[go: up one dir, main page]

WO2023143257A1 - 一种脉冲激光模拟单粒子效应的试验系统以及散热方法 - Google Patents

一种脉冲激光模拟单粒子效应的试验系统以及散热方法 Download PDF

Info

Publication number
WO2023143257A1
WO2023143257A1 PCT/CN2023/072642 CN2023072642W WO2023143257A1 WO 2023143257 A1 WO2023143257 A1 WO 2023143257A1 CN 2023072642 W CN2023072642 W CN 2023072642W WO 2023143257 A1 WO2023143257 A1 WO 2023143257A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
chip
heat conduction
test
liquid
Prior art date
Application number
PCT/CN2023/072642
Other languages
English (en)
French (fr)
Inventor
汤鑫祥
黄锡辉
张龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023143257A1 publication Critical patent/WO2023143257A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control

Definitions

  • the present application relates to the field of heat dissipation of electronic components, in particular to a test system for simulating single event effects with pulsed lasers and a heat dissipation method.
  • Single event effect refers to a series of radiation effects that cause abnormal changes in the chip when a single high-energy particle passes through the chip of aerospace equipment. SEE may cause the chip to flip abnormally or even burn out. Therefore, the anti-SEE ability of the chip is one of the necessary indicators to evaluate whether the chip is suitable for aerospace equipment.
  • the pulsed laser can simulate the SEE experiment, so as to realize the anti-SEE ability of the test chip.
  • the specific heat dissipation process is to remove the outer cover of the chip to expose the unit die of the chip.
  • the fan is used to air-cool and dissipate the unit die during the pulsed laser simulation SEE test.
  • the heat dissipation area of the unit die is relatively small, and the heat dissipation capability of the fan is limited, which cannot meet the heat dissipation requirements of chips with high power consumption.
  • the wind speed of the fan will cause mechanical vibration of the die. Mechanical shock will reduce the accuracy of SEE test.
  • Embodiments of the present invention provide a test system for simulating single event effects with pulsed lasers and a heat dissipation method. It is used to realize pulsed laser simulation single event effect experiment. Moreover, during the test process, the heat dissipation efficiency of the chip to be tested for heat dissipation is improved.
  • an embodiment of the present invention provides an experimental system for simulating single event effects with pulsed lasers.
  • the test system is used to realize pulse laser simulation single event effect test.
  • the test system includes a pulsed laser and a thermally conductive assembly.
  • the heat conducting component is located between the pulse laser and the chip to be tested.
  • the heat conduction component includes a light-transmitting area and a heat conduction area.
  • the light-transmitting area is physically connected to the heat-conducting area.
  • the pulsed laser light emitted by the pulsed laser is transmitted to the chip to be tested through the light-transmitting region.
  • the pulsed laser is used to perform a pulsed laser simulation single event effect test on the chip to be tested.
  • the light-transmitting region is physically connected to the chip to be tested.
  • the heat of the chip under test is dissipated through the light-transmitting area and the heat-conducting area.
  • both the light-transmitting region and the heat-conducting region included in the heat-conducting component can dissipate heat from the chip to be tested, effectively improving the heat-dissipating efficiency.
  • mechanical vibration of the chip to be tested will not be caused. Improves the accuracy of pulsed laser simulation single event effect experiments.
  • the light-transmitting region is made of a first material.
  • the heat conduction area is made of a second material.
  • the light transmittance of the first material is greater than or equal to a first preset value.
  • the thermal conductivity of the first material is greater than or equal to a second preset value.
  • the thermal conductivity of the second material is greater than or equal to the thermal conductivity of the first material.
  • the light-transmitting region made of the first material can ensure the successful transmission of the pulsed laser light to the chip to be tested. Both the light-transmitting area and the heat-conducting area can dissipate heat from the chip to be tested, thereby improving heat dissipation efficiency.
  • the test system further includes a liquid-cooled tube and a refrigeration device connected to the liquid-cooled tube.
  • the heat conduction area has heat conduction grooves.
  • the liquid cooling pipe is connected to the heat conduction tank.
  • the refrigeration equipment is used The first liquid cooling liquid is transmitted to the heat conduction tank through the liquid cooling pipe.
  • the first cooling liquid flowing through the heat conducting groove is used to dissipate heat for the chip under test.
  • the liquid cooling liquid flowing through the heat conduction groove can effectively improve heat dissipation efficiency.
  • the test system shown in this implementation manner can be applied to heat dissipation of a chip under test with high power consumption.
  • the test system includes a test board.
  • the test board is used to carry the chip to be tested.
  • the first liquid cooling liquid flowing through the heat conducting groove will not interfere with the transmission path of the pulsed laser passing through the light-transmitting region. It effectively ensures that the pulsed laser can be successfully transmitted to the chip under test. It effectively guarantees the feasibility and accuracy of the pulsed laser simulation single event effect test.
  • the test system further includes a liquid-cooled tube and a refrigeration device connected to the liquid-cooled tube.
  • the heat conduction area is used to fix the liquid cooling tube.
  • the refrigerating device is used to transmit the first liquid cooling liquid to the liquid cooling pipe.
  • the first liquid cooling liquid flowing through the liquid cooling pipe is used to dissipate heat from the chip under test.
  • the test system includes a test board.
  • the test board is used to carry the chip to be tested.
  • the first liquid cooling liquid flowing through the liquid cooling tube will not interfere with the transmission path of the pulsed laser passing through the light-transmitting region. It effectively ensures that the pulsed laser can be successfully transmitted to the chip under test.
  • the test system further includes a control device connected to the refrigeration device.
  • the control device is connected to a temperature sensor.
  • the control device is used to obtain the temperature of the chip under test through the temperature sensor.
  • the control device is configured to send a control signal to the cooling device according to the temperature.
  • the control signal is used to control at least one of the temperature or flow rate of the second cooling liquid output by the cooling device, so that the temperature of the chip to be tested is within a preset temperature range.
  • the chip to be tested within the preset temperature range can ensure the feasibility and accuracy of the pulsed laser simulation single event effect test.
  • the chip under test dissipates heat through the light-transmitting region and the heat-conducting region in sequence.
  • the light-transmitting region absorbs the heat of the chip to be tested, the light-transmitting region can also dissipate heat through the heat-conducting region. Effectively improve the heat dissipation efficiency.
  • the heat conduction area is formed by splicing the outer peripheral wall of the light transmission area. This implementation mode can effectively reduce the manufacturing difficulty of the heat conduction component and improve the manufacturing efficiency of the heat conduction component.
  • an embodiment of the present invention provides a heat dissipation method for simulating a single event effect with a pulsed laser.
  • the heat dissipation method is applied to a test system for simulating single event effects with pulsed lasers.
  • the heat dissipation method is used for heat dissipation of the test system during the pulse laser simulation single event effect test.
  • the method includes: the pulsed laser light emitted by the pulsed laser is transmitted to the chip to be tested through the light-transmitting area of the heat conduction component.
  • the pulsed laser is used to perform a pulsed laser simulation single event effect test on the chip to be tested.
  • the heat conducting component is located between the pulsed laser and the chip to be tested.
  • the light-transmitting region and the heat-conducting region included in the heat-conducting component are physically connected.
  • the light-transmitting region is physically connected to the chip to be tested.
  • the heat of the chip under test is dissipated through the light-transmitting area and the heat-conducting area.
  • the method further includes: the cooling device transmits the first liquid cooling liquid to the heat conduction tank included in the heat conduction area via a liquid cooling pipe.
  • the liquid cooling pipes are respectively connected to the refrigeration equipment and the heat conduction tank. The first cooling liquid flowing through the heat conduction groove dissipates heat for the chip under test.
  • the method further includes: the cooling device transmits the first liquid cooling liquid to the liquid cooling pipe fixed to the heat conduction area.
  • the liquid cooling pipe is connected with the refrigeration equipment. The first part flowing through the liquid cooling tube A liquid cooling liquid dissipates heat for the chip to be tested.
  • the method further includes: the control device obtains the temperature of the chip under test through a temperature sensor.
  • the control device sends a control signaling to the cooling device according to the temperature.
  • the cooling device controls at least one of the temperature or the flow rate of the second cooling liquid output by the cooling device according to the control signal, so that the temperature of the chip to be tested is within a preset temperature range.
  • embodiments of the present invention provide a heat dissipation method.
  • the heat dissipation method is applied to a test system for simulating single event effects with pulsed lasers.
  • the heat dissipation method is used for heat dissipation of the test system during the pulse laser simulation single event effect test.
  • the method includes: the heat dissipation method is used to realize a pulsed laser simulation single event effect test.
  • the method includes: the pulsed laser light emitted by the pulsed laser is transmitted to the chip to be tested through the light-transmitting area of the heat conduction component.
  • the pulsed laser is used to perform a pulsed laser simulation single event effect test on the chip to be tested.
  • the first cooling liquid flowing through the heat conduction area included in the heat conduction component is used to dissipate heat for the chip under test.
  • the control device acquires the temperature of the chip to be tested through the temperature sensor.
  • the control device sends a control signaling to the cooling device according to the temperature.
  • the cooling device controls at least one of the temperature or the flow rate of the second cooling liquid output by the cooling device according to the control signal, so that the temperature of the chip to be tested is within a preset temperature range.
  • an embodiment of the present invention provides a heat conduction component.
  • the heat conduction component is used for dissipating heat from the chip to be tested during the pulse laser simulation single event effect test.
  • the heat conducting component is located between the pulse laser and the chip to be tested.
  • the heat conduction component includes a light-transmitting area and a heat conduction area. The light-transmitting area is physically connected to the heat-conducting area.
  • the pulsed laser light emitted by the pulsed laser is transmitted to the chip to be tested through the light-transmitting region.
  • the pulsed laser is used to perform a pulsed laser simulation single event effect test on the chip to be tested.
  • the light-transmitting region is physically connected to the chip to be tested.
  • the heat of the chip under test is dissipated through the light-transmitting area and the heat-conducting area.
  • the structure and beneficial effects of the heat conduction component shown in this aspect please refer to the first aspect, and details will not be repeated.
  • an embodiment of the present invention provides a heat dissipation system.
  • the heat dissipation system includes heat conduction components, liquid cooling pipes and refrigeration equipment.
  • heat conduction components for specific descriptions of related components and optional implementations of the heat dissipation system, please refer to the first aspect, and details are not repeated here.
  • Fig. 1 is the structural example figure of the first kind of test system provided by the embodiment of the application;
  • Fig. 2 is an example top view structure diagram of an embodiment of the heat conduction assembly included in the test system shown in Fig. 1;
  • FIG. 3 is an example diagram of an embodiment of the orthographic projection of the heat-conducting component and unit die included in the test system shown in FIG. 1 on the test board;
  • Fig. 4 is the structural illustration diagram of the second kind of test system provided by the embodiment of the present application.
  • Fig. 5 a is the side view structural illustration of the first embodiment of the heat conduction assembly included in the test system shown in Fig. 4;
  • Fig. 5b is an example diagram of the overall structure of an embodiment of the heat conduction assembly included in the test system shown in Fig. 4;
  • Fig. 5c is a kind of embodiment partial structural example diagram of the test system shown in Fig. 4;
  • FIG. 6 is an example diagram of an embodiment of the orthographic projection of the heat-conducting component and unit die included in the test system shown in FIG. 4 on the test board;
  • Fig. 7 is the second embodiment side view structural illustration diagram of the thermal conduction assembly that the test system shown in Fig. 4 comprises;
  • FIG. 8 is a flow chart of steps in an embodiment of the heat dissipation method provided in the embodiment of the present application.
  • Fig. 1 is a structural example diagram of the first test system provided in the embodiment of the present application.
  • the test system provided by the present application includes a pulsed laser 101 , a control device 102 , a test board 103 and a heat conduction component 110 .
  • the test system shown in this embodiment includes a support frame 120 for fixing the laser 101 .
  • the pulsed laser emitted by the laser lens 121 of the fixed laser 101 can be directly transmitted to the chip under test on the test board 103 .
  • the pulsed laser is used to simulate the SEE test of the chip to be tested.
  • the description of the fixing manner of the laser 101 in this embodiment is an optional example and is not limited.
  • the laser 101 can also be fixed in a hanging manner.
  • the pulsed laser emitted by the pulsed laser 101 can also simulate the SEE test on the preprocessed chip to be tested. Wherein, the efficiency and accuracy of the SEE test can be effectively improved by performing the simulated SEE test on the preprocessed chip to be tested.
  • the chip to be tested includes a printed circuit board (PCB).
  • a cover is provided on the PCB.
  • the die 104 is packaged between the cover and the PCB.
  • Preprocessing refers to removing the cover of the DUT to expose the die 104 .
  • the unit die 104 of the chip to be tested can be exposed after pretreatment, so as to avoid interference of the protective cover to the SEE test.
  • the packaging method of the chip to be tested is not limited, as long as the unit die 104 can be exposed after the pretreatment.
  • the package of the chip to be tested may be a flip chip plastic grid array (FCPGA) or a flip chip size package (flip-chip CSP, FCCSP).
  • the heat conducting component 110 is located between the pulsed laser 101 and the die 104 .
  • the heat conduction component 110 shown in this embodiment may be integrally formed.
  • the integral molding structure can effectively ensure the stability of the structure of the heat conducting component 110 .
  • the service life of the heat conduction component 110 is improved.
  • the heat conduction component 110 is made of a material with light transmission property and heat conduction property.
  • the heat conducting component 110 can be made of silicon dioxide (SiO 2 ) or diamond.
  • the heat conduction component 110 shown in this embodiment can be covered on the surface of the test board 103 facing the pulsed laser 101 .
  • a testing space is formed between the heat conducting component 110 and the testing board 103 .
  • the die 104 is located inside the test space.
  • the specific manner of fixing the heat conduction component 110 on the test board 103 is not limited.
  • the heat conduction component 110 can be fixed on the test board 103 by glue.
  • slideways are provided on the surface of the test board 103 facing the pulsed laser 101 .
  • a protruding rail is provided at a position opposite to the slideway on the heat conduction assembly 110 . When the protruding rail is inserted into the sliding track, the purpose of covering the heat conducting component 110 on the surface of the test board 103 is achieved.
  • the heat conduction component 110 includes a light-transmitting area 201 and a heat conduction area 202 .
  • the transparent area 201 and the heat conduction area 202 are different areas included in the heat conduction component 110 .
  • the transparent region 201 is located between the pulsed laser 101 and the unit die 104
  • the transparent region 201 is located in the transmission direction of the pulsed laser light emitted by the pulsed laser 101 . Since the heat-conducting component 110 is made of a light-transmitting material, the pulsed laser light emitted by the pulsed laser 101 can pass through the light-transmitting region 201 to be transmitted to the unit die 104 .
  • the pulsed laser is used to perform a pulsed laser simulation SEE test on the die 104 .
  • pulsed laser light is transmitted onto the die 104 .
  • the pulsed laser excites the photoelectric effect of the unit die 104 to generate electron-hole pairs.
  • the pulsed laser can simulate high energy particles entering the die 104 to excite the response of the die 104 to generate SEE.
  • the response of the SEE may be a change in the stored data of the die 104 , a change in current, a fluctuation in voltage, or a change in the implemented function.
  • the control device 102 connected to the die 104 is able to detect the response of the SEE generated by the die 104 .
  • the control device 102 can be any computing device with computing capabilities.
  • the control device 102 can be a computer, a server, or an intelligent terminal.
  • the bottom surface of the transparent region 201 is physically connected to the die 104 .
  • the physical connection means that the bottom surface of the light-transmitting region 201 is in direct contact with the unit die 104 . It can be seen that there is no gap between the bottom surface of the transparent region 201 and the unit die 104 .
  • the transparent The bottom surface of the light region 201 refers to the surface of the light-transmitting region 201 facing the die 104 and facing away from the pulsed laser 101 .
  • FIG. 2 is an exemplary top view structure diagram of an embodiment of the heat conduction assembly included in the test system shown in FIG. 1 .
  • FIG. 2 is a structural diagram looking down on the heat conduction assembly from a perspective perpendicular to the test board 103 .
  • the heat conduction component shown in this embodiment includes heat conduction regions 202 located on both sides of the light transmission region 201 . Two sides of the transparent area 201 are physically connected to the heat conducting area 202 respectively.
  • FIG. 3 is an exemplary diagram of an embodiment of the orthographic projection of the heat conduction component and unit die included in the test system shown in FIG. 1 on the test board.
  • the transparent area 201 has a first orthographic projection 311 on the test board 103 .
  • the heat conduction area 202 located on both sides of the transparent area 201 has a second orthographic projection 312 on the test board 103 .
  • the first orthographic projection 311 is obtained by projecting the transparent area 201 with a projection line perpendicular to the test board 103 . It can be seen that, since the transparent region 201 is physically connected to the heat conduction regions 202 on both sides, the edges on both sides of the first orthographic projection 311 coincide with the edges of the second orthographic projection 312 .
  • the light-transmitting region 201 may also be located within the heat-conducting region 202 , so that the surroundings of the light-transmitting region 201 are physically connected to the heat-conducting region 202 .
  • the physical connection between the light-transmitting region 201 and the heat-conducting region 202 please refer to the manner of the physical connection between the light-transmitting region 201 and the unit die 104 , and details are not repeated here.
  • the light-transmitting region 201 is cross-sectioned on a plane parallel to the surface of the die 104 to obtain its cross-section.
  • the cross-section of the transparent region 201 is rectangular.
  • the thermally conductive region 202 is cross-sectioned on a plane parallel to the surface of the die 104 to obtain a cross-section.
  • the cross-section of the heat conduction area 202 is also rectangular.
  • the cross-sections of the light-transmitting region 201 and the heat-conducting region 202 can be in any shape. For example, if the light-transmitting region 201 is located within the heat-conducting region 202 , then the cross-section of the heat-conducting region 202 is circular.
  • the cross section of the transparent region 201 is circular. It can be seen that, in this example, the outer peripheral wall of the light-transmitting region 201 is physically connected to the peripheral wall of the inner ring of the heat-conducting region 202 .
  • Both the light-transmitting region 201 and the heat-conducting region 202 have heat-conducting properties. Both the light-transmitting region 201 and the heat-conducting region 202 can dissipate the heat generated by the unit die 104 during the pulsed laser simulation SEE test.
  • die 104 has a third orthographic projection 320 on test board 103 .
  • the third orthographic projection 320 is only within the coverage of the first orthographic projection 311 , indicating that the die 104 is only physically connected to the light-transmitting region 201 .
  • the light-transmitting region 201 can absorb heat from the die 104 .
  • the transparent area 201 can dissipate the absorbed heat.
  • the heat conduction regions 202 located on both sides of the light-transmitting region 201 can also dissipate heat from the light-transmitting region 201 . It can be seen that there are two heat dissipation paths for the heat generated by the die 104 . In the heat dissipation path 1 , the heat generated by the unit die 104 is dissipated sequentially through the light-transmitting region 201 and the heat-conducting region 202 . In the heat dissipation path 2 , the heat generated by the unit die 104 is directly dissipated through the light-transmitting region 201 .
  • the third orthographic projection is located within the coverage of the first orthographic projection and the second orthographic projection at the same time.
  • the die 104 is physically connected to both the optically transparent region 201 and the thermally conductive region 202 .
  • the heat dissipation path 1 and the heat dissipation path 2 please refer to the corresponding description in FIG. 3 , and details are not repeated here.
  • the heat generated by the unit die 104 is dissipated directly through the heat conduction area 202 .
  • the area of the thermally conductive assembly shown in this embodiment is larger than the area of the die. It can be seen that the heat dissipation area of the unit die is effectively increased by using the heat conduction component to dissipate heat. Since both the light-transmitting area and the heat-conducting area included in the heat-conducting component can dissipate heat to the unit die, the heat-dissipating efficiency is effectively improved. Moreover, in the process of dissipating heat to the unit die, the mechanical vibration of the unit die will not be caused, which improves the accuracy of the pulsed laser simulation SEE test.
  • the light-transmitting region 201 and the heat-conducting region 202 are made of the same material (such as SiO 2 ) and integrally formed as an example.
  • the transparent area 201 and the heat conducting area 202 can be made of different materials.
  • the transparent region 201 is made of the first material.
  • the heat conduction area 202 is made of the second material.
  • the light transmittance of the first material is greater than or equal to a first preset value
  • the thermal conductivity of the first material is greater than or equal to a second preset value.
  • the specific values of the first preset value and the second preset value are not limited, as long as the first material has a heat conduction property and a light transmission property.
  • the first preset value is 90%
  • the second preset value is 7.6 watts/meter ⁇ degree (W/(m ⁇ K).
  • the pulsed laser does not need to pass through the heat conduction region 202. Therefore, the heat conduction The region 202 does not need to have light-transmitting properties.
  • the thermal conductivity of the second material is greater than or equal to the thermal conductivity of the first material. For example, if both the light-transmitting region 201 and the heat-conducting region 202 are made of SiO 2 , then the thermal conductivity of the light-transmitting region 201 and the heat-conducting region 202 are the same.
  • the thermal conductivity of the heat-conducting region 202 is greater than that of the light-transmitting region 201 .
  • the transparent region 201 itself has heat conduction properties.
  • the thermal conductivity of the heat conduction area 202 is greater than that of the heat conduction system of the light transmission area 201 , the heat conduction area 202 can effectively accelerate the heat exchange efficiency between the light transmission area 201 and the outside. It can be known that the thermal conductivity of the heat conduction region 202 is greater than the thermal conductivity of the transparent region 201 can effectively improve the heat dissipation efficiency of the unit die.
  • the heat-conducting area 202 is spliced with the peripheral wall of the light-transmitting area 201 .
  • the heat conduction area 202 can be bonded to the peripheral wall of the light-transmitting area 201 by means of glue.
  • the heat conduction area 202 may be welded to the peripheral wall of the light-transmitting area 201 by means of welding.
  • the heat conduction area 202 and the light transmission area 201 are formed by splicing, which can effectively reduce the manufacturing difficulty of the heat conduction assembly and improve the manufacturing efficiency of the heat conduction assembly.
  • FIG. 4 is a structural example diagram of the second test system provided in the embodiment of the present application.
  • the test system shown in FIG. 4 includes a pulsed laser 101 , a control device 102 and a test board 103 .
  • the test system shown in this embodiment also includes a refrigeration device 401 and a heat conduction assembly 402 .
  • the cooling device 401 is connected to the heat conduction component 402 through a liquid cooling tube.
  • the heat conduction component 402 includes a light transmission area 411 and a heat conduction area 412 .
  • control device 102 and the cooling device 401 are two separate physical devices as an example for illustration. In other examples, the cooling device 401 may also integrate the functions of the control device 102 .
  • FIG. 5a is a side view structural example diagram of the first embodiment of the heat conduction assembly included in the test system shown in FIG. 4 .
  • Fig. 5b is an example diagram of the overall structure of an embodiment of the heat conducting assembly included in the test system shown in Fig. 4 .
  • Fig. 5c is a partial structure example diagram of an embodiment of the test system shown in Fig. 4 .
  • FIG. 5 c is a structural view of the test system viewed from a direction perpendicular to the test board 103 .
  • the refrigerating device 401 shown in this embodiment transmits liquid cooling liquid to the heating assembly 402 through a liquid cooling pipe.
  • the cooling device 401 is connected to an incoming liquid cooling pipe 501 and an outgoing liquid cooling pipe 502 .
  • the outgoing liquid cooling pipe 502 is used to transmit the liquid cooling liquid output by the refrigeration device 401 .
  • the outgoing liquid cooling pipe 502 transmits liquid cooling liquid to the heat conduction area 412 .
  • the liquid cooling liquid can absorb the heat of the heat conduction area 412 .
  • the liquid cooling liquid is then transported to the cooling device 401 through the incoming liquid cooling pipe 501 .
  • the cooling device 401 is used to dissipate heat from the liquid cooling liquid entering the liquid cooling pipe 501 .
  • the liquid cooling liquid can be water or hydrofluorocarbon liquid, etc., and there is no specific limitation, as long as the liquid cooling liquid can absorb the heat of the heat conduction region 412 .
  • the internal structure of the refrigeration device 401 is not limited, and the refrigeration device can dissipate heat from the liquid cooling liquid received through the incoming liquid cooling pipe 501 .
  • the refrigeration device may include a liquid cooling control unit (chiller distribution unit, CDU) connected to the incoming liquid cooling pipe 501 and the outgoing liquid cooling pipe 502 .
  • the CDU is used to dissipate heat from the liquid cooling liquid entering the liquid cooling pipe 501 and output it.
  • the CDU is used to adjust at least one of the temperature or the flow rate of the cooled liquid cooling liquid input to the liquid cooling pipe 502 .
  • the liquid cooling liquid output to the liquid cooling pipe 502 flows through the heat conduction area 412 to absorb the heat of the heat conduction area 412 .
  • the heat conduction area 412 has a heat conduction groove 511 for accommodating the liquid cooling liquid from the liquid cooling pipe 502 .
  • the heat conduction areas 412 on both sides of the light transmission area 411 each include a heat conduction groove 511 as an example.
  • Each heat conduction groove 511 is taken as a cross-section on a plane parallel to the surface of the die 104 to obtain a cross-section.
  • the cross-section of the heat conducting groove 511 is rectangular.
  • the cross-section of the heat conduction groove may be ring-shaped.
  • the transparent area 411 is located at the center of the ring.
  • the heat conducting groove 511 has a first notch 512 and The second notch 513 .
  • the heat conducting groove 511 further includes a receiving channel 514 communicating with the first notch 512 and the second notch 513 .
  • the first notch 512 communicates with the outgoing liquid cooling pipe 502 .
  • the second notch 513 communicates with the incoming liquid cooling pipe 501 . It can be seen that the outgoing liquid cooling tube 502 transmits the liquid cooling liquid to the accommodating channel 514 through the first notch 512 .
  • the cooling liquid is transported to the second notch 513 along the guide of the receiving channel 514 .
  • the liquid cooling liquid flowing out of the second notch 513 is transported to the cooling device 401 through the incoming liquid cooling pipe 501 .
  • FIG. 6 is an exemplary diagram of an embodiment of the orthographic projection of the heat conduction component and unit die included in the test system shown in FIG. 4 on the test board.
  • the light-transmissive area 411 has a first orthographic projection 611 on the test board 103 .
  • the heat conduction area 412 located on both sides of the transparent area 411 has a second orthographic projection 612 on the test board 103 .
  • the die 104 has a third orthographic projection 601 on the test board 103 . Refer to FIG. 3 for specific descriptions, and details are not repeated here.
  • the heat conduction groove 511 has a fourth orthographic projection 613 on the test board 103 .
  • the third orthographic projection 601 is only within the coverage of the first orthographic projection 611 , it means that the die is only physically connected to the light-transmitting region 411 .
  • the light-transmitting region 411 can absorb the heat of the die.
  • the transparent area 411 can dissipate the absorbed heat.
  • the liquid cooling liquid flowing through the heat conduction groove of the heat conduction area 412 can dissipate the heat of the light transmission area 411 . It can be seen that there are two heat dissipation paths for the heat generated by the die unit 104 .
  • the heat generated by the unit die 104 is dissipated sequentially through the light-transmitting region 411 , the heat-conducting region 412 and the liquid cooling liquid flowing through the heat-conducting groove.
  • the heat generated by the unit die 104 is directly dissipated through the light-transmitting region 411 .
  • the third orthographic projection 601 is located within the coverage of the first orthographic projection and the second orthographic projection at the same time.
  • the first orthographic projection, the second orthographic projection and the third orthographic projection please refer to FIG. 6 , and details are not repeated here.
  • This example illustrates that the die is physically connected to both the optically transparent region 411 and the thermally conductive region 412 .
  • the heat dissipation path 1 and the heat dissipation path 2 please refer to the corresponding description in FIG. 6 , and details are not repeated here.
  • the heat generated by the unit die 104 is dissipated sequentially through the heat conduction area 202 and the liquid cooling liquid flowing through the heat conduction groove. It can be seen that the liquid cooling liquid flowing through the heat conduction groove shown in this embodiment can effectively improve the heat dissipation efficiency of the heat generated during the pulsed laser simulation SEE test of the unit die.
  • the test system shown in this embodiment can be applied to heat dissipation of a chip under test with high power consumption.
  • the liquid cooling liquid flowing through the heat conduction groove 511 shown in this embodiment will not interfere with the transmission of the pulsed laser. Specifically, there is a distance between the fourth orthographic projection 613 of the heat conduction groove 511 on the test board 103 and the first orthographic projection 611 of the transparent area 411 on the test board. It can be seen that if there is a distance between the fourth orthographic projection 613 and the first orthographic projection 611 , it means that the positions of the heat conduction groove 511 and the light-transmitting region 411 do not overlap. Then, the cooling liquid flowing through the heat conduction groove 511 will not interfere with the transmission path of the pulsed laser passing through the light-transmitting region 411 .
  • the liquid cooling liquid flowing through the heat conduction groove 511 will not block the transmission of the pulsed laser.
  • the positions of the heat conduction groove 511 and the light-transmitting region 411 do not overlap, it is effectively ensured that the pulsed laser light can be successfully transmitted to the unit die. It effectively guarantees the feasibility and accuracy of the pulsed laser simulation SEE test.
  • FIG. 7 is a side view structural example diagram of the second embodiment of the heat conduction assembly included in the test system shown in FIG. 4 .
  • the heat conduction component 700 shown in this embodiment includes a light-transmitting region 701 and a heat conduction region 702 .
  • a light-transmitting region 701 and a heat conduction region 702 For the description of the positional relationship between the light-transmitting region 701 and the heat-conducting region 702 , please refer to FIG. 2 , and details are not repeated here.
  • the height of the light-transmitting region 701 is greater than that of the heat-conducting region 702 .
  • the height of the transparent region 701 is smaller than or equal to the height of the heat conduction region 702 .
  • the upper surface of the heat conduction area 702 is fixed with a liquid cooling pipe 703 .
  • the upper surface of the thermally conductive region 702 is the surface that directs the thermal region 702 towards the pulsed laser.
  • the liquid cooling pipes 703 fixed on the upper surface of the heat conduction area 702 are respectively connected to the incoming liquid cooling pipe 501 and the outgoing liquid cooling pipe 502 .
  • the liquid cooling liquid output to the liquid cooling pipe 502 flows through the liquid cooling pipe 703 located on the upper surface of the heat conduction area 702 .
  • the liquid-cooled tube 703 located on the upper surface of the heat-conducting area 702 absorbs the heat of the heat-conducting area 702 and transfers it to the outgoing liquid-cooled tube 502 .
  • the specific manner of fixing the liquid cooling tube 703 on the upper surface of the heat conduction area 702 is not limited.
  • the liquid cooling tube 703 can be fixed on the upper surface of the heat conduction area 702 by means of glue.
  • the description of the position of the liquid cooling tube 703 in this embodiment is an optional example, and will not be limited.
  • the liquid cooling tube 703 can also be fixed on the lower surface of the heat conduction area 702 .
  • the lower surface of the thermally conductive area 702 is the surface that directs the thermal area 702 toward the die.
  • the liquid cooling tube 703 is fixed on the side of the heat conduction area 702 .
  • the side surface of the heat conduction region 702 refers to a surface that is connected to both the upper surface of the heat conduction region 702 and the lower surface of the heat conduction region 702 .
  • a liquid cooling tube 703 may be added on the surface of the heat conduction area 703 .
  • the liquid cooling tube 703 is fixed on the surface of the heat conducting area 703 as an example.
  • the liquid cooling tube 703 may also be arranged through the heat conducting area 703 .
  • the test system corresponding to FIG. 4 can also enable the unit die to always be within a preset temperature range through negative feedback control during the pulsed laser simulation SEE test.
  • the unit die within the preset temperature range can guarantee the normal test of the unit die during the pulse laser simulation SEE test.
  • the unit die within the preset temperature range can also ensure the feasibility and accuracy of the pulsed laser simulation SEE test.
  • This embodiment does not limit the preset temperature range.
  • the preset temperature range may be between 25°C and 125°C.
  • the control device 102 shown in this embodiment is also connected with a temperature sensor.
  • the temperature sensor is already integrated on the cell die.
  • the temperature sensor can detect the temperature of the die and send a temperature indication message to the control device 102 .
  • the temperature indication message is used to indicate the temperature of the die.
  • the temperature sensor may also be located close to the die.
  • the position of the temperature sensor shown in this example is not limited, as long as the temperature sensor can accurately detect the temperature of the unit die.
  • the specific process of realizing the negative feedback control in this embodiment is that the heat of the heat conduction area 412 has been absorbed, and the first liquid cooling liquid is transmitted to the refrigeration device 401 through the incoming liquid cooling pipe 501 .
  • the control device 102 acquires a temperature indication message from the temperature sensor.
  • the control device 102 sends a control signaling to the cooling device according to the temperature indication message.
  • the control signal is used to control at least one of the temperature or the flow rate of the second cooling liquid output by the refrigeration device.
  • the cooling device 401 obtains the second cooling liquid after dissipating heat from the first cooling liquid.
  • the second liquid cooling liquid is transported to the heat conduction area through the outgoing liquid cooling pipe 502 .
  • the second cooling liquid can absorb the heat of the heat conducting area.
  • the temperature of the die can be kept within a preset temperature range. For example, if the control device 102 determines that the temperature of the unit die has exceeded the maximum value of the preset temperature range, then the control device 102 instructs the refrigeration device 401 to reduce the temperature of the second liquid cooling liquid or increase the temperature of the second liquid cooling liquid through the control signal. At least one of the flow rates of the liquid. As another example, if the control device 102 determines that the temperature of the unit die is lower than the minimum value of the preset temperature range, then the control device 102 instructs the refrigeration device 401 to increase the temperature of the second liquid cooling liquid or lower the temperature of the second liquid cooling liquid through the control signal.
  • the control device 401 shown in this embodiment can adjust at least one of the temperature or the flow rate of the second liquid cooling liquid output by the cooling device 401 multiple times until it is determined by the temperature sensor that the temperature of the unit die is at the within the preset temperature range.
  • the present application also provides a heat dissipation method.
  • the method provided in the present application can directly dissipate heat from the unit die through the heat conduction area.
  • the heat dissipation of the unit die through the heat conduction area please refer to the description of Figure 1-3, and details will not be repeated.
  • FIG. 8 is a flow chart of steps in an embodiment of the heat dissipation method provided in the embodiment of the present application. As shown in Fig. 8, the method includes the following steps.
  • Step 801 the pulsed laser light emitted by the pulsed laser is transmitted to the chip to be tested through the light-transmitting area of the heat conduction component.
  • the pulsed laser transmitted to the chip under test can make the chip under test perform a pulsed laser simulation SEE test.
  • a pulsed laser simulation SEE test For the specific process, refer to the description corresponding to FIG. 1 , and details are not repeated here.
  • Step 802 the cooling device transmits the first liquid cooling liquid to the heating area through the liquid cooling pipe.
  • Step 801 and step 802 shown in this embodiment are executed synchronously. That is, in the process of the pulsed laser emitting the pulsed laser, the cooling device synchronously transmits the first liquid cooling liquid to the heat-conducting area.
  • the cooling device transmits the first liquid cooling liquid to the heat-dissipating area and the first liquid cooling liquid dissipates heat to the unit die, please refer to the descriptions in Figure 4, Figure 5a, Figure 5b, Figure 5c, Figure 6 and Figure 7. Do repeat.
  • Step 803 the control device acquires the temperature of the chip to be tested through the temperature sensor.
  • Step 804 the control device sends a control signal to the refrigeration device according to the temperature.
  • Step 805 the refrigeration device controls at least one of the temperature or the flow rate of the second cooling liquid output by the refrigeration device according to the control signal.
  • Step 806 the cooling device transmits the second liquid cooling liquid to the heating area through the liquid cooling pipe.
  • Steps 803-806 shown in this embodiment are optional steps.
  • steps 803-806 please refer to the description of the embodiment corresponding to FIG. 4 , and details are not repeated here.
  • Embodiments of the present application may also provide a heat conduction component.
  • a heat conduction component please refer to the description of the embodiment corresponding to FIG. 1 , FIG. 2 and FIG. 3 , and details are not repeated here.
  • Embodiments of the present application may also provide a heat dissipation system.
  • the cooling system includes a heat conducting component.
  • the heat conducting component please refer to the descriptions of FIG. 1 , FIG. 2 and FIG. 3 , and details are not repeated here.
  • Embodiments of the present application may also provide a heat dissipation system.
  • the heat dissipation system includes heat conduction components, liquid cooling pipes and refrigeration equipment.
  • FIG. 4 please refer to the descriptions of FIG. 4 , FIG. 5a , FIG. 5b , FIG. 5c , FIG. 6 and FIG. 7 , and details are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本发明实施例公开了一种脉冲激光模拟单粒子效应的试验系统以及散热方法。其用于提高对待测芯片进行散热的散热效率。所述散热系统包括脉冲激光器以及导热组件。所述导热组件位于所述脉冲激光器和待测芯片之间。所述导热组件包括透光区域和导热区域。所述透光区域与所述导热区域物理连接。所述脉冲激光器出射的脉冲激光穿过所述透光区域传输至所述待测芯片。所述脉冲激光用于对所述待测芯片进行脉冲激光模拟单粒子效应试验。所述透光区域与所述待测芯片物理连接。所述待测芯片的热量经由所述透光区域和所述导热区域散热。

Description

一种脉冲激光模拟单粒子效应的试验系统以及散热方法
本申请要求于2022年1月25日提交中国国家知识产权局、申请号为202210088538.7、申请名称为“一种脉冲激光模拟单粒子效应的试验系统以及散热方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子元器件的散热领域,尤其涉及一种脉冲激光模拟单粒子效应的试验系统以及散热方法。
背景技术
航天设备在太空轨道运行时,生命周期内会受到大量太空高能粒子的撞击。单粒子效应(single event effect,SEE)是指单个高能粒子穿过航天设备的芯片时造成芯片非正常改变的一系列辐照效应的统称。SEE有可能会导致芯片异常翻转甚至烧毁。因此,芯片的抗SEE的能力是考核芯片能否适合航天设备的必要指标之一。
脉冲激光能够模拟SEE的试验,从而实现测试芯片的抗SEE的能力。为提高SEE试验的可实现性以及准确性,需要对SEE试验过程中的芯片及时散热。具体散热过程为,去掉芯片的外盖,以露出芯片的单元裸片。通过风扇对脉冲激光模拟SEE试验过程中的单元裸片进行风冷散热。
但是,单元裸片的散热面积比较小,风扇的散热能力有限,不能满足大功耗的芯片的散热需求。此外,风扇的风速会引起单元裸片的机械震动。机械震动会降低SEE试验的精度。
发明内容
本发明实施例提供了一种脉冲激光模拟单粒子效应的试验系统以及散热方法。其用于实现脉冲激光模拟单粒子效应试验。而且在试验过程中,提高对待测芯片进行散热的散热效率。
第一方面,本发明实施例提供了一种脉冲激光模拟单粒子效应的试验系统。所述试验系统用于实现脉冲激光模拟单粒子效应试验。所述试验系统包括脉冲激光器和导热组件。所述导热组件位于脉冲激光器和待测芯片之间。所述导热组件包括透光区域和导热区域。所述透光区域与所述导热区域物理连接。所述脉冲激光器出射的脉冲激光穿过所述透光区域传输至所述待测芯片。所述脉冲激光用于对所述待测芯片进行脉冲激光模拟单粒子效应试验。所述透光区域与所述待测芯片物理连接。所述待测芯片的热量经由所述透光区域和所述导热区域散热。本方面所示,导热组件所包括的透光区域和导热区域均能够对待测芯片散热,有效提高了散热效率。而且对待测芯片散热的过程中,不会引起待测芯片的机械震动。提高了脉冲激光模拟单粒子效应试验的精确性。
基于第一方面,一种可选的实现方式中,所述透光区域由第一材质制成。所述导热区域由第二材质制成。所述第一材质的透光率大于或等于第一预设值。所述第一材质的导热系数大于或等于第二预设值。所述第二材质的导热系数大于或等于所述第一材质的导热系数。本实现方式中,由第一材质制成的透光区域能够保证脉冲激光成功传输至待测芯片。该透光区域和导热区域均能够对待测芯片进行散热,提高了散热效率。
基于第一方面,一种可选的实现方式中,所述试验系统还包括液冷管和与所述液冷管连接的制冷设备。所述导热区域具有导热槽。所述液冷管与所述导热槽连接。所述制冷设备用 于经由所述液冷管向所述导热槽传输第一液冷液。流经所述导热槽的所述第一液冷液用于为所述待测芯片散热。本实现方式中,流经导热槽的液冷液能够有效地提高散热效率。本实现方式所示的试验系统能够应用至大功耗的待测芯片的散热。
基于第一方面,一种可选的实现方式中,所述试验系统包括测试板。所述测试板用于承载所述待测芯片。所述导热槽在所述测试板上的正投影与所述透光区域在所述测试板上的正投影之间具有间距。本实现方式中,流经导热槽的第一液冷液不会干涉穿过透光区域的脉冲激光的传输路径。有效地保证了脉冲激光能够成功的传输至待测芯片。有效地保证了脉冲激光模拟单粒子效应试验的可实现性以及准确性。
基于第一方面,一种可选的实现方式中,所述试验系统还包括液冷管和与所述液冷管连接的制冷设备。所述导热区域用于固定所述液冷管。所述制冷设备用于向所述液冷管传输第一液冷液。流经所述液冷管的所述第一液冷液用于为所述待测芯片散热。这种方式能够根据待测芯片灵活的调节液冷管的位置。可知,本方式使得无论待测芯片的尺寸大小或芯片功耗的大小,均能够通过调节液冷管位置的方式,实现液冷管对待测芯片的充分散热。
基于第一方面,一种可选的实现方式中,所述试验系统包括测试板。所述测试板用于承载所述待测芯片。所述液冷管在所述测试板上的正投影与所述透光区域在所述测试板上的正投影之间具有间距。本实现方式中,流经液冷管的第一液冷液不会干涉穿过透光区域的脉冲激光的传输路径。有效地保证了脉冲激光能够成功的传输至待测芯片。
基于第一方面,一种可选的实现方式中,所述试验系统还包括与所述制冷设备连接的控制设备。所述控制设备与温度传感器连接。所述控制设备用于通过所述温度传感器获取所述待测芯片的温度。所述控制设备用于根据所述温度向所述制冷设备发送控制信令。所述控制信令用于控制所述制冷设备所输出的第二液冷液的温度或流速中的至少一项,以使得所述待测芯片的温度位于预设温度范围内。本实现方式中,处于预设温度范围内的待测芯片能够保证脉冲激光模拟单粒子效应试验的可实现性以及准确性。
基于第一方面,一种可选的实现方式中,所述待测芯片依次经由所述透光区域和所述导热区域散热。本实现方式中,透光区域吸收了待测芯片的热量后,该透光区域还能够通过导热区域散热。有效地提高了散热效率。
基于第一方面,一种可选的实现方式中,所述导热区域与所述透光区域的外周壁拼接而成。本实现方式,能够有效地降低导热组件的制造难度,提高导热组件的制造效率。
第二方面,本发明实施例提供了一种脉冲激光模拟单粒子效应的散热方法。所述散热方法应用于脉冲激光模拟单粒子效应的试验系统。所述散热方法用于在脉冲激光模拟单粒子效应试验的过程中为所述试验系统散热。所述方法包括:脉冲激光器出射的脉冲激光穿过导热组件的透光区域传输至待测芯片。所述脉冲激光用于对所述待测芯片进行脉冲激光模拟单粒子效应试验。所述导热组件位于所述脉冲激光器和所述待测芯片之间。所述导热组件所包括的所述透光区域和导热区域物理连接。所述透光区域与所述待测芯片物理连接。所述待测芯片的热量经由所述透光区域和所述导热区域散热。本方面所示的散热方法所应用的试验系统以及有益效果的说明,请参见第一方面所示,不做赘述。
基于第二方面,一种可选的实现方式中,所述方法还包括:制冷设备经由液冷管向所述导热区域所具有的导热槽传输第一液冷液。所述液冷管分别与所述制冷设备和所述导热槽连接。流经所述导热槽的所述第一液冷液为所述待测芯片散热。
基于第二方面,一种可选的实现方式中,所述方法还包括:制冷设备向所述导热区域所固定的液冷管传输第一液冷液。所述液冷管与所述制冷设备连接。流经所述液冷管的所述第 一液冷液为所述待测芯片散热。
基于第二方面,一种可选的实现方式中,所述方法还包括:控制设备通过温度传感器获取所述待测芯片的温度。所述控制设备根据所述温度向所述制冷设备发送控制信令。所述制冷设备根据所述控制信令控制所述制冷设备所输出的第二液冷液的温度或流速中的至少一项,以使得所述待测芯片的温度位于预设温度范围内。
第三方面,本发明实施例提供了一种散热方法。所述散热方法应用于脉冲激光模拟单粒子效应的试验系统。所述散热方法用于在脉冲激光模拟单粒子效应试验的过程中为所述试验系统散热。所述方法包括:所述散热方法用于实现脉冲激光模拟单粒子效应试验。所述方法包括:脉冲激光器出射的脉冲激光穿过导热组件的透光区域传输至待测芯片。所述脉冲激光用于对所述待测芯片进行脉冲激光模拟单粒子效应试验。流经所述导热组件所包括的导热区域的第一液冷液用于为所述待测芯片散热。控制设备通过温度传感器获取待测芯片的温度。所述控制设备根据所述温度向制冷设备发送控制信令。所述制冷设备根据所述控制信令控制所述制冷设备所输出的第二液冷液的温度或流速中的至少一项,以使得所述待测芯片的温度位于预设温度范围内。
第四方面,本发明实施例提供了一种导热组件。所述导热组件用于在脉冲激光模拟单粒子效应试验的过程中为待测芯片散热。所述导热组件位于脉冲激光器和待测芯片之间。所述导热组件包括透光区域和导热区域。所述透光区域与所述导热区域物理连接。所述脉冲激光器出射的脉冲激光穿过所述透光区域传输至所述待测芯片。所述脉冲激光用于对所述待测芯片进行脉冲激光模拟单粒子效应试验。所述透光区域与所述待测芯片物理连接。所述待测芯片的热量经由所述透光区域和所述导热区域散热。本方面所示的导热组件的结构以及有益效果的说明,请参见第一方面所示,具体不做赘述。
第五方面,本发明实施例提供了一种散热系统。该散热系统包括导热组件,液冷管以及制冷设备。该散热系统相关组件和可选实现方式的具体说明,请参见第一方面所示,具体不做赘述。
附图说明
图1为本申请实施例所提供的第一种试验系统的结构示例图;
图2为图1所示的试验系统所包括的导热组件的一种实施例俯视结构示例图;
图3为图1所示的试验系统所包括的导热组件以及单元裸片在测试板上正投影的一种实施例示例图;
图4为本申请实施例所提供的第二种试验系统的结构示例图;
图5a为图4所示的试验系统所包括的导热组件的第一种实施例侧视结构示例图;
图5b为图4所示的试验系统所包括的导热组件的一种实施例整体结构示例图;
图5c为图4所示的试验系统的一种实施例部分结构示例图;
图6为图4所示的试验系统所包括的导热组件以及单元裸片在测试板上正投影的一种实施例示例图;
图7为图4所示的试验系统所包括的导热组件的第二种实施例侧视结构示例图;
图8为本申请实施例所提供的散热方法的一种实施例步骤流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请所提供的试验系统能够实现脉冲激光模拟单粒子效应试验。图1为本申请实施例所提供的第一种试验系统的结构示例图。如图1所示,本申请所提供的试验系统包括脉冲激光器101,控制设备102,测试板103以及导热组件110。
本实施例所示的试验系统包括支撑架120,用于固定激光器101。已固定的激光器101的激光镜头121出射的脉冲激光可直接传输至位于测试板103上的待测芯片。该脉冲激光用于对待测芯片进行模拟SEE试验。本实施例对激光器101的固定方式的说明为可选的示例,不做限定。例如,该激光器101也可吊挂的方式固定。又如,脉冲激光器101所出射的脉冲激光也可对经过预处理后的待测芯片模拟SEE试验。其中,通过对经过预处理后的待测芯片进行模拟SEE试验能够有效地提高SEE试验的效率和准确性。待测芯片包括印刷电路板(printed circuit board,PCB)。设置在PCB上的护盖。封装在护盖和PCB之间的单元裸片104。预处理是指去掉该待测芯片的护盖以露出单元裸片104。可知,经过预处理能够使得待测芯片的单元裸片104露出,以避免护盖对SEE试验造成干扰。本实施例对待测芯片的封装方式不做限定,只要经过该预处理能够使得单元裸片104露出即可。例如,该待测芯片的封装方式可为倒装芯片针脚栅格阵列(flip chip plastic grid array,FCPGA)或倒装芯片尺寸封装(flip-chip CSP,FCCSP)。
继续参见图1所示,该导热组件110位于脉冲激光器101和单元裸片104之间。本实施例所示的导热组件110可以为一体成型结构。该一体成型结构能够有效地保证导热组件110结构的稳固。提高导热组件110的使用寿命。该导热组件110由具有透光属性以及导热属性的材质制成。例如,该导热组件110可由二氧化硅(silicon dioxide,SiO2)或金刚石制成。本实施例所示的导热组件110可盖设在测试板103朝向脉冲激光器101的表面。导热组件110和测试板103之间形成有测试空间。该单元裸片104位于该测试空间内部。本实施例对导热组件110固定在测试板103上的具体方式不做限定。例如,导热组件110可通过胶粘的方式固定在测试板103上。又如,测试板103朝向脉冲激光器101的表面设置有滑道。导热组件110与该滑道位置相对处设置有凸轨。在凸轨插入滑道内时,实现导热组件110盖设在测试板103表面上的目的。
该导热组件110包括透光区域201和导热区域202。透光区域201和导热区域202为导热组件110所包括的不同的区域。其中,透光区域201位于脉冲激光器101和单元裸片104之间,且透光区域201位于脉冲激光器101出射的脉冲激光的传输方向上。因导热组件110由透光材质制成,那么,脉冲激光器101出射的脉冲激光能够穿过该透光区域201以传输至单元裸片104上。该脉冲激光用于对单元裸片104进行脉冲激光模拟SEE试验。具体的,脉冲激光传输至单元裸片104上。该脉冲激光激发单元裸片104的光电效应以产生电子空穴对。该脉冲激光能够模拟高能粒子进入单元裸片104以激发单元裸片104产生SEE的响应。例如,该SEE的响应可为单元裸片104存储数据改变,电流变化,电压波动或实现功能的变化等。与单元裸片104连接的控制设备102能够检测到单元裸片104所产生的SEE的响应。该控制设备102可为任一具有计算能力的计算设备。例如,该控制设备102可为计算机,服务器或智能终端等。
透光区域201的底面与单元裸片104物理连接。其中,物理连接是指透光区域201的底面与单元裸片104直接接触。可知,透光区域201的底面和单元裸片104之间无间隙。该透 光区域201的底面是指该透光区域201面向单元裸片104且背离脉冲激光器101的面。
图2为图1所示的试验系统所包括的导热组件的一种实施例俯视结构示例图。其中,图2为以垂直于测试板103的方向为视角,俯视该导热组件的结构图。本实施例所示的导热组件包括位于透光区域201两侧的导热区域202。透光区域201的两侧分别与导热区域202物理连接。图3为图1所示的试验系统所包括的导热组件以及单元裸片在测试板上正投影的一种实施例示例图。透光区域201在测试板103上具有第一正投影311。位于与透光区域201的两侧的导热区域202在测试板103上具有第二正投影312。以透光区域201为例,以垂直于测试板103的投影线对透光区域201进行投影以获取该第一正投影311。可知,因透光区域201与两侧的导热区域202物理连接,那么,第一正投影311两侧的边缘与第二正投影312的边缘重合。可选的,该透光区域201也可位于导热区域202之内,以使该透光区域201的四周均与导热区域202物理连接。对透光区域201与导热区域202物理连接的说明,请参见透光区域201与单元裸片104物理连接的方式,具体不做赘述。
透光区域201以平行于单元裸片104表面的平面做截面以获取其横截面。透光区域201的横截面呈矩形。导热区域202以平行于单元裸片104表面的平面做截面以获取横截面。导热区域202的横截面也呈矩形。在其他示例中,透光区域201和导热区域202的横截面可呈任意形状。例如,若该透光区域201位于导热区域202之内,那么,导热区域202的横截面呈圆环形。透光区域201的横截面呈圆形。可知,此示例的透光区域201的外周壁与导热区域202内环的周壁物理连接。
透光区域201和导热区域202均具有导热属性。透光区域201和导热区域202均能够在脉冲激光模拟SEE试验过程中,为单元裸片104所产生的热量进行散热。如图3所示,单元裸片104在测试板103上具有第三正投影320。第三正投影320仅在第一正投影311的覆盖范围内,说明单元裸片104仅与透光区域201物理连接。透光区域201能够吸收单元裸片104的热量。透光区域201能够对已吸收的热量进行散热。而位于透光区域201两侧的导热区域202也能够为透光区域201的热量进行散热。可知,单元裸片104所产生的热量有两个散热路径。散热路径1,单元裸片104所产生的热量依次经由透光区域201和导热区域202散热。散热路径2,单元裸片104所产生的热量直接经由透光区域201散热。
又如,第三正投影同时位于第一正投影和第二正投影的覆盖范围内。对第一正投影,第二正投影和第三正投影的说明,请参见图3所示,具体不做赘述。此示例说明单元裸片104同时与透光区域201和导热区域202物理连接。单元裸片104的热量有3个散热路径。散热路径1和散热路径2的说明,请参见图3对应的说明,具体不做赘述。散热路径3,单元裸片104所产生的热量直接经由导热区域202散热。
沿平行于测试板的平面,本实施例所示的导热组件的面积大于单元裸片的面积。可知,通过导热组件对单元裸片进行散热,有效地提高了单元裸片的散热面积。因导热组件所包括的透光区域和导热区域均能够对单元裸片散热,有效提高了散热效率。而且对单元裸片散热的过程中,不会引起单元裸片的机械震动,提高了脉冲激光模拟SEE试验的精确性。
上述所示以透光区域201和导热区域202由同一材质(例如SiO2)且一体成型为例。在其他示例中,该透光区域201和该导热区域202可由不同材质制成。具体的,透光区域201由第一材质制成。导热区域202由第二材质制成。该第一材质的透光率大于或等于第一预设值,且第一材质的导热系数大于或等于第二预设值。本实施例对第一预设值和第二预设值的具体取值不做限定,只要该第一材质具有导热属性和透光属性即可。例如,该第一预设值为90%,第二预设值为7.6瓦/米·度(W/(m·K)。脉冲激光无需穿过导热区域202,为此,导热 区域202无需具有透光属性。第二材质的导热系数大于或等于第一材质的导热系数。例如,若透光区域201和导热区域202均由SiO2制成,那么,透光区域201的导热系数和导热区域202的导热系数相同。又如,若透光区域201由SiO2制成,导热区域202由金属材质制成,那么,导热区域202的导热系数大于透光区域201的导热系数。该透光区域201本身具备导热属性。导热区域202的导热系数大于透光区域201的导热系统的情况下,该导热区域202能够有效加快透光区域201与外界热交换效率。可知,导热区域202的导热系数大于透光区域201的导热系数能够有效地提高单元裸片的散热效率。
在透光区域201和导热区域202由不同材质制成的情况下,该导热区域202与该透光区域201的外周壁拼接而成。例如,导热区域202可通过胶粘的方式,粘接在透光区域201的外周壁。又如,导热区域202可通过焊接的方式,焊接至透光区域201的外周壁。导热区域202和透光区域201通过拼接而成,能够有效地降低导热组件的制造难度,提高了导热组件的制造效率。
本申请还提供了如图4所示的试验系统。图4所示的试验系统能够有效地提高单元裸片的散热效率。其中,图4为本申请实施例所提供的第二种试验系统的结构示例图。图4所示的试验系统包括脉冲激光器101,控制设备102以及测试板103,具体说明请参见图1所示,具体不做赘述。本实施例所示的试验系统还包括制冷设备401和导热组件402。制冷设备401通过液冷管与导热组件402连接。导热组件402包括透光区域411和导热区域412。透光区域411和导热区域412之间的位置关系的说明,请参见图2的说明,具体不做赘述。本实施例以控制设备102和制冷设备401为分立的两个不同的物理设备为例进行示例性说明。在其他示例中,也可由制冷设备401集成该控制设备102的功能。
结合图5a,图5b以及图5c所示对导热组件402的结构以及与制冷设备401的连接方式进行说明。其中,图5a为图4所示的试验系统所包括的导热组件的第一种实施例侧视结构示例图。图5b为图4所示的试验系统所包括的导热组件的一种实施例整体结构示例图。图5c为图4所示的试验系统的一种实施例部分结构示例图。图5c为以垂直于测试板103的方向为视角,俯视该试验系统的结构图。
本实施例所示的制冷设备401通过液冷管向导热组件402传输液冷液。具体的,制冷设备401连接入向液冷管501和出向液冷管502。出向液冷管502用于传输制冷设备401所输出的液冷液。出向液冷管502向导热区域412传输液冷液。液冷液能够将导热区域412的热量吸收。液冷液再经由入向液冷管501传输至制冷设备401。制冷设备401用于对来自入向液冷管501的液冷液进行散热。其中,液冷液可为水或氢氟碳液体等,具体不做限定,只要该液冷液能够吸收导热区域412的热量即可。本实施例对制冷设备401的内部结构不做限定,该制冷设备能够对经由入向液冷管501所接收到的液冷液进行散热。例如,该制冷设备可包括与入向液冷管501和出向液冷管502连接的液冷控制单元(chiller distribution unit,CDU)。CDU用于对来自入向液冷管501的液冷液进行散热并输出。该CDU用于调节向出向液冷管502输入的散热后的液冷液的温度或流速中的至少一项。
出向液冷管502所输出的液冷液流经导热区域412,以吸收导热区域412的热量。为此,该导热区域412具有用于容纳来自出向液冷管502的液冷液的导热槽511。本实施例以位于透光区域411两侧的导热区域412各自包括一个导热槽511为例。各导热槽511以平行于单元裸片104表面的平面做截面以获取横截面。导热槽511的横截面呈矩形。本实施例对导热槽的数量,位置以及横截面形状的说明为示例性说明,不做限定。例如,该导热槽的横截面可呈环形。透光区域411位于该环形的中心位置。具体的,导热槽511具有第一槽口512和 第二槽口513。导热槽511还包括连通第一槽口512和第二槽口513的容纳通道514。该第一槽口512与出向液冷管502连通。该第二槽口513与入向液冷管501连通。可知,出向液冷管502将液冷液经由第一槽口512传输至容纳通道514。液冷液沿容纳通道514的导向传输至第二槽口513。第二槽口513流出的液冷液经由入向液冷管501传输至制冷设备401。
结合图6所示对导热组件的散热方式进行说明。其中,图6为图4所示的试验系统所包括的导热组件以及单元裸片在测试板上正投影的一种实施例示例图。透光区域411在测试板103上具有第一正投影611。位于透光区域411两侧的导热区域412在测试板103上具有第二正投影612。单元裸片104在测试板103上具有第三正投影601。具体说明参见图3所示,具体不做赘述。而导热槽511在测试板103上具有第四正投影613。若第三正投影601仅在第一正投影611的覆盖范围内,说明单元裸片仅与透光区域411物理连接。透光区域411能够吸收单元裸片的热量。透光区域411能够对已吸收的热量进行散热。而流经导热区域412的导热槽的液冷液能够为透光区域411的热量进行散热。可知,单元裸片104所产生的热量有2个散热路径。散热路径1,单元裸片104所产生的热量依次经由透光区域411,导热区域412以及流经导热槽的液冷液散热。散热路径2,单元裸片104所产生的热量直接经由透光区域411散热。
又如,第三正投影601同时位于第一正投影和第二正投影的覆盖范围内。对第一正投影,第二正投影和第三正投影的说明,请参见图6所示,具体不做赘述。此示例说明单元裸片同时与透光区域411和导热区域412物理连接。单元裸片的热量有3个散热路径。散热路径1和散热路径2的说明,请参见图6对应的说明,具体不做赘述。散热路径3,单元裸片104所产生的热量依次经由导热区域202以及流经导热槽的液冷液散热。可知,本实施例所示的流经导热槽的液冷液能够有效地提高单元裸片进行脉冲激光模拟SEE试验过程中所产生的热量进行散热的散热效率。本实施例所示的试验系统能够应用至大功耗的待测芯片的散热。
本实施例所示的流经导热槽511的液冷液不会干涉脉冲激光的传输。具体的,导热槽511在测试板103上的第四正投影613与透光区域411在测试板上的第一正投影611之间具有间距。可知,在第四正投影613和第一正投影611之间具有间距的情况下,说明导热槽511和透光区域411位置没有重合。那么,流经导热槽511的液冷液不会干涉穿过透光区域411的脉冲激光的传输路径。即流经导热槽511的液冷液不会遮挡脉冲激光的传输。在导热槽511和透光区域411位置没有重合的情况下,有效地保证了脉冲激光能够成功的传输至单元裸片。有效地保证了脉冲激光模拟SEE试验的可实现性和准确性。
本实施例所示的导热组件的结构还可参见图7所示。其中,图7为图4所示的试验系统所包括的导热组件的第二种实施例侧视结构示例图。本实施例所示的导热组件700包括透光区域701和导热区域702。对透光区域701和导热区域702位置关系的说明,请参见图2所示,具体不做赘述。本实施例对沿垂直于测试板的方向,该透光区域701的高度和导热区域702的高度不做限定。例如,图7所示,该透光区域701的高度大于导热区域702的高度。又如,该透光区域701的高度小于或等于导热区域702的高度。导热区域702的上表面固定液冷管703。导热区域702的上表面是指导热区域702朝向脉冲激光器的表面。导热区域702的上表面所固定的液冷管703分别与入向液冷管501和出向液冷管502连接。可知,出向液冷管502所输出的液冷液流经位于导热区域702上表面的液冷管703。位于导热区域702上表面的液冷管703吸收导热区域702的热量后,传输至出向液冷管502。本实施例对液冷管703固定在导热区域702的上表面的具体方式不做限定。例如,该液冷管703可通过胶粘的方式固定在导热区域702的上表面。本实施例对液冷管703位置的说明为可选的示例,不做 限定。例如,该液冷管703也可固定于导热区域702的下表面。导热区域702的下表面是指导热区域702朝向单元裸片的表面。又如,该液冷管703固定于导热区域702的侧面。导热区域702的侧面是指同时与导热区域702的上表面和导热区域702的下表面连接的面。通过在导热区域703的表面固定液冷管703的方式对单元裸片进行散热,提高了调节液冷管703位置的灵活性。例如,在单元裸片的功耗比较大时,可在导热区域703的表面增设液冷管703。本实施例以液冷管703固定于导热区域703的表面为例,在其他示例中,液冷管703也可穿过导热区域703设置。
为避免液冷管703对脉冲激光传输造成干涉,液冷管703在测试板上的正投影和透光区域701在测试板上正投影之间具有间距。具体说明可参见图6对应的实施例所示的导热槽的正投影和透光区域701在测试板上正投影之间具有间距的说明,具体不做赘述。
图4对应的试验系统还能够使得单元裸片在进行脉冲激光模拟SEE试验的过程中,通过负反馈控制使得单元裸片始终处于预设的温度范围内。处于预设温度范围内的单元裸片在进行脉冲激光模拟SEE试验的过程中,能够保障单元裸片的正常测试。且处于预设温度范围内的单元裸片还能够保证脉冲激光模拟SEE试验的可实现性和准确性。本实施例对预设温度范围不做限定。例如,该预设温度范围可为25摄氏度至125摄氏度之间。为实现负反馈控制,本实施例所示的控制设备102还连接温度传感器。该温度传感器已集成在单元裸片上。该温度传感器能够检测单元裸片的温度,并向控制设备102发送温度指示消息。该温度指示消息用于指示单元裸片的温度。在其他示例中,该温度传感器还可设置在靠近单元裸片的位置上。对该示例所示的温度传感器的位置不做限定,只要该温度传感器能够精确的检测单元裸片的温度即可。
本实施例中实现负反馈控制的具体过程为,已经吸收了导热区域412的热量,经由入向液冷管501向制冷设备401传输第一液冷液。控制设备102获取来自温度传感器的温度指示消息。控制设备102根据该温度指示消息向制冷设备发送控制信令。该控制信令用于控制制冷设备所输出的第二液冷液的温度或流速中的至少一项。其中,制冷设备401对第一液冷液散热后以获取该第二液冷液。该第二液冷液经由出向液冷管502传输至导热区域。该第二液冷液能够吸收导热区域的热量。在导热区域的热量被第二液冷液吸收的情况下,可使得单元裸片的温度位于预设温度范围内。例如,若控制设备102确定单元裸片的温度已大于预设温度范围的最大值,那么,控制设备102通过该控制信令指示制冷设备401降低第二液冷液的温度或提高第二液冷液的流速中的至少一项。又如,若控制设备102确定单元裸片的温度已小于预设温度范围的最小值,那么,控制设备102通过该控制信令指示制冷设备401提高第二液冷液的温度或降低第二液冷液的流速中的至少一项。本实施例所示的控制设备401可多次对制冷设备401所输出的第二液冷液的温度或流速中的至少一项进行调节,直至通过该温度传感器确定该单元裸片的温度位于该预设温度范围之内。
本申请还提供了一种散热方法。在脉冲激光器出射的脉冲激光传输至单元裸片的过程中,本申请所提供的方法可直接通过导热区域对单元裸片进行散热。通过导热区域对单元裸片散热的说明,请参见图1-3的说明,具体不做赘述。
图8为本申请实施例所提供的散热方法的一种实施例步骤流程图。如图8所示,该方法包括如下多个步骤。
步骤801、脉冲激光器出射的脉冲激光穿过导热组件的透光区域传输至待测芯片。
传输至该待测芯片上的脉冲激光,能够使得该待测芯片进行脉冲激光模拟SEE试验。具体过程,可参见图1对应的说明,具体不做赘述。
步骤802、制冷设备经由液冷管向导热区域传输第一液冷液。
本实施例所示的步骤801和步骤802是同步执行的。即在脉冲激光器出射脉冲激光的过程中,制冷设备同步向导热区域传输第一液冷液。制冷设备向导热区域传输第一液冷液且该第一液冷液对单元裸片散热的过程,请参见图4,图5a,图5b,图5c,图6以及图7的说明,具体不做赘述。
步骤803、控制设备通过温度传感器获取待测芯片的温度。
步骤804、控制设备根据温度向制冷设备发送控制信令。
步骤805、制冷设备根据控制信令控制制冷设备所输出的第二液冷液的温度或流速中的至少一项。
步骤806、制冷设备通过液冷管向导热区域传输第二液冷液。
本实施例所示的步骤803-806为可选执行的步骤。步骤803-806的具体执行过程的说明,请参见图4对应的实施例的说明,具体不做赘述。
本申请实施例还可提供一种导热组件。该导热组件的具体说明,请参见图1,图2以及图3对应的实施例的说明,具体不做赘述。
本申请实施例还可提供一种散热系统。该散热系统包括导热组件。该导热组件的具体说明请参见图1,图2以及图3的说明,具体不做赘述。
本申请实施例还可提供一种散热系统。该散热系统包括导热组件,液冷管以及制冷设备。该散热系统的具体说明,请参见图4,图5a,图5b,图5c,图6以及图7的说明,具体不做赘述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种脉冲激光模拟单粒子效应的试验系统,其特征在于,所述试验系统用于实现脉冲激光模拟单粒子效应试验,所述试验系统包括脉冲激光器和导热组件;所述导热组件位于所述脉冲激光器和待测芯片之间,所述导热组件包括透光区域和导热区域,所述透光区域与所述导热区域物理连接,所述脉冲激光器出射的脉冲激光穿过所述透光区域传输至所述待测芯片,所述脉冲激光用于对所述待测芯片进行脉冲激光模拟单粒子效应试验;
    所述透光区域与所述待测芯片物理连接,所述待测芯片的热量经由所述透光区域和所述导热区域散热。
  2. 根据权利要求1所述的试验系统,其特征在于,所述透光区域由第一材质制成,所述导热区域由第二材质制成,所述第一材质的透光率大于或等于第一预设值,所述第一材质的导热系数大于或等于第二预设值,所述第二材质的导热系数大于或等于所述第一材质的导热系数。
  3. 根据权利要求1或2所述的试验系统,其特征在于,所述试验系统还包括液冷管和与所述液冷管连接的制冷设备,所述导热区域具有导热槽,所述液冷管与所述导热槽连接,所述制冷设备用于经由所述液冷管向所述导热槽传输第一液冷液,流经所述导热槽的所述第一液冷液用于为所述待测芯片散热。
  4. 根据权利要求3所述的试验系统,其特征在于,所述试验系统包括测试板,所述测试板用于承载所述待测芯片,所述导热槽在所述测试板上的正投影与所述透光区域在所述测试板上的正投影之间具有间距。
  5. 根据权利要求1或2所述的试验系统,其特征在于,所述试验系统还包括液冷管和与所述液冷管连接的制冷设备,所述导热区域用于固定所述液冷管,所述制冷设备用于向所述液冷管传输第一液冷液,流经所述液冷管的所述第一液冷液用于为所述待测芯片散热。
  6. 根据权利要求5所述的试验系统,其特征在于,所述试验系统包括测试板,所述测试板用于承载所述待测芯片,所述液冷管在所述测试板上的正投影与所述透光区域在所述测试板上的正投影之间具有间距。
  7. 根据权利要求3至6任一项所述的试验系统,其特征在于,所述试验系统还包括与所述制冷设备连接的控制设备,所述控制设备与温度传感器连接,所述控制设备用于通过所述温度传感器获取所述待测芯片的温度,所述控制设备用于根据所述温度向所述制冷设备发送控制信令,所述控制信令用于控制所述制冷设备所输出的第二液冷液的温度或流速中的至少一项,以使得所述待测芯片的温度位于预设温度范围内。
  8. 根据权利要求1至7任一项所述的试验系统,其特征在于,所述待测芯片依次经由所述透光区域和所述导热区域散热。
  9. 根据权利要求1至8任一项所述的试验系统,其特征在于,所述导热区域与所述透光区域的外周壁拼接而成。
  10. 一种脉冲激光模拟单粒子效应的散热方法,其特征在于,所述散热方法应用于脉冲激光模拟单粒子效应的试验系统,所述散热方法用于在脉冲激光模拟单粒子效应试验的过程中为所述试验系统散热,所述方法包括:
    脉冲激光器出射的脉冲激光穿过导热组件的透光区域传输至待测芯片,所述脉冲激光用于对所述待测芯片进行脉冲激光模拟单粒子效应试验,所述导热组件位于所述脉冲激光器和所述待测芯片之间,所述导热组件所包括的所述透光区域和导热区域物理连接,所述透光区 域与所述待测芯片物理连接,所述待测芯片的热量经由所述透光区域和所述导热区域散热。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    制冷设备经由液冷管向所述导热区域所具有的导热槽传输第一液冷液,所述液冷管分别与所述制冷设备和所述导热槽连接,流经所述导热槽的所述第一液冷液为所述待测芯片散热。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    制冷设备向所述导热区域所固定的液冷管传输第一液冷液,所述液冷管与所述制冷设备连接,流经所述液冷管的所述第一液冷液为所述待测芯片散热。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    控制设备通过温度传感器获取所述待测芯片的温度;
    所述控制设备根据所述温度向所述制冷设备发送控制信令;
    所述制冷设备根据所述控制信令控制所述制冷设备所输出的第二液冷液的温度或流速中的至少一项,以使得所述待测芯片的温度位于预设温度范围内。
PCT/CN2023/072642 2022-01-25 2023-01-17 一种脉冲激光模拟单粒子效应的试验系统以及散热方法 WO2023143257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210088538.7A CN116546773A (zh) 2022-01-25 2022-01-25 一种脉冲激光模拟单粒子效应的试验系统以及散热方法
CN202210088538.7 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023143257A1 true WO2023143257A1 (zh) 2023-08-03

Family

ID=87445764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072642 WO2023143257A1 (zh) 2022-01-25 2023-01-17 一种脉冲激光模拟单粒子效应的试验系统以及散热方法

Country Status (2)

Country Link
CN (1) CN116546773A (zh)
WO (1) WO2023143257A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118777758A (zh) * 2024-09-09 2024-10-15 兰州空间技术物理研究所 一种飞秒级脉冲激光单粒子效应试验系统设计方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833064A (zh) * 2010-05-05 2010-09-15 中国人民解放军国防科学技术大学 基于光纤探针的脉冲激光模拟单粒子效应实验系统
CN107884699A (zh) * 2017-09-28 2018-04-06 中国空间技术研究院 一种裸芯片的脉冲激光单粒子试验装置及试验方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833064A (zh) * 2010-05-05 2010-09-15 中国人民解放军国防科学技术大学 基于光纤探针的脉冲激光模拟单粒子效应实验系统
CN107884699A (zh) * 2017-09-28 2018-04-06 中国空间技术研究院 一种裸芯片的脉冲激光单粒子试验装置及试验方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118777758A (zh) * 2024-09-09 2024-10-15 兰州空间技术物理研究所 一种飞秒级脉冲激光单粒子效应试验系统设计方法及装置

Also Published As

Publication number Publication date
CN116546773A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN101398601B (zh) 散热装置
US7309145B2 (en) Light source apparatus and projection display apparatus
US20170112017A1 (en) Heat dissipating system
CN112748633B (zh) 一种激光光源和激光投影设备
TWM575124U (zh) 具冷卻件的空間光線調變裝置
WO2020088452A1 (zh) 一种芯片散热装置及投影设备
CN113009653B (zh) 光发射组件
WO2023143257A1 (zh) 一种脉冲激光模拟单粒子效应的试验系统以及散热方法
CN108957929B (zh) 一种激光光源及激光投影仪
CN109959913A (zh) 一种激光雷达散热装置
CN108508625A (zh) 结构光投射器、图像获取装置和电子设备
CN118483460B (zh) 激光器件测试夹具
CN208399876U (zh) 一种电子投影仪内循环制冷系统
CN110244278A (zh) 一种激光雷达散热装置
WO2020151515A1 (zh) 激光模组及电子设备
CN219679050U (zh) 一种用于激光雷达的散热结构及激光雷达
CN114813824B (zh) 一种增益光纤灌胶封装的导热性测试装置及方法
JP2016063098A (ja) 部品実装装置、搭載ステージおよび部品実装方法
CN110032025B (zh) 结构光投射器及其方法和应用
CN103388811B (zh) 一种水循环自动散热工装
CN219872093U (zh) 激光投影设备及激光投影系统
Khosroshahi et al. A computational and experimental study on a harsh environment LED system for vehicle exterior lighting applications
TWI840066B (zh) 電子裝置及其散熱模組
CN108281881A (zh) 一种用于激光器的快门装置以及激光器
WO2023071705A1 (zh) 散热组件、车辆模块及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 23746139

Country of ref document: EP

Kind code of ref document: A1