[go: up one dir, main page]

WO2024045321A1 - 一种面向增程式电传动矿用卡车的能量输出控制方法及系统 - Google Patents

一种面向增程式电传动矿用卡车的能量输出控制方法及系统 Download PDF

Info

Publication number
WO2024045321A1
WO2024045321A1 PCT/CN2022/129390 CN2022129390W WO2024045321A1 WO 2024045321 A1 WO2024045321 A1 WO 2024045321A1 CN 2022129390 W CN2022129390 W CN 2022129390W WO 2024045321 A1 WO2024045321 A1 WO 2024045321A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
power
battery
driving
drive
Prior art date
Application number
PCT/CN2022/129390
Other languages
English (en)
French (fr)
Inventor
刘吉超
梁岩岩
邵杏国
Original Assignee
江苏汇智高端工程机械创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏汇智高端工程机械创新中心有限公司 filed Critical 江苏汇智高端工程机械创新中心有限公司
Publication of WO2024045321A1 publication Critical patent/WO2024045321A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the patent of this invention relates to an energy output control method and system for extended-range electric transmission mining trucks, and belongs to the field of new energy.
  • the typical energy output control strategies that have been proposed for extended-range electric transmission vehicles are mainly divided into two categories: rule-based energy output control strategies and optimization-based energy output control strategies.
  • Different energy output control strategies have different energy consumption optimization effects. same.
  • the rule-based energy output control strategy has clear control logic, fast calculation speed, and good real-time performance, but the optimization effect of energy consumption is highly dependent on expert experience.
  • Energy output control strategies based on optimization mainly include offline optimal strategies and real-time optimization strategies.
  • the offline optimal strategy can achieve global energy optimization, it requires a large amount of calculation and requires accurate knowledge of the vehicle's global operating status information in advance. It is difficult to directly implant the controller into the controller for engineering application.
  • the real-time optimization strategy has been proposed, Online energy output control can be achieved, but it still requires the use of complex optimization algorithms for iterative calculations, which increases the difficulty of implementing the strategy.
  • the purpose of the present invention is to overcome the deficiencies in the prior art and provide an energy output control method and system for extended-range electric transmission mining trucks, so as to achieve the performance of the entire vehicle under complex working conditions while satisfying the power requirements. Consumption is adjusted in real time.
  • the present invention provides an energy output control method for an extended-range electric transmission mining truck.
  • the driving motor of the mining truck is driven by an engine and/or a driving battery; it is characterized in that the control method Includes the following steps:
  • the system status parameters at least include vehicle speed v, vehicle acceleration a and the battery storage value SOC of the driving battery;
  • the output power of the engine is controlled according to the calculated output power Pe of the engine, and the output power of the driving battery is controlled according to the output power Pb of the driving battery.
  • the pre-stored system parameters at least include vehicle mass, gravity acceleration, rolling resistance coefficient, road gradient, air density, wind resistance coefficient, windward area and rotational mass conversion coefficient;
  • eta t is the efficiency of the entire powertrain, and the driving force F t is expressed as:
  • m is the mass of the vehicle
  • g is the acceleration of gravity
  • f is the rolling resistance coefficient
  • is the road slope
  • is the air density
  • C d is the wind resistance coefficient
  • A is the windward area
  • s is the rotational mass conversion coefficient
  • the engine output power Pe and the driving battery output power P b are calculated, including:
  • the energy recovery mode is entered to charge the driving battery; otherwise, the energy is consumed through mechanical braking or resistor grid. Disperse.
  • the engine output power Pe and the driving battery output power P b are determined according to the working mode, including:
  • the "engine-generator set optimal power-efficiency mode" characteristic curve is fitted.
  • controlling the control output of the engine according to the calculated engine output power, and controlling the driving battery output according to the driving battery output power includes:
  • the control drive assembly controls the output torque of the drive motor according to the output power of the engine and the output power of the drive battery. After the gearbox changes speed and torque is increased, the driving system works normally.
  • the present invention proposes an energy control system for extended-range electric transmission mining trucks, including a control layer and an execution layer; the execution layer includes an engine and a driving battery;
  • the control layer includes on-board data collector, demand power calculation module, energy output controller, engine controller, and BMS controller;
  • the vehicle-mounted data collector is used to obtain the system status parameters of the vehicle in real time;
  • the system status parameters at least include vehicle speed v, vehicle acceleration a and the battery storage value SOC of the driving battery;
  • the demand power calculation module is used to calculate the demand power P d of the driving motor of the mining truck based on the obtained vehicle speed v, vehicle acceleration a and pre-stored system parameters;
  • the energy output controller is used to calculate the output power Pe of the engine and the output power Pb of the driving battery based on the calculated demand power Pd and the battery storage value SOC obtained in real time;
  • the engine controller is used to control the output power of the engine according to the calculated output power P e of the engine;
  • the BMS controller is used to control the output power of the driving battery according to the output power P b of the driving battery.
  • execution layer also includes generators, rectifiers, inverters, drive assemblies and gearboxes;
  • the engine is directly connected to the generator;
  • the generator converts the mechanical energy generated by the engine into electrical energy, and rectifies it through the rectifier and inverts it through the inverter to make the drive assembly work and charge the drive battery;
  • the drive assembly includes a drive motor controller and a drive motor.
  • the drive motor controller is connected to the BMS controller.
  • the drive motor outputs drive torque according to the command signal of the drive motor controller to control the operation of the gearbox.
  • the execution layer also includes a resistance gate and a switch for controlling the resistance gate
  • the energy output controller controls the switch to open and uses the resistor grid to dissipate the electric energy.
  • the present invention calculates the engine output power and drive battery output power in real time through the vehicle speed, acceleration information and battery storage value SOC obtained in real time, and can consider the energy optimization control of the drive assembly as a whole according to the working conditions, while satisfying the power requirements. Under the premise, the energy consumption of the entire vehicle can be adjusted in real time under complex working conditions.
  • the present invention proposes a "dual-mode" energy output control system and method to solve the problems in the prior art.
  • the drive system is dynamically adjusted in the "engine-generator unit optimal efficiency mode" and Switching between "engine optimal fuel consumption modes” enables real-time adjustment of the vehicle's energy consumption under complex working conditions.
  • the energy output control strategy designed by the present invention does not require complicated theoretical model calculations.
  • the strategy parameters only need to be adapted and adjusted according to the driving battery parameters and engine parameters, which facilitates strategy transplantation and engineering application, and has good working condition adaptability and real-time performance.
  • the present invention can not only control the engine to dynamically switch between the optimal fuel consumption mode and the optimal efficiency mode in real time according to the vehicle driving battery status and required power, but can also perform energy recovery without complicated theoretical model calculations and working condition adaptability. and good real-time performance.
  • the strategy parameters of the present invention only need to be adapted and adjusted according to the driving battery parameters and engine parameters, which facilitates strategy transplantation and engineering application.
  • the present invention adds an upper and lower hysteresis interval for the driving battery in the control strategy, including a lower limit hysteresis interval (SOC min , SOC LLC_min ) and an upper limit hysteresis interval. Return interval (SOC ULC_max , SOC max ), realize the discharge and charging buffer of the driving battery, and protect the driving battery.
  • SOC min lower limit hysteresis interval
  • SOC LLC_min lower limit hysteresis interval
  • Return interval SOC ULC_max , SOC max
  • Figure 1 is the energy output control strategy control system diagram
  • Figure 2 is the system configuration diagram
  • Figure 3 is a diagram of the energy output control strategy control method
  • Figure 4 is a diagram of the battery storage value SOC working hysteresis interval.
  • This embodiment provides an energy output control method for extended-range electric transmission mining trucks.
  • the mining trucks are equipped with a driving motor, and the driving motor is powered by an engine and a driving battery; the method includes the following steps:
  • the system status parameters include the vehicle speed v, the vehicle acceleration a, and the battery storage value SOC of the mining truck drive battery;
  • the engine output power Pe and the driving battery output power P b are calculated;
  • the output power of the engine is controlled based on the calculated engine output power, and the output power of the driving battery is controlled based on the output power of the driving battery.
  • the pre-stored system parameters include vehicle mass, gravity acceleration, rolling resistance coefficient, road gradient, air density, wind resistance coefficient, windward area and rotational mass conversion coefficient; the pre-stored system parameters are generally determined by the vehicle nameplate and field test data. get.
  • eta t is the efficiency of the entire powertrain, and the driving force F t is expressed as:
  • m is the mass of the vehicle
  • g is the acceleration of gravity
  • f is the rolling resistance coefficient
  • is the road slope
  • is the air density
  • C d is the wind resistance coefficient
  • A is the windward area
  • s is the rotational mass conversion coefficient
  • the engine output power Pe and the drive battery output power P b are calculated, including:
  • the present invention Based on the proposed energy control system for extended-range electric transmission mining trucks, the present invention also proposes an energy output control method as shown in Figure 3.
  • the present invention adds an upper and lower limit hysteresis interval of the driving battery in the control strategy, including a lower limit hysteresis interval (SOC min , SOC LLC_min ) and an upper limit hysteresis interval. (SOC ULC_max , SOC max ), realizes the discharge and charging buffer of the driving battery, and protects the driving battery, as shown in Figure 4.
  • the specific steps of the control method proposed by the present invention are as follows:
  • different working modes are determined based on the calculated drive motor demand power P d and the currently obtained battery storage value SOC, including:
  • the energy recovery mode is entered to charge the driving battery; otherwise, the energy is consumed through mechanical braking or resistor grid. Disperse.
  • the engine output power Pe and the driving battery output power P b are determined according to the working mode, including:
  • the "engine-generator set optimal power-efficiency mode" characteristic curve is fitted.
  • the "engine optimal power-fuel consumption mode" characteristic curve is fitted.
  • control output of the engine is controlled according to the calculated engine output power
  • driving battery output is controlled according to the driving battery output power
  • the control drive assembly accurately controls the output torque of the drive motor according to the output power of the engine and the output power of the drive battery. After the gearbox changes speed and torque is increased, the driving system works normally.
  • the drive system is dynamically adjusted in the "engine-generator unit optimal efficiency mode" and Switching between "engine optimal fuel consumption modes” enables real-time adjustment of the vehicle's energy consumption under complex working conditions.
  • the present invention adds an upper and lower limit hysteresis interval of the driving battery in the control strategy, including a lower limit hysteresis interval (SOC min , SOC LLC_min ) and an upper limit hysteresis interval. (SOC ULC_max , SOC max ), realizes the discharge and charging buffer of the driving battery, and protects the driving battery.
  • the energy control system proposed in this embodiment for extended-range electric transmission mining trucks is shown in Figure 1 and includes a control layer and an execution layer.
  • the control layer mainly includes vehicle data collector, demand power calculation module, energy output controller, engine controller, and BMS controller.
  • the vehicle-mounted data collector is used to obtain the system status parameters of the vehicle in real time; the system status parameters at least include vehicle speed v, vehicle acceleration a and the battery storage value SOC of the driving battery;
  • the demand power calculation module is used to calculate the vehicle speed according to the obtained vehicle speed.
  • the energy output controller is used to calculate the required power P d based on the calculated demand power P d and the battery storage value SOC obtained in real time.
  • the engine controller is used to control the output power of the engine according to the calculated output power P e of the engine;
  • the BMS controller is used to control the output power of the engine according to the calculated output power P e of the driving battery.
  • the output power P b controls the output power of the driving battery.
  • the execution layer mainly includes the engine, generator, drive battery, rectifier, inverter, drive assembly, gearbox, and resistor grid.
  • the corresponding complete system configuration is shown in Figure 2, in which the engine is directly connected to the generator. , there is no direct connection to the drive assembly, which greatly reduces the impact and vibration caused by sudden load changes to the engine; the generator converts the mechanical energy generated by the engine into electrical energy, and rectifies it through the rectifier and inverts it through the inverter to work on the drive assembly, and When the power demand of the driving motor is small, the driving battery is charged; the driving battery plays the role of peak shaving and valley filling. When the power is high, it works together with the generator to drive the assembly and stores the recovered energy during braking.
  • the energy output controller controls the switch to open and uses the resistor grid to dissipate the kinetic energy;
  • the drive assembly includes a drive motor controller and a drive motor, and the drive motor is driven according to the The command signal from the motor controller accurately outputs the driving torque to control the driving of the vehicle.
  • SOC---State of Charge meaning state of charge, storage value.
  • the present invention Based on the proposed energy control system for extended-range electric transmission mining trucks, the present invention also proposes an energy output control method as shown in Figure 3.
  • the present invention adds an upper and lower limit hysteresis interval of the driving battery in the control strategy, including a lower limit hysteresis interval (SOC min , SOC LLC_min ) and an upper limit hysteresis interval. (SOC ULC_max , SOC max ), realizes the discharge and charging buffer of the driving battery, and protects the driving battery, as shown in Figure 4.
  • the specific steps of the control method proposed by the present invention are as follows:
  • Step S1 According to the operating characteristics of the engine and generator, determine the "engine-generator set optimal power-efficiency mode” characteristic curve and the "engine optimal power-fuel mode” characteristic curve;
  • Step S2 Use the vehicle-mounted data collector to obtain the system status parameters of the vehicle in real time, including vehicle speed v, vehicle acceleration a, and battery storage value SOC;
  • Step S3 Calculate the required power P d of the drive motor based on the acquired system status parameters, and set the engine output power to Pe and the drive battery output power to P b .
  • the specific required power is calculated as follows:
  • eta t is the efficiency of the entire powertrain, and the driving force F t can be expressed as:
  • m is the mass of the vehicle
  • g is the acceleration of gravity
  • f is the rolling resistance coefficient
  • is the road slope
  • is the air density
  • C d is the wind resistance coefficient
  • A is the windward area
  • s is the rotational mass conversion coefficient
  • Step S4 Determine different working modes based on the calculated power demand P d of the drive motor and the battery storage value SOC obtained in real time, as follows:
  • the energy recovery mode is entered to charge the driving battery; otherwise, the energy is consumed through mechanical braking or resistor grid. Disperse.
  • Step S5 The drive assembly accurately controls the output torque of the drive motor based on the power output from the engine and drive battery. After the gearbox changes speed and increases torque, the drive system operates normally.
  • the invention can not only control the engine to dynamically switch between the optimal fuel consumption mode and the optimal efficiency mode in real time according to the vehicle driving battery status and required power, but can also perform energy recovery without complicated theoretical model calculations, working condition adaptability and real-time Good sex.
  • the strategy parameters of the present invention only need to be adapted and adjusted according to the driving battery parameters and engine parameters, which facilitates strategy transplantation and engineering application.
  • the driving battery can also be replaced by a supercapacitor; the engine-generator set can also be replaced by a fuel-driven battery.
  • the described energy output control strategy control method can not only be used for extended-range gasoline-electric hybrid vehicles, but also for multi-drive motor pure electric system configurations.
  • This strategy only provides a basic description of the implementation process. All technologies based on the present invention In essence, any simple modifications, equivalent changes and modifications made to the above process still fall within the scope of this technology.
  • the invention can control the engine to dynamically switch between the optimal fuel consumption mode and the optimal efficiency mode in real time according to the vehicle driving battery status and required power, ensuring that the engine always works in the high-efficiency zone.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

提供一种面向增程式电传动矿用卡车的能量输出控制方法及系统。系统以整车能耗最优化为目标,根据实时获取的车速、加速度信息和电池储电值SOC,在满足动力性的前提下,利用能量输出控制方法动态调整驱动系统在"发动机-发电机组最优效率模式"和"发动机最优油耗模式"间切换,实现整车在复杂工况下的能耗实时调整。设计的能量输出控制策略无需繁杂的理论模型计算,策略参数仅需要根据驱动电池参数和发动机参数进行适配调整,便于策略移植和工程化应用,工况适应性和实时性好。

Description

一种面向增程式电传动矿用卡车的能量输出控制方法及系统 技术领域
本发明专利涉及一种面向增程式电传动矿用卡车的能量输出控制方法及系统,属于新能源领域。
背景技术
传统矿用卡车存在能耗高、排放大的弊端。目前,虽然纯电动矿用卡车可实现零排放和能量高效利用,但装载的驱动电池包会因环境温度及负载的突变等原因,降低整车的续航能力,无法保证整车持续高效作业。为此,增程式电传动矿用卡车充分发挥电能的零排放和燃油动力系统持续作业的优势,成为解决这一问题的有效途径之一。这个过程中,能否给整车适配合理的能量输出控制策略直接影响整车的燃油经济性。
目前,针对增程式电传动车辆已提出的典型能量输出控制策略主要分为两类:基于规则的能量输出控制策略和基于优化的能量输出控制策略,不同的能量输出控制策略能耗优化效果不尽相同。其中,基于规则的能量输出控制策略控制逻辑清晰、计算速度快、实时性好,但能耗的优化效果对专家经验依赖性强。基于优化的能量输出控制策略主要包括离线最优策略和实时优化策略。离线最优策略虽然可以实现全局能量最优,但其计算量大,需要提前准确获知车辆的全局作业状态信息,很难直接植入控制器进行工程化运用;此外,已提出的实时优化策略尽管可以实现在线能量输出控制,但其依旧需要借助繁杂的优化算法进行迭代计算,增加了策略的实现难度。
现有的已提出的能量输出控制策略尽管可以实现整车能量的优化控制,但策略仅围绕发动机的最优效率点或最优油耗点进行控制,并未根据工况整体考虑驱动总成的能量最优化控制。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种面向增程式电传动矿用卡车的能量输出控制方法及系统,在满足动力性的前提下,实现整车在复杂工况下的能耗实时调整。
为达到上述目的,本发明是采用下述技术方案实现的:
第一方面,本发明提供了一种面向增程式电传动矿用卡车的能量输出控制方法,,所述矿用卡车的驱动电机由发动机和/或驱动电池驱动;其特征在于,所述控制方法包括以下步骤:
实时获取车辆的系统状态参数;所述系统状态参数至少包括车速v、车辆加速度a和所述驱动电池的电池储电值SOC;
根据获取的车速v和车辆加速度a以及预存储的系统参数计算矿用卡车的驱动电机的需 求功率P d
根据计算出的需求功率P d和实时获取的电池储电值SOC,计算所述发动机的输出功率P e和所述驱动电池的输出功率P b
根据计算得到的所述发动机的输出功率P e控制所述发动机的输出功率,根据所述驱动电池的输出功率P b控制驱动电池的输出功率。
进一步的,预存储的系统参数至少包括整车质量、重力加速度、滚动阻力系数、道路坡度、空气密度、风阻系数、迎风面积和旋转质量换算系数;
根据获取的车速v和车辆加速度a以及预存储的系统参数计算驱动电机的需求功率P d,包括:
根据下式计算驱动电机的需求功率P d
Figure PCTCN2022129390-appb-000001
式中,η t为整个动力总成效率,行驶驱动力F t表示为:
F t=mgf cosα+mg sinα+0.5ρC dAv 2+sma      (2)
其中,m为整车质量,g为重力加速度,f为滚动阻力系数,α为道路坡度,ρ为空气密度,C d为风阻系数,A为迎风面积,s为旋转质量换算系数
进一步的,根据计算出的需求功率P d和实时获取的电池储电值SOC,计算出发动机输出功率P e和驱动电池输出功率P b,包括:
根据计算得到的驱动电机需求功率P d和当前获取的电池储电值SOC大小确定不同的工作模式,根据工作模式确定发动机输出功率P e和驱动电池输出功率P b
进一步的,根据计算得到的驱动电机需求功率P d和当前获取的电池储电值SOC大小确定不同的工作模式,包括:
a.当电池储电值SOC在下限值SOC min和上限值SOC max之间时:
①当驱动电机需求功率P d大于发动机功率上限阈值P e_max时,进入发动机和驱动电池混合驱动油耗最优模式;
②当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,且电池储电值SOC小于等于下限滞回值SOC LLC_min时,进入发动机单独驱动效率最优模式并为驱动电池充电;
③当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,电池储电值SOC 大于下限滞回值SOC LLC_min,且驱动电机需求功率P d小于等于驱动电池功率上限阈值P b_max时,进入纯电模式;
④当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,电池储电值SOC大于下限滞回值SOC LLC_min,且驱动电机需求功率P d大于驱动电池功率上限阈值P b_max时,发动机和驱动电池混合驱动油耗最优模式;
⑤当驱动电机需求功率P d小于等于0且电池储电值SOC小于等于上限滞回值SOC ULC_max,此时进入能量回收模式,为驱动电池充电;否则,通过机械制动或电阻栅将能量耗散掉。
b.当电池储电值SOC小于等于下限值SOC min时,驱动电池电量过低,为保证驱动电池的使用寿命,此时驱动电池不参与工作:
①当驱动电机需求功率P d小于等于发动机功率上限阈值P e_max时,进入发动机单独驱动效率最优模式并为驱动电池充电;
②当驱动电机需求功率P d大于发动机功率上限阈值P e_max时,进入发动机单独驱动模式。
进一步的,根据工作模式确定发动机输出功率P e和驱动电池输出功率P b,包括:
获取“发动机-发电机组最佳功率-效率模式”特性曲线和“发动机最佳功率-油耗模式”特性曲线;
(1)发动机和驱动电池混合驱动油耗最优模式:
①根据“发动机最佳功率-燃油模式”特性曲线,查表确定发动机油耗最优时对应的功率点P e_optfuel
②根据油耗最优功率点确定当前发动机的转速n e_optfuel
③发动机和驱动电池功率分配可表示为:P e=P e_optfuel,P b=min(P d-P e_optfuel·μ g,P b_max),n e=n e_optfuel,μ g为发电机的发电效率;
(2)发动机单独驱动效率最优模式:
①在保证满足整车需求功率P d的前提下,根据“发动机-发电机组最佳功率-效率模式”特性曲线,寻找发动机-发电机组效率最优时对应的功率点P e_opteff
②根据效率最优功率点确定当前发动机转速n e_opteff
③发动机输出功率并为驱动电池充电,此时P e=P e_opteff,n e=n e_opteff
(3)纯电模式:
此时仅驱动电池放电,驱动电池输出功率可表示为:P b=P d
(4)发动机单独驱动模式:
①确定发动机输出最大功率P e_max
②根据“发动机-发电机组最佳功率-效率模式”特性曲线,确定当前发动机转速n e_powermax
③此时仅发动机输出功率:P e=P e_max,n e=n e_powermax
进一步的,获取“发动机-发电机组最佳功率-效率模式”特性曲线和“发动机最佳功率-油耗模式”特性曲线,包括:
首先根据发动机转速n e-扭矩T e-效率μ e对应的map数据和发电机转速n g-扭矩T g-效率μ g对应的map数据,按以下表达式确定发动机-发电机组最佳功率
Figure PCTCN2022129390-appb-000002
-效率点μ *集合:
Figure PCTCN2022129390-appb-000003
其中,T g=μ eg·T e,n g=n e,μ eg为发动机到发电机的机械效率。
根据获取到的发动机-发电机组最佳功率-效率点集合,拟合出“发动机-发电机组最佳功率-效率模式”特性曲线。
其次根据发动机转速n e-扭矩T e-油耗率
Figure PCTCN2022129390-appb-000004
对应的map数据,按以下表达式确定发动机最佳功率
Figure PCTCN2022129390-appb-000005
-油耗率点
Figure PCTCN2022129390-appb-000006
集合:
Figure PCTCN2022129390-appb-000007
根据获取到的发动机最佳功率-油耗率点集合,拟合出“发动机最佳功率-油耗模式”特性曲线。
进一步的,根据计算出的发动机输出功率控制发动机的控制输出,根据所述驱动电池输出功率控制驱动电池输出,包括:
控制驱动总成根据发动机输出功率和驱动电池输出功率控制驱动电机输出扭矩,经变速箱变速增扭后驱动行走系统正常工作。
第二方面,本发明提出的一种面向增程式电传动矿用卡车的能量控制系统,包括控制层和执行层;所述执行层包括发动机和驱动电池;
控制层包括车载数据采集器、需求功率计算模块、能量输出控制器、发动机控制器、BMS控制器;
车载数据采集器用于实时获取车辆的系统状态参数;所述系统状态参数至少包括车速v、车辆加速度a和所述驱动电池的电池储电值SOC;
需求功率计算模块用于根据获取的车速v和车辆加速度a以及预存储的系统参数计算矿用卡车的驱动电机的需求功率P d
能量输出控制器用于根据计算出的需求功率P d和实时获取的电池储电值SOC,计算所述发动机的输出功率P e和所述驱动电池的输出功率P b
发动机控制器用于根据计算得到的所述发动机的输出功率P e控制所述发动机的输出功率;
BMS控制器用于根据所述驱动电池的输出功率P b控制驱动电池的输出功率。
进一步的,所述执行层还包括发电机、整流器、逆变器、驱动总成和变速箱;
所述发动机直接与发电机相连;
发电机将发动机产生的机械能转化为电能,并通过整流器整流、逆变器逆变后使驱动总成工作,并为驱动电池充电;
驱动总成包括驱动电机控制器和驱动电机,驱动电机控制器与BMS控制器连接,驱动电机根据驱动电机控制器的指令信号输出驱动扭矩来控制所述变速箱运转。
进一步的,所述执行层还包括电阻栅和用于控制所述电阻栅的开关;
当驱动电机需求功率P d小于等于0且电池储电值SOC大于等于上限滞回值SOC ULC_max时,通过能量输出控制器控制开关开启,利用电阻栅将电能耗散掉。
与现有技术相比,本发明所达到的有益效果:
1、本发明通过实时获取的车速、加速度信息和电池储电值SOC,实时计算发动机输出功率和驱动电池输出功率,可以根据工况整体考虑驱动总成的能量最优化控制,在满足动力性的前提下,实现整车在复杂工况下的能耗实时调整。
2、本发明提出一种“双模”能量输出控制系统及方法来解决现有技术中的问题。以整车能耗最优化为目标,根据实时获取的车速、加速度信息和电池储电值SOC,在满足动力性的前提下,通过动态调整驱动系统在“发动机-发电机组最优效率模式”和“发动机最优油耗模式”间切换,实现整车在复杂工况下的能耗实时调整。本发明设计的能量输出控制策略无需繁杂的理论模型计算,策略参数仅需要根据驱动电池参数和发动机参数进行适配调整,便于策略移植和工程化应用,工况适应性和实时性好。
3、本发明不仅能根据车辆驱动电池状态和需求功率大小,实时控制发动机在最优油耗模式和最优效率模式间动态切换,还可以进行能量回收,无需繁杂的理论模型计算,工况适应性和实时性好。
4、本发明策略参数仅需要根据驱动电池参数和发动机参数进行适配调整,便于策略移植和工程化应用。
5、为了降低驱动电池过充和过放对驱动电池使用寿命的影响,本发明在控制策略中增加了驱动电池上下限滞回区间,包括下限滞回区间(SOC min,SOC LLC_min)和上限滞回区间(SOC ULC_max,SOC max),实现驱动电池放电和充电缓冲,对驱动电池进行保护。
附图说明
图1为能量输出控制策略控制系统图;
图2为系统构型图;
图3为能量输出控制策略控制方法图;
图4为电池储电值SOC工作滞回区间图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例一:
本实施例提供一种面向增程式电传动矿用卡车的能量输出控制方法,矿用卡车内设有驱动电机,并通过发动机和驱动电池为驱动电机供能;所述方法包括以下步骤:
实时获取车辆的系统状态参数;所述系统状态参数包括车速v、车辆加速度a和矿用卡车驱动电池的电池储电值SOC;
根据获取的车速v和车辆加速度a以及预存储的系统参数计算矿用卡车的驱动电机的需求功率P d
根据计算出的需求功率P d和实时获取的电池储电值SOC,计算出发动机输出功率P e和驱动电池输出功率P b
根据计算出的发动机输出功率控制发动机的输出功率,根据所述驱动电池输出功率控制驱动电池的输出功率。
具体的,预存储的系统参数包括整车质量、重力加速度、滚动阻力系数、道路坡度、空气密度、风阻系数、迎风面积和旋转质量换算系数;预存储的系统参数一般由车辆铭牌和现场试验资料获得。
根据获取的车速v和车辆加速度a以及预存储的系统参数计算驱动电机的需求功率P d,包括:
根据下式计算驱动电机的需求功率P d
Figure PCTCN2022129390-appb-000008
式中,η t为整个动力总成效率,行驶驱动力F t表示为:
F t=mgf cosα+mg sinα+0.5ρC dAv 2+sma     (2)
其中,m为整车质量,g为重力加速度,f为滚动阻力系数,α为道路坡度,ρ为空气密度,C d为风阻系数,A为迎风面积,s为旋转质量换算系数
具体的,根据计算出的需求功率P d和实时获取的电池储电值SOC,计算出发动机输出功率P e和驱动电池输出功率P b,包括:
根据计算得到的驱动电机需求功率P d和当前获取的电池储电值SOC大小确定不同的工作模式,根据工作模式确定发动机输出功率P e和驱动电池输出功率P b
基于提出的面向增程式电传动矿用卡车的能量控制系统,本发明还提出了一种能量输出控制方法如附图3所示。为了降低驱动电池过充和过放对驱动电池使用寿命的影响,本发明在控制策略中增加了驱动电池上下限滞回区间,包括下限滞回区间(SOC min,SOC LLC_min)和上限滞回区间(SOC ULC_max,SOC max),实现驱动电池放电和充电缓冲,对驱动电池进行保护,如附图4所示。本发明提出的控制方法具体步骤如下:
具体的,根据计算得到的驱动电机需求功率P d和当前获取的电池储电值SOC大小确定不同的工作模式,包括:
a.当电池储电值SOC在下限值SOC min和上限值SOC max之间时:
①当驱动电机需求功率P d大于发动机功率上限阈值P e_max时,进入发动机和驱动电池混合驱动油耗最优模式;
②当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,且电池储电值SOC小于等于下限滞回值SOC LLC_min时,进入发动机单独驱动效率最优模式并为驱动电池充电;
③当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,电池储电值SOC大于下限滞回值SOC LLC_min,且驱动电机需求功率P d小于等于驱动电池功率上限阈值P b_max时,进入纯电模式;
④当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,电池储电值SOC大于下限滞回值SOC LLC_min,且驱动电机需求功率P d大于驱动电池功率上限阈值P b_max时,发动机和驱动电池混合驱动油耗最优模式;
⑤当驱动电机需求功率P d小于等于0且电池储电值SOC小于等于上限滞回值SOC ULC_max,此时进入能量回收模式,为驱动电池充电;否则,通过机械制动或电阻栅将能量耗散掉。
b.当电池储电值SOC小于等于下限值SOC min时,驱动电池电量过低,为保证驱动电池的使用寿命,此时驱动电池不参与工作:
①当驱动电机需求功率P d小于等于发动机功率上限阈值P e_max时,进入发动机单独驱动效率最优模式并为驱动电池充电;
②当驱动电机需求功率P d大于发动机功率上限阈值P e_max时,进入发动机单独驱动模式。
具体的,根据工作模式确定发动机输出功率P e和驱动电池输出功率P b,包括:
获取“发动机-发电机组最佳功率-效率模式”特性曲线和“发动机最佳功率-油耗模式”特性曲线;
(1)发动机和驱动电池混合驱动油耗最优模式:
①根据“发动机最佳功率-燃油模式”特性曲线,查表确定发动机油耗最优时对应的功率点P e_optfuel
②根据油耗最优功率点确定当前发动机的转速n e_optfuel
③发动机和驱动电池功率分配可表示为:P e=P e_optfuel,P b=min(P d-P e_optfuel·μ g,P b_max),n e=n e_optfuel,μ g为发电机的发电效率;
(2)发动机单独驱动效率最优模式:
①在保证满足整车需求功率P d的前提下,根据“发动机-发电机组最佳功率-效率模式”特性曲线,寻找发动机-发电机组效率最优时对应的功率点P e_opteff
②根据效率最优功率点确定当前发动机转速n e_opteff
③发动机输出功率并为驱动电池充电,此时P e=P e_opteff,n e=n e_opteff
(3)纯电模式:
此时仅驱动电池放电,驱动电池输出功率可表示为:P b=P d
(4)发动机单独驱动模式:
①确定发动机输出最大功率P e_max
②根据“发动机-发电机组最佳功率-效率模式”特性曲线,确定当前发动机转速n e_powermax
③此时仅发动机输出功率:P e=P e_max,n e=n e_powermax
具体的,获取“发动机-发电机组最佳功率-效率模式”特性曲线和“发动机最佳功率-油耗模式”特性曲线,包括:
首先根据发动机转速n e-扭矩T e-效率μ e对应的map数据和发电机转速n g-扭矩T g-效率μ g对应的map数据,按以下表达式确定发动机-发电机组最佳功率
Figure PCTCN2022129390-appb-000009
-效率点μ *集合:
Figure PCTCN2022129390-appb-000010
其中,T g=μ eg·T e,n g=n e,μ eg为发动机到发电机的机械效率。
根据获取到的发动机-发电机组最佳功率-效率点集合,拟合出“发动机-发电机组最佳功率-效率模式”特性曲线。
其次根据发动机转速n e-扭矩T e-油耗率
Figure PCTCN2022129390-appb-000011
对应的map数据,按以下表达式确定发动机最佳功率
Figure PCTCN2022129390-appb-000012
-油耗率点
Figure PCTCN2022129390-appb-000013
集合:
Figure PCTCN2022129390-appb-000014
根据获取到的发动机最佳功率-油耗率点集合,拟合出“发动机最佳功率-油耗模式”特性曲线。
具体的,根据计算出的发动机输出功率控制发动机的控制输出,根据所述驱动电池输出功率控制驱动电池输出,包括:
控制驱动总成根据发动机输出功率和驱动电池输出功率精准控制驱动电机输出扭矩,经变速箱变速增扭后驱动行走系统正常工作。
以整车能耗最优化为目标,根据实时获取的车速、加速度信息和电池储电值SOC,在满足动力性的前提下,通过动态调整驱动系统在“发动机-发电机组最优效率模式”和“发动机最优油耗模式”间切换,实现整车在复杂工况下的能耗实时调整。
为了降低驱动电池过充和过放对驱动电池使用寿命的影响,本发明在控制策略中增加了驱动电池上下限滞回区间,包括下限滞回区间(SOC min,SOC LLC_min)和上限滞回区间(SOC ULC_max,SOC max),实现驱动电池放电和充电缓冲,对驱动电池进行保护。
实施例二:
本实施例提出的一种面向增程式电传动矿用卡车的能量控制系统如附图1所示,包括控制层和执行层。控制层主要包括车载数据采集器、需求功率计算模块、能量输出控制器、发动机控制器、BMS控制器。其中,车载数据采集器用于实时获取车辆的系统状态参数;所述系统状态参数至少包括车速v、车辆加速度a和所述驱动电池的电池储电值SOC;需求功率计算模块用于根据获取的车速v和车辆加速度a以及预存储的系统参数计算矿用卡车的驱动电机的需求功率P d;能量输出控制器用于根据计算出的需求功率P d和实时获取的电池储电值SOC,计算所述发动机的输出功率P e和所述驱动电池的输出功率P b;发动机控制器用于根据计算得到的所述发动机的输出功率P e控制所述发动机的输出功率;BMS控制器用于根据所述驱动电池的输出功率P b控制驱动电池的输出功率。
执行层主要包括发动机、发电机、驱动电池、整流器、逆变器、驱动总成、变速箱、电阻栅,对应的整机系统构型具体如附图2所示,其中发动机直接与发电机相连,没有直接连接驱动总成,大大消减了负载突变给发动机带来的冲击与振动;发电机将发动机产生的机械能转化为电能,并通过整流器整流、逆变器逆变后驱动总成工作,并在驱动电机需求功率较小 时为驱动电池充电;驱动电池起到削峰填谷的作用,在大功率需求时,与发电机一起驱动总成工作,并在制动时将回收的能量储存起来,如若电池储电值SOC较高时,不能进行能量回收时,通过能量输出控制器控制开关开启,利用电阻栅将动能耗散掉;驱动总成包括驱动电机控制器和驱动电机,驱动电机根据驱动电机控制器的指令信号精准输出驱动扭矩来控制车辆行驶。
SOC---State of Charge,含义为荷电状态,储电值。
基于提出的面向增程式电传动矿用卡车的能量控制系统,本发明还提出了一种能量输出控制方法如附图3所示。为了降低驱动电池过充和过放对驱动电池使用寿命的影响,本发明在控制策略中增加了驱动电池上下限滞回区间,包括下限滞回区间(SOC min,SOC LLC_min)和上限滞回区间(SOC ULC_max,SOC max),实现驱动电池放电和充电缓冲,对驱动电池进行保护,如附图4所示。本发明提出的控制方法具体步骤如下:
步骤S1:根据发动机和发电机的工作特性,确定“发动机-发电机组最佳功率-效率模式”特性曲线和“发动机最佳功率-燃油模式”特性曲线;
步骤S2:利用车载数据采集器实时获取车辆的系统状态参数,包括车速v、车辆加速度a、电池储电值SOC;
步骤S3:根据获取的系统状态参数计算驱动电机的需求功率P d,并设定发动机输出功率为P e,驱动电池输出功率为P b。具体需求功率计算如式:
Figure PCTCN2022129390-appb-000015
式中η t为整个动力总成效率,行驶驱动力F t可表示为:
F t=mgf cosα+mg sinα+0.5ρC dAv 2+sma      (2)
其中,m为整车质量,g为重力加速度,f为滚动阻力系数,α为道路坡度,ρ为空气密度,C d为风阻系数,A为迎风面积,s为旋转质量换算系数;
步骤S4:根据计算得到的驱动电机需求功率P d和实时获取的电池储电值SOC大小确定不同的工作模式,具体如下:
a.当电池储电值SOC在下限值SOC min和上限值SOC max之间时:
①当驱动电机需求功率P d大于发动机功率上限阈值P e_max时,进入发动机和驱动电池混合驱动油耗最优模式;
②当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,且电池储电值SOC小于等于下限滞回值SOC LLC_min时,进入发动机单独驱动效率最优模式并为驱动电池充电;
③当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,电池储电值SOC 大于下限滞回值SOC LLC_min,且驱动电机需求功率P d小于等于驱动电池功率上限阈值P b_max时,进入纯电模式;
④当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,电池储电值SOC大于下限滞回值SOC LLC_min,且驱动电机需求功率P d大于驱动电池功率上限阈值P b_max时,发动机和驱动电池混合驱动油耗最优模式;
⑤当驱动电机需求功率P d小于等于0且电池储电值SOC小于等于上限滞回值SOC ULC_max,此时进入能量回收模式,为驱动电池充电;否则,通过机械制动或电阻栅将能量耗散掉。
b.当电池储电值SOC小于等于下限值SOC min时,驱动电池电量过低,为保证驱动电池的使用寿命,此时驱动电池不参与工作:
①当驱动电机需求功率P d小于等于发动机功率上限阈值P e_max时,进入发动机单独驱动效率最优模式并为驱动电池充电;
②当驱动电机需求功率P d大于发动机功率上限阈值P e_max时,进入发动机单独驱动模式。
下面对上述所述工作模式的具体实现方式进行阐述:
(1)发动机和驱动电池混合驱动油耗最优模式:
①根据“发动机最佳功率-燃油模式”特性曲线,查表确定发动机油耗最优时对应的功率点P e_optfuel
②根据油耗最优功率点确定当前发动机的转速n e_optfuel
③发动机和驱动电池功率分配可表示为:P e=P e_optfuel,P b=min(P d-P e_optfuel·μ g,P b_max),n e=n e_optfuel,μ g为发电机的发电效率;
(2)发动机单独驱动效率最优模式:
①在保证满足整车需求功率P d的前提下,根据“发动机-发电机组最佳功率-效率模式”特性曲线,寻找发动机-发电机组效率最优时对应的功率点P e_opteff
②根据效率最优功率点确定当前发动机转速n e_opteff
③发动机输出功率并为驱动电池充电,此时P e=P e_opteff,n e=n e_opteff
(3)纯电模式:
此时仅驱动电池放电,驱动电池输出功率可表示为:P b=P d
(4)发动机单独驱动模式:
①确定发动机输出最大功率P e_max
②根据“发动机-发电机组最佳功率-效率模式”特性曲线,确定当前发动机转速n e_powermax
③此时仅发动机输出功率:P e=P e_max,n e=n e_powermax
步骤S5:驱动总成根据发动机和驱动电池输出的功率精准控制驱动电机输出扭矩,经变速箱变速增扭后驱动行走系统正常工作。
本发明不仅能根据车辆驱动电池状态和需求功率大小,实时控制发动机在最优油耗模式和最优效率模式间动态切换,还可以进行能量回收,无需繁杂的理论模型计算,工况适应性和实时性好。
本发明策略参数仅需要根据驱动电池参数和发动机参数进行适配调整,便于策略移植和工程化应用。
另外,所述的驱动电池,还可以用超级电容来替代;所述的发动机-发电机组,还可以用燃料驱动电池来代替。
所述的能量输出控制策略控制方法不仅可以用于增程式油电混动车辆,还可用于多驱动电机纯电动系统构型,本策略仅对实现过程进行了基本描述,凡是依据本发明的技术实质对以上过程所做的任何简单修改、等同变化与修饰,均仍属于本技术的范围之内。
本发明可根据车辆驱动电池状态和需求功率大小,实时控制发动机在最优油耗模式和最优效率模式间动态切换,保证了发动机始终工作在高效区。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为 本发明的保护范围。

Claims (10)

  1. 一种面向增程式电传动矿用卡车的能量输出控制方法,所述矿用卡车的驱动电机由发动机和/或驱动电池驱动;其特征在于,所述控制方法包括以下步骤:
    实时获取车辆的系统状态参数;所述系统状态参数至少包括车速v、车辆加速度a和所述驱动电池的电池储电值SOC;
    根据获取的车速v和车辆加速度a以及预存储的系统参数计算矿用卡车的驱动电机的需求功率P d
    根据计算出的需求功率P d和实时获取的电池储电值SOC,计算所述发动机的输出功率P e和所述驱动电池的输出功率P b
    根据计算得到的所述发动机的输出功率P e控制所述发动机的输出功率,根据所述驱动电池的输出功率P b控制驱动电池的输出功率。
  2. 根据权利要求1所述的面向增程式电传动矿用卡车的能量输出控制方法,其特征在于,预存储的系统参数至少包括整车质量、重力加速度、滚动阻力系数、道路坡度、空气密度、风阻系数、迎风面积和旋转质量换算系数;
    采用公式(1)计算驱动电机的需求功率P d
    Figure PCTCN2022129390-appb-100001
    式中,η t为整个动力总成效率,行驶驱动力F t表示为:
    F t=mgf cosα+mg sinα+0.5ρC dAv 2+sma    (2)
    其中,m为整车质量,g为重力加速度,f为滚动阻力系数,α为道路坡度,ρ为空气密度,C d为风阻系数,A为迎风面积,s为旋转质量换算系数。
  3. 根据权利要求1所述的面向增程式电传动矿用卡车的能量输出控制方法,其特征在于,根据计算出的需求功率P d和实时获取的电池储电值SOC,计算所述发动机的输出功率P e和驱动电池的输出功率P b,包括:
    根据计算得到的驱动电机需求功率P d和当前获取的电池储电值SOC大小确定不同的工作模式,根据工作模式确定所述发动机的输出功率P e和驱动电池的输出功率P b
  4. 根据权利要求3所述的面向增程式电传动矿用卡车的能量输出控制方法,其特征在于, 根据计算得到的驱动电机需求功率P d和当前获取的电池储电值SOC大小确定不同的工作模式,包括:
    a.当电池储电值SOC在下限值SOC min和上限值SOC max以内时:
    当驱动电机需求功率P d大于发动机功率上限阈值P e_max时,进入发动机和驱动电池混合驱动油耗最优模式;
    当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,且电池储电值SOC小于等于下限滞回值SOC LLC_min时,进入发动机单独驱动效率最优模式并为驱动电池充电;
    当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,电池储电值SOC大于下限滞回值SOC LLC_min,且驱动电机需求功率P d小于等于驱动电池功率上限阈值P b_max时,进入纯电模式;
    当驱动电机需求功率P d大于0且小于等于发动机功率上限阈值P e_max,电池储电值SOC大于下限滞回值SOC LLC_min,且驱动电机需求功率P d大于驱动电池功率上限阈值P b_max时,发动机和驱动电池混合驱动油耗最优模式;
    当驱动电机需求功率P d小于等于0且电池储电值SOC小于等于上限滞回值SOC ULC_max,此时进入能量回收模式,为驱动电池充电;当驱动电机需求功率P d小于等于0且电池储电值SOC大于等于上限滞回值SOC ULC_max,通过机械制动或电阻栅将电能耗散掉;
    b.当电池储电值SOC小于等于下限值SOC min时,驱动电池不参与工作:
    当驱动电机需求功率P d小于等于发动机功率上限阈值P e_max时,进入发动机单独驱动效率最优模式并为驱动电池充电;
    当驱动电机需求功率P d大于发动机功率上限阈值P e_max时,进入发动机单独驱动模式。
  5. 根据权利要求3所述的面向增程式电传动矿用卡车的能量输出控制方法,其特征在于,根据工作模式确定发动机输出功率P e和驱动电池输出功率P b,包括:
    获取发动机-发电机组最佳功率-效率模式特性曲线和发动机最佳功率-油耗模式特性曲线;
    各工作模式的发动机输出功率P e和驱动电池输出功率P b的确定方法包括:
    A.发动机和驱动电池混合驱动油耗最优模式:
    根据发动机最佳功率-燃油模式特性曲线,查表确定发动机油耗最优时对应的功率点P e_optfuel
    根据油耗最优功率点确定当前发动机的转速n e_optfuel
    发动机和驱动电池功率分配表示为:P e=P e_optfuel,P b=min(P d-P e_optfuel·μ g,P b_max),n e=n e_optfuel,μ g为发电机的发电效率;
    B.发动机单独驱动效率最优模式:
    在保证满足整车需求功率P d的前提下,根据发动机-发电机组最佳功率-效率模式特性曲线,寻找发动机-发电机组效率最优时对应的功率点P e_opteff
    根据效率最优功率点确定当前发动机转速n e_opteff
    发动机输出功率并为驱动电池充电,此时P e=P e_opteff,n e=n e_opteff
    C.纯电模式:
    此时仅驱动电池放电,驱动电池输出功率表示为:P b=P d
    D.发动机单独驱动模式:
    确定发动机输出最大功率P e_max
    根据发动机-发电机组最佳功率-效率模式特性曲线,确定当前发动机转速n e_powermax
    此时仅发动机输出功率:P e=P e_max,n e=n e_powermax
  6. 根据权利要求5所述的面向增程式电传动矿用卡车的能量输出控制方法,其特征在于,获取发动机-发电机组最佳功率-效率模式特性曲线,包括:
    根据发动机转速n e-扭矩T e-效率μ e对应的map数据和发电机转速n g-扭矩T g-效率μ g对应的map数据,按以下表达式确定发动机-发电机组最佳功率P e *-效率点μ *集合:
    Figure PCTCN2022129390-appb-100002
    其中,T g=μ eg·T e,n g=n e,μ eg为发动机到发电机的机械效率;
    根据获取到的发动机-发电机组最佳功率-效率点集合,拟合出发动机-发电机组最佳功率-效率模式特性曲线。
  7. 根据权利要求5所述的面向增程式电传动矿用卡车的能量输出控制方法,其特征在于,获取发动机最佳功率-油耗模式特性曲线,包括:
    根据发动机转速n e-扭矩T e-油耗率
    Figure PCTCN2022129390-appb-100003
    对应的map数据,按以下表达式确定发动机最佳功率P e +-油耗率点
    Figure PCTCN2022129390-appb-100004
    集合:
    Figure PCTCN2022129390-appb-100005
    根据获取到的发动机最佳功率-油耗率点集合,拟合出“发动机最佳功率-油耗模式”特性曲线。
  8. 一种面向增程式电传动矿用卡车的能量控制系统,其特征在于,包括控制层和执行层;所述执行层包括发动机和驱动电池;
    控制层包括车载数据采集器、需求功率计算模块、能量输出控制器、发动机控制器、BMS控制器;
    车载数据采集器用于实时获取车辆的系统状态参数;所述系统状态参数至少包括车速v、车辆加速度a和所述驱动电池的电池储电值SOC;
    需求功率计算模块用于根据获取的车速v和车辆加速度a以及预存储的系统参数计算矿用卡车的驱动电机的需求功率P d
    能量输出控制器用于根据计算出的需求功率P d和实时获取的电池储电值SOC,计算所述发动机的输出功率P e和所述驱动电池的输出功率P b
    发动机控制器用于根据计算得到的所述发动机的输出功率P e控制所述发动机的输出功率;
    BMS控制器用于根据所述驱动电池的输出功率P b控制驱动电池的输出功率。
  9. 根据权利要求8所述的面向增程式电传动矿用卡车的能量输出控制系统,其特征在于,所述执行层还包括发电机、整流器、逆变器、驱动总成和变速箱;
    所述发动机直接与发电机相连;发电机将发动机产生的机械能转化为电能,并通过整流器整流、逆变器逆变后使驱动总成工作,并为驱动电池充电;
    所述驱动总成包括驱动电机控制器和驱动电机,所述驱动电机控制器与BMS控制器连接,驱动电机根据驱动电机控制器的指令信号输出驱动扭矩来控制所述变速箱运转。
  10. 根据权利要求8所述的面向增程式电传动矿用卡车的能量输出控制系统,其特征在于,所述执行层还包括电阻栅和用于控制所述电阻栅的开关;
    当驱动电机需求功率P d小于等于0且电池储电值SOC大于等于上限滞回值SOC ULC_max时,通过能量输出控制器控制开关开启,利用电阻栅将电能耗散掉。
PCT/CN2022/129390 2022-08-30 2022-11-03 一种面向增程式电传动矿用卡车的能量输出控制方法及系统 WO2024045321A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211055051.5 2022-08-30
CN202211055051.5A CN115214608B (zh) 2022-08-30 2022-08-30 一种面向增程式电传动矿用卡车的能量输出控制方法及系统

Publications (1)

Publication Number Publication Date
WO2024045321A1 true WO2024045321A1 (zh) 2024-03-07

Family

ID=83616859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129390 WO2024045321A1 (zh) 2022-08-30 2022-11-03 一种面向增程式电传动矿用卡车的能量输出控制方法及系统

Country Status (2)

Country Link
CN (1) CN115214608B (zh)
WO (1) WO2024045321A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118636647A (zh) * 2024-08-15 2024-09-13 中冶京诚(湘潭)矿山装备有限公司 一种插电式混合动力矿用自卸车及其控制系统
CN119218429A (zh) * 2024-09-25 2024-12-31 上海尚实航空发动机股份有限公司 一种增程动力系统的控制方法、控制装置和航空飞行器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115214608B (zh) * 2022-08-30 2024-11-19 江苏汇智高端工程机械创新中心有限公司 一种面向增程式电传动矿用卡车的能量输出控制方法及系统
CN116661296B (zh) * 2022-10-24 2024-04-12 江苏汇智高端工程机械创新中心有限公司 面向增程式电动矿卡的能耗管理平台、方法、系统及存储介质
CN115805840B (zh) * 2022-12-01 2024-12-20 江苏汇智高端工程机械创新中心有限公司 一种增程式电动装载机能耗控制方法及系统
CN116522498B (zh) * 2023-04-28 2024-02-02 重庆大学 增程式电动车能耗和排放协同优化方法和增程式电动车控制方法
CN119329492A (zh) * 2024-12-16 2025-01-21 临工重机股份有限公司 一种混合动力矿车的运行控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150134174A1 (en) * 2012-12-18 2015-05-14 Emerald Automotive Llc Optimization of extended range electric vehicle
CN105922986A (zh) * 2016-05-24 2016-09-07 北京新能源汽车股份有限公司 增程式电动汽车及其模式切换控制方法和系统
CN110040004A (zh) * 2019-04-01 2019-07-23 一汽-大众汽车有限公司 一种增程式纯电动汽车的功率跟随控制方法和系统
CN112009454A (zh) * 2020-08-20 2020-12-01 江西五十铃汽车有限公司 一种优化增程式混合动力汽车油耗的方法
CN112277728A (zh) * 2020-10-30 2021-01-29 东风汽车集团有限公司 一种增程式汽车动力控制系统及方法
CN115214608A (zh) * 2022-08-30 2022-10-21 江苏汇智高端工程机械创新中心有限公司 一种面向增程式电传动矿用卡车的能量输出控制方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106740822A (zh) * 2017-02-14 2017-05-31 上汽大众汽车有限公司 混合动力系统及其能量管理方法
CN109094555A (zh) * 2018-08-24 2018-12-28 湘潭电机股份有限公司 一种混合动力矿用车辆自适应路况能量控制装置及方法
CN111216705B (zh) * 2020-01-13 2021-06-01 清华大学 一种串联混合动力系统的能量管理方法
CN114312477B (zh) * 2021-12-31 2024-02-02 临工重机股份有限公司 一种矿用车的能量管理方法、装置、矿用车和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150134174A1 (en) * 2012-12-18 2015-05-14 Emerald Automotive Llc Optimization of extended range electric vehicle
CN105922986A (zh) * 2016-05-24 2016-09-07 北京新能源汽车股份有限公司 增程式电动汽车及其模式切换控制方法和系统
CN110040004A (zh) * 2019-04-01 2019-07-23 一汽-大众汽车有限公司 一种增程式纯电动汽车的功率跟随控制方法和系统
CN112009454A (zh) * 2020-08-20 2020-12-01 江西五十铃汽车有限公司 一种优化增程式混合动力汽车油耗的方法
CN112277728A (zh) * 2020-10-30 2021-01-29 东风汽车集团有限公司 一种增程式汽车动力控制系统及方法
CN115214608A (zh) * 2022-08-30 2022-10-21 江苏汇智高端工程机械创新中心有限公司 一种面向增程式电传动矿用卡车的能量输出控制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZENG XIAOHUA, WANG QING-NIAN, SONG DA-FENG: "Simplified Method to Solve Vehicle Power Demand", JILIN DAXUE XUEBAO (GONGXUE BAN), vol. 41, no. 3, 31 May 2011 (2011-05-31), pages 613 - 617, XP093143947, ISSN: 1671-5497, DOI: 10.13229/j.cnki.jdxbgxb2011.03.048 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118636647A (zh) * 2024-08-15 2024-09-13 中冶京诚(湘潭)矿山装备有限公司 一种插电式混合动力矿用自卸车及其控制系统
CN119218429A (zh) * 2024-09-25 2024-12-31 上海尚实航空发动机股份有限公司 一种增程动力系统的控制方法、控制装置和航空飞行器

Also Published As

Publication number Publication date
CN115214608B (zh) 2024-11-19
CN115214608A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2024045321A1 (zh) 一种面向增程式电传动矿用卡车的能量输出控制方法及系统
CN108544937B (zh) 一种汽车蓄电池充放电管理方法及系统
CN109177749B (zh) 增程式电动客车三能源动力系统及能量管理方法
US7267191B2 (en) System and method for battery protection strategy for hybrid electric vehicles
CN104112036B (zh) 混联式混合动力电动汽车的仿真方法
CN109606348B (zh) 一种插电式行星混联汽车能量管理控制方法
US10906385B2 (en) Hybrid vehicle powertrains with flywheel energy storage systems
CN107697063A (zh) 一种智能混合动力汽车能量管理控制方法
CN106585618B (zh) 一种串联式混合动力汽车能量管理控制方法及装置
CN103909922A (zh) 串联式混合动力汽车的整车控制策略
CN106055830A (zh) 基于动态规划的phev控制门限参数优化方法
Zhang et al. Powertrain design and energy management of a novel coaxial series-parallel plug-in hybrid electric vehicle
CN115879275A (zh) 混合动力电动汽车性能仿真系统、方法、设备及存储介质
CN108340901A (zh) 多动力混合驱动工程运输车控制系统及其控制方法
CN112224423B (zh) 一种多动力源混联混合动力固定翼飞行器及其控制方法
CN110696635A (zh) 基于变门限值的混合动力有轨电车能量管理方法
WO2024022043A1 (zh) 车辆中动力电池的充放电功率控制方法、装置及车辆
CN111559257B (zh) 增程式混合动力汽车及其参数匹配方法
CN117681856A (zh) 一种基于整车扭矩需求及电量状态的能量管理控制方法
CN104626959B (zh) 一种混合动力汽车系统及其能量管理策略
CN113525656B (zh) 基于螺旋桨转速闭环的气电混合动力船舶能量分配方法
CN116661296B (zh) 面向增程式电动矿卡的能耗管理平台、方法、系统及存储介质
Lu et al. Research on Energy Management Strategy of Battery-Flywheel Hybrid Energy Storage Electric Vehicle.
Si et al. Energy management strategy of flywheel hybrid electric vehicle based on driving condition recognition
CN114347976A (zh) 一种基于驾驶意图识别的混合动力汽车能量管理系统

Legal Events

Date Code Title Description
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023015549

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023015549

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230802