WO2023249041A1 - 保形性向上用酵素剤 - Google Patents
保形性向上用酵素剤 Download PDFInfo
- Publication number
- WO2023249041A1 WO2023249041A1 PCT/JP2023/022885 JP2023022885W WO2023249041A1 WO 2023249041 A1 WO2023249041 A1 WO 2023249041A1 JP 2023022885 W JP2023022885 W JP 2023022885W WO 2023249041 A1 WO2023249041 A1 WO 2023249041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amylase
- vegetable
- maltotriose
- lipase
- ice cream
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G9/00—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
- A23G9/32—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
- A23G9/36—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
- A23G9/363—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing microorganisms, enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS OR COOKING OILS
- A23D9/00—Other edible oils or fats, e.g. shortenings or cooking oils
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G9/00—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
- A23G9/32—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
- A23G9/34—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds characterised by carbohydrates used, e.g. polysaccharides
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G9/00—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
- A23G9/32—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
- A23G9/42—Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing plants or parts thereof, e.g. fruits, seeds, extracts
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L9/00—Puddings; Cream substitutes; Preparation or treatment thereof
- A23L9/20—Cream substitutes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
- C12N9/2414—Alpha-amylase (3.2.1.1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
- C12N9/2425—Beta-amylase (3.2.1.2)
Definitions
- the present invention relates to an enzyme agent for improving the shape retention of vegetable ice cream. More specifically, the present invention provides an enzyme agent for improving shape retention for improving the quality of vegetable ice cream, a vegetable ice cream, a method for producing vegetable ice cream, and a shape retention method for vegetable ice cream. Concerning methods for improving sex.
- Plant-based ice cream represents an important category in the milk substitute market and continues to be an area of focus. In its production, it is standard to mix and emulsify a protein source and a lipid source with vegetable milk as necessary.
- Patent Document 1 discloses a manufacturing technology that reduces the amount of vegetable protein used, with the aim of improving the flavor of vegetable ice cream that minimizes animal-derived components such as milk components.
- plant-based foods and drinks have been attracting attention in recent years due to the growing health consciousness, but plant-based ice cream has a fundamentally different composition from milk ice cream, so it still needs to be improved to achieve satisfactory characteristics.
- shape retention is related to product stability and is an important property that is desired to be further improved in order to prevent vegetable ice cream from melting or deforming due to heat shock during storage.
- the main purpose of this technology is to provide a technology that improves the shape retention of vegetable ice cream.
- the inventors of the present application have conducted extensive research into techniques for improving the shape retention of vegetable ice cream. As a result, the present inventors have found that by allowing maltotriose-producing amylase, lipase, or ⁇ -amylase to act on vegetable materials, We have discovered that the shape retention of ice cream can be improved, and have completed this technology.
- the present technology first provides an enzyme preparation for improving the shape retention of vegetable ice cream, which contains one or more enzymes selected from the group consisting of maltotriose-producing amylase, lipase, and ⁇ -amylase.
- the present technology provides a vegetable ice cream in which the enzyme agent for improving shape retention according to the present technology is used.
- This technology further includes a maltotriose-generating amylase action step in which maltotriose-generating amylase acts on a vegetable carbohydrate-containing material, a lipase action step in which lipase acts on a vegetable oil-containing material, and a vegetable carbohydrate-containing material.
- a method for producing vegetable ice cream and a method for improving the shape retention of vegetable ice cream including one or more steps selected from the ⁇ -amylase action step of causing ⁇ -amylase to act on the ice cream.
- Enzyme preparation for improving shape retention contains as an active ingredient one or more enzymes selected from the group consisting of maltotriose-producing amylase, lipase, and ⁇ -amylase. Further, it is also possible to contain ⁇ -amylase, monoglyceride, diglyceride, and other components as necessary. Each component will be explained in detail below.
- Maltotriose-producing amylase that can be used in the present technology is an enzyme that acts on starch and has the activity of mainly producing maltotriose.
- the maltotriose-producing amylase that can be used in the present technology may be an enzyme that additionally has other functions as long as it has the activity of producing maltotriose.
- the shape retention of the produced vegetable ice cream can be improved by allowing maltotriose-generating amylase to act on the vegetable material.
- the origin of the maltotriose-producing amylase that can be used in the present technology is not particularly limited, but examples include Streptomyces genus (Streptomyces griseus, etc.), Bacillus genus (Bacillus subtilis, etc.), microorganisms disclosed in JP-A-03-251173, Bacterium sp., etc., and maltotriose-producing amylase derived from organisms of the genus Cellulosimicrobium disclosed in WO2020/090734. These maltotriose-producing amylases may be used alone or in combination.
- maltotriose-producing amylases it is preferable to select maltotriose-producing amylases derived from organisms of the genus Microbacterium from the viewpoint of further enhancing the shape retention of vegetable ice cream. More preferably, a triose-producing amylase is selected.
- Microbacterium sp. biologically derived maltotriose-producing amylase refers to the maltotriose-producing amylase produced by microorganisms (which may be wild strains or mutant strains) classified as Microbacterium sp. It means amylase or maltotriose-producing amylase obtained by genetic engineering using the maltotriose-producing amylase gene. Therefore, a recombinant produced by a host microorganism into which a maltotriose-producing amylase gene obtained from a Microbacterium sp. ”.
- the maltotriose-producing amylase used in the present technology can be prepared from the culture solution of the microorganism from which the above-mentioned maltotriose-producing amylase is derived.
- a specific preparation method includes a method of recovering maltotriose-producing amylase from the culture solution or bacterial cells of the above-mentioned microorganism.
- the enzyme when using a maltotriose-producing amylase-secreting microorganism, the enzyme can be isolated and/or purified after the bacterial cells are recovered from the culture solution by filtration, centrifugation, etc., if necessary.
- the enzyme when using maltotriose-producing amylase non-secreting microorganisms, if necessary, after collecting the bacterial cells from the culture solution, the bacterial cells are crushed by pressure treatment, ultrasonication, etc. to expose the enzyme. After that, the enzyme can be isolated and/or purified.
- any known protein separation and/or purification method can be used without particular limitation, such as centrifugation method, UF concentration method, salting out method, ion exchange resin, etc. Examples include various chromatography methods using .
- the isolated and/or purified enzyme can be powdered by a drying method such as freeze drying or vacuum drying, and may be powdered using an appropriate excipient and/or drying aid in the drying method. You can also do that.
- the isolated and/or purified enzyme can be liquefied by adding appropriate additives and sterilizing it by filtration.
- a commercially available product can also be used as the maltotriose-producing amylase, and a preferred example of a commercially available product is maltotriose-producing amylase manufactured by Amano Enzyme Co., Ltd.
- the content of maltotriose-generating amylase in the shape retention improving enzyme agent according to the present technology can be freely set as long as it does not impair the effects of the present technology.
- the content of maltotriose-generating amylase can be set to, for example, 0.05 U or more per 1 g of the vegetable carbohydrate-containing material on which maltotriose-generating amylase acts, from the viewpoint of further improving shape retention. , it can be set to preferably 0.3U or more, more preferably 0.6U or more, still more preferably 3U or more, even more preferably 6U or more.
- the content of maltotriose-producing amylase can be set to, for example, 0.08 U or more per 1 g of polysaccharide (preferably starch) on which maltotriose-producing amylase acts, thereby improving shape retention. From the viewpoint of further increasing it, it can be set to preferably 0.5 U or more, more preferably 1 U or more, still more preferably 5 U or more, even more preferably 10 U or more.
- the upper limit of the content of maltotriose-producing amylase is not particularly limited as long as it does not impair the effects of the present technology, but for example, 250 U or less, 50 U per 1 g of vegetable carbohydrate-containing material on which maltotriose-producing amylase is applied. Below, it can be set to 25U or less, 20U or less, 15U or less, or 10U or less.
- the upper limit of the content of maltotriose-producing amylase is, for example, 400 U or less, 80 U or less, 40 U or less, 30 U or less, 20 U or less, per 1 g of polysaccharide (preferably starch) on which maltotriose-producing amylase acts. , or can be set to 15U or less.
- the activity of maltotriose-producing amylase is a value defined by the method below.
- [Definition of activity of maltotriose-producing amylase] Add an appropriate amount of enzyme to 0.5 ml of 2% soluble starch dissolved in 0.1 M phosphate buffer (pH 7.0), and react in a total volume of 1.0 ml at 40°C to generate maltotriose and other Quantify reducing sugars using the Somogyi-Nelson method. Under these conditions, the amount of enzyme that produces reducing sugar equivalent to 1 micromole of glucose per minute is defined as 1 unit (1U).
- Lipase Lipase that can be used in the present technology is an enzyme that has the activity of hydrolyzing triglyceride to produce diglyceride, monoglyceride, and fatty acid.
- the lipase that can be used in the present technology may be an enzyme that also has other functions as long as it has the activity of hydrolyzing triglycerides to produce diglycerides, monoglycerides, and fatty acids.
- the origin of the lipase that can be used in the present technology is not particularly limited, but examples thereof include lipases derived from organisms of the genus Aspergillus, Candida, Rhizopus, Mucor, and Penicillium. These lipases may be used alone or in combination. Among these lipases, from the viewpoint of further enhancing the shape retention of vegetable ice cream, it is preferable to select a lipase derived from an organism of the genus Penicillium, and a lipase derived from an organism of the genus Penicillium is preferably selected. is more preferable.
- lipase derived from Penicillium roqueforti refers to lipase produced by a microorganism classified as Penicillium roqueforti (which may be a wild strain or a mutant strain), or a lipase that utilizes a lipase gene. This means that it is a lipase obtained by genetic engineering. Therefore, a recombinant produced by a host microorganism into which a lipase gene obtained from a Penicillium roqueforti organism (or a gene modified from that gene) is introduced also falls under "lipase derived from a Penicillium roqueforti organism.”
- the lipase used in this technology can be prepared from the culture solution of the microorganism from which the above lipase is derived.
- a specific preparation method includes a method of recovering lipase from the culture solution or bacterial cells of the above-mentioned microorganism.
- the enzyme can be isolated and/or purified after the bacterial cells are recovered from the culture fluid by filtration, centrifugation, etc., if necessary.
- non-lipase-secreting microorganisms if necessary, after collecting the bacterial cells from the culture solution in advance, crushing the bacterial cells by pressure treatment, ultrasonication, etc. to expose the enzyme.
- the isolated and/or purified enzyme can be powdered by a drying method such as freeze drying or vacuum drying, and may be powdered using an appropriate excipient and/or drying aid in the drying method. You can also do that. Furthermore, the isolated and/or purified enzyme can be liquefied by adding appropriate additives and sterilizing it by filtration.
- a commercially available product can also be used as the lipase, and a preferred example of a commercially available product is a lipase derived from an organism of the genus Penicillium manufactured by Amano Enzyme Co., Ltd.
- the content of lipase in the enzyme agent for improving shape retention according to the present technology can be freely set as long as it does not impair the effects of the present technology.
- the lipase content can be set to, for example, 0.01 U or more per 1 g of the vegetable oil-containing material on which the lipase is applied, and from the viewpoint of further improving shape retention, it is preferably 0.1 U or more. , more preferably 0.4U or more, still more preferably 1U or more, even more preferably 2U or more.
- the lipase content can be set to, for example, 0.09 U or more per 1 g of fat or oil on which the lipase is applied, and from the viewpoint of further improving shape retention, it is preferably 0.4 U or more, and more. It can be set to preferably 0.9U or more, more preferably 1U or more, even more preferably 2U or more.
- the upper limit of the content of lipase is not particularly limited as long as it does not impair the effect of the present technology, but for example, 100 U or less, 20 U or less, 15 U or less, 10 U or less, 5 U It can be set to 3U or less.
- the upper limit of the content of lipase can be set to, for example, 100 U or less, 20 U or less, 15 U or less, 10 U or less, 5 U or less, or 3 U or less per 1 g of fat or oil on which lipase is applied.
- the lipase activity is a value defined by the method below.
- [Definition of lipase activity] Olive oil 45g and emulsion (polyvinyl alcohol (completely saponified, degree of saponification 98.8 ⁇ 0.2) 18.5g/L, polyvinyl alcohol (partially saponified, degree of saponification 88.8 ⁇ 1.0) 1.5g/L L)
- emulsion polyvinyl alcohol (completely saponified, degree of saponification 98.8 ⁇ 0.2) 18.5g/L
- polyvinyl alcohol partially saponified, degree of saponification 88.8 ⁇ 1.0
- ⁇ -amylase ⁇ -amylase that can be used in the present technology is an exo-type enzyme that sequentially degrades ⁇ -1,4 glucosidic bonds using maltose units from the non-reducing end of starch.
- ⁇ -amylase that can be used in the present technology as long as it has the above-mentioned ⁇ -amylase activity, it may be an enzyme that also has other actions.
- the shape retention of the produced vegetable ice cream can be improved by allowing ⁇ -amylase to act on the vegetable material.
- ⁇ -amylase that can be used in the present technology is not particularly limited, but examples include Bacillus flexus, Bacillus megaterium, Bacillus polymyxa, Bacillus circulans, etc., Pseudomonas, and Streptomyces. Examples include ⁇ -amylase derived from living organisms. These ⁇ -amylases may be used singly or in combination. Among these ⁇ -amylases, ⁇ -amylase derived from organisms of the genus Bacillus is preferably selected from the viewpoint of further enhancing the shape retention of vegetable ice cream, and ⁇ -amylase derived from organisms of the genus Bacillus is selected. More preferably, amylase is selected.
- ⁇ -amylase derived from Bacillus flexus refers to ⁇ -amylase produced by a microorganism classified as Bacillus flexus (which may be a wild strain or a mutant strain), or ⁇ -amylase produced by a microorganism classified as Bacillus flexus. It means ⁇ -amylase obtained by genetic engineering using the amylase gene. Therefore, a recombinant produced by a host microorganism into which a ⁇ -amylase gene (or a modified gene) obtained from a Bacillus flexus organism has been introduced also falls under " ⁇ -amylase derived from a Bacillus flexus organism.”
- the ⁇ -amylase used in the present technology can be prepared from the culture solution of the microorganism from which the ⁇ -amylase is derived.
- a specific preparation method includes a method of recovering ⁇ -amylase from the culture solution or cells of the above-mentioned microorganism.
- the enzyme when using a ⁇ -amylase-secreting microorganism, the enzyme can be isolated and/or purified after the bacterial cells have been recovered from the culture solution by filtration, centrifugation, etc., if necessary.
- the enzyme when using a ⁇ -amylase-secreting microorganism, the enzyme can be isolated and/or purified after the bacterial cells have been recovered from the culture solution by filtration, centrifugation, etc., if necessary.
- a microorganism that does not secrete ⁇ -amylase after collecting the bacterial cells from the culture solution, crush the bacterial cells by pressure treatment, ultrasonication, etc. to expose the enzyme.
- the enzyme can be separated and/or purified.
- any known protein separation and/or purification method can be used without particular limitation, such as centrifugation method, UF concentration method, salting out method, ion exchange resin, etc. Examples include various chromatography methods using .
- the isolated and/or purified enzyme can be powdered by a drying method such as freeze drying or vacuum drying, and may be powdered using an appropriate excipient and/or drying aid in the drying method. You can also do that.
- the isolated and/or purified enzyme can be liquefied by adding appropriate additives and sterilizing it by filtration.
- microorganism-derived ⁇ -amylase not only the above-mentioned microorganism-derived ⁇ -amylase but also plant-derived ⁇ -amylase can be used.
- plant-derived ⁇ -amylase examples include ⁇ -amylase derived from plants such as soybean, wheat, and barley.
- ⁇ -amylase derived from an organism derived from Bacillus flexus manufactured by Amano Enzyme Co., Ltd.
- the content of ⁇ -amylase in the enzyme agent for improving shape retention according to the present technology can be freely set as long as it does not impair the effects of the present technology.
- the content of ⁇ -amylase can be set to, for example, 0.01 U or more per 1 g of the vegetable carbohydrate-containing material on which ⁇ -amylase acts, and from the viewpoint of further improving shape retention, it is preferable.
- the content of ⁇ -amylase can be set to, for example, 0.016 U or more per 1 g of polysaccharide (preferably starch) on which ⁇ -amylase acts, and from the viewpoint of further improving shape retention.
- the upper limit of the content of ⁇ -amylase is not particularly limited as long as it does not impair the effect of the present technology, but for example, 100 U or less, 50 U or less, 10 U or less per 1 g of the vegetable carbohydrate-containing material on which ⁇ -amylase is to act. , preferably 7.5U or less, more preferably 4.0U or less, still more preferably 2.5U or less.
- the upper limit of the content of ⁇ -amylase is, for example, 160 U or less, 80 U or less, 16 U or less, preferably 12 U or less, more preferably 6 It can be set to .4U or less, more preferably 4.0U or less.
- the activity of ⁇ -amylase is a value defined by the method below. [Definition of ⁇ -amylase activity] Using potato starch as a substrate, the amount of enzyme that causes an increase in reducing power equivalent to 1 mg of glucose per minute is defined as 1 unit (1 U).
- ⁇ -Amylase ⁇ -amylase can be used in this technology.
- ⁇ -amylase that can be used in the present technology is an enzyme that acts on starch and mainly hydrolyzes ⁇ -1,4 glycosidic bonds.
- ⁇ -amylase that can be used in the present technology is not particularly limited, but examples include Aspergillus genus (e.g., Aspergillus oryzae, Aspergillus niga, etc.), Bacillus genus (e.g., Bacillus amyloliquei), Examples include ⁇ -amylases derived from organisms of the genus Bacillus, such as Bacillus subtilis, Bacillus licheniformis, etc., preferably ⁇ -amylases derived from organisms of the genus Bacillus, and more preferably ⁇ -amylases derived from organisms of the genus Bacillus. Examples include ⁇ -amylase derived from Bacillus amyloliquefaciens.
- Aspergillus genus e.g., Aspergillus oryzae, Aspergillus niga, etc.
- Bacillus genus e.g., Bacillus amylolique
- the ⁇ -amylase that can be used in the present technology can be prepared from the culture solution of the microorganism from which the ⁇ -amylase is derived. As specific preparation methods, it can be easily prepared by culturing ⁇ -amylase-producing bacteria and separating ⁇ -amylase using known means, or by using genetic recombination technology.
- ⁇ -amylase derived from the organism Bacillus amyloliquefaciens manufactured by Amano Enzyme Co., Ltd.
- the content of ⁇ -amylase in the enzyme agent for improving shape retention according to the present technology can be freely set as long as it does not impair the effects of the present technology.
- the content of ⁇ -amylase can be set to, for example, 0.5 U or more per 1 g of the vegetable carbohydrate-containing material on which ⁇ -amylase acts, and from the viewpoint of further improving shape retention, it is preferable.
- the content of ⁇ -amylase can be set to, for example, 0.8 U or more per 1 g of polysaccharide (preferably starch) on which ⁇ -amylase acts, and from the viewpoint of further improving shape retention.
- the upper limit of the content of ⁇ -amylase is not particularly limited as long as it does not impair the effects of the present technology, but for example, 500 U or less, 100 U or less, 50 U or less per 1 g of the vegetable carbohydrate-containing material on which ⁇ -amylase acts. , preferably 30U or less, more preferably 20U or less, still more preferably 15U or less.
- the upper limit of the content of ⁇ -amylase is, for example, 800 U or less, 160 U or less, 80 U or less, preferably 40 U or less, more preferably 30 U, per 1 g of polysaccharide (preferably starch) on which ⁇ -amylase acts.
- it can be more preferably set to 20U or less.
- the ⁇ -amylase activity is a value defined by the method below.
- [Definition of ⁇ -amylase activity] It is measured by iodine reaction using potato starch as a substrate. That is, the activity of amylase is determined by performing an enzymatic reaction using potato starch as a substrate in a conventional manner, and determining the amount of enzyme that reduces the coloring caused by the iodine reaction by 10% in 1 minute as 1 unit (1 U).
- the content ratio is determined based on the above-mentioned content of each enzyme.
- the content of amylase per 1 U of ⁇ -amylase is preferably 0.001 U or more, more preferably 0.01 U or more, even more preferably 0.05 U or more, even more preferably 0.08 U or more, and even more preferably 0.01 U or more. It can be set to 1U or more, even more preferably 0.2U or more, even more preferably 0.5U or more.
- the upper limit of the content range per 1 U of ⁇ -amylase of maltotriose-producing amylase can be set, for example, to 100 U or less, and from the viewpoint of further enhancing the shape retention improvement effect, preferably 20 U or less, more preferably can be set to 10 U or less, more preferably 5 U or less, even more preferably 4 U or less, even more preferably 3 U or less, even more preferably 2 U or less, even more preferably 1 U or less.
- the content ratio is determined based on the above-mentioned content of each enzyme.
- the content per 1 U of amylase is preferably 0.001 U or more, more preferably 0.01 U or more, even more preferably 0.05 U or more, even more preferably 0.08 U or more, even more preferably 0.1 U or more, and More preferably, it can be set to 0.12U or more.
- the upper limit of the content range of ⁇ -amylase per 1 U of ⁇ -amylase can be set to, for example, 100 U or less, and from the viewpoint of further enhancing the shape retention improvement effect, it is preferably 20 U or less, more preferably 10 U. Below, it can be set to more preferably 5.0 U or less, even more preferably 2.0 U or less, even more preferably 1 U or less, even more preferably 0.5 U or less, even more preferably 0.2 U or less.
- Monoglyceride, diglyceride can be used in the enzyme agent for improving shape retention according to the present technology.
- monoglyceride and/or diglyceride By using monoglyceride and/or diglyceride, the effect of improving the shape retention of the produced vegetable ice cream can be further enhanced.
- one or more monoglycerides and/or diglycerides that can be used in the food field can be freely selected as long as the effects of the present technology are not impaired.
- monoglycerides include glycerin caprylate, glycerin caprate, glycerin laurate, glycerin stearate, glycerin oleate, and glycerin behenate.
- diglycerides include monoglycerides in which two of the same or different fatty acids are bonded.
- the content of monoglyceride and/or diglyceride in the enzyme agent for improving shape retention according to the present technology can be freely set as long as it does not impair the effects of the present technology.
- the content of monoglyceride and/or diglyceride can be set to, for example, 0.5 parts by weight or more based on 100 parts by weight of vegetable oil used in the vegetable ice cream to be produced, thereby further improving shape retention. From this point of view, it can be set to preferably 1 part by weight or more, more preferably 2 parts by weight or more.
- the upper limit of the content of monoglyceride and/or diglyceride in the enzyme agent for improving shape retention according to the present technology is not particularly limited as long as it does not impair the effects of the present technology, but the vegetable oil and fat used in the vegetable ice cream to be manufactured are 100% For example, it can be set to 20 parts by weight or less, preferably 10 parts by weight or less, more preferably 8 parts by weight or less.
- the enzyme agent for improving shape retention according to the present technology may contain one or more enzymes selected from the group consisting of the above-mentioned maltotriose-generating amylase, lipase, and ⁇ -amylase. , may be composed only of one or more enzymes selected from the group consisting of the above-mentioned maltotriose-producing amylase, lipase, and ⁇ -amylase, or may be composed of the above-mentioned ⁇ -amylase, monoglyceride, diglyceride, etc. in combination. Alternatively, one or more other components can be freely selected and included as long as the effects of the present technology are not impaired.
- components that can be used include, for example, excipients, pH adjusters, colorants, flavoring agents, disintegrants, lubricants, stabilizers, and the like that are commonly used in formulations. Furthermore, components having functions that are known or that will be discovered in the future may be used in combination depending on the purpose.
- Plant-based ice cream The plant-based ice cream according to the present technology is produced using the above-mentioned enzyme agent for improving shape retention according to the present technology.
- the vegetable ice cream according to the present technology is produced by treating the vegetable material with one or more enzymes selected from the group consisting of maltotriose-producing amylase, lipase, and ⁇ -amylase in the manufacturing process.
- one or more enzymes selected from the group consisting of maltotriose-producing amylase, lipase, and ⁇ -amylase in the manufacturing process.
- shape retention is improved compared to vegetable ice cream manufactured without using the shape retention improving enzyme agent according to the present technology. It is characterized by high stability during storage and difficulty in dissolving.
- the vegetable ice cream according to the present technology includes a maltotriose-generating amylase-treated vegetable carbohydrate-containing material, a lipase-treated vegetable oil-containing material, and a ⁇ -amylase-treated vegetable carbohydrate-containing material. It is characterized by containing one or more materials selected from.
- the content of maltotriose contained in the vegetable ice cream according to the present technology includes, for example, 10 parts by weight or more, preferably 15 parts by weight, per 100 parts by weight of carbohydrates derived from the vegetable carbohydrate-containing material. More preferably, the amount is 20 parts by weight or more, and still more preferably 30 parts by weight or more.
- the upper limit of the content of maltotriose contained in the vegetable ice cream according to the present technology includes, for example, 60 parts by weight or less per 100 parts by weight of carbohydrates derived from vegetable carbohydrate-containing materials, and is preferably 60 parts by weight or less.
- the amount may be 50 parts by weight or less, more preferably 45 parts by weight or less, even more preferably 40 parts by weight or less, even more preferably 35 parts by weight or less.
- the content of maltotriose contained in the vegetable ice cream according to the present technology includes, for example, 0.1 parts by weight or more, preferably 0.3 parts by weight or more, per 100 parts by weight of the vegetable ice cream. More preferably, it is 1 part by weight or more, and still more preferably 1.5 parts by weight or more.
- the upper limit of the content of maltotriose contained in the vegetable ice cream according to the present technology includes, for example, 10 parts by weight or less, preferably 5 parts by weight or less, and more preferably 5 parts by weight or less per 100 parts by weight of the vegetable ice cream. Preferably it is 4 parts by weight or less, more preferably 3 parts by weight or less, even more preferably 2.5 parts by weight or less.
- the content of monoglyceride and/or diglyceride contained in the vegetable ice cream of the present invention includes, for example, 1 part by weight or more per 100 parts by weight of fat or oil, preferably 2 parts by weight or more, more preferably 5 parts by weight or more. , more preferably 6 parts by weight or more.
- the upper limit of the content of monoglycerides and/or diglycerides contained in the vegetable ice cream according to the present technology is, for example, 70% per 100 parts by weight of fats and oils. Parts by weight or less, 50 parts by weight or less, 30 parts by weight or less, 20 parts by weight or less, 15 parts by weight or less, and 10 parts by weight or less.
- the content of monoglyceride and/or diglyceride contained in the vegetable ice cream of the present invention includes, for example, 0.1 part by weight or more, preferably 0.2 part by weight or more, per 100 parts by weight of the vegetable ice cream. More preferably, the amount is 0.3 parts by weight or more, and even more preferably 0.35 parts by weight or more.
- the upper limit of the monoglyceride and/or diglyceride content contained in the vegetable ice cream according to the present technology is, for example, 100 parts by weight of the vegetable ice cream. Examples include 5 parts by weight or less, 3 parts by weight or less, 2 parts by weight or less, 1 part by weight or less, 0.8 parts by weight or less, or 0.5 parts by weight or less.
- the method for producing plant-based food and beverages and the method for improving shape retention according to the present technology include maltotriose production in which maltotriose-producing amylase is applied to a vegetable carbohydrate-containing material. At least one or more steps selected from an ose-generating amylase action step, a lipase action step in which lipase acts on a vegetable oil-containing material, and a ⁇ -amylase action step in which ⁇ -amylase acts on a vegetable carbohydrate-containing material are carried out. It's a method.
- an ⁇ -amylase action step in which ⁇ -amylase is applied to the vegetable carbohydrate-containing material, a monoglyceride and/or diglyceride addition step in which monoglyceride and/or diglyceride is added, a recovery step, etc. can be further carried out.
- a monoglyceride and/or diglyceride addition step in which monoglyceride and/or diglyceride is added can be further carried out.
- a recovery step, etc. can be further carried out depending on the type of plant-based ice cream.
- each process etc. will be explained in detail.
- a vegetable carbohydrate-containing material and a vegetable oil-containing material are used as the vegetable materials used in the method for producing a vegetable food or beverage and the method for improving shape retention according to the present technology.
- the vegetable carbohydrate-containing material that can be used in the present technology is not particularly limited as long as it contains plant-derived carbohydrates, but typical examples include grains (oats, etc.). Examples include materials obtained by mechanically crushing wheat, etc.) using a mill or the like.
- the carbohydrate preferably contains polysaccharides (starch, dextrin, etc.).
- vegetable carbohydrate-containing material and the vegetable oil-containing material described below may be different materials or may be the same material.
- the shape of the vegetable carbohydrate-containing material is also not limited as long as it does not impair the effects of the present technology, and includes, for example, powder, flakes, and granules.
- the content of carbohydrates (preferably starch) contained in the vegetable carbohydrate-containing material is not particularly limited as long as it does not impair the effectiveness of the present technology.
- the amount is 20% by weight or more, and from the viewpoint of further improving shape retention, it is preferably 50% by weight or more, 55% by weight or more, more preferably 60% by weight or more, and still more preferably 65% by weight or more. .
- the upper limit of the content of carbohydrates (preferably starch) contained in the vegetable carbohydrate-containing material is not particularly limited as long as it does not impair the effects of the present technology, and is, for example, 95% by weight or less, preferably 90% by weight or less, or more. Preferably it is 85% by weight or less, more preferably 80% by weight or less.
- the origin of vegetable carbohydrates is not particularly limited as long as it does not impair the effects of this technology, and examples include oats, barley (non-glutinous barley, glutinous barley), rice, wheat, rye, buckwheat, millet, millet, and teff.
- quinoa, corn, and other grains adzuki beans, fava beans, peas, chickpeas, mung beans, lupine beans, kidney beans, and other grains; almonds, cashews, hazelnuts, pecans, macadamia nuts, pistachios, walnuts, Brazil nuts, peanuts, Seeds and seeds such as coconut, pili nuts, chestnuts, sesame seeds, industrial hemp seeds, canary seeds, flaxseeds, and pine nuts; algae, etc., and one type of these vegetable carbohydrates may be used alone, You may use multiple types in combination. Among these, in the present technique, it is particularly preferable to use a material containing carbohydrates derived from grains, and more preferably to use a material containing carbohydrates derived from oats.
- the vegetable oil-containing material that can be used in this technology is not particularly limited as long as it contains plant-derived oil, but as a typical example, it is physically made from plant raw materials. Examples include fats and oils obtained through various purification steps after being extracted by compression, extraction with a solvent, or a combination thereof.
- the shape of the vegetable oil-containing material is not limited as long as it does not impair the effects of the present technology, and examples thereof include solid and liquid.
- the content of fats and oils contained in the vegetable oil-containing material (based on the weight of the vegetable oil-containing material used) is not particularly limited as long as it does not impair the effects of the present technology, but for example, it may be 20% by weight or more. From the viewpoint of further improving shape retention, the content is preferably 60% by weight or more, more preferably 80% by weight or more, and still more preferably 95% by weight or more.
- the upper limit of the content of fats and oils contained in the vegetable oil-containing material is not particularly limited as long as it does not impair the effects of the present technology, but examples include 99% by weight or less, 97% by weight or less, or 95% by weight or less.
- the origin of the vegetable oil is not particularly limited as long as it does not impair the effects of the present technology, and examples include coconut oil, soybean oil, rapeseed oil, rice oil, corn oil, sunflower oil, cottonseed oil, peanut oil, safflower oil, Examples include olive oil, palm oil, palm kernel oil, coconut oil, cocoa butter, etc., and one type of these vegetable oils and fats may be used alone, or a plurality of types may be used in combination. Among these, in this technique, it is particularly preferable to use a material containing coconut oil.
- the maltotriose-generating amylase action step is a step in which maltotriose-generating amylase is allowed to act on a vegetable carbohydrate-containing material.
- the amount of maltotriose-generating amylase added in the maltotriose-generating amylase action step can be freely set as long as it does not impair the effects of the present technology.
- the specific amount of maltotriose-generating amylase added in the present technology is the same as the content of maltotriose-generating amylase in the above-mentioned enzyme agent for improving shape retention, so a description thereof will be omitted here.
- the pH, temperature, action time, etc. can be set depending on the physicochemical properties such as the optimum pH, stable pH range, optimum temperature, and temperature stability of the maltotriose-producing amylase used.
- the pH can be set, for example, to pH 5 to 9, preferably pH 6 to 8, more preferably pH 6.5 to 7.5.
- the temperature can be set to, for example, 20 to 80°C, preferably 30 to 70°C, more preferably 40 to 60°C.
- the action time can be set, for example, from 5 minutes to 24 hours, preferably from 15 minutes to 12 hours, and more preferably from 30 minutes to 2 hours. Note that the optimal reaction conditions can be determined through preliminary experiments.
- a vegetable carbohydrate-containing material that has undergone the maltotriose-producing amylase action step has an increased maltotriose content due to the action of maltotriose-producing amylase.
- the content of maltotriose contained in a vegetable carbohydrate-containing material that has undergone a maltotriose-generating amylase action step (hereinafter also referred to as "a maltotriose-generating amylase-treated vegetable carbohydrate-containing material”) is, for example, 10 parts by weight or more per 100 parts by weight. Preferably it is 15 parts by weight or more, more preferably 20 parts by weight or more, even more preferably 30 parts by weight or more.
- the upper limit of the content of maltotriose contained in the vegetable carbohydrate-containing material that has undergone the maltotriose-generating amylase action step is, for example, 60 parts by weight or less per 100 parts by weight of carbohydrates. Preferably it is 50 parts by weight or less, more preferably 45 parts by weight or less, even more preferably 40 parts by weight or less, even more preferably 35 parts by weight or less.
- the lipase action step is a step in which lipase is allowed to act on a vegetable oil-containing material.
- the amount of lipase added in the lipase action step can be freely set as long as the effect of the present technology is not impaired.
- the specific amount of lipase added in the present technology is the same as the content of lipase in the above-mentioned enzyme agent for improving shape retention, so a description thereof will be omitted here.
- the pH, temperature, action time, etc. can be set depending on the physicochemical properties of the lipase used, such as the optimal pH, stable pH range, optimal temperature, and temperature stability.
- the pH can be set, for example, to pH 5 to 9, preferably pH 6 to 8, more preferably pH 6.5 to 7.5.
- the temperature can be set to, for example, 20 to 80°C, preferably 30 to 70°C, more preferably 40 to 60°C.
- the action time can be set, for example, from 5 minutes to 24 hours, preferably from 10 minutes to 12 hours, and more preferably from 20 minutes to 1 hour. Note that the optimal reaction conditions can be determined through preliminary experiments.
- the vegetable oil-containing material that has undergone the lipase action step has an increased monoglyceride and/or diglyceride content due to the action of the lipase.
- the content of monoglyceride and/or diglyceride contained in the vegetable oil-containing material that has undergone the lipase action step (hereinafter also referred to as "lipase-treated vegetable oil-containing material") is, for example, 0.6 weight parts per 100 parts by weight of oil or fat. parts or more, preferably 0.7 parts by weight or more, more preferably 0.8 parts by weight or more, even more preferably 0.9 parts by weight or more, even more preferably 1 part by weight or more.
- the upper limit of the monoglyceride and/or diglyceride content contained in the vegetable oil-containing material that has undergone the lipase action step is, for example, 10 parts by weight or less, 8 parts by weight or less, 6 parts by weight or less per 100 parts by weight of fat or oil. , 4 parts by weight or less, 3 parts by weight or less, or 2 parts by weight or less.
- the acid value of the vegetable oil-containing material that has undergone the lipase action process increases due to the action of the lipase.
- the acid value of the vegetable oil-containing material that has undergone the lipase action step is, for example, 1.1 or more, preferably 1.2 or more, more preferably 1.3 or more, even more preferably 1.5 or more, and more. More preferably, it is 1.7 or more.
- the upper limit of the acid value contained in the vegetable oil-containing material that has undergone the lipase action step is, for example, 5 or less, preferably 4 or less, more preferably 3 or less, and still more preferably 2 or less.
- Either one or both of the maltotriose-generating amylase action step and the lipase action step may be performed.
- the order of the maltotriose-generating amylase action step and the lipase action step is not particularly limited.
- vegetable ice cream is produced by performing each step separately and mixing a vegetable carbohydrate-containing material that has undergone a maltotriose-generating amylase action step and a vegetable oil-containing material that has undergone a lipase action step. be able to.
- a method of applying lipase to a material containing vegetable carbohydrates and vegetable oil after applying maltotriose-generating amylase and a method of applying lipase to a material containing vegetable carbohydrates and vegetable oil.
- Examples include a method in which maltotriose-generating amylase is allowed to act, and a method in which maltotriose-generating amylase and lipase are allowed to act simultaneously on a material containing vegetable carbohydrates and vegetable oils.
- this technology performs each step separately and mixes a vegetable carbohydrate-containing material that has undergone a maltotriose-generating amylase action step and a vegetable oil-containing material that has undergone a lipase action step. It is preferable to adopt a method for producing ice cream.
- the ⁇ -amylase action step is a step in which ⁇ -amylase is allowed to act on a vegetable carbohydrate-containing material.
- the amount of ⁇ -amylase added in the ⁇ -amylase action step can be freely set as long as it does not impair the effects of the present technology.
- the specific amount of ⁇ -amylase added in the present technology is the same as the content of ⁇ -amylase in the above-mentioned enzyme agent for improving shape retention, so a description thereof will be omitted here.
- the pH, temperature, action time, etc. can be set depending on the physicochemical properties of the ⁇ -amylase used, such as the optimum pH, stable pH range, optimum temperature, and temperature stability.
- the pH can be set, for example, to pH 5 to 9, preferably pH 6 to 8, more preferably pH 6.5 to 7.5.
- the temperature can be set to, for example, 20 to 80°C, preferably 30 to 70°C, more preferably 40 to 60°C.
- the action time can be set, for example, from 5 minutes to 24 hours, preferably from 15 minutes to 12 hours, and more preferably from 30 minutes to 2 hours. Note that the optimal reaction conditions can be determined through preliminary experiments.
- the ⁇ -amylase action step is a step in which ⁇ -amylase is allowed to act on a vegetable carbohydrate-containing material. By allowing ⁇ -amylase to act on the vegetable carbohydrate-containing material, starch in the vegetable carbohydrate-containing material can be liquefied.
- the ⁇ -amylase action step is not an essential step; for example, by using a vegetable carbohydrate-containing material that has been previously treated with ⁇ -amylase, the same effect as the ⁇ -amylase action step can be obtained. You can also get it.
- the amount of ⁇ -amylase added in the ⁇ -amylase action step can be freely set as long as it does not impair the effects of the present technology.
- the specific amount of ⁇ -amylase added in the present technology is the same as the content of ⁇ -amylase in the above-mentioned enzyme agent for improving shape retention, so a description thereof will be omitted here.
- the pH, temperature, action time, etc. can be set depending on the physicochemical properties of the ⁇ -amylase used, such as the optimum pH, stable pH range, optimum temperature, and temperature stability.
- the pH can be set, for example, to pH 5.0 to 8.0, preferably pH 5.5 to 7.5, more preferably pH 6.0 to 7.0.
- the temperature can be set to, for example, 30°C to 80°C, preferably 40°C to 75°C, more preferably 50°C to 70°C.
- the action time can be set, for example, from 10 minutes to 12 hours, preferably from 30 minutes to 6 hours, and more preferably from 1 hour to 3 hours. Note that the optimal reaction conditions can be determined through preliminary experiments.
- the order in which the ⁇ -amylase action step is performed is not limited as long as it does not impair the effects of the present technology; It is preferable to carry out simultaneously with/or the ⁇ -amylase action step.
- the monoglyceride and/or diglyceride addition step is a step of adding monoglyceride and/or diglyceride in the manufacturing process of vegetable ice cream.
- the step of adding monoglyceride and/or diglyceride is not an essential step; for example, by using a plant material containing monoglyceride and/or diglyceride, the same effect as that of adding step of monoglyceride and/or diglyceride can be obtained. You can also get
- the amount of monoglyceride and/or diglyceride added in the monoglyceride and/or diglyceride addition step can be freely set as long as the effects of the present technology are not impaired.
- the specific amount of monoglyceride and/or diglyceride added in the present technology is the same as the content of monoglyceride and/or diglyceride in the above-mentioned enzyme agent for improving shape retention, so a description thereof will be omitted here.
- the order of performing the monoglyceride and/or diglyceride addition step is not limited as long as it does not impair the effects of the present technology.
- the method of adding monoglyceride and/or diglyceride to the vegetable carbohydrate-containing material and/or vegetable oil-containing material that has undergone the step and/or the lipase action step can be freely selected.
- Recovery step includes one or more steps selected from a maltotriose producing amylase action step, a lipase action step, and a ⁇ -amylase action step, and if necessary an ⁇ -amylase action step, a monoglyceride and/or
- This is a process of recovering vegetable ice cream produced through a diglyceride addition process and the like.
- the specific recovery method depending on the type and form of the vegetable ice cream to be produced, one type or a combination of two or more types of recovery methods commonly used in the production of vegetable ice cream can be used.
- the method for producing vegetable ice cream and the method for improving shape retention according to the present technology described above can be configured to include the following steps (1) to (8).
- a step of preparing a vegetable carbohydrate-containing material and/or a vegetable oil-containing material (2) A step of allowing maltotriose-generating amylase to act on the prepared vegetable carbohydrate-containing material (3) A prepared plant (4) A step of allowing ⁇ -amylase to act on the prepared vegetable carbohydrate-containing material (5) A step of causing ⁇ -amylase to act on the prepared vegetable carbohydrate-containing material (6 ) Adding monoglyceride and/or diglyceride (7) Deactivating the enzyme (8) Recovering the produced vegetable ice cream
- any one, two, or all of steps (2) to (4) may be performed.
- the order is not particularly limited, and they may be performed separately or simultaneously.
- the enzyme in step (7) may be inactivated between each step, if necessary.
- steps (5) to (8) are not essential and can be performed as necessary.
- the order of steps (2) to (4) is not particularly limited, and they may be performed separately or simultaneously.
- the enzyme in step (7) may be inactivated between each step, if necessary.
- step (6) it may be performed during any one of steps (1) to (7), or simultaneously with any one of steps (2) to (5).
- Enzyme activity measurement method Activity measurement method of maltotriose-producing amylase
- Add an appropriate amount of enzyme to 0.5 ml of 2% soluble starch dissolved in 0.1 M phosphate buffer (pH 7.0), and react in a total volume of 1.0 ml at 40°C to generate maltotriose and other Reducing sugars were determined by the Somogyi-Nelson method. Under these conditions, the amount of enzyme that produced reducing sugar equivalent to 1 micromole of glucose per minute was defined as 1 unit (1 U).
- hydrochloric acid test solution (2 mol/L) and hydrochloric acid test solution (0.1 mol/L) to neutralize, add 1 mol/L acetic acid/sodium acetate buffer (pH 5.0) 10 mL, and then add water.
- the solution was made into 100 mL and used as a substrate solution. Measure out 10 mL of the substrate solution, warm it at 37°C for 10 minutes, add 1 mL of the sample solution, shake it immediately, warm it at the same temperature for 10 minutes or 30 minutes, then add 4 mL of Fehling's test solution and shake it gently. After heating in a boiling water bath for 15 minutes, the mixture was cooled to 25° C.
- a comparative solution was prepared in the same manner as in the preparation of the test solution using 10 mL of water instead of the substrate solution.
- liberated iodine was titrated with a 0.05 mol/L sodium thiosulfate solution.
- the end point was defined as when the titration was near the end point, 1 to 2 drops of soluble starch sample solution was added, and the resulting blue color disappeared.
- the amount of enzyme that causes an increase in reducing power equivalent to 1 mg of glucose per minute was defined as 1 unit (1 U), and was calculated from the following formula.
- the oat base prepared above was added to the prepared coconut oil base, the temperature was raised to 85°C, and the mixture was stirred for 15 minutes. The mixture was then transferred to a bowl, emulsified for 5 minutes using a hand mixer, and then stored in the refrigerator overnight. The next day, 2 g of vanilla essence and 2 g of salt were added and mixed for 30 to 45 seconds to produce vegetable ice cream using an ice cream maker (NOSTALGIA PRODUCTS, model: PICM20DBL).
- NOSTALGIA PRODUCTS model: PICM20DBL
- Shape retention evaluation The produced vegetable ice cream was filled into a paper cup, and then frozen and molded overnight at -15°C. Shape retention evaluation begins when the ice cream from the paper cup is removed from the paper cup and placed on a mesh board set horizontally on a scale at room temperature, and when the ice cream begins to melt and the first drop falls on the scale. As a point, the value on the scale was read every 5 minutes until 90 minutes later.
- test group 1 which produced vegetable ice cream using ⁇ -amylase
- test group 2 which produced vegetable ice cream using maltotriose-producing amylase
- Test Groups 3 and 4 produced vegetable ice cream using maltotriose-producing amylase, and Control 2 produced vegetable ice cream without using maltotriose-producing amylase. It showed high shape retention compared to . Further, from the results of Test Groups 3 and 4, it was found that maltotriose-generating amylase exhibits a sufficient shape retention improvement effect even at about 1.2 U.
- a vegetable ice cream was produced in the same manner as in Experimental Example 1 using the prepared oat base and coconut oil base.
- Test Group 5 which produced vegetable ice cream using lipase, showed higher shape retention compared to Control 3, which produced vegetable ice cream without using lipase. was.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Nutrition Science (AREA)
- Botany (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Confectionery (AREA)
Abstract
Description
本技術に係る保形性向上用酵素剤は、マルトトリオース生成アミラーゼ、リパーゼ、及びβ-アミラーゼからなる群から選択される1以上の酵素を有効成分として含有する。また、必要に応じて、α-アミラーゼ、モノグリセリド、ジグリセリド、その他の成分等を含有させることも可能である。以下、各成分について、詳細に説明する。
本技術に用いることができるマルトトリオース生成アミラーゼは、デンプンに作用し主にマルトトリオースを生成する活性を有する酵素である。本技術に用いることができるマルトトリオース生成アミラーゼとしては、マルトトリオースを生成する活性がある限り、他の作用を更に有する酵素であってもよい。
[マルトトリオース生成アミラーゼの活性の定義]
0.1Mリン酸緩衝液(pH7.0)に溶解した2%可溶性澱粉0.5mlに、適量の酵素を加え、全量1.0mlで、40℃で反応させ、生成するマルトトリオース及びその他の還元糖をソモギー・ネルソン法で定量する。この条件で、1分間に1マイクロモルのグルコースに相当する還元糖を生成する酵素量を1単位(1U)とする。
本技術に用いることができるリパーゼは、トリグリセリドを加水分解してジグリセリド、モノグリセリド、および脂肪酸を生成する活性を有する酵素である。本技術に用いることができるリパーゼとしては、トリグリセリドを加水分解してジグリセリド、モノグリセリド、および脂肪酸を生成する活性がある限り、他の作用を更に有する酵素であってもよい。
[リパーゼの活性の定義]
オリーブ油45gと乳化液(ポリビニルアルコール(完全けん化物、けん化度98.8±0.2) 18.5g/L、ポリビニルアルコール(部分けん化物、けん化度88.8±1.0) 1.5g/L)150mLと混合し、ホモジナイザーを用いて乳化させ基質溶液を調製する。基質溶液5mL及び0.1mol/Lリン酸緩衝液(pH7.0)4mLに、リパーゼ酵素液1mLを加えて37℃で反応を行い30分後にエタノール・アセトン混液10mLを加え酵素反応を停止させる。次いで、0.05mol/L水酸化ナトリウム溶液10mL及びエタノール・アセトン混液10mLを加え、0.05mol/L塩酸でpHが10になるよう滴定する。そして、1分間に1μmolの脂肪酸の増加をもたらす酵素量を1単位(1U)とする。
本技術で用いることができるβ-アミラーゼは、澱粉の非還元末端からマルトース単位でα-1,4グルコシド結合を逐次分解するエキソ型の酵素である。本技術に用いることができるβ-アミラーゼとしては、前記のβ-アミラーゼ活性がある限り、他の作用を更に有する酵素であってもよい。
[β-アミラーゼの活性の定義]
バレイショデンプンを基質とし、1分間に1mgのブドウ糖に相当する還元力の増加をもたらす酵素量を1単位(1U)とする。
本技術には、α-アミラーゼを用いることができる。本技術に用いることができるα-アミラーゼは、デンプンに作用し主にα-1,4グリコシド結合を加水分解する酵素である。
[α-アミラーゼの活性の定義]
ポテトスターチを基質とし、ヨウ素反応により測定されるものとする。すなわち、アミラーゼの活性は、ポテトスターチを基質として常法により酵素反応を行い、1分間にヨウ素反応による呈色を10%減少させる酵素量を1単位(1U)とする。
本技術に係る保形性向上用酵素剤には、モノグリセリド及び/又はジグリセリドを用いることができる。モノグリセリド及び/又はジグリセリドを用いることで、製造後の植物性アイスクリームの保形性向上効果をより一層高めることができる。
本技術に係る保形性向上用酵素剤は、前述したマルトトリオース生成アミラーゼ、リパーゼ、及びβ-アミラーゼからなる群から選択される1以上の酵素を含有していれば、前述したマルトトリオース生成アミラーゼ、リパーゼ、及びβ-アミラーゼからなる群から選択される1以上の酵素のみで構成されていてもよいし、前述したα-アミラーゼ、モノグリセリド、ジグリセリド等を併用してもよいし、本技術の効果を損なわない限り、他の成分を1種又は2種以上、自由に選択して含有させることもできる。他の成分としては、例えば、通常製剤化に用いられている賦形剤、pH調整剤、着色剤、矯味剤、崩壊剤、滑沢剤、安定剤等の成分を用いることができる。更に、公知の又は将来的に見出される機能を有する成分を、適宜目的に応じて併用することも可能である。
本技術に係る植物性アイスクリームは、前述した本技術に係る保形性向上用酵素剤を用いて製造された植物性アイスクリームである。本技術に係る植物性アイスクリームは、その製造工程において、植物性材料をマルトトリオース生成アミラーゼ、リパーゼ、及びβ-アミラーゼからなる群から選択される1以上の酵素で処理することにより、マルトトリオース、モノグリセリド、及びジグリセリドから選択される一以上の含有量が増加することで、本技術に係る保形性向上用酵素剤を用いずに製造された植物性アイスクリームに比べて、保形性が高く、保存中の安定性が高く、溶けにくいことを特徴とする。即ち、本技術に係る植物性アイスクリームは、マルトトリオース生成アミラーゼ処理された植物性糖質含有材料、リパーゼ処理された植物性油脂含有材料、及びβ-アミラーゼ処理された植物性糖質含有材料から選択される1以上の材料を含むことを特徴とする。
本技術に係る植物性飲食品の製造方法、及び保形性向上方法は、植物性糖質含有材料にマルトトリオース生成アミラーゼを作用させるマルトトリオース生成アミラーゼ作用工程、植物性油脂含有材料にリパーゼを作用させるリパーゼ作用工程、及び植物性糖質含有材料にβ-アミラーゼを作用させるβ-アミラーゼ作用工程から選択される1以上の工程を少なくとも行う方法である。また、植物性糖質含有材料にα-アミラーゼを作用させるα-アミラーゼ作用工程、モノグリセリド及び/又はジグリセリドを添加するモノグリセリド及び/又はジグリセリド添加工程、回収工程等を更に行うこともできる。その他、植物性アイスクリームの種類等に応じて、各工程の前後や各工程と同時に、本技術の効果を損なわない範囲において、一般的な植物性アイスクリームの製造工程を行うことも可能である。以下、各工程等について詳細に説明する。
本技術に係る植物性飲食品の製造方法、及び保形性向上方法に用いる植物性材料としては、植物性糖質含有材料、及び植物性油脂含有材料を用いる。
本技術で用いることができる植物性糖質含有材料は、植物由来の糖質を含んでいれば特に限定されないが、典型的な例として、穀類(オーツ麦等)をミル等で機械的に破砕した材料が挙げられる。糖質としては、多糖類(デンプンやデキストリン等)を含んでいることが好ましい。
本技術で用いることができる植物性油脂含有材料は、植物由来の油脂を含んでいれば特に限定されないが、典型的な例として、植物原料から物理的に圧搾、または溶剤で抽出、もしくはその組み合わせによって抽出された後、種々の精製工程を経て得られる油脂が挙げられる。
マルトトリオース生成アミラーゼ作用工程は、植物性糖質含有材料にマルトトリオース生成アミラーゼを作用させる工程である。マルトトリオース生成アミラーゼ作用工程におけるマルトトリオース生成アミラーゼの添加量は、本技術の効果を損なわない限り自由に設定することができる。本技術における具体的なマルトトリオース生成アミラーゼの添加量は、前述した保形性向上用酵素剤中のマルトトリオース生成アミラーゼの含有量と同一であるため、ここでは説明を割愛する。
リパーゼ作用工程は、植物性油脂含有材料にリパーゼを作用させる工程である。リパーゼ作用工程におけるリパーゼの添加量は、本技術の効果を損なわない限り自由に設定することができる。本技術における具体的なリパーゼの添加量は、前述した保形性向上用酵素剤中のリパーゼの含有量と同一であるため、ここでは説明を割愛する。
β-アミラーゼ作用工程は、植物性糖質含有材料にβ-アミラーゼを作用させる工程である。β-アミラーゼ作用工程におけるβ-アミラーゼの添加量は、本技術の効果を損なわない限り自由に設定することができる。本技術における具体的なβ-アミラーゼの添加量は、前述した保形性向上用酵素剤中のβ-アミラーゼの含有量と同一であるため、ここでは説明を割愛する。
α-アミラーゼ作用工程は、植物性糖質含有材料にα-アミラーゼを作用させる工程である。植物性糖質含有材料にα-アミラーゼを作用させることで、植物性糖質含有材料中のデンプンを液化させることができる。本技術において、α-アミラーゼ作用工程は必須の工程ではなく、例えば、予めα-アミラーゼで処理された植物性糖質含有材料を用いることで、α-アミラーゼ作用工程を行うのと同様の効果を得ることもできる。
モノグリセリド及び/又はジグリセリド添加工程は、植物性アイスクリームの製造工程において、モノグリセリド及び/又はジグリセリドを添加する工程である。本技術において、モノグリセリド及び/又はジグリセリド添加工程は必須の工程ではなく、例えば、モノグリセリド及び/又はジグリセリドを含有する植物性材料を用いることで、モノグリセリド及び/又はジグリセリド添加工程を行うのと同様の効果を得ることもできる。
回収工程は、マルトトリオース生成アミラーゼ作用工程、リパーゼ作用工程、及びβ-アミラーゼ作用工程から選択される1以上の工程、必要に応じてα-アミラーゼ作用工程、モノグリセリド及び/又はジグリセリド添加工程等を経て製造された植物性アイスクリームを回収する工程である。具体的な回収方法は、製造する植物性アイスクリームの種類や形態に応じて、一般的な植物性アイスクリームの製造における回収方法を、1種または2種以上自由に組み合わせて用いることができる。
(1)植物性糖質含有材料、及び/又は、植物性油脂含有材料を用意する工程
(2)用意した植物性糖質含有材料にマルトトリオース生成アミラーゼを作用させる工程
(3)用意した植物性油脂含有材料にリパーゼを作用させる工程
(4)用意した植物性糖質含有材料にβ-アミラーゼを作用させる工程
(5)用意した植物性糖質含有材料にα-アミラーゼを作用させる工程
(6)モノグリセリド及び/又はジグリセリドを添加する工程
(7)酵素を失活させる工程
(8)製造された植物性アイスクリームを回収する工程
実施例で用いた材料及び酵素を、下記の表1に示す。
[マルトトリオース生成アミラーゼの活性測定方法]
0.1Mリン酸緩衝液(pH7.0)に溶解した2%可溶性澱粉0.5mlに、適量の酵素を加え、全量1.0mlで、40℃で反応させ、生成するマルトトリオース及びその他の還元糖をソモギー・ネルソン法で定量した。この条件で、1分間に1マイクロモルのグルコースに相当する還元糖を生成する酵素量を1単位(1U)とした。
まずオリーブ油45gと乳化液(ポリビニルアルコール(完全けん化物、けん化度98.8±0.2)18.5g/L、ポリビニルアルコール(部分けん化物、けん化度88.8±1.0)1.5g/L)150mLと混合し、ホモジナイザーを用いて乳化させ基質溶液を調製した。調製した基質溶液5mL及び0.1mol/Lリン酸緩衝液(pH7.0)4mLに、リパーゼ酵素液1mLを加えて37℃で反応を行い、30分後にエタノール・アセトン混液10mLを加え酵素反応を停止させた。次いで、0.05mol/L水酸化ナトリウム溶液10mL及びエタノール・アセトン混液10mLを加え、0.05mol/L塩酸でpHが10になるよう滴定した。そして、1分間に1μmolの脂肪酸の増加をもたらす酵素量を1単位(1U)とした。
食品添加物公定書(第9版)に記載の方法に準じて測定した。具体的には、基質としてばれいしょ澱粉を用い、あらかじめ105℃で2時間乾燥し、その乾燥物1.0gを量り、水20mLを加え、水酸化ナトリウム試液(2mol/L)5mLを撹拌しながら徐々に加えて糊状とした。次に、撹拌しながら水浴中で3分間加熱した後、水25mLを加えた。冷却後、塩酸試液(2mol/L)及び塩酸試液(0.1mol/L)を加えて中和し、1mol/Lの酢酸・酢酸ナトリウム緩衝液(pH5.0)10mLを加え、更に水を加えて100mLとしたものを基質溶液とした。基質溶液10mLを量り、37℃で10分間加温し、試料溶液1mLを加えて直ちに振り混ぜ、同温度で10分間又は30分間加温した後、さらに、フェーリング試液4mLを加えて軽く振り混ぜ、沸騰水浴中で15分間加熱した後、25℃以下に冷却し、30%ヨウ化カリウム溶液2mL及び硫酸(1→6)2mLを加え、検液とした。なお、フェーリング試液は、硫酸銅(II)五水和物の細かい結晶34.66gを量り、水を加えて溶かして500mLとした銅液と、(+)-酒石酸ナトリウムカリウム四水和物173g及び水酸化ナトリウム50gを量り、水を加えて溶かして500mLとしたアルカリ性酒石酸塩液とを、銅液1容量とアルカリ性酒石酸塩液1容量の割合で混和して、用時調製した。別に、基質溶液の代わりに水10mLを用いて検液の調製と同様に操作し、比較液とした。検液及び比較液について、遊離したヨウ素を0.05mol/Lチオ硫酸ナトリウム溶液で滴定した。終点は、滴定が終点近くになったときに溶性デンプン試液1~2滴を加え、生じた青色が消えるときとした。1分間に1mgのブドウ糖に相当する還元力の増加をもたらす酵素量を1単位(1U)とし、次式から算出した。
β-アミラーゼの活性(U/g,U/mL)=ブドウ糖の量(mg)×1/10×1/M
ブドウ糖の量(mg)=(b-a)×1.6×f
a:酵素反応液の滴定値(mL)
b:ブランク液の滴定値(mL)
1.6:0.05mol/Lチオ硫酸ナトリウム液1mLは1.6mgのブドウ糖量に相当する
1/10:反応時間(分)の単位換算係数
M:試料溶液1mL中の試料の量(g又はmL)
f:0.05mol/Lチオ硫酸ナトリウム液(定量用)のファクター
1%ポテトデキストリン10mLを37℃で15分間前処理した後、アミラーゼ溶液を1mL添加してすぐによく混合した。37℃で10分後、1mLを取り出して、0.1M塩酸10mLと混合し、さらにその溶液から0.5mLを取り出して0.2mMヨウ素液10mLと混合した後、吸光度(波長660nm)を測定した。1分間にヨウ素反応による呈色を10%減少させる酵素量を1単位(1U)とした。
<実験例1>
実験例1では、マルトトリオース生成アミラーゼ、及びβ-アミラーゼによる植物性アイスクリームの保形性向上効果を調べた。
精製水1Lにオート粉末120gを添加して、加熱ミキサー(「Thermomix TM6」、Vorwerk社製)を用いてスピード2の速さにて50℃で20分間混合した。次に下記表2に示す酵素を加えて、さらに1時間攪拌した。その後、混合物をチーズクロスに通して固形分を分離したものをオートベースとした。
上記で得られたオートベース0.5mLを精製水で5倍に希釈し、遠心分離(13,000rpm、5分)して上清を取り出し、メンブレンフィルター(0.2μm)したものの糖組成を、高速液体クロマトグラフィー(検出器:RID-20A、株式会社島津製作所製)で分析した。カラムはCK04S(三菱ケミカル株式会社製)を使用し、特に糖の重合度を分析した。全ピークエリアに対する、各糖成分の割合を下記表2に示す。
製造した植物性アイスクリームを紙カップに充填し、-15℃で一晩かけて、さらに冷凍、および成型した。保形性の評価は、室温で秤上に水平にセットしたメッシュ板の上に、紙カップをはがしたアイスクリームをのせて、アイスクリームが溶け始めて最初の1滴が秤に落ちた時点を開始点として、5分毎に90分後まで秤の数値を読み取った。
保形性(%)={((開始時のアイスクリームの重さ)―(90分後の秤の数値))÷(開始時のアイスクリームの重さ)}×100 ・・・(1)
得られた評価値(保形性(%))について、下記の数式(2)を用いて、保形性上昇率を求めた。
保形性上昇率(%)=(各試験区の保形性/コントロールの保形性)×100 ・・・(2)
結果を下記の表2に示す。
表2に示す通り、β-アミラーゼを用いて植物性アイスクリームを製造した試験区1、及びマルトトリオース生成アミラーゼを用いて植物性アイスクリームを製造した試験区2は、マルトトリオース生成アミラーゼを用いずに植物性アイスクリームを製造したコントロール1に比べて、高い保形性を示していた。特に、マルトトリオース生成アミラーゼを用いて植物性アイスクリームを製造した試験区2では、保形性の向上が顕著であった。
実験例2では、マルトトリオース生成アミラーゼの添加量依存性を検討した。
実験例1と同一の方法で、表3に示すコントロール2、試験区3、及び4の植物性アイスクリームを製造した。
実験例1と同一の方法で、保形性上昇率を評価した。
結果を下記の表3に示す。
表3に示す通り、マルトトリオース生成アミラーゼを用いて植物性アイスクリームを製造した試験区3及び4は、マルトトリオース生成アミラーゼを用いずに植物性アイスクリームを製造したコントロール2に比べて、高い保形性を示していた。また、試験区3及び4の結果から、マルトトリオース生成アミラーゼは、1.2U程度でも十分な保形性向上効果を発揮することが分かった。
実験例3では、リパーゼによる植物性アイスクリームの保形性向上効果を調べた。
精製水1Lにオート粉末120gを添加して、加熱ミキサー(「Thermomix TM6」、Vorwerk社製)を用いてスピード2の速さにて50℃で20分間混合した。次に、下記表4に示す量のα-アミラーゼを加えて、さらに1時間攪拌した。その後、混合物をチーズクロスに通して固形分を分離したものをオートベースとした。
実験例1と同一の方法で、保形性上昇率を評価した。
結果を下記の表4に示す。
表4に示す通り、リパーゼを用いて植物性アイスクリームを製造した試験区5は、リパーゼを用いずに植物性アイスクリームを製造したコントロール3に比べて、高い保形性を示していた。
実験例4では、リパーゼの添加量依存性を検討した。
実験例3と同一の方法で、表5に示すコントロール4、試験区6、及び7の植物性アイスクリームを製造した。
実験例1と同一の方法で、保形性上昇率を評価した。
結果を下記の表5に示す。
表5に示す通り、植物性油脂含有材料にリパーゼを作用させることにより、保形性が向上することが分かった。また、保形性は、リパーゼの添加量依存的に向上することが分かった。
Claims (4)
- マルトトリオース生成アミラーゼ、リパーゼ、及びβ-アミラーゼからなる群から選択される1以上の酵素を含む、植物性アイスクリームの保形性向上用酵素剤。
- 請求項1に記載の保形性向上用酵素剤が用いられた、植物性アイスクリーム。
- 植物性糖質含有材料にマルトトリオース生成アミラーゼを作用させるマルトトリオース生成アミラーゼ作用工程、植物性油脂含有材料にリパーゼを作用させるリパーゼ作用工程、及び植物性糖質含有材料にβ-アミラーゼを作用させるβ-アミラーゼ作用工程から選択される1以上の工程を含む、植物性アイスクリームの製造方法。
- 植物性糖質含有材料にマルトトリオース生成アミラーゼを作用させるマルトトリオース生成アミラーゼ作用工程、植物性油脂含有材料にリパーゼを作用させるリパーゼ作用工程、及び植物性糖質含有材料にβ-アミラーゼを作用させるβ-アミラーゼ作用工程から選択される1以上の工程を含む、植物性アイスクリームの保形性向上方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380042631.7A CN119173153A (zh) | 2022-06-22 | 2023-06-21 | 保形性提高用酶剂 |
JP2024529045A JPWO2023249041A1 (ja) | 2022-06-22 | 2023-06-21 | |
EP23827224.9A EP4544918A1 (en) | 2022-06-22 | 2023-06-21 | Enzyme preparation for improving shape retainability |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022100064 | 2022-06-22 | ||
JP2022-100064 | 2022-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023249041A1 true WO2023249041A1 (ja) | 2023-12-28 |
Family
ID=89379989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/022885 WO2023249041A1 (ja) | 2022-06-22 | 2023-06-21 | 保形性向上用酵素剤 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4544918A1 (ja) |
JP (1) | JPWO2023249041A1 (ja) |
CN (1) | CN119173153A (ja) |
WO (1) | WO2023249041A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59227249A (ja) * | 1983-06-09 | 1984-12-20 | Hanamaruki Kk | 豆乳アイスクリ−ム |
JPH03251173A (ja) | 1990-02-28 | 1991-11-08 | Amano Pharmaceut Co Ltd | マルトトリオース生成アミラーゼ、その製造法および用途 |
JPH05211852A (ja) * | 1992-02-03 | 1993-08-24 | Nisshin Oil Mills Ltd:The | 低油分クリーム状物質の製造法 |
JP2010187592A (ja) * | 2009-02-18 | 2010-09-02 | San-Ei Sucrochemical Co Ltd | 乳類加工食品の呈味改良剤及びそれを用いた呈味改良方法 |
US20180184684A1 (en) | 2015-06-30 | 2018-07-05 | Conopco, Inc., D/B/A Unilever | Vegetable protein-based frozen confection |
WO2020090734A1 (ja) | 2018-10-31 | 2020-05-07 | 天野エンザイム株式会社 | マルトトリオース生成アミラーゼ |
-
2023
- 2023-06-21 CN CN202380042631.7A patent/CN119173153A/zh active Pending
- 2023-06-21 WO PCT/JP2023/022885 patent/WO2023249041A1/ja active Application Filing
- 2023-06-21 EP EP23827224.9A patent/EP4544918A1/en active Pending
- 2023-06-21 JP JP2024529045A patent/JPWO2023249041A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59227249A (ja) * | 1983-06-09 | 1984-12-20 | Hanamaruki Kk | 豆乳アイスクリ−ム |
JPH03251173A (ja) | 1990-02-28 | 1991-11-08 | Amano Pharmaceut Co Ltd | マルトトリオース生成アミラーゼ、その製造法および用途 |
JPH05211852A (ja) * | 1992-02-03 | 1993-08-24 | Nisshin Oil Mills Ltd:The | 低油分クリーム状物質の製造法 |
JP2010187592A (ja) * | 2009-02-18 | 2010-09-02 | San-Ei Sucrochemical Co Ltd | 乳類加工食品の呈味改良剤及びそれを用いた呈味改良方法 |
US20180184684A1 (en) | 2015-06-30 | 2018-07-05 | Conopco, Inc., D/B/A Unilever | Vegetable protein-based frozen confection |
WO2020090734A1 (ja) | 2018-10-31 | 2020-05-07 | 天野エンザイム株式会社 | マルトトリオース生成アミラーゼ |
Non-Patent Citations (10)
Title |
---|
"Japan's Specifications and Standards for Food Additives" |
ANONYMOUS: "How about amazake ice cream on a hot day?", KAYAMA BREWING OFFICIAL ONLINE SHOP, 6 July 2021 (2021-07-06), XP093121438, Retrieved from the Internet <URL:https://shop.kayamasyuzou.com/blog/2021/07/06/113409> [retrieved on 20240119] * |
ANONYMOUS: "The new arrival of "amazake ice cream", YOTTIMIROYA HOMEPAGE, 25 January 2021 (2021-01-25), XP093121437, Retrieved from the Internet <URL:http://www.yottimiroya.com/?p=190> [retrieved on 20240119] * |
ANONYMOUS: "What foods are rich in enzymes?", HAKKO JUICE BAR NEWS, 5 April 2019 (2019-04-05), XP093121461, Retrieved from the Internet <URL:https://kiroro-pokkuru.com/archives/283> [retrieved on 20240119] * |
MIWA: "Vegan cocoa ice cream (dairy-free, egg-free", COOKPAD, 27 April 2020 (2020-04-27), XP093121446, Retrieved from the Internet <URL:https://cookpad.com/recipe/6174796> [retrieved on 20240119] * |
MIWA: "Vegan matcha ice cream (dairy-free, egg-free", COOKPAD, 23 April 2020 (2020-04-23), XP093121444, Retrieved from the Internet <URL:https://cookpad.com/recipe/6162631> [retrieved on 20240119] * |
OTAWA AYUMI: "Coconut milk and banana amazake ice cream", COOKPAD, 3 May 2021 (2021-05-03), XP093121457, Retrieved from the Internet <URL:https://cookpad.com/recipe/6763564> [retrieved on 20240119] * |
SHOKUDO UCHUU: "Sugar-free and vegan, but still very satisfying amazake ice cream", COOKPAD, 13 May 2021 (2021-05-13), XP093121443, Retrieved from the Internet <URL:https://cookpad.com/recipe/6265218> [retrieved on 20240119] * |
TOKAMACHTOKACHAN TOKAMACHI: "Only 3 ingredients! amazake and soy milk ice cream", COOKPAD, 17 August 2021 (2021-08-17), XP093121459, Retrieved from the Internet <URL:https://cookpad.com/recipe/6902569> [retrieved on 20240119] * |
YOSSYPETER: "Tofu and amazake ice cream", COOKPAD, 4 August 2021 (2021-08-04), XP093121439, Retrieved from the Internet <URL:https://cookpad.com/recipe/6888588> [retrieved on 20240119] * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023249041A1 (ja) | 2023-12-28 |
CN119173153A (zh) | 2024-12-20 |
EP4544918A1 (en) | 2025-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cowan et al. | Industrial enzymes | |
Meshram et al. | Plant-derived enzymes: a treasure for food biotechnology | |
JP2019524142A (ja) | 飲料または飲料成分を製造するプロセス、かかるプロセスによって製造される飲料または飲料成分、ならびにかかる飲料または飲料成分を製造するためのビール粕の使用 | |
CN106714573B (zh) | 面条类的制造方法和面条用松散改良剂 | |
US20240099322A1 (en) | Method for producing processed plant-based milk having increased dispersion stability and/or solubility | |
TW201230968A (en) | Cereal milk drink comprising hydrolyzed whole grain for infants | |
TW202214117A (zh) | 用於生產穀物製品的酶組合物及穀物製品的生產方法 | |
JP6837584B2 (ja) | 植物由来β−グルカン含有シロップ | |
Walsh | Immobilized enzyme technology for food applications | |
US12161144B2 (en) | Process for preparation of cereal fractions | |
WO2023249041A1 (ja) | 保形性向上用酵素剤 | |
KR20040099381A (ko) | 공액 리놀레산의 제조 방법 | |
Filice et al. | Enzymatic transformations in food chemistry | |
JP2018042521A (ja) | β−グルカン含有飲料及びその製造方法 | |
CN117770317A (zh) | 基于复合酶解-发酵联用技术富集多酚的燕麦植物基发酵乳的制备方法 | |
JP4688335B2 (ja) | ベーカリー製品用生地 | |
Abdul-Abbas et al. | Effects of mixed strains of rhizopus oryzae and lactobacillus on corn meal fermentation | |
Singhal et al. | Microbial enzymes in food industry: Types and applications | |
JP2017184675A (ja) | 油脂類を低水分状態でリパーゼに作用させ、起泡性および/または乳化性をもつ素材を製造する方法とその製品 | |
KR101787546B1 (ko) | 현미의 복합균주 고상발효물 및 그 제조방법 | |
Ghoshal | Recycling Nutraceuticals from Agro-Industrial Residues | |
JP6735868B2 (ja) | 糖を生成しかつテクスチャーを改善するベーカリー方法およびそれから形成される製品 | |
CN118979080A (zh) | 一种1,3-二油酸-2-棕榈酸甘油三酯的制备方法及其应用 | |
Buchilina et al. | The Effect of Xylanase on the Buckwheat Starch Hydrolysis | |
Khatkar et al. | Enzymatic Processing of Cereals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23827224 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18869563 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024529045 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023827224 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023827224 Country of ref document: EP Effective date: 20250122 |
|
WWP | Wipo information: published in national office |
Ref document number: 2023827224 Country of ref document: EP |