
FIG. 26 is a cross-sectional view showing a fourth configuration example of the lens optical system 25. As shown in FIG.
 図26のレンズ光学系25において、図2のレンズ光学系25と対応する部分については同一の符号を付してある。従って、その部分の説明は適宜省略し、図2のレンズ光学系25と異なる部分に着目して説明する。図26のレンズ光学系25は、レンズ71乃至78がレンズ371乃至378に代わる点が、図2のレンズ光学系25と異なっており、その他は図2のレンズ光学系25と同様に構成されている。 In the lens optical system 25 of FIG. 26, parts corresponding to those in the lens optical system 25 of FIG. 2 are given the same reference numerals. Therefore, the description of those parts will be omitted as appropriate, and the description will focus on the parts that differ from the lens optical system 25 of FIG. 2. The lens optical system 25 of FIG. 26 differs from the lens optical system 25 of FIG. 2 in that lenses 71 to 78 are replaced by lenses 371 to 378, and is otherwise configured in the same way as the lens optical system 25 of FIG. 2.
 レンズ371乃至378は、各面の変曲点の数や位置および非球面データ並びにレンズデータが、レンズ71乃至78と異なっており、その他はレンズ71乃至78と同様に構成されている。従って、以下では、レンズ371乃至378の物体側の面371a乃至378aおよび像側の面371b乃至378bの変曲点の数および位置並びに非球面データとレンズデータについて説明する。 Lens 371 to 378 differ from lenses 71 to 78 in the number and position of inflection points on each surface, aspheric data, and lens data, but are otherwise configured in the same manner as lenses 71 to 78. Therefore, the following describes the number and position of inflection points, aspheric data, and lens data on object-side surfaces 371a to 378a and image-side surfaces 371b to 378b of lenses 371 to 378.
<各面の変曲点の第4の例>
 図27は、図26の面371a乃至378aおよび面371b乃至378bの変曲点の数および位置を示す表である。
<Fourth example of inflection points on each surface>
FIG. 27 is a table showing the number and positions of inflection points of surfaces 371a to 378a and surfaces 371b to 378b of FIG.
 図27の表の各行は、面371a乃至378aおよび面371b乃至378bそれぞれに対応する。各列は、左側から順に、面番号、変曲点の数、変曲点位置#1、変曲点位置#2、変曲点位置#3に対応する。 The rows in the table in FIG. 27 correspond to faces 371a to 378a and faces 371b to 378b, respectively. The columns correspond, from the left, to the face number, the number of inflection points, inflection point position #1, inflection point position #2, and inflection point position #3.
 本明細書では、面371a,371b,372a,372b,373a,373b,374a,374b,375a,375b,376a,376b,377a,377b,378a,378bに対して、順に、401から416までの面番号が付与されているものとする。図27の表の各欄の数値については図27を参照。 In this specification, surface numbers from 401 to 416 are assigned to surfaces 371a, 371b, 372a, 372b, 373a, 373b, 374a, 374b, 375a, 375b, 376a, 376b, 377a, 377b, 378a, and 378b in order. See FIG. 27 for the values in each column of the table in FIG. 27.
<各レンズのレンズデータの第4の例>
 図28は、レンズ371乃至378のレンズデータを示す表である。
<Fourth example of lens data for each lens>
FIG. 28 is a table showing lens data for lenses 371 to 378.
 図28の表の各行は、面371a乃至378aおよび面371b乃至378bそれぞれに対応する。各列は、左側から順に、面番号i、曲率半径Ri、面間隔Di、d線に対する屈折率Ndi、およびd線に対するアッベ数vdiを示している。図28の表の各欄の数値については図28を参照。 Each row in the table in FIG. 28 corresponds to surfaces 371a to 378a and surfaces 371b to 378b. From the left, each column indicates the surface number i, the radius of curvature Ri, the surface spacing Di, the refractive index Ndi for the d line, and the Abbe number vdi for the d line. For the numerical values in each column of the table in FIG. 28, see FIG. 28.
<各面の非球面データの第4の例>
 図29は、面371a乃至378aおよび面371b乃至378bの各面の非球面データを示す表である。
<Fourth example of aspheric surface data for each surface>
FIG. 29 is a table showing the aspheric surface data of each of the surfaces 371a to 378a and the surfaces 371b to 378b.
 図29の表の各行は、面371a乃至378aおよび面371b乃至378bそれぞれに対応する。各列は、左側から順に、面番号i、円錐係数K、および3次非球面係数乃至20次非球面係数を示している。図29の表の各欄の数値については図29を参照。 Each row in the table in FIG. 29 corresponds to surfaces 371a to 378a and surfaces 371b to 378b. From the left, each column indicates the surface number i, the conic coefficient K, and the third-order to twentieth-order aspheric coefficients. For the numerical values in each column of the table in FIG. 29, see FIG. 29.
<レンズ有効径周辺部の接線角度の第4の例>
 図30乃至図32は、それぞれ、面375aおよび375b、面376aおよび376b、面377aおよび面377bの、レンズ有効部の接線角度を示すグラフである。
<Fourth Example of Tangent Angle at Periphery of Lens Effective Diameter>
30 to 32 are graphs showing the tangent angles of the lens effective portions of surfaces 375a and 375b, surfaces 376a and 376b, and surfaces 377a and 377b, respectively.
 図30のAは、面375aの垂直方向の位置と接線角度の関係を表し、図30のBは、面375bの垂直方向の位置と接線角度の関係を表している。図31のAは、面376aの垂直方向の位置と接線角度の関係を表し、図31のBは、面376bの垂直方向の位置と接線角度の関係を表している。図32のAは、面377aの垂直方向の位置と接線角度の関係を表し、図32のBは、面377bの垂直方向の位置と接線角度の関係を表している。 A of Figure 30 shows the relationship between the vertical position and the tangent angle of surface 375a, and B of Figure 30 shows the relationship between the vertical position and the tangent angle of surface 375b. A of Figure 31 shows the relationship between the vertical position and the tangent angle of surface 376a, and B of Figure 31 shows the relationship between the vertical position and the tangent angle of surface 376b. A of Figure 32 shows the relationship between the vertical position and the tangent angle of surface 377a, and B of Figure 32 shows the relationship between the vertical position and the tangent angle of surface 377b.
 図30乃至図32に示すように、面375a,375b,376a,376b,377a、および377bの全てのレンズ有効径周辺部の接線角度は40度以上になっている。 As shown in Figures 30 to 32, the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 375a, 375b, 376a, 376b, 377a, and 377b are 40 degrees or greater.
<球面収差、像面湾曲、および歪曲収差の第4の例>
 図33は、図26のレンズ光学系25において発生する球面収差、像面湾曲、および歪曲収差を示すグラフである。
<Fourth Example of Spherical Aberration, Field Curvature, and Distortion>
FIG. 33 is a graph showing the spherical aberration, the field curvature, and the distortion that occur in the lens optical system 25 of FIG.
 図33のAは、図26のレンズ光学系25において発生する、波長が0.444,0.486,0.546,0.588,0.656μmである光の波長ごとの縦方向の球面収差を表すグラフである。瞳半径は1.9500mmである。 A in Figure 33 is a graph showing the longitudinal spherical aberration for light with wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 μm that occurs in the lens optical system 25 in Figure 26. The pupil radius is 1.9500 mm.
 図33のBは、図26のレンズ光学系25において発生する、波長が0.5461μmである光の像面湾曲を表すグラフである。 B in Figure 33 is a graph showing the field curvature of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 in Figure 26.
 図33のCは、図26のレンズ光学系25において発生する、波長が0.5461μmである光の歪曲収差を表すグラフである。 C in Figure 33 is a graph showing the distortion aberration of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 in Figure 26.
<レンズ光学系の第5の構成例>
 図34は、レンズ光学系25の第5の構成例を示す断面図である。
<Fifth Configuration Example of Lens Optical System>
FIG. 34 is a cross-sectional view showing a fifth configuration example of the lens optical system 25.
 図34のレンズ光学系25において、図2のレンズ光学系25と対応する部分については同一の符号を付してある。従って、その部分の説明は適宜省略し、図2のレンズ光学系25と異なる部分に着目して説明する。図34のレンズ光学系25は、レンズ71乃至78がレンズ471乃至478に代わる点が、図2のレンズ光学系25と異なっており、その他は図2のレンズ光学系25と同様に構成されている。 In the lens optical system 25 of FIG. 34, parts corresponding to those in the lens optical system 25 of FIG. 2 are given the same reference numerals. Therefore, the description of those parts will be omitted as appropriate, and the description will focus on the parts that differ from the lens optical system 25 of FIG. 2. The lens optical system 25 of FIG. 34 differs from the lens optical system 25 of FIG. 2 in that lenses 71 to 78 are replaced by lenses 471 to 478, and is otherwise configured in the same way as the lens optical system 25 of FIG. 2.
 レンズ471乃至478は、レンズ475乃至477の屈折力がそれぞれ正、正、負である点と各面の変曲点の数や位置および非球面データ並びにレンズデータとが、レンズ71乃至78と異なっており、その他はレンズ71乃至78と同様に構成されている。従って、以下では、レンズ471乃至478の物体側の面471a乃至478aおよび像側の面471b乃至478bの変曲点の数および位置並びに非球面データとレンズデータについて説明する。 Lens 471 to 478 differ from lenses 71 to 78 in that the refractive powers of lenses 475 to 477 are positive, positive, and negative, respectively, and in the number and positions of inflection points on each surface, as well as the aspheric data and lens data, but are otherwise configured in the same manner as lenses 71 to 78. Therefore, the following will explain the number and positions of inflection points on the object-side surfaces 471a to 478a and the image-side surfaces 471b to 478b of lenses 471 to 478, as well as the aspheric data and lens data.
<各面の変曲点の第5の例>
 図35は、図34の面471a乃至478aおよび面471b乃至478bの変曲点の数および位置を示す表である。
<Fifth example of inflection points on each surface>
FIG. 35 is a table showing the number and positions of inflection points of surfaces 471a to 478a and surfaces 471b to 478b of FIG.
 図35の表の各行は、面471a乃至478aおよび面471b乃至478bそれぞれに対応する。各列は、左側から順に、面番号、変曲点の数、変曲点位置#1、変曲点位置#2、変曲点位置#3に対応する。 The rows in the table in FIG. 35 correspond to faces 471a to 478a and faces 471b to 478b, respectively. The columns correspond, from the left, to the face number, the number of inflection points, inflection point position #1, inflection point position #2, and inflection point position #3.
 本明細書では、面471a,471b,472a,472b,473a,473b,474a,474b,475a,475b,476a,476b,477a,477b,478a,478bに対して、順に、501から516までの面番号が付与されているものとする。図35の表の各欄の数値については図35を参照。 In this specification, surface numbers from 501 to 516 are assigned to surfaces 471a, 471b, 472a, 472b, 473a, 473b, 474a, 474b, 475a, 475b, 476a, 476b, 477a, 477b, 478a, and 478b in order. See FIG. 35 for the values in each column of the table in FIG. 35.
<各面の非球面データの第5の例>
 図37は、面471a乃至478aおよび面471b乃至478bの各面の非球面データを示す表である。
<Fifth example of aspheric surface data for each surface>
FIG. 37 is a table showing the aspheric surface data of each of the surfaces 471a to 478a and the surfaces 471b to 478b.
 図37の表の各行は、面471a乃至478aおよび面471b乃至478bそれぞれに対応する。各列は、左側から順に、面番号i、円錐係数K、および3次非球面係数乃至20次非球面係数を示している。図37の表の各欄の数値については図37を参照。 Each row in the table in FIG. 37 corresponds to surfaces 471a to 478a and surfaces 471b to 478b. From the left, each column indicates the surface number i, the conic coefficient K, and the third-order to twentieth-order aspheric coefficients. For the numerical values in each column of the table in FIG. 37, see FIG. 37.
<レンズ有効径周辺部の接線角度の第5の例>
 図38乃至図40は、それぞれ、面475aおよび475b、面476aおよび476b、面477aおよび面477bの、レンズ有効部の接線角度を示すグラフである。
<Fifth Example of Tangent Angle at Periphery of Lens Effective Diameter>
38 to 40 are graphs showing the tangent angles of the lens effective portions of the surfaces 475a and 475b, the surfaces 476a and 476b, and the surfaces 477a and 477b, respectively.
 図38のAは、面475aの垂直方向の位置と接線角度の関係を表し、図38のBは、垂直方向の位置と接線角度の関係を表している。図39のAは、面476aの垂直方向の位置と接線角度の関係を表し、図39のBは、面476bの垂直方向の位置と接線角度の関係を表している。図40のAは、面477aの垂直方向の位置と接線角度の関係を表し、図40のBは、面477bの垂直方向の位置と接線角度の関係を表している。 A in Figure 38 shows the relationship between the vertical position and the tangent angle of surface 475a, and B in Figure 38 shows the relationship between the vertical position and the tangent angle. A in Figure 39 shows the relationship between the vertical position and the tangent angle of surface 476a, and B in Figure 39 shows the relationship between the vertical position and the tangent angle of surface 476b. A in Figure 40 shows the relationship between the vertical position and the tangent angle of surface 477a, and B in Figure 40 shows the relationship between the vertical position and the tangent angle of surface 477b.
 図38乃至図40に示すように、面475a,475b,476a,476b,477a、および477bの全てのレンズ有効径周辺部の接線角度は40度以上になっている。 As shown in Figures 38 to 40, the tangent angles of the peripheral portions of the lens effective diameter of all of the surfaces 475a, 475b, 476a, 476b, 477a, and 477b are 40 degrees or greater.
<球面収差、像面湾曲、および歪曲収差の第5の例>
 図41は、図34のレンズ光学系25において発生する球面収差、像面湾曲、および歪曲収差を示すグラフである。
Fifth Example of Spherical Aberration, Field Curvature, and Distortion
FIG. 41 is a graph showing the spherical aberration, the field curvature, and the distortion that occur in the lens optical system 25 of FIG.
 図41のAは、図34のレンズ光学系25において発生する、波長が0.444,0.486,0.546,0.588,0.656μmである光の波長ごとの縦方向の球面収差を表すグラフである。瞳半径は1.9800mmである。 A in Figure 41 is a graph showing the longitudinal spherical aberration for light with wavelengths of 0.444, 0.486, 0.546, 0.588, and 0.656 μm that occurs in the lens optical system 25 in Figure 34. The pupil radius is 1.9800 mm.
 図41のBは、図34のレンズ光学系25において発生する、波長が0.5461μmである光の像面湾曲を表すグラフである。 B in Figure 41 is a graph showing the field curvature of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 in Figure 34.
 図41のCは、図34のレンズ光学系25において発生する、波長が0.5461μmである光の歪曲収差を表すグラフである。 C in Figure 41 is a graph showing the distortion aberration of light with a wavelength of 0.5461 μm that occurs in the lens optical system 25 in Figure 34.
<パラメータまたは式の値>
 図42は、図2、図10、図18、図26、および図34のレンズ光学系25におけるパラメータまたは式の値を示す表である。
<Parameter or expression value>
FIG. 42 is a table showing values of parameters or equations for the lens optical system 25 of FIGS.
 図42の表の各行は、上から順に、(R9+R10)/f、(R15+R16)/(R15-R16),dL/da,v1/v3,v2/v3,f,f1,f2,f3,f4,f5,f6,f7,f8,Fno,TTL,IH,FOV,CRAに対応する。各列は、左側から順に、図2、図10、図18、図26、図34のレンズ光学系25に対応する。 The rows in the table in Figure 42 correspond, from top to bottom, to (R9+R10)/f, (R15+R16)/(R15-R16), dL/da, v1/v3, v2/v3, f, f1, f2, f3, f4, f5, f6, f7, f8, Fno, TTL, IH, FOV, and CRA. The columns correspond, from left to right, to the lens optical system 25 in Figures 2, 10, 18, 26, and 34.
 ここで、R9とは、曲率半径R109,R209,R309,R409、およびR509の総称である。R10とは、曲率半径R110,R210,R310,R410、およびR510の総称である。fはレンズ光学系25全体の焦点距離である。R15とは、曲率半径をR115,R215,R315,R415、およびR515の総称である。R16とは、R116,R216,R316,R416、およびR516の総称である。 Here, R9 is a collective term for the radii of curvature R109, R209, R309, R409, and R509. R10 is a collective term for the radii of curvature R110, R210, R310, R410, and R510. f is the focal length of the entire lens optical system 25. R15 is a collective term for the radii of curvature R115, R215, R315, R415, and R515. R16 is a collective term for R116, R216, R316, R416, and R516.
 dLは、レンズ75乃至78の中心の厚さの合計、レンズ175乃至178の中心の厚さの合計、レンズ275乃至278の中心の厚さの合計、レンズ375乃至378の中心の厚さの合計、およびレンズ475乃至478の中心の厚さの合計の総称である。 dL is a collective term for the sum of the central thicknesses of lenses 75 to 78, the sum of the central thicknesses of lenses 175 to 178, the sum of the central thicknesses of lenses 275 to 278, the sum of the central thicknesses of lenses 375 to 378, and the sum of the central thicknesses of lenses 475 to 478.
 daは、レンズ74乃至レンズ78の空気間隔の合計、レンズ174乃至178の空気間隔の合計、レンズ274乃至278の空気間隔の合計、レンズ374乃至378の空気間隔の合計、およびレンズ474乃至478の空気間隔の合計の総称である。空気間隔の合計とは、隣り合う2つのレンズからなる各ペアの対向する面どうしの中心の空気間隔(空気厚)の合計である。 da is a collective term for the sum of the air spacing between lenses 74 to 78, the sum of the air spacing between lenses 174 to 178, the sum of the air spacing between lenses 274 to 278, the sum of the air spacing between lenses 374 to 378, and the sum of the air spacing between lenses 474 to 478. The sum of the air spacing is the sum of the air spacing (air thickness) at the centers between the opposing surfaces of each pair of adjacent lenses.
 具体的には、レンズ74乃至78のうちの隣り合うレンズ74とレンズ75からなるペアにおいて面74bと面75aが対向している。隣り合うレンズ75とレンズ76からなるペアにおいて面75bと面76aが対向している。隣り合うレンズ76とレンズ77からなるペアにおいて面76bと面77aが対向している。隣り合うレンズ77とレンズ78からなるペアにおいて面77bと面78aが対向している。従って、レンズ74乃至78の空気間隔の合計は、面74bと面75aの間隔、面75bと面76aの間隔、面76bと面77aの間隔、および面77bと面78aの間隔の和である。 Specifically, in a pair of adjacent lenses 74 and 75 among lenses 74 to 78, surfaces 74b and 75a face each other. In a pair of adjacent lenses 75 and 76, surfaces 75b and 76a face each other. In a pair of adjacent lenses 76 and 77, surfaces 76b and 77a face each other. In a pair of adjacent lenses 77 and 78, surfaces 77b and 78a face each other. Therefore, the total air spacing of lenses 74 to 78 is the sum of the spacing between surfaces 74b and 75a, the spacing between surfaces 75b and 76a, the spacing between surfaces 76b and 77a, and the spacing between surfaces 77b and 78a.
 同様に、レンズ174乃至178の空気間隔の合計は、面174bと面175aの間隔、面175bと面176aの間隔、面176bと面177aの間隔、および面177bと面178aの間隔の和である。レンズ274乃至278の空気間隔の合計は、面274bと面275aの間隔、面275bと面276aの間隔、面276bと面277aの間隔、および面277bと面278aの間隔の和である。 Similarly, the total air spacing of lenses 174 to 178 is the sum of the spacing between surfaces 174b and 175a, the spacing between surfaces 175b and 176a, the spacing between surfaces 176b and 177a, and the spacing between surfaces 177b and 178a. The total air spacing of lenses 274 to 278 is the sum of the spacing between surfaces 274b and 275a, the spacing between surfaces 275b and 276a, the spacing between surfaces 276b and 277a, and the spacing between surfaces 277b and 278a.
 レンズ374乃至378の空気間隔の合計は、面374bと面375aの間隔、面375bと面376aの間隔、面376bと面377aの間隔、および面377bと面378aの間隔の和である。レンズ474乃至478の空気間隔の合計は、面474bと面475aの間隔、面475bと面476aの間隔、面476bと面477aの間隔、および面477bと面478aの間隔の和である。 The total air spacing of lenses 374 to 378 is the sum of the spacing between surfaces 374b and 375a, the spacing between surfaces 375b and 376a, the spacing between surfaces 376b and 377a, and the spacing between surfaces 377b and 378a. The total air spacing of lenses 474 to 478 is the sum of the spacing between surfaces 474b and 475a, the spacing between surfaces 475b and 476a, the spacing between surfaces 476b and 477a, and the spacing between surfaces 477b and 478a.
 v1は、アッベ数v101,v201,v301,v401、およびv501の総称である。v2は、アッベ数v102,v202,v302,v402、およびv502の総称である。v3は、アッベ数v103,v203,v303,v403、およびv503の総称である。f1乃至f8は、レンズ71(171,271,371,471)乃至78(178,278,378,478)の焦点距離である。Fnoは、レンズ光学系25のFナンバーである。FOVは、レンズ光学系25の視野角である。CRAは、レンズ光学系25から撮像面31aに入射される光の主光線角度である。 v1 is a general term for Abbe numbers v101, v201, v301, v401, and v501. v2 is a general term for Abbe numbers v102, v202, v302, v402, and v502. v3 is a general term for Abbe numbers v103, v203, v303, v403, and v503. f1 to f8 are the focal lengths of lenses 71 (171, 271, 371, 471) to 78 (178, 278, 378, 478). Fno is the F-number of the lens optical system 25. FOV is the field of view of the lens optical system 25. CRA is the chief ray angle of light incident on the imaging surface 31a from the lens optical system 25.
 図4に示したように、図2のレンズ光学系25の曲率半径R109およびR110はそれぞれ7.84777,5.83417である。図42に示すように、図2のレンズ光学系25全体の焦点距離fは7.459である。従って、曲率半径R109をR9とし、R110をR10としたとき、図42に示すように(R9+R10)/fは1.834である。 As shown in Figure 4, the radii of curvature R109 and R110 of the lens optical system 25 of Figure 2 are 7.84777 and 5.83417, respectively. As shown in Figure 42, the focal length f of the entire lens optical system 25 of Figure 2 is 7.459. Therefore, when the radius of curvature R109 is R9 and R110 is R10, (R9 + R10)/f is 1.834, as shown in Figure 42.
 図12に示したように、図10のレンズ光学系25の曲率半径R209およびR210はそれぞれ7.93464,6.28921である。図42に示すように、図10のレンズ光学系25全体の焦点距離fは7.441である。従って、曲率半径R109をR9とし、R210をR10としたとき、図42に示すように(R9+R10)/fは1.912である。 As shown in FIG. 12, the radii of curvature R209 and R210 of the lens optical system 25 of FIG. 10 are 7.93464 and 6.28921, respectively. As shown in FIG. 42, the focal length f of the entire lens optical system 25 of FIG. 10 is 7.441. Therefore, when the radius of curvature R109 is R9 and R210 is R10, (R9+R10)/f is 1.912, as shown in FIG. 42.
 図20に示したように、図18のレンズ光学系25の曲率半径R309およびR310はそれぞれ13.82899851,14.99934326である。図42に示すように、図18のレンズ光学系25全体の焦点距離fは7.567である。従って、曲率半径R309をR9とし、R310をR10としたとき、図42に示すように(R9+R10)/fは3.810である。 As shown in Figure 20, the radii of curvature R309 and R310 of the lens optical system 25 of Figure 18 are 13.82899851 and 14.99934326, respectively. As shown in Figure 42, the focal length f of the entire lens optical system 25 of Figure 18 is 7.567. Therefore, when the radius of curvature R309 is R9 and R310 is R10, (R9 + R10)/f is 3.810, as shown in Figure 42.
 図28に示したように、図26のレンズ光学系25の曲率半径R409および410はそれぞれ7.988562627,6.714847072である。図42に示すように、図26のレンズ光学系25全体の焦点距離fは7.528である。従って、曲率半径R409をR9とし、R410をR10としたとき、図42に示すように(R9+R10)/fは1.953である。 As shown in FIG. 28, the radii of curvature R409 and 410 of the lens optical system 25 in FIG. 26 are 7.988562627 and 6.714847072, respectively. As shown in FIG. 42, the focal length f of the entire lens optical system 25 in FIG. 26 is 7.528. Therefore, when the radius of curvature R409 is R9 and R410 is R10, (R9+R10)/f is 1.953, as shown in FIG. 42.
 図36に示したように、図34のレンズ光学系25の曲率半径R509およびR510はそれぞれ8.038008142,7.99601597である。図42に示すように、図34のレンズ光学系25全体の焦点距離fは7.653である。従って、曲率半径R509をR9とし、R510をR10としたとき、図42に示すように(R9+R10)/fは2.095である。 As shown in FIG. 36, the radii of curvature R509 and R510 of the lens optical system 25 in FIG. 34 are 8.038008142 and 7.99601597, respectively. As shown in FIG. 42, the focal length f of the entire lens optical system 25 in FIG. 34 is 7.653. Therefore, when the radius of curvature R509 is R9 and R510 is R10, (R9+R10)/f is 2.095, as shown in FIG. 42.
 以上のように、図2、図10、図18、図26、および図34のレンズ光学系25は、以下の条件式(1)を満たしている。 As described above, the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expression (1).
 0<(R9+R10)/f<4・・・(1) 0<(R9+R10)/f<4...(1)
 これにより、レンズ光学系25の光学全長TTLを短縮しつつ、球面収差と像面湾曲を良好に補正することができる。 This allows the total optical length TTL of the lens optical system 25 to be shortened while still providing excellent correction for spherical aberration and field curvature.
 図4に示したように、図2のレンズ光学系25の曲率半径R115およびR116はそれぞれ-5.40813,8.83766である。従って、曲率半径R115をR15とし、R116をR16としたとき、図42に示すように(R15+R16)/(R15-R16)は-0.241である。 As shown in Figure 4, the radii of curvature R115 and R116 of the lens optical system 25 in Figure 2 are -5.40813 and 8.83766, respectively. Therefore, when the radii of curvature R115 is R15 and R116 is R16, (R15 + R16) / (R15 - R16) is -0.241, as shown in Figure 42.
 図12に示したように、図10のレンズ光学系25の曲率半径R215およびR216はそれぞれ-5.31417,8.30836である。従って、曲率半径R215をR15とし、R216をR16としたとき、図42に示すように(R15+R16)/(R15-R16)は-0.220である。 As shown in Figure 12, the radii of curvature R215 and R216 of the lens optical system 25 in Figure 10 are -5.31417 and 8.30836, respectively. Therefore, when the radii of curvature R215 is R15 and R216 is R16, (R15 + R16) / (R15 - R16) is -0.220, as shown in Figure 42.
 図20に示したように、図18のレンズ光学系25の曲率半径R315およびR316はそれぞれ-5.309355273,8.918428979である。従って、曲率半径R315をR15とし、R316をR16としたとき、図42に示すように(R15+R16)/(R15-R16)は-0.254である。 As shown in Figure 20, the radii of curvature R315 and R316 of the lens optical system 25 in Figure 18 are -5.309355273 and 8.918428979, respectively. Therefore, when the radii of curvature R315 is R15 and R316 is R16, (R15 + R16) / (R15 - R16) is -0.254, as shown in Figure 42.
 図28に示したように、図26のレンズ光学系25の曲率半径R415およびR416はそれぞれ-5.390047902,9.580518471である。従って、曲率半径R415をR15とし、R416をR16としたとき、図42に示すように(R15+R16)/(R15-R16)は-0.280である。 As shown in Figure 28, the radii of curvature R415 and R416 of the lens optical system 25 in Figure 26 are -5.390047902 and 9.580518471, respectively. Therefore, when the radii of curvature R415 is R15 and R416 is R16, (R15 + R16) / (R15 - R16) is -0.280, as shown in Figure 42.
 図36に示したように、図34のレンズ光学系25の曲率半径R515およびR516はそれぞれ-5.795915929,87.92952819である。従って、曲率半径R515をR15とし、R516をR16としたとき、図42に示すように(R15+R16)/(R15-R16)は-0.876である。 As shown in Figure 36, the radii of curvature R515 and R516 of the lens optical system 25 in Figure 34 are -5.795915929 and 87.92952819, respectively. Therefore, when the radius of curvature R515 is R15 and R516 is R16, (R15 + R16) / (R15 - R16) is -0.876, as shown in Figure 42.
 以上のように、図2、図10、図18、図26、および図34のレンズ光学系25は、以下の条件式(2)を満たしている。 As described above, the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expression (2).
 (R15+R16)/(R15-R16)<0・・・(2) (R15+R16)/(R15-R16)<0...(2)
 これにより、光軸近傍のマージナル光線をコントロールし、Fnoを小さくすることができる。また、光学全長TTLを短縮する場合の軸外画角の収差補正が有利になる。 This allows marginal rays near the optical axis to be controlled, making it possible to reduce Fno. It also provides an advantage in correcting aberrations in the off-axis angle of view when shortening the total optical length TTL.
 図4に示したように、図2のレンズ光学系25の面間隔D108乃至D115はそれぞれ0.81,0.4,0.65,0.425,0.345,0.567,0.91,0.775である。従って、レンズ75乃至78の中心の厚さの合計をdLとしたときdLは2.167(=0.4+0.425+0.567+0.775)である。面74bと75a、面75bと76a、面76bと77a、および面77bと78aの間隔の和をdaしたときdaは2.715(=0.81+0.65+0.345+0.91)である。従って、図42に示すように図2のレンズ光学系25のdL/daは0.798である。 As shown in FIG. 4, the surface spacings D108 to D115 of the lens optical system 25 of FIG. 2 are 0.81, 0.4, 0.65, 0.425, 0.345, 0.567, 0.91, and 0.775, respectively. Therefore, when the total thickness of the centers of the lenses 75 to 78 is dL, dL is 2.167 (=0.4+0.425+0.567+0.775). When the sum of the spacings between surfaces 74b and 75a, surfaces 75b and 76a, surfaces 76b and 77a, and surfaces 77b and 78a is da, da is 2.715 (=0.81+0.65+0.345+0.91). Therefore, as shown in FIG. 42, dL/da of the lens optical system 25 of FIG. 2 is 0.798.
 図12に示したように、図10のレンズ光学系25の面間隔D208乃至D215はそれぞれ0.719,0.356,0.601,0.389,0.431,0.462,0.974,0.715である。従って、レンズ175乃至178の中心の厚さの合計をdLとしたときdLは1.922(=0.356+0.389+0.462+0.715)である。面174bと175a、面175bと176a、面176bと177a、および面177bと178aの間隔の和をdaしたときdaは2.725(=0.719+0.601+0.431+0.974)である。従って、図42に示すようにdL/daは0.705である。 As shown in FIG. 12, the surface spacings D208 to D215 of the lens optical system 25 in FIG. 10 are 0.719, 0.356, 0.601, 0.389, 0.431, 0.462, 0.974, and 0.715, respectively. Therefore, when the total thickness of the centers of the lenses 175 to 178 is dL, dL is 1.922 (=0.356+0.389+0.462+0.715). When the sum of the spacings between surfaces 174b and 175a, surfaces 175b and 176a, surfaces 176b and 177a, and surfaces 177b and 178a is da, da is 2.725 (=0.719+0.601+0.431+0.974). Therefore, dL/da is 0.705, as shown in FIG. 42.
 図20に示したように、図18のレンズ光学系25の面間隔D308乃至D315はそれぞれ0.698,0.375,0.697,0.384,0.322,0.696,0.806,0.939である。従って、レンズ275乃至278の中心の厚さの合計をdLとしたときdLは2.394(=0.375+0.384+0.696+0.939)である。面274bと275a、面275bと276a、面276bと277a、および面277bと278aの間隔の和をdaしたときdaは2.523(=0.698+0.697+0.322+0.806)である。従って、図42に示すようにdL/daは0.949である。 As shown in FIG. 20, the surface spacings D308 to D315 of the lens optical system 25 in FIG. 18 are 0.698, 0.375, 0.697, 0.384, 0.322, 0.696, 0.806, and 0.939, respectively. Therefore, when the total thickness of the centers of the lenses 275 to 278 is dL, dL is 2.394 (=0.375+0.384+0.696+0.939). When the sum of the spacings between surfaces 274b and 275a, surfaces 275b and 276a, surfaces 276b and 277a, and surfaces 277b and 278a is da, da is 2.523 (=0.698+0.697+0.322+0.806). Therefore, dL/da is 0.949, as shown in FIG. 42.
 図28に示したように、図26のレンズ光学系25の面間隔D408乃至415はそれぞれ0.7507604,0.33414315,0.60176274,0.39754125,0.40720137,0.60270096,0.79151243,0.96035472である。従って、レンズ375乃至378の中心の厚さの合計をdLとしたときdLは2.29474008(=0.33414315+0.39754125+0.60270096+0.96035472)である。面374bと375a、面375bと376a、面376bと377a、および面377bと378aの間隔の和をdaしたときdaは2.55123694(=0.7507604+0.60176274+0.40720137+0.79151243)である。従って、図42に示すようにdL/daは0.899である。 As shown in Figure 28, the surface spacings D408 to 415 of the lens optical system 25 in Figure 26 are 0.7507604, 0.33414315, 0.60176274, 0.39754125, 0.40720137, 0.60270096, 0.79151243, and 0.96035472, respectively. Therefore, when the total thickness of the centers of the lenses 375 to 378 is dL, dL is 2.29474008 (= 0.33414315 + 0.39754125 + 0.60270096 + 0.96035472). If the sum of the distances between surfaces 374b and 375a, 375b and 376a, 376b and 377a, and 377b and 378a is da, then da is 2.55123694 (=0.7507604+0.60176274+0.40720137+0.79151243). Therefore, as shown in Figure 42, dL/da is 0.899.
 図36に示したように、図34のレンズ光学系25の面間隔D508乃至515はそれぞれ0.83198656,0.3699237,0.85421071,0.40492468,0.21996658,0.78976195,0.59424718,0.9である。従って、レンズ475乃至478の中心の厚さの合計をdLとしたときdLは2.46461033(=0.3699237+0.40492468+0.78976195+0.9)である。面474bと475a、面475bと476a、面476bと477a、および面477bと478aの間隔の和をdaしたときdaは2.50041103(=0.83198656+0.85421071+0.21996658+0.59424718)である。従って、図42に示すようにdL/daは0.986である。 As shown in Figure 36, the surface spacings D508 to 515 of the lens optical system 25 in Figure 34 are 0.83198656, 0.3699237, 0.85421071, 0.40492468, 0.21996658, 0.78976195, 0.59424718, and 0.9, respectively. Therefore, when the total thickness of the centers of the lenses 475 to 478 is dL, dL is 2.46461033 (= 0.3699237 + 0.40492468 + 0.78976195 + 0.9). If the sum of the distances between surfaces 474b and 475a, surfaces 475b and 476a, surfaces 476b and 477a, and surfaces 477b and 478a is da, then da is 2.50041103 (=0.83198656+0.85421071+0.21996658+0.59424718). Therefore, as shown in Figure 42, dL/da is 0.986.
 以上のように、図2、図10、図18、図26、および図34のレンズ光学系25は、以下の条件式(3)を満たしている。 As described above, the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expression (3).
 dL/da<1.0・・・(3) dL/da<1.0...(3)
 これにより、光学全長TTLを短縮しつつ、良好な収差補正を行うことができる。 This allows for good aberration correction while shortening the total optical length TTL.
 図4に示したように、図2のレンズ光学系25のアッベ数v101乃至v103はそれぞれ63.733,15.499,70.100である。従って、アッベ数v101乃至v103をアッベ数v1乃至v3としたとき、図42に示すようにv1/v3およびv2/v3はそれぞれ0.909,0.221である。 As shown in Figure 4, the Abbe numbers v101 to v103 of the lens optical system 25 in Figure 2 are 63.733, 15.499, and 70.100, respectively. Therefore, when the Abbe numbers v101 to v103 are taken as Abbe numbers v1 to v3, v1/v3 and v2/v3 are 0.909 and 0.221, respectively, as shown in Figure 42.
 図12に示したように、図10のレンズ光学系25のアッベ数v201乃至v203はそれぞれ63.733,15.499,70.330である。従って、アッベ数v201乃至v203をアッベ数v1乃至v3としたとき、図42に示すようにv1/v3およびv2/v3はそれぞれ0.906,0.220である。 As shown in Figure 12, the Abbe numbers v201 to v203 of the lens optical system 25 in Figure 10 are 63.733, 15.499, and 70.330, respectively. Therefore, when the Abbe numbers v201 to v203 are Abbe numbers v1 to v3, v1/v3 and v2/v3 are 0.906 and 0.220, respectively, as shown in Figure 42.
 図20に示したように、図18のレンズ光学系25のアッベ数v301乃至v303はアッベ数v201乃至v203と同一である。従って、図42に示すようにアッベ数v301乃至v303をアッベ数v1乃至v3としたときのv1/v3およびv2/v3は、アッベ数v201乃至v203をアッベ数v1乃至v3としたときと同一である。 As shown in FIG. 20, the Abbe numbers v301 to v303 of the lens optical system 25 in FIG. 18 are the same as the Abbe numbers v201 to v203. Therefore, as shown in FIG. 42, when the Abbe numbers v301 to v303 are the Abbe numbers v1 to v3, v1/v3 and v2/v3 are the same as when the Abbe numbers v201 to v203 are the Abbe numbers v1 to v3.
 図28に示したように、図26のレンズ光学系25のアッベ数v401乃至403はそれぞれ59.050,15.499,81.350である。従って、アッベ数v401乃至v403をアッベ数v1乃至v3としたとき、図42に示すようにv1/v3およびv2/v3はそれぞれ0.726,0.191である。 As shown in Figure 28, the Abbe numbers v401 to v403 of the lens optical system 25 in Figure 26 are 59.050, 15.499, and 81.350, respectively. Therefore, when the Abbe numbers v401 to v403 are Abbe numbers v1 to v3, v1/v3 and v2/v3 are 0.726 and 0.191, respectively, as shown in Figure 42.
 図36に示したように、図34のレンズ光学系25のアッベ数v501乃至503は、アッベ数v201乃至203と同一である。従って、図42に示すようにアッベ数v501乃至v503をアッベ数v1乃至v3としたときのv1/v3およびv2/v3は、アッベ数v201乃至v203をアッベ数v1乃至v3としたときと同一である。 As shown in FIG. 36, the Abbe numbers v501 to v503 of the lens optical system 25 in FIG. 34 are the same as the Abbe numbers v201 to v203. Therefore, as shown in FIG. 42, when the Abbe numbers v501 to v503 are the Abbe numbers v1 to v3, v1/v3 and v2/v3 are the same as when the Abbe numbers v201 to v203 are the Abbe numbers v1 to v3.
 以上のように、図2、図10、図18、図26、および図34のレンズ光学系25は、以下の条件式(4)および(5)を満たしている。 As described above, the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expressions (4) and (5).
 v1/v3<1・・・(4)
 v2/v3<0.3・・・(5)
v1/v3<1 (4)
v2/v3<0.3 (5)
 これにより、良好な軸上色収差補正を行うことができる。 This allows for excellent correction of axial chromatic aberration.
 図42に示すように、レンズ71乃至78の焦点距離f1乃至f8は、それぞれ、9.597,-25.276,19.721,30.821,-44.723,-48.445,11.065,-6.020である。レンズ171乃至178の焦点距離f1乃至f8は、それぞれ、9.236,-24.403,17.422,61.296,-60.055,-86.440,12.031,-5.819である。レンズ271乃至278の焦点距離f1乃至f8は、それぞれ、10.550,-25.840,15.332,71.836,291.123,-46.175,12.991,-5.948である。 As shown in FIG. 42, the focal lengths f1 to f8 of lenses 71 to 78 are 9.597, -25.276, 19.721, 30.821, -44.723, -48.445, 11.065, and -6.020, respectively. The focal lengths f1 to f8 of lenses 171 to 178 are 9.236, -24.403, 17.422, 61.296, -60.055, -86.440, 12.031, and -5.819, respectively. The focal lengths f1 to f8 of lenses 271 to 278 are 10.550, -25.840, 15.332, 71.836, 291.123, -46.175, 12.991, and -5.948, respectively.
 レンズ371乃至378の焦点距離f1乃至f8は、それぞれ、9.594,-22.948,16.807,51.343,-84.890,-56.340,11.646,-6.168である。レンズ471乃至478の焦点距離f1乃至f8は、それぞれ、11.351,-24.328,14.036,36.974,1323.920,47.052,-47.565,-9.910である。 The focal lengths f1 to f8 of lenses 371 to 378 are 9.594, -22.948, 16.807, 51.343, -84.890, -56.340, 11.646, and -6.168, respectively. The focal lengths f1 to f8 of lenses 471 to 478 are 11.351, -24.328, 14.036, 36.974, 1323.920, 47.052, -47.565, and -9.910, respectively.
 図42に示すように、図2、図10、図18、図26、および図34のレンズ光学系25のFnoは、それぞれ、1.841,1.833,1.832,1.834,1.85であり、小さい。 As shown in FIG. 42, the Fno of the lens optical system 25 in FIG. 2, FIG. 10, FIG. 18, FIG. 26, and FIG. 34 is small, being 1.841, 1.833, 1.832, 1.834, and 1.85, respectively.
 図42に示すように、図2のレンズ光学系25の光学全長TTLは8.545であり、最大像高IHは8.400である。従って、TTL/IHは1.017(=8.545/8.400)である。図10のレンズ光学系25の光学全長TTLは8.374であり、最大像高IHは8.400である。従って、TTL/IHは0.997(=8.374/8.400)である。図18のレンズ光学系25の光学全長TTLは8.832であり、最大像高IHは8.400である。従って、TTL/IHは1.051(=8.832/8.400)である。図26のレンズ光学系25の光学全長TTLは8.627であり、最大像高IHは8.400である。従って、TTL/IHは1.027(=8.627/8.400)である。図34のレンズ光学系25の光学全長TTLは8.835であり、最大像高IHは8.400である。従って、TTL/IHは1.052(=8.835/8.400)である。 As shown in FIG. 42, the total optical length TTL of the lens optical system 25 in FIG. 2 is 8.545, and the maximum image height IH is 8.400. Therefore, TTL/IH is 1.017 (= 8.545/8.400). The total optical length TTL of the lens optical system 25 in FIG. 10 is 8.374, and the maximum image height IH is 8.400. Therefore, TTL/IH is 0.997 (= 8.374/8.400). The total optical length TTL of the lens optical system 25 in FIG. 18 is 8.832, and the maximum image height IH is 8.400. Therefore, TTL/IH is 1.051 (= 8.832/8.400). The total optical length TTL of the lens optical system 25 in FIG. 26 is 8.627, and the maximum image height IH is 8.400. Therefore, TTL/IH is 1.027 (= 8.627/8.400). The total optical length TTL of the lens optical system 25 in FIG. 34 is 8.835, and the maximum image height IH is 8.400. Therefore, TTL/IH is 1.052 (= 8.835/8.400).
 以上のように、図2、図10、図18、図26、および図34のレンズ光学系25は、以下の条件式(6)を満たしている。 As described above, the lens optical system 25 in Figures 2, 10, 18, 26, and 34 satisfies the following conditional expression (6).
 TTL/IH<1.1・・・(6) TTL/IH<1.1...(6)
 これにより、最大像高IHが大きい場合であっても光学全長TTLを小さくすることができる。即ち、固体撮像素子21が大型化した場合であっても低背なレンズ光学系25を実現することができる。 As a result, the total optical length TTL can be made small even when the maximum image height IH is large. In other words, a low-profile lens optical system 25 can be realized even when the solid-state imaging element 21 is enlarged.
 例えば、レンズ光学系25が条件式(6)を満たす場合、1/1インチの固体撮像素子21であってもレンズ光学系25の厚みは11mm以下である。ここで、一般的なモバイル機器の厚みは8~9mm程度であり、レンズ光学系25の搭載部分が凸となっている形状である場合、その搭載部分の総厚は11mm程度である。従って、1/1インチの固体撮像素子21は一般的なモバイル機器に搭載可能である。1/1インチの固体撮像素子21が搭載されたモバイル機器のレンズ光学系25の搭載部分の凸化を抑制し、そのモバイル機器の厚みを低減することができる。 For example, if the lens optical system 25 satisfies conditional expression (6), the thickness of the lens optical system 25 is 11 mm or less even for a 1/1 inch solid-state imaging element 21. Here, the thickness of a typical mobile device is about 8 to 9 mm, and if the mounting portion of the lens optical system 25 has a convex shape, the total thickness of the mounting portion is about 11 mm. Therefore, a 1/1 inch solid-state imaging element 21 can be mounted in a typical mobile device. By suppressing the convexity of the mounting portion of the lens optical system 25 of a mobile device equipped with a 1/1 inch solid-state imaging element 21, the thickness of the mobile device can be reduced.
 図42に示すように、図2、図10、図18、図26、および図34のレンズ光学系25の視野角FOVは、それぞれ、92.450,92.332,92.000,92.048,90.940である。 As shown in FIG. 42, the field of view FOV of the lens optical system 25 in FIG. 2, FIG. 10, FIG. 18, FIG. 26, and FIG. 34 are 92.450, 92.332, 92.000, 92.048, and 90.940, respectively.
 図42に示すように、図2、図10、図18、図26、および図34のレンズ光学系25の主光線角度CRAは、それぞれ、39.200,39.900,39.200,39.200,39.800である。従って、図2、図10、図18、図26、および図34のレンズ光学系25は、以下の条件式(7)を満たしている。 As shown in Figure 42, the chief ray angles CRA of the lens optical systems 25 in Figures 2, 10, 18, 26, and 34 are 39.200, 39.900, 39.200, 39.200, and 39.800, respectively. Therefore, the lens optical systems 25 in Figures 2, 10, 18, 26, and 34 satisfy the following conditional expression (7).
 CRA<40・・・(7) CRA<40...(7)
 これにより、撮像面31aの周辺部の受光量の低下を抑制することができる。 This makes it possible to suppress a decrease in the amount of light received at the periphery of the imaging surface 31a.
 以上のように、レンズ光学系25は、物体側から像側に向かって順に、レンズ71(171,271,371,471)乃至レンズ78(178,278,378,478)を備える。レンズ71(171,271,371,471)は正の屈折力を有する。レンズ72(172,272,372,472)は負の屈折力を有する。レンズ73(173,273,373,473)は正の屈折力を有する。レンズ74(174,274,374,474)は正の屈折力を有する。レンズ75(175,275,375,475)は正または負の屈折力を有する。レンズ76(176,276,376,476)は正または負の屈折力を有する。レンズ77(177,277,377,477)は正または負の屈折力を有する。レンズ78(178,278,378,478)は負の屈折力を有する。レンズ75(175,275,375,475)乃至レンズ77(177,277,377,477)の近軸形状は物体側に凸のメニスカス形状である。レンズ75(175,275,375,475)乃至レンズ77(177,277,377,477)それぞれの物体側の面75a(175a,275a,375a,475a)乃至77a(177a,277a,377a,477a)および像側の面75b(175b,275b,375b,475b)乃至77b(177b,277b,377b,477b)からなる6つの面のうちの5つ以上の面のレンズ有効径周辺部の接線角度が40度以上である。 As described above, the lens optical system 25 comprises, in order from the object side to the image side, lenses 71 (171, 271, 371, 471) to 78 (178, 278, 378, 478). Lens 71 (171, 271, 371, 471) has positive refractive power. Lens 72 (172, 272, 372, 472) has negative refractive power. Lens 73 (173, 273, 373, 473) has positive refractive power. Lens 74 (174, 274, 374, 474) has positive refractive power. Lens 75 (175, 275, 375, 475) has positive or negative refractive power. Lens 76 (176, 276, 376, 476) has positive or negative refractive power. The lens 77 (177, 277, 377, 477) has positive or negative refractive power. The lens 78 (178, 278, 378, 478) has negative refractive power. The paraxial shapes of the lenses 75 (175, 275, 375, 475) to 77 (177, 277, 377, 477) are meniscus shapes convex toward the object side. Of the six surfaces consisting of the object-side surfaces 75a (175a, 275a, 375a, 475a) to 77a (177a, 277a, 377a, 477a) and the image-side surfaces 75b (175b, 275b, 375b, 475b) to 77b (177b, 277b, 377b, 477b) of the lenses 75 (175, 275, 375, 475) to 77b (177b, 277b, 377b, 477b), the tangent angle of the peripheral portion of the lens effective diameter of five or more surfaces is 40 degrees or more.
 従って、レンズ光学系25における光学全長TTLと最大像高IHの比であるTTL/IHを小さくすることができる。その結果、大型の固体撮像素子21に対応する場合のレンズ光学系25の光学全長TTLを短縮することができる。 Therefore, it is possible to reduce TTL/IH, which is the ratio of the total optical length TTL to the maximum image height IH in the lens optical system 25. As a result, it is possible to shorten the total optical length TTL of the lens optical system 25 when it is compatible with a large solid-state imaging element 21.
<2.電子機器への適用例>
 上述した撮像装置10は、例えば、デジタルスチルカメラやデジタルビデオカメラ、撮像機能を備えた携帯電話機やスマートフォン等のモバイル機器といった各種の電子機器に適用することができる。
2. Examples of application to electronic devices
The imaging device 10 described above can be applied to various electronic devices, such as digital still cameras, digital video cameras, and mobile devices such as mobile phones and smartphones equipped with an imaging function.
 図43は、本技術を提供した電子機器としてのスマートフォンのハードウエア構成例を示すブロック図である。 Figure 43 is a block diagram showing an example of the hardware configuration of a smartphone as an electronic device to which this technology is applied.
 スマートフォン1000において、CPU(Central Processing Unit)1001,ROM(Read Only Memory)1002,RAM(Random Access Memory)1003は、バス1004により相互に接続されている。 In the smartphone 1000, a CPU (Central Processing Unit) 1001, a ROM (Read Only Memory) 1002, and a RAM (Random Access Memory) 1003 are interconnected by a bus 1004.
 バス1004には、さらに、入出力インタフェース1005が接続されている。入出力インタフェース1005には、撮像部1006、入力部1007、出力部1008、および通信部1009が接続されている。 An input/output interface 1005 is further connected to the bus 1004. An imaging unit 1006, an input unit 1007, an output unit 1008, and a communication unit 1009 are connected to the input/output interface 1005.
 撮像部1006は、上述した撮像装置10等により構成される。撮像部1006は、被写体を撮像し、画像を取得する。この画像はRAM1003に記憶されたり、出力部1008に表示されたりする。入力部1007は、タッチパネルを構成する位置入力装置であるタッチパッド、マイクロフォンなどよりなる。出力部1008は、タッチパネルを構成する液晶パネル、スピーカなどよりなる。通信部1009は、ネットワークインタフェースなどよりなる。 The imaging unit 1006 is composed of the imaging device 10 described above, etc. The imaging unit 1006 captures an image of a subject and obtains an image. This image is stored in the RAM 1003 and/or displayed on the output unit 1008. The input unit 1007 is composed of a touchpad, which is a position input device constituting a touch panel, a microphone, etc. The output unit 1008 is composed of a liquid crystal panel constituting a touch panel, a speaker, etc. The communication unit 1009 is composed of a network interface, etc.
 以上のように構成されるスマートフォン1000においても、撮像部1006として撮像装置10を適用することにより、大型の固体撮像素子21に対応する場合のレンズ光学系25の光学全長TTLを短縮することができる。その結果、大型の固体撮像素子21を搭載したスマートフォン1000を低背化することができる。 Even in the smartphone 1000 configured as described above, by applying the imaging device 10 as the imaging section 1006, the total optical length TTL of the lens optical system 25 can be shortened when compatible with a large solid-state imaging element 21. As a result, the smartphone 1000 equipped with a large solid-state imaging element 21 can be made low-profile.
<3.撮像装置の使用例>
 図44は、上述の撮像装置10を使用する使用例を示す図である。
3. Examples of use of imaging device
FIG. 44 is a diagram showing an example of using the imaging device 10 described above.
 上述した撮像装置10は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 The imaging device 10 described above can be used in various cases to sense light, such as visible light, infrared light, ultraviolet light, and X-rays, for example, as follows:
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
- Devices that take images for viewing, such as digital cameras and mobile devices with camera functions; - Devices used for traffic purposes, such as in-vehicle sensors that take images of the front and rear of a car, the surroundings, and the interior of the car for safe driving such as automatic stopping and for recognizing the driver's state, surveillance cameras that monitor moving vehicles and roads, and distance measuring sensors that measure the distance between vehicles, etc.; - Devices used in home appliances such as TVs, refrigerators, and air conditioners to capture images of user gestures and operate devices in accordance with those gestures; - Devices used for medical and healthcare purposes, such as endoscopes and devices that take images of blood vessels by receiving infrared light; - Devices used for security purposes, such as surveillance cameras for crime prevention and cameras for person authentication; - Devices used for beauty purposes, such as skin measuring devices that take images of the skin and microscopes that take images of the scalp; - Devices used for sports, such as action cameras and wearable cameras for sports purposes, etc.; - Devices used for agriculture, such as cameras for monitoring the condition of fields and crops.
<4.内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<4. Application example to endoscopic surgery system>
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図45は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 45 is a diagram showing an example of the general configuration of an endoscopic surgery system to which the technology disclosed herein (the present technology) can be applied.
 図45では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 In FIG. 45, an operator (doctor) 11131 is shown using an endoscopic surgery system 11000 to perform surgery on a patient 11132 on a patient bed 11133. As shown in the figure, the endoscopic surgery system 11000 is composed of an endoscope 11100, other surgical tools 11110 such as an insufflation tube 11111 and an energy treatment tool 11112, a support arm device 11120 that supports the endoscope 11100, and a cart 11200 on which various devices for endoscopic surgery are mounted.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 is composed of a lens barrel 11101, the tip of which is inserted into the body cavity of the patient 11132 at a predetermined length, and a camera head 11102 connected to the base end of the lens barrel 11101. In the illustrated example, the endoscope 11100 is configured as a so-called rigid scope having a rigid lens barrel 11101, but the endoscope 11100 may also be configured as a so-called flexible scope having a flexible lens barrel.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 The tip of the tube 11101 has an opening into which an objective lens is fitted. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the tube by a light guide extending inside the tube 11101, and is irradiated via the objective lens towards an object to be observed inside the body cavity of the patient 11132. The endoscope 11100 may be a direct-viewing endoscope, an oblique-viewing endoscope, or a side-viewing endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the object of observation is focused on the image sensor by the optical system. The observation light is photoelectrically converted by the image sensor to generate an electrical signal corresponding to the observation light, i.e., an image signal corresponding to the observed image. The image signal is sent to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the overall operation of the endoscope 11100 and the display device 11202. Furthermore, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal, such as development processing (demosaic processing), in order to display an image based on the image signal.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202, under the control of the CCU 11201, displays an image based on the image signal that has been subjected to image processing by the CCU 11201.
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (Light Emitting Diode) and supplies irradiation light to the endoscope 11100 when photographing the surgical site, etc.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. A user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) of the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment tool control device 11205 controls the operation of the energy treatment tool 11112 for cauterizing tissue, incising, sealing blood vessels, etc. The insufflation device 11206 sends gas into the body cavity of the patient 11132 via the insufflation tube 11111 to inflate the body cavity in order to ensure a clear field of view for the endoscope 11100 and to ensure a working space for the surgeon. The recorder 11207 is a device capable of recording various types of information related to the surgery. The printer 11208 is a device capable of printing various types of information related to the surgery in various formats such as text, images, or graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 The light source device 11203 that supplies illumination light to the endoscope 11100 when photographing the surgical site can be composed of a white light source composed of, for example, an LED, a laser light source, or a combination of these. When the white light source is composed of a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high precision, so that the white balance of the captured image can be adjusted in the light source device 11203. In this case, it is also possible to capture images corresponding to each of the RGB colors in a time-division manner by irradiating the observation object with laser light from each of the RGB laser light sources in a time-division manner and controlling the drive of the image sensor of the camera head 11102 in synchronization with the irradiation timing. According to this method, a color image can be obtained without providing a color filter to the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 The light source device 11203 may be controlled to change the intensity of the light it outputs at predetermined time intervals. The image sensor of the camera head 11102 may be controlled to acquire images in a time-division manner in synchronization with the timing of the change in the light intensity, and the images may be synthesized to generate an image with a high dynamic range that is free of so-called blackout and whiteout.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 The light source device 11203 may be configured to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependency of light absorption in body tissue, a narrow band of light is irradiated compared to the light irradiated during normal observation (i.e., white light), and a predetermined tissue such as blood vessels on the surface of the mucosa is photographed with high contrast, so-called narrow band imaging is performed. Alternatively, in special light observation, fluorescent observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light. In fluorescent observation, excitation light is irradiated to the body tissue and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and excitation light corresponding to the fluorescent wavelength of the reagent is irradiated to the body tissue to obtain a fluorescent image. The light source device 11203 may be configured to supply narrow band light and/or excitation light corresponding to such special light observation.
 図46は、図45に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 46 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG. 45.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 has a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and the CCU 11201 are connected to each other via a transmission cable 11400 so that they can communicate with each other.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at the connection with the lens barrel 11101. Observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401. The lens unit 11401 is composed of a combination of multiple lenses including a zoom lens and a focus lens.
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging unit 11402 is composed of an imaging element. The imaging element constituting the imaging unit 11402 may be one (so-called single-plate type) or multiple (so-called multi-plate type). When the imaging unit 11402 is composed of a multi-plate type, for example, each imaging element may generate an image signal corresponding to each of RGB, and a color image may be obtained by combining these. Alternatively, the imaging unit 11402 may be configured to have a pair of imaging elements for acquiring image signals for the right eye and the left eye corresponding to 3D (dimensional) display. By performing 3D display, the surgeon 11131 can more accurately grasp the depth of the biological tissue in the surgical site. Note that when the imaging unit 11402 is composed of a multi-plate type, multiple lens units 11401 may be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Furthermore, the imaging unit 11402 does not necessarily have to be provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101, immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The driving unit 11403 is composed of an actuator, and moves the zoom lens and focus lens of the lens unit 11401 a predetermined distance along the optical axis under the control of the camera head control unit 11405. This allows the magnification and focus of the image captured by the imaging unit 11402 to be adjusted appropriately.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is configured with a communication device for transmitting and receiving various information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 The communication unit 11404 also receives control signals for controlling the operation of the camera head 11102 from the CCU 11201, and supplies them to the camera head control unit 11405. The control signals include information on the imaging conditions, such as information specifying the frame rate of the captured image, information specifying the exposure value during imaging, and/or information specifying the magnification and focus of the captured image.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 The above-mentioned frame rate, exposure value, magnification, focus, and other imaging conditions may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. In the latter case, the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls the operation of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is configured with a communication device for transmitting and receiving various information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 The communication unit 11411 also transmits to the camera head 11102 a control signal for controlling the operation of the camera head 11102. The image signal and the control signal can be transmitted by electrical communication, optical communication, etc.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various image processing operations on the image signal, which is the RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various controls related to the imaging of the surgical site, etc. by the endoscope 11100, and the display of the captured images obtained by imaging the surgical site, etc. For example, the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 The control unit 11413 also causes the display device 11202 to display the captured image showing the surgical site, etc., based on the image signal that has been image-processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 can recognize surgical tools such as forceps, specific body parts, bleeding, mist generated when the energy treatment tool 11112 is used, etc., by detecting the shape and color of the edges of objects included in the captured image. When the control unit 11413 causes the display device 11202 to display the captured image, it may use the recognition result to superimpose various types of surgical support information on the image of the surgical site. By superimposing the surgical support information and presenting it to the surgeon 11131, the burden on the surgeon 11131 can be reduced and the surgeon 11131 can proceed with the surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 that connects the camera head 11102 and the CCU 11201 is an electrical signal cable that supports electrical signal communication, an optical fiber that supports optical communication, or a composite cable of these.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 In the illustrated example, communication is performed wired using a transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may also be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、レンズユニット11401、撮像部11402等に適用され得る。具体的には、上述した撮像装置10は、レンズユニット11401、撮像部11402、および駆動部11403に適用することができる。レンズユニット11401と撮像部11402に本開示に係る技術を適用することにより、大型の固体撮像素子21に対応する場合のレンズ光学系25の光学全長TTLを短縮することができる。その結果、カメラヘッド11102を大型化することなく、高画質の術部画像により、例えば術者が術部を確実に確認することが可能になる。 The above describes an example of an endoscopic surgery system to which the technology disclosed herein can be applied. The technology disclosed herein can be applied to the lens unit 11401, the imaging unit 11402, and the like, among the configurations described above. Specifically, the imaging device 10 described above can be applied to the lens unit 11401, the imaging unit 11402, and the drive unit 11403. By applying the technology disclosed herein to the lens unit 11401 and the imaging unit 11402, the total optical length TTL of the lens optical system 25 when compatible with a large solid-state imaging element 21 can be shortened. As a result, for example, a surgeon can reliably check the surgical site with a high-quality image of the surgical site without enlarging the size of the camera head 11102.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Note that although an endoscopic surgery system has been described here as an example, the technology disclosed herein may also be applied to other systems, such as a microsurgery system.
 <5.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<5. Examples of applications to moving objects>
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure may be realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility device, an airplane, a drone, a ship, or a robot.
 図47は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 47 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile object control system to which the technology disclosed herein can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図47に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 47, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside vehicle information detection unit 12030, an inside vehicle information detection unit 12040, and an integrated control unit 12050. Also shown as functional components of the integrated control unit 12050 are a microcomputer 12051, an audio/video output unit 12052, and an in-vehicle network I/F (interface) 12053.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 functions as a control device for a drive force generating device for generating the drive force of the vehicle, such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to the wheels, a steering mechanism for adjusting the steering angle of the vehicle, and a braking device for generating a braking force for the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices installed in the vehicle body according to various programs. For example, the body system control unit 12020 functions as a control device for a keyless entry system, a smart key system, a power window device, or various lamps such as headlamps, tail lamps, brake lamps, turn signals, and fog lamps. In this case, radio waves or signals from various switches transmitted from a portable device that replaces a key can be input to the body system control unit 12020. The body system control unit 12020 accepts the input of these radio waves or signals and controls the vehicle's door lock device, power window device, lamps, etc.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The outside-vehicle information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image capturing unit 12031 is connected to the outside-vehicle information detection unit 12030. The outside-vehicle information detection unit 12030 causes the image capturing unit 12031 to capture images outside the vehicle and receives the captured images. The outside-vehicle information detection unit 12030 may perform object detection processing or distance detection processing for people, cars, obstacles, signs, or characters on the road surface based on the received images.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of light received. The imaging unit 12031 can output the electrical signal as an image, or as distance measurement information. The light received by the imaging unit 12031 may be visible light, or may be invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects information inside the vehicle. To the in-vehicle information detection unit 12040, for example, a driver state detection unit 12041 that detects the state of the driver is connected. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 may calculate the driver's degree of fatigue or concentration based on the detection information input from the driver state detection unit 12041, or may determine whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 can calculate the control target values of the driving force generating device, steering mechanism, or braking device based on the information inside and outside the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, and output a control command to the drive system control unit 12010. For example, the microcomputer 12051 can perform cooperative control aimed at realizing the functions of an ADAS (Advanced Driver Assistance System), including avoiding or mitigating vehicle collisions, following based on the distance between vehicles, maintaining vehicle speed, vehicle collision warning, or vehicle lane departure warning.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 The microcomputer 12051 can also control the driving force generating device, steering mechanism, braking device, etc. based on information about the surroundings of the vehicle acquired by the outside vehicle information detection unit 12030 or the inside vehicle information detection unit 12040, thereby performing cooperative control aimed at automatic driving, which allows the vehicle to travel autonomously without relying on the driver's operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 The microcomputer 12051 can also output control commands to the body system control unit 12020 based on information outside the vehicle acquired by the outside-vehicle information detection unit 12030. For example, the microcomputer 12051 can control the headlamps according to the position of a preceding vehicle or an oncoming vehicle detected by the outside-vehicle information detection unit 12030, and perform cooperative control aimed at preventing glare, such as switching high beams to low beams.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図47の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one output signal of audio and image to an output device capable of visually or audibly notifying the occupants of the vehicle or the outside of the vehicle of information. In the example of FIG. 47, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an on-board display and a head-up display.
 図48は、撮像部12031の設置位置の例を示す図である。 FIG. 48 shows an example of the installation position of the imaging unit 12031.
 図48では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 48, the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at the front nose, side mirrors, rear bumper, back door, and the top of the windshield inside the vehicle cabin of the vehicle 12100. The imaging unit 12101 provided at the front nose and the imaging unit 12105 provided at the top of the windshield inside the vehicle cabin mainly acquire images of the front of the vehicle 12100. The imaging units 12102 and 12103 provided at the side mirrors mainly acquire images of the sides of the vehicle 12100. The imaging unit 12104 provided at the rear bumper or back door mainly acquires images of the rear of the vehicle 12100. The images of the front acquired by the imaging units 12101 and 12105 are mainly used to detect preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, etc.
 なお、図48には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 48 shows an example of the imaging ranges of the imaging units 12101 to 12104. Imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and imaging range 12114 indicates the imaging range of the imaging unit 12104 provided on the rear bumper or back door. For example, an overhead image of the vehicle 12100 viewed from above is obtained by superimposing the image data captured by the imaging units 12101 to 12104.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera consisting of multiple imaging elements, or an imaging element having pixels for detecting phase differences.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 can obtain the distance to each solid object within the imaging ranges 12111 to 12114 and the change in this distance over time (relative speed with respect to the vehicle 12100) based on the distance information obtained from the imaging units 12101 to 12104, and can extract as a preceding vehicle, in particular, the closest solid object on the path of the vehicle 12100 that is traveling in approximately the same direction as the vehicle 12100 at a predetermined speed (e.g., 0 km/h or faster). Furthermore, the microcomputer 12051 can set the inter-vehicle distance that should be maintained in advance in front of the preceding vehicle, and perform automatic braking control (including follow-up stop control) and automatic acceleration control (including follow-up start control). In this way, cooperative control can be performed for the purpose of automatic driving, which runs autonomously without relying on the driver's operation.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 classifies and extracts three-dimensional object data on three-dimensional objects, such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects, based on the distance information obtained from the imaging units 12101 to 12104, and can use the data to automatically avoid obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 then determines the collision risk, which indicates the risk of collision with each obstacle, and when the collision risk is equal to or exceeds a set value and there is a possibility of a collision, it can provide driving assistance for collision avoidance by outputting an alarm to the driver via the audio speaker 12061 or the display unit 12062, or by forcibly decelerating or steering to avoid a collision via the drive system control unit 12010.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. The recognition of such a pedestrian is performed, for example, by a procedure of extracting feature points in the captured image of the imaging units 12101 to 12104 as infrared cameras, and a procedure of performing pattern matching processing on a series of feature points that indicate the contour of an object to determine whether or not it is a pedestrian. When the microcomputer 12051 determines that a pedestrian is present in the captured image of the imaging units 12101 to 12104 and recognizes a pedestrian, the audio/image output unit 12052 controls the display unit 12062 to superimpose a rectangular contour line for emphasis on the recognized pedestrian. The audio/image output unit 12052 may also control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031等に適用され得る。具体的には、上述した撮像装置10は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、大型の固体撮像素子21に対応する場合のレンズ光学系25の光学全長TTLを短縮することができる。その結果、撮像部12031を大型化することなく、高画質の撮影画像により、例えばドライバの疲労を軽減することが可能になる。 Above, an example of a vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 12031 and the like of the configuration described above. Specifically, the imaging device 10 described above can be applied to the imaging unit 12031. By applying the technology according to the present disclosure to the imaging unit 12031, the total optical length TTL of the lens optical system 25 when compatible with a large solid-state imaging element 21 can be shortened. As a result, it becomes possible to reduce, for example, driver fatigue by capturing high-quality images without enlarging the size of the imaging unit 12031.
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。例えば、各面の変曲点の数や位置、各レンズのレンズデータ、各面の非球面データ、およびレンズ有効径周辺部の接線角度は上述した例に限定されない。上述した複数の実施の形態の全てまたは一部を組み合わせた形態を採用することもできる。 The embodiments of the present technology are not limited to the above-mentioned embodiments, and various modifications are possible within the scope of the gist of the present technology. For example, the number and positions of inflection points of each surface, lens data of each lens, aspheric data of each surface, and tangent angles of the peripheral parts of the effective diameter of the lens are not limited to the above-mentioned examples. It is also possible to adopt a form that combines all or part of the above-mentioned embodiments.
 本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。 The effects described in this specification are merely examples and are not limiting, and there may be effects other than those described in this specification.
 本技術は、以下の構成を取ることができる。
 (1)
 物体側から像側に向かって順に、
 正の屈折力をする第1のレンズと、
 負の屈折力を有する第2のレンズと、
 正の屈折力を有する第3のレンズと、
 正の屈折力を有する第4のレンズと、
 正または負の屈折力を有する第5のレンズと、
 正または負の屈折力を有する第6のレンズと、
 正または負の屈折力を有する第7のレンズと、
 負の屈折力を有する第8のレンズと
 を備え、
 前記第5のレンズ乃至前記第7のレンズの近軸形状は物体側に凸のメニスカス形状であり、
 前記第5のレンズ乃至前記第7のレンズそれぞれの前記物体側の面および前記像側の面からなる6つの前記面のうちの5つ以上の前記面のレンズ有効径周辺部の接線角度が40度以上であり、
 被写体像を撮像素子の撮像面に結像させる
 ように構成された
 レンズ光学系。
 (2)
 前記第5のレンズの前記物体側の前記面の曲率半径をR9とし、前記第5のレンズの前記像側の前記面の曲率半径をR10とし、前記レンズ光学系全体の焦点距離をfとしたとき、
 0<(R9+R10)/f<4
 という条件を満たす
 ように構成された
 前記(1)に記載のレンズ光学系。
 (3)
 前記第8のレンズの前記物体側の面の曲率半径をR15とし、前記第8のレンズの前記像側の面の曲率半径をR16としたとき、
 (R15+R16)/(R15-R16)<0
 という条件を満たす
 ように構成された
 前記(1)または(2)に記載のレンズ光学系。
 (4)
 前記第5のレンズ乃至前記第8のレンズの中心の厚みの合計をdLとし、前記第4のレンズ乃至前記第8のレンズのうちの隣り合う2つのレンズからなる各ペアの対向する面どうしの中心の間隔の合計をdaとしたとき、
 dL/da<1.0
 という条件を満たす
 ように構成された
 前記(1)乃至(3)のいずれかに記載のレンズ光学系。
 (5)
 前記第1のレンズのアッベ数をv1とし、前記第2のレンズのアッベ数をv2とし、前記第3のレンズのアッベ数をv3としたとき、
 v1/v3<1
 v2/v3<0.3
 という条件を満たす
 ように構成された
 前記(1)乃至(4)のいずれかに記載のレンズ光学系。
 (6)
 前記レンズ光学系から前記撮像面に入射される光の主光線角度をCRAとしたとき、
 CRA<40
 という条件を満たす
 ように構成された
 前記(1)乃至(5)のいずれかに記載のレンズ光学系。
 (7)
 前記第1のレンズの前記物体側の面頂から前記撮像面までの距離である光学全長をTTLとし、前記レンズ光学系における最大像高をIHとしたとき、
 TTL/IH<1.1
 という条件を満たす
 ように構成された
 前記(1)乃至(6)のいずれかに記載のレンズ光学系。
 (8)
  物体側から像側に向かって順に、
  正の屈折力をする第1のレンズと、
  負の屈折力を有する第2のレンズと、
  正の屈折力を有する第3のレンズと、
  正の屈折力を有する第4のレンズと、
  正または負の屈折力を有する第5のレンズと、
  正または負の屈折力を有する第6のレンズと、
  正または負の屈折力を有する第7のレンズと、
  負の屈折力を有する第8のレンズと
  を備え、
  前記第5のレンズ乃至前記第7のレンズの近軸形状は物体側に凸のメニスカス形状であり、
  前記第5のレンズ乃至前記第7のレンズそれぞれの前記物体側の面および前記像側の面からなる6つの前記面のうちの5つ以上の前記面のレンズ有効径周辺部の接線角度が40度以上である
  ように構成された
 レンズ光学系と、
 前記レンズ光学系により結像された被写体像を電気信号に変換する撮像素子と
 を備える撮像装置。
The present technology can take the following configurations.
(1)
From the object side to the image side,
a first lens having a positive refractive power;
a second lens having a negative refractive power;
a third lens having a positive refractive power;
a fourth lens having a positive refractive power;
a fifth lens having a positive or negative refractive power;
a sixth lens having a positive or negative refractive power;
a seventh lens having a positive or negative refractive power;
an eighth lens having a negative refractive power;
the paraxial shape of each of the fifth lens to the seventh lens is a meniscus shape convex toward an object side,
a tangent angle of a peripheral portion of a lens effective diameter of five or more of the six surfaces consisting of the object-side surface and the image-side surface of each of the fifth lens to the seventh lens is 40 degrees or more;
A lens optical system configured to form an image of a subject on the imaging surface of an image sensor.
(2)
When the radius of curvature of the surface of the fifth lens on the object side is R9, the radius of curvature of the surface of the fifth lens on the image side is R10, and the focal length of the entire lens optical system is f,
0<(R9+R10)/f<4
The lens optical system according to (1) above, configured to satisfy the following condition.
(3)
When the radius of curvature of the object side surface of the eighth lens is R15 and the radius of curvature of the image side surface of the eighth lens is R16,
(R15+R16)/(R15-R16)<0
The lens optical system according to (1) or (2) above, configured to satisfy the following condition.
(4)
When the total thickness of the centers of the fifth lens to the eighth lens is dL, and the total distance between the centers of the opposing surfaces of each pair of adjacent two lenses among the fourth lens to the eighth lens is da,
dL/da<1.0
The lens optical system according to any one of (1) to (3), which is configured to satisfy the following condition:
(5)
When the Abbe number of the first lens is v1, the Abbe number of the second lens is v2, and the Abbe number of the third lens is v3,
v1/v3<1
v2/v3<0.3
The lens optical system according to any one of (1) to (4), which is configured to satisfy the following condition:
(6)
When the chief ray angle of the light incident on the imaging surface from the lens optical system is CRA,
CRA<40
The lens optical system according to any one of (1) to (5) above, configured to satisfy the following condition:
(7)
When a total optical length TTL, which is a distance from a vertex of the object side of the first lens to the imaging plane, and a maximum image height IH in the lens optical system are respectively:
TTL/IH<1.1
The lens optical system according to any one of (1) to (6), which is configured to satisfy the following condition:
(8)
From the object side to the image side,
a first lens having a positive refractive power;
a second lens having a negative refractive power;
a third lens having a positive refractive power;
a fourth lens having a positive refractive power;
a fifth lens having a positive or negative refractive power;
a sixth lens having a positive or negative refractive power;
a seventh lens having a positive or negative refractive power;
an eighth lens having a negative refractive power;
the paraxial shape of each of the fifth lens to the seventh lens is a meniscus shape convex toward an object side,
a lens optical system configured such that five or more of the six surfaces consisting of the object-side surface and the image-side surface of each of the fifth lens to the seventh lens have a tangent angle of 40 degrees or more at a peripheral portion of a lens effective diameter;
and an image sensor that converts the subject image formed by the lens optical system into an electrical signal.
 10 撮像装置, 21 固体撮像素子, 25 レンズ光学系, 31a 撮像面, 71乃至78 レンズ, 74a,74b,75a,75b,76a,76b,77a,77b,78a,78b 面, 171乃至178 レンズ, 174a,174b,175a,175b,176a,176b,177a,177b,178a,178b 面, 271乃至278 レンズ, 274a,274b,275a,275b,276a,276b,277a,277b,278a,278b 面, 371乃至378 レンズ, 374a,374b,375a,375b,376a,376b,377a,377b,378a,378b 面, 471乃至478 レンズ, 474a,474b,475a,475b,476a,476b,477a,477b,478a,478b 面 10 imaging device, 21 solid-state imaging element, 25 lens optical system, 31a imaging surface, 71 to 78 lenses, 74a, 74b, 75a, 75b, 76a, 76b, 77a, 77b, 78a, 78b surface, 171 to 178 lenses, 174a, 174b, 175a, 175b, 176a, 176b, 177a, 177b, 178a, 178b surface, 271 to 278 lenses, 274a , 274b, 275a, 275b, 276a, 276b, 277a, 277b, 278a, 278b Surface, 371 to 378 Lens, 374a, 374b, 375a, 375b, 376a, 376b, 377a, 377b, 378a, 378b Surface, 471 to 478 Lens, 474a, 474b, 475a, 475b, 476a, 476b, 477a, 477b, 478a, 478b Surface

Claims (8)

  1.  物体側から像側に向かって順に、
     正の屈折力をする第1のレンズと、
     負の屈折力を有する第2のレンズと、
     正の屈折力を有する第3のレンズと、
     正の屈折力を有する第4のレンズと、
     正または負の屈折力を有する第5のレンズと、
     正または負の屈折力を有する第6のレンズと、
     正または負の屈折力を有する第7のレンズと、
     負の屈折力を有する第8のレンズと
     を備え、
     前記第5のレンズ乃至前記第7のレンズの近軸形状は物体側に凸のメニスカス形状であり、
     前記第5のレンズ乃至前記第7のレンズそれぞれの前記物体側の面および前記像側の面からなる6つの前記面のうちの5つ以上の前記面のレンズ有効径周辺部の接線角度が40度以上であり、
     被写体像を撮像素子の撮像面に結像させる
     ように構成された
     レンズ光学系。
    From the object side to the image side,
    a first lens having a positive refractive power;
    a second lens having a negative refractive power;
    a third lens having a positive refractive power; and
    a fourth lens having a positive refractive power; and
    a fifth lens having a positive or negative refractive power;
    a sixth lens having a positive or negative refractive power;
    a seventh lens having a positive or negative refractive power;
    an eighth lens having a negative refractive power;
    the paraxial shape of each of the fifth lens to the seventh lens is a meniscus shape convex toward an object side,
    Five or more of the six surfaces consisting of the object-side surface and the image-side surface of each of the fifth lens to the seventh lens have tangent angles of 40 degrees or more at the peripheral portion of the effective diameter of the lens,
    A lens optical system configured to form an image of a subject on the imaging surface of an image sensor.
  2.  前記第5のレンズの前記物体側の前記面の曲率半径をR9とし、前記第5のレンズの前記像側の前記面の曲率半径をR10とし、前記レンズ光学系全体の焦点距離をfとしたとき、
     0<(R9+R10)/f<4
     という条件を満たす
     ように構成された
     請求項1に記載のレンズ光学系。
    When the radius of curvature of the surface of the fifth lens on the object side is R9, the radius of curvature of the surface of the fifth lens on the image side is R10, and the focal length of the entire lens optical system is f,
    0<(R9+R10)/f<4
    The lens optical system according to claim 1 , which is configured to satisfy the following condition:
  3.  前記第8のレンズの前記物体側の面の曲率半径をR15とし、前記第8のレンズの前記像側の面の曲率半径をR16としたとき、
     (R15+R16)/(R15-R16)<0
     という条件を満たす
     ように構成された
     請求項1に記載のレンズ光学系。
    When the radius of curvature of the object side surface of the eighth lens is R15 and the radius of curvature of the image side surface of the eighth lens is R16,
    (R15+R16)/(R15-R16)<0
    The lens optical system according to claim 1 , which is configured to satisfy the following condition:
  4.  前記第5のレンズ乃至前記第8のレンズの中心の厚みの合計をdLとし、前記第4のレンズ乃至前記第8のレンズのうちの隣り合う2つのレンズからなる各ペアの対向する面どうしの中心の間隔の合計をdaとしたとき、
     dL/da<1.0
     という条件を満たす
     ように構成された
     請求項1に記載のレンズ光学系。
    When the total thickness of the centers of the fifth lens to the eighth lens is dL, and the total distance between the centers of the opposing surfaces of each pair of adjacent two lenses among the fourth lens to the eighth lens is da,
    dL/da<1.0
    The lens optical system according to claim 1 , which is configured to satisfy the following condition:
  5.  前記第1のレンズのアッベ数をv1とし、前記第2のレンズのアッベ数をv2とし、前記第3のレンズのアッベ数をv3としたとき、
     v1/v3<1
     v2/v3<0.3
     という条件を満たす
     ように構成された
     請求項1に記載のレンズ光学系。
    When the Abbe number of the first lens is v1, the Abbe number of the second lens is v2, and the Abbe number of the third lens is v3,
    v1/v3<1
    v2/v3<0.3
    The lens optical system according to claim 1 , which is configured to satisfy the following condition:
  6.  前記レンズ光学系から前記撮像面に入射される光の主光線角度をCRAとしたとき、
     CRA<40
     という条件を満たす
     ように構成された
     請求項1に記載のレンズ光学系。
    When the chief ray angle of the light incident on the imaging surface from the lens optical system is CRA,
    CRA<40
    The lens optical system according to claim 1 , which is configured to satisfy the following condition:
  7.  前記第1のレンズの前記物体側の面頂から前記撮像面までの距離である光学全長をTTLとし、前記レンズ光学系における最大像高をIHとしたとき、
     TTL/IH<1.1
     という条件を満たす
     ように構成された
     請求項1に記載のレンズ光学系。
    When a total optical length TTL, which is a distance from the vertex of the object side surface of the first lens to the imaging surface, and a maximum image height IH in the lens optical system are respectively:
    TTL/IH<1.1
    The lens optical system according to claim 1 , which is configured to satisfy the following condition:
  8.   物体側から像側に向かって順に、
      正の屈折力をする第1のレンズと、
      負の屈折力を有する第2のレンズと、
      正の屈折力を有する第3のレンズと、
      正の屈折力を有する第4のレンズと、
      正または負の屈折力を有する第5のレンズと、
      正または負の屈折力を有する第6のレンズと、
      正または負の屈折力を有する第7のレンズと、
      負の屈折力を有する第8のレンズと
      を備え、
      前記第5のレンズ乃至前記第7のレンズの近軸形状は物体側に凸のメニスカス形状であり、
      前記第5のレンズ乃至前記第7のレンズそれぞれの前記物体側の面および前記像側の面からなる6つの前記面のうちの5つ以上の前記面のレンズ有効径周辺部の接線角度が40度以上である
      ように構成された
     レンズ光学系と、
     前記レンズ光学系により結像された被写体像を電気信号に変換する撮像素子と
     を備える撮像装置。
    From the object side to the image side,
    a first lens having a positive refractive power;
    a second lens having a negative refractive power;
    a third lens having a positive refractive power; and
    a fourth lens having a positive refractive power; and
    a fifth lens having a positive or negative refractive power;
    a sixth lens having a positive or negative refractive power;
    a seventh lens having a positive or negative refractive power;
    an eighth lens having a negative refractive power;
    the paraxial shape of each of the fifth lens to the seventh lens is a meniscus shape convex toward an object side,
    a lens optical system configured such that five or more of the six surfaces consisting of the object-side surface and the image-side surface of each of the fifth lens to the seventh lens have a tangent angle of 40 degrees or more at a peripheral portion of a lens effective diameter;
    and an image sensor that converts the subject image formed by the lens optical system into an electrical signal.
PCT/JP2023/040870 2022-12-01 2023-11-14 Lens optical system and imaging device WO2024116818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022192998 2022-12-01
JP2022-192998 2022-12-01

Publications (1)

Publication Number Publication Date
WO2024116818A1 true WO2024116818A1 (en) 2024-06-06

Family

ID=91323622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040870 WO2024116818A1 (en) 2022-12-01 2023-11-14 Lens optical system and imaging device

Country Status (1)

Country Link
WO (1) WO2024116818A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021033299A (en) * 2019-08-19 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Imaging optical lens
JP2021032922A (en) * 2019-08-16 2021-03-01 カンタツ株式会社 Imaging lens
JP2021096444A (en) * 2019-12-13 2021-06-24 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
JP2021156966A (en) * 2020-03-25 2021-10-07 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing lens
JP2021189427A (en) * 2020-05-25 2021-12-13 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド Imaging optical lens
US20220221693A1 (en) * 2021-01-14 2022-07-14 Zhejiang Sunny Optics Co.,Ltd. Optical Imaging Lens Assembly
US20220229275A1 (en) * 2019-10-08 2022-07-21 Zhejiang Sunny Optics Co.,Ltd. Optical Imaging System

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032922A (en) * 2019-08-16 2021-03-01 カンタツ株式会社 Imaging lens
JP2021033299A (en) * 2019-08-19 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Imaging optical lens
US20220229275A1 (en) * 2019-10-08 2022-07-21 Zhejiang Sunny Optics Co.,Ltd. Optical Imaging System
JP2021096444A (en) * 2019-12-13 2021-06-24 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
JP2021156966A (en) * 2020-03-25 2021-10-07 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing lens
JP2021189427A (en) * 2020-05-25 2021-12-13 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド Imaging optical lens
US20220221693A1 (en) * 2021-01-14 2022-07-14 Zhejiang Sunny Optics Co.,Ltd. Optical Imaging Lens Assembly

Similar Documents

Publication Publication Date Title
JP7364022B2 (en) Imaging lens and imaging device
JP7690631B2 (en) Imaging device
JP7552586B2 (en) Imaging device
WO2020090368A1 (en) Imaging lens and imaging device
WO2018139278A1 (en) Image-capture element, manufacturing method, and electronic device
WO2018139280A1 (en) Camera module, method for manufacturing same, and electronic device
WO2020213337A1 (en) Optical system and imaging device
WO2021200207A1 (en) Zoom lens and imaging device
WO2018131509A1 (en) Image capture element, manufacturing method, and electronic device
WO2021131904A1 (en) Imaging device and method for manufacturing imaging device
JP6869717B2 (en) Imaging equipment, manufacturing methods for imaging equipment, and electronic devices
WO2022091576A1 (en) Solid-state imaging device and electronic apparatus
WO2021117497A1 (en) Imaging lens and imaging device
WO2022064853A1 (en) Solid-state imaging device and electronic apparatus
US12040338B2 (en) Imaging apparatus
JP7661730B2 (en) Imaging lens and imaging device
JPWO2019188070A1 (en) Zoom lens and imaging device
WO2024116818A1 (en) Lens optical system and imaging device
WO2024181136A1 (en) Lens optical system and imaging device
WO2024135306A1 (en) Lens optical system and imaging device
JP7711706B2 (en) Fisheye lens and imaging device
WO2022190616A1 (en) Semiconductor chip, method for manufacturing same, and electronic equipment
US20240329371A1 (en) Imaging lens and imaging device
WO2024070611A1 (en) Lens optical system and imaging device
WO2018131264A1 (en) Imaging unit and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897469

Country of ref document: EP

Kind code of ref document: A1