[go: up one dir, main page]

WO2023098553A1 - 控制方法及装置 - Google Patents

控制方法及装置 Download PDF

Info

Publication number
WO2023098553A1
WO2023098553A1 PCT/CN2022/133977 CN2022133977W WO2023098553A1 WO 2023098553 A1 WO2023098553 A1 WO 2023098553A1 CN 2022133977 W CN2022133977 W CN 2022133977W WO 2023098553 A1 WO2023098553 A1 WO 2023098553A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
saving
radio frequency
temperature difference
information
Prior art date
Application number
PCT/CN2022/133977
Other languages
English (en)
French (fr)
Inventor
刘生浩
陈春媛
陈敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2024532788A priority Critical patent/JP2024542747A/ja
Priority to EP22900358.7A priority patent/EP4432740A4/en
Priority to KR1020247021777A priority patent/KR20240117118A/ko
Publication of WO2023098553A1 publication Critical patent/WO2023098553A1/zh
Priority to US18/679,689 priority patent/US20240323836A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/29Control channels or signalling for resource management between an access point and the access point controlling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a control method and device.
  • the energy consumption of the base station equipment is mainly the energy consumption of the radio frequency module.
  • the baseband processing unit controls the radio frequency module to enable the energy saving feature.
  • the energy-saving feature of the RF module is enabled, in order to avoid the solder joint failure of the RF module caused by the increase in the temperature difference of the RF device, the RF module can periodically detect its own temperature difference when the energy-saving feature is enabled. Turn off the energy-saving feature, and turn on the energy-saving feature when the temperature difference returns to within the preset threshold.
  • the temperature difference of the radio frequency module is near the preset threshold, it is easy to cause the radio frequency module to repeat between turning on the energy saving feature and turning off the energy saving feature, and when the radio frequency module turns off the energy saving feature, it will lose the energy-saving feature. coming energy savings.
  • Embodiments of the present application provide a control method and device, in order to obtain more energy-saving gain while satisfying the stability of the temperature difference of the radio frequency equipment.
  • a control method comprising: a radio frequency device sends first information to a control device, where the first information is used to indicate a switch suggestion for at least one energy-saving feature; the radio frequency device receives an instruction from the control device , the instruction is used to instruct to turn on the first energy-saving feature and/or turn off the second energy-saving feature, the first energy-saving feature includes at least one energy-saving feature suggested to be turned on in the first information, and the second energy-saving feature includes at least one of the first energy-saving feature It is recommended not to enable the energy-saving features in the information.
  • the on-off suggestion of the energy-saving feature includes a suggestion to turn on the energy-saving feature or a suggestion not to turn on the energy-saving feature, or, the on-off suggestion of the energy-saving feature includes a suggestion to turn on the energy-saving feature or a suggestion to turn off the energy-saving feature.
  • the radio frequency device sends to the control device first information indicating a switch suggestion for at least one energy-saving feature, so that the control device can control the radio frequency device to turn on the first energy-saving feature and/or turn off the second energy-saving feature according to the first information . Since the control device sends an instruction to the radio frequency device according to the switch suggestion of the energy saving feature sent by the radio frequency device, the control device can send a more reasonable instruction to the radio frequency device.
  • the temperature difference of the radio frequency device exceeds the temperature difference threshold, which is beneficial to obtain more energy-saving gain while satisfying the stability of the temperature difference of the radio frequency device.
  • instructing the start and stop of the energy-saving feature through the control device is also more conducive to the control device to accurately grasp the real switch or effective state of the energy-saving feature.
  • the method further includes: the radio frequency device enables the first energy-saving feature and/or turns off the second energy-saving feature according to the instruction.
  • the first information is determined according to a temperature difference of the radio frequency device and/or an influence degree of different energy saving characteristics on the temperature difference of the radio frequency device.
  • the radio frequency device determines the switching suggestion of the energy saving characteristic
  • the temperature difference of the radio frequency device and/or the degree of influence of different energy saving characteristics on the temperature difference of the radio frequency device are taken into consideration, thereby helping to determine a reasonable switching suggestion. For example, if the temperature difference of the radio frequency device is relatively small, the radio frequency device may suggest enabling more energy-saving features. For another example, if the temperature difference of the radio frequency device is large, and a certain energy saving feature has a great influence on the temperature difference of the radio frequency device, the radio frequency device may suggest not to enable the energy saving feature.
  • the radio frequency device determines the temperature difference of the radio frequency device after different energy saving features are turned on according to the temperature difference and the degree of influence of different energy saving characteristics on the temperature difference of the radio frequency device; the radio frequency device is turned on according to different energy saving characteristics.
  • the first information is determined by the temperature difference of the radio frequency device after the unit time.
  • the radio frequency device determines the first information by comparing the temperature difference of the radio frequency device after different energy-saving features are turned on for a unit time period and the temperature difference threshold.
  • the radio frequency device determines the first information by comparing the temperature difference of the radio frequency device after different energy-saving features are turned on.
  • the radio frequency device determines the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy saving features are turned on according to the temperature difference and the degree of influence of different energy saving characteristics on the temperature difference of the radio frequency device; The radio frequency device determines the first information according to the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy-saving features are turned on.
  • the radio frequency device determines the first information by comparing the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold and the unit time after different energy-saving features are turned on.
  • the radio frequency device determines the first information by comparing the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy-saving features are turned on.
  • the first information includes an identifier of the at least one energy saving feature.
  • the at least one energy-saving feature is an energy-saving feature that is recommended to be turned on, that is, the first information includes an identifier of the energy-saving feature that is recommended to be turned on.
  • the at least one energy-saving feature is an energy-saving feature that is recommended not to be turned on, that is, the first information includes an identifier of the energy-saving feature that is not recommended to be turned on.
  • the at least one energy-saving feature includes an energy-saving feature recommended to be enabled and an energy-saving feature recommended not to be enabled, that is, the first information includes both the identification of the energy-saving feature recommended to be enabled and the identification of the energy-saving feature recommended not to be enabled.
  • the first information includes first indication information corresponding to the at least one energy-saving feature, where the first indication information is used to indicate whether it is recommended to enable the at least one energy-saving feature .
  • the first information further includes second indication information corresponding to the at least one energy-saving feature, and the second indication information is used to indicate the switch of the at least one energy-saving feature state.
  • the control device when the first information includes the second indication information corresponding to at least one energy-saving feature, the control device is made to determine the on-off state of at least one energy-saving feature according to the second indication information, thereby avoiding the display of the user interface of the control device.
  • the on/off state of the energy saving feature is inconsistent with the actual on/off state of the energy saving feature.
  • the control device can also send accurate instructions to the radio frequency device according to the actual switching states of different energy-saving characteristics and the first information.
  • the control device determines that the energy-saving feature #1 is on according to the second instruction information, and determines that the energy-saving feature #1 is an energy-saving feature that is not recommended to be turned on according to the first information, then the control device can send an instruction to turn off the energy-saving feature #1 to the radio frequency device . If the control device determines that the energy-saving feature #1 is in the off state according to the second indication information, and determines that the energy-saving feature #1 is an energy-saving feature that is not recommended to be turned on according to the first information, the control device may omit sending an instruction to turn off the energy-saving feature #1 to the radio frequency device , thereby further simplifying signaling and saving bandwidth.
  • the first energy-saving characteristic is an energy-saving characteristic that is turned off in the at least one energy-saving characteristic
  • the second energy-saving characteristic is an energy-saving characteristic that is turned on in the at least one energy-saving characteristic energy-saving features.
  • the first information further includes temperature information, and the temperature information is used to determine a temperature difference of the radio frequency device.
  • the control device when the first information includes temperature information, the control device is made to determine the temperature difference of the radio frequency device according to the temperature information, so that the control device can send instructions to the radio frequency device in combination with the temperature difference of the radio frequency device and the first information, and more
  • the energy-saving feature is beneficial to indicate that the radio frequency device can be turned on stably for a period of time without causing the temperature difference of the radio frequency device to exceed the temperature difference threshold.
  • a control method includes: a control device receives first information from a radio frequency device, the first information is used to indicate a switch suggestion for at least one energy-saving feature;
  • the radio frequency device sends an instruction, where the instruction is used to instruct turning on a first energy-saving feature and/or turning off a second energy-saving feature, where the first energy-saving feature includes at least one energy-saving feature suggested to be turned on in the first information, and the second energy-saving feature includes At least one energy-saving feature that is suggested not to be enabled in the first information.
  • the on-off suggestion of the energy-saving feature includes a suggestion to turn on the energy-saving feature or a suggestion not to turn on the energy-saving feature, or, the on-off suggestion of the energy-saving feature includes a suggestion to turn on the energy-saving feature or a suggestion to turn off the energy-saving feature.
  • the radio frequency device sends to the control device first information indicating a switch suggestion for at least one energy-saving feature, so that the control device can control the radio frequency device to turn on the first energy-saving feature and/or turn off the second energy-saving feature according to the first information . Since the control device sends an instruction to the radio frequency device according to the switch suggestion of the energy saving feature sent by the radio frequency device, the control device can send a more reasonable instruction to the radio frequency device.
  • the temperature difference of the radio frequency device exceeds the temperature difference threshold, which is beneficial to obtain more energy-saving gain while satisfying the stability of the temperature difference of the radio frequency device.
  • the first information is determined according to the temperature difference of the radio frequency device and/or the degree of influence of different energy saving characteristics on the temperature difference of the radio frequency device.
  • the first information includes an identifier of the at least one energy saving feature.
  • the at least one energy-saving feature is an energy-saving feature that is recommended to be turned on, that is, the first information includes an identifier of the energy-saving feature that is recommended to be turned on.
  • the at least one energy-saving feature is an energy-saving feature that is recommended not to be turned on, that is, the first information includes an identifier of the energy-saving feature that is not recommended to be turned on.
  • the at least one energy-saving feature includes an energy-saving feature recommended to be enabled and an energy-saving feature recommended not to be enabled, that is, the first information includes both the identification of the energy-saving feature recommended to be enabled and the identification of the energy-saving feature recommended not to be enabled.
  • the first information includes first indication information corresponding to the at least one energy-saving feature, where the first indication information is used to indicate whether it is recommended to enable the at least one energy-saving feature .
  • the first information further includes second indication information corresponding to the at least one energy-saving feature, and the second indication information is used to indicate the switch of the at least one energy-saving feature state; the method further includes: the control device determines the switch state of the first energy-saving feature according to the second indication information.
  • the control device when the first information includes the second indication information corresponding to at least one energy-saving feature, the control device is made to determine the on-off state of at least one energy-saving feature according to the second indication information, thereby avoiding the display of the user interface of the control device.
  • the on/off state of the energy saving feature is inconsistent with the actual on/off state of the energy saving feature.
  • the first energy-saving characteristic is an energy-saving characteristic that is turned off in the at least one energy-saving characteristic
  • the second energy-saving characteristic is an energy-saving characteristic that is turned on in the at least one energy-saving characteristic energy-saving features.
  • control device can send accurate instructions to the radio frequency device according to the actual switch states of different energy-saving characteristics and the first information.
  • the first information further includes temperature information, and the temperature information is used to determine the temperature difference of the radio frequency device; the control device sends to the radio frequency device according to the first information
  • the instruction includes: the control device sending the instruction to the radio frequency device according to the temperature difference and the first information.
  • the control device when the first information includes temperature information, the control device is made to determine the temperature difference of the radio frequency device according to the temperature information, so that the control device can send instructions to the radio frequency device in combination with the temperature difference of the radio frequency device and the first information, and more
  • the energy-saving feature is beneficial to indicate that the radio frequency device can be turned on stably for a period of time without causing the temperature difference of the radio frequency device to exceed the temperature difference threshold.
  • a control method which includes: the control device receives temperature information from the radio frequency device, and the temperature information is used to determine the temperature difference of the radio frequency device; The degree of influence of the temperature difference of the radio frequency device determines the switching strategy of at least one energy saving feature; the control device sends an instruction to the radio frequency device according to the switching strategy of the at least one energy saving feature, and the instruction is used to instruct to turn on and/or turn off at least one energy saving feature At least one energy saving feature.
  • instructing the start and stop of the energy-saving feature through the control device is also more conducive to the control device to accurately grasp the real switch or effective state of the energy-saving feature.
  • the switching policy of the energy saving feature includes allowing the energy saving feature to be turned on or not allowing the energy saving feature to be turned on.
  • the radio frequency device sends temperature information to the control device, so that the control device determines the temperature difference of the radio frequency device according to the temperature information, so that the control device can influence the temperature difference of the radio frequency device according to the temperature difference of the radio frequency device and/or different energy-saving characteristics Determine the switching strategy of different energy-saving characteristics to a certain extent, which is conducive to determining the energy-saving characteristics that can be stably turned on for a period of time without causing the temperature difference of the radio frequency device to exceed the temperature difference threshold, which is conducive to achieving more energy saving while satisfying the stability of the temperature difference of the radio frequency device gain.
  • the control device determines the switching strategy of at least one energy-saving characteristic according to the temperature difference and the influence degree of different energy-saving characteristics on the temperature difference of the radio frequency device, including: the control device determines the switching strategy of at least one energy-saving characteristic according to the temperature difference and different energy-saving characteristics.
  • the degree of influence of the temperature difference of the radio frequency device determines the temperature difference of the radio frequency device after the unit time of different energy-saving features is turned on; the control device determines the switching strategy of the at least one energy-saving feature according to the temperature difference of the radio frequency device after the unit time of different energy-saving features is turned on.
  • control device determines an on-off strategy for at least one energy-saving feature by comparing the temperature difference of the radio frequency device and the temperature difference threshold after different energy-saving features are turned on for a unit period of time.
  • control device determines the switching strategy of at least one energy-saving feature by comparing the temperature difference of the radio frequency device after different energy-saving features are turned on.
  • the control device determines the switching strategy of at least one energy-saving characteristic according to the temperature difference and the degree of influence of different energy-saving characteristics on the temperature difference of the radio frequency device, including: the control device determines the switching strategy of at least one energy-saving characteristic according to the temperature difference and different energy-saving characteristics
  • the degree of influence of the temperature difference of the radio frequency device determines the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy-saving features are turned on; the temperature difference of the radio frequency device increases to the temperature difference threshold after the control device is turned on according to different energy-saving features Determine the switching strategy for the at least one energy-saving feature.
  • control device determines the switching strategy for at least one energy-saving feature by comparing the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold and the unit time after different energy-saving features are turned on.
  • control device determines the switching strategy for at least one energy-saving feature by comparing the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy-saving features are turned on.
  • the method further includes: the control device receiving indication information corresponding to at least one energy-saving characteristic from the radio frequency device, where the indication information is used to indicate at least one energy-saving characteristic The switch state of the switch; the control device determines the switch state of at least one energy-saving feature according to the indication information.
  • the control device when the radio frequency device sends the second instruction information corresponding to at least one energy-saving feature to the control device, the control device is made to determine the on-off status of at least one energy-saving feature according to the second instruction information, thereby avoiding the control device user interface.
  • the displayed on/off state of the energy saving feature is inconsistent with the actual on/off state of the energy saving feature.
  • the instruction indicates that the at least one energy-saving feature that is turned on is an energy-saving feature that is in an off state, and the instruction that indicates that the at least one energy-saving feature that is turned off is an energy-saving feature that is in an on state.
  • control device can send accurate instructions to the radio frequency device according to the actual switching states of different energy-saving characteristics and the first information.
  • a control method which includes: a radio frequency device sends temperature information to a control device, and the temperature information is used to determine a temperature difference of the radio frequency device; the radio frequency device receives an instruction from the control device, and the instruction uses Instructing to turn on at least one energy-saving feature and/or turn off at least one energy-saving feature.
  • the radio frequency device sends temperature information to the control device, so that the control device can determine the temperature difference of the radio frequency device according to the temperature information, so that the control device can determine the temperature difference of the radio frequency device according to the temperature difference of the radio frequency device and/or the influence of different energy-saving characteristics on the temperature difference of the radio frequency device Determine the switching strategy of different energy-saving characteristics to a certain extent, which is conducive to determining the energy-saving characteristics that can be stably turned on for a period of time without causing the temperature difference of the radio frequency device to exceed the temperature difference threshold, which is conducive to achieving more energy saving while satisfying the stability of the temperature difference of the radio frequency device gain.
  • the method further includes: the radio frequency device sending indication information to the control device, where the indication information is used to indicate an on/off state of at least one energy-saving feature.
  • the radio frequency device sends instruction information to the control device, so that the control device determines the switch state of at least one energy-saving feature according to the instruction information, thereby avoiding the inconsistency between the switch state of the energy-saving feature displayed on the client interface of the control device and the actual switch state of the energy-saving feature.
  • the control device can also send accurate instructions to the radio frequency device according to the actual switching status of different energy-saving features. For example, the control device determines that the energy-saving feature #1 is on according to the instruction information, and determines that the energy-saving feature #1 is an energy-saving feature that is not allowed to be turned on according to the switching strategy of the energy-saving feature #1. instructions.
  • the instruction indicates that the at least one energy-saving feature that is turned on is an energy-saving feature that is in an off state, and the instruction that indicates that the at least one energy-saving feature that is turned off is an energy-saving feature that is in an on state.
  • an apparatus which includes a transceiver unit, configured to send first information to a control device, where the first information is used to indicate a switch suggestion for at least one energy-saving feature; the transceiver unit is also used to receiving an instruction from the control device, the instruction is used to instruct to turn on the first energy-saving feature and/or turn off the second energy-saving feature, the first energy-saving feature includes at least one energy-saving feature suggested to be turned on in the first information, and the second energy-saving feature
  • the characteristics include at least one energy-saving characteristic suggested not to be enabled in the first information.
  • the apparatus further includes a processing unit configured to enable the first energy-saving feature and/or disable the second energy-saving feature according to the instruction.
  • the first information is determined according to the temperature difference of the device and/or the degree of influence of different energy-saving characteristics on the temperature difference of the device.
  • the device further includes a processing unit, and the processing unit is further configured to determine whether different energy-saving characteristics are enabled according to the temperature difference and the degree of influence of different energy-saving characteristics on the temperature difference of the device.
  • the temperature difference of the device after a unit time; the processing unit is also used to determine the first information according to the temperature difference of the device after the unit time is turned on according to different energy-saving characteristics.
  • the device further includes a processing unit configured to determine the temperature difference after different energy-saving characteristics are turned on according to the temperature difference and the degree of influence of different energy-saving characteristics on the temperature difference of the device.
  • the time required for the temperature difference of the device to increase to the temperature difference threshold; the processing unit is also used to determine the first information according to the time required for the temperature difference of the device to increase to the temperature difference threshold after different energy-saving features are turned on.
  • the first information includes an identifier of the at least one energy saving feature.
  • the first information includes first indication information corresponding to the at least one energy-saving feature, where the first indication information is used to indicate whether it is recommended to enable the at least one energy-saving feature .
  • the first information further includes second indication information corresponding to the at least one energy-saving feature, and the second indication information is used to indicate the switch of the at least one energy-saving feature state.
  • the first energy-saving characteristic is an energy-saving characteristic that is turned off in the at least one energy-saving characteristic
  • the second energy-saving characteristic is an energy-saving characteristic that is turned on in the at least one energy-saving characteristic energy-saving features.
  • the first information further includes temperature information, and the temperature information is used to determine a temperature difference of the device.
  • an apparatus which includes a transceiving unit, and the transceiving unit is configured to receive first information from a radio frequency device, where the first information is used to indicate a switch suggestion for at least one energy-saving feature; the transceiving unit also uses Sending an instruction to the radio frequency device according to the first information, the instruction is used to instruct to turn on a first energy-saving feature and/or turn off a second energy-saving feature, and the first energy-saving feature includes at least one energy-saving feature suggested to be turned on in the first information , the second energy-saving feature includes at least one energy-saving feature suggested not to be enabled in the first information.
  • the first information is determined according to the temperature difference of the radio frequency device and/or the degree of influence of different energy saving characteristics on the temperature difference of the radio frequency device.
  • the first information includes an identifier of the at least one energy saving feature.
  • the first information includes first indication information corresponding to the at least one energy-saving feature, and the first indication information is used to indicate whether it is recommended to enable the at least one energy-saving feature .
  • the first information further includes second indication information corresponding to the at least one energy-saving feature, and the second indication information is used to indicate the switch of the at least one energy-saving feature State;
  • the device further includes a processing unit configured to determine the switch state of the first energy-saving feature according to the second indication information.
  • the first information further includes temperature information, and the temperature information is used to determine the temperature difference of the radio frequency device; The information sends the command to the radio frequency device.
  • the first energy-saving characteristic is an energy-saving characteristic that is turned off in the at least one energy-saving characteristic
  • the second energy-saving characteristic is an energy-saving characteristic that is turned on in the at least one energy-saving characteristic Energy-saving properties of the state.
  • an apparatus in a seventh aspect, includes a transceiver unit and a processing unit, the transceiver unit is used to receive temperature information from a radio frequency device, the temperature information is used to determine the temperature difference of the radio frequency device; the processing unit is used to The degree of influence of the temperature difference and/or different energy-saving characteristics on the temperature difference of the radio frequency device determines a switching strategy of at least one energy-saving characteristic; the transceiver unit is also used to send instructions to the radio frequency device according to the switching strategy of the at least one energy-saving characteristic, the instruction Used to indicate to turn on at least one energy-saving feature and/or to turn off at least one energy-saving feature.
  • the processing unit is further configured to determine, according to the temperature difference and/or the degree of influence of different energy-saving characteristics on the temperature difference of the radio frequency device, after the unit duration of different energy-saving characteristics is turned on.
  • the temperature difference of the radio frequency device the processing unit is also used to determine the switching strategy of the at least one energy saving feature according to the temperature difference of the radio frequency device after different energy saving features are turned on for the unit time.
  • the processing unit is further configured to determine the temperature difference of the radio frequency device after different energy saving features are turned on according to the temperature difference and the degree of influence of different energy saving features on the temperature difference of the radio frequency device The time required to increase to the temperature difference threshold; the processing unit is also used to determine the switching strategy of the at least one energy saving feature according to the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy saving features are turned on.
  • the transceiver unit is further configured to receive indication information corresponding to at least one energy-saving feature from the radio frequency device, where the indication information is used to indicate the switch state of the at least one energy-saving feature ;
  • the processing unit is also used to determine the switch state of at least one energy-saving feature according to the indication information.
  • the instruction indicates that the at least one energy-saving feature that is turned on is an energy-saving feature that is in an off state, and the instruction that indicates that the at least one energy-saving feature that is turned off is an energy-saving feature that is in an on state.
  • a device in an eighth aspect, includes a transceiver unit, the transceiver unit is used to send temperature information to the control device, and the temperature information is used to determine the temperature difference of the device; the transceiver unit is also used to receive information from the control device An instruction, where the instruction is used to instruct to turn on at least one energy-saving feature and/or turn off at least one energy-saving feature.
  • the transceiving unit is further configured to send indication information to the control device, where the indication information is used to indicate an on/off state of at least one energy-saving feature.
  • the instruction indicates that the at least one energy-saving feature that is turned on is an energy-saving feature that is in an off state, and the instruction that indicates that the at least one energy-saving feature that is turned off is an energy-saving feature that is in an on state.
  • an apparatus which includes a radio frequency module and a control module, where the radio frequency module is configured to send first information to the control module, where the first information is used to indicate a switch suggestion for at least one energy-saving feature; the The control module is configured to send an instruction to the radio frequency module according to the first information, the instruction is used to instruct the radio frequency module to turn on the first energy saving feature and/or turn off the second energy saving feature, and the first energy saving feature includes at least one piece of the first information
  • the energy-saving feature suggested to be enabled in the second information includes at least one energy-saving feature suggested not to be enabled in the first information.
  • the radio frequency module is further configured to turn on the first energy-saving feature and/or turn off the second energy-saving feature according to the instruction.
  • the first information is determined according to the temperature difference of the radio frequency module and/or the influence degree of different energy saving characteristics on the temperature difference of the radio frequency module.
  • the radio frequency module is also used to determine the unit duration of the radio frequency module after different energy saving features are turned on according to the temperature difference and the degree of influence of different energy saving features on the temperature difference of the radio frequency module.
  • the radio frequency module is also used to determine the first information according to the temperature difference of the radio frequency module after the unit time is turned on for different energy-saving features.
  • the radio frequency module is also used to determine the temperature difference of the radio frequency module after different energy saving features are turned on according to the temperature difference and the degree of influence of different energy saving features on the temperature difference of the radio frequency module The time required to increase to the temperature difference threshold; the radio frequency module is also used to determine the first information according to the time required for the temperature difference of the radio frequency module to increase to the temperature difference threshold after different energy-saving features are turned on.
  • the first information includes an identifier of the at least one energy saving feature.
  • the first information includes first indication information corresponding to the at least one energy-saving feature, where the first indication information is used to indicate whether it is recommended to enable the at least one energy-saving feature .
  • the first information further includes second indication information corresponding to the first energy-saving characteristic, and the second indication information is used to indicate a switch of the at least one energy-saving characteristic State: the control module is further configured to determine the switch state of the at least one energy-saving feature according to the second indication information.
  • the first energy-saving characteristic is an energy-saving characteristic that is turned off in the at least one energy-saving characteristic
  • the second energy-saving characteristic is an energy-saving characteristic that is turned on in the at least one energy-saving characteristic energy-saving features.
  • the first information further includes temperature information, and the temperature information is used to determine the temperature difference of the radio frequency module; the control module is also used to determine the temperature difference according to the temperature difference and the first The information sends the instruction to the radio frequency module.
  • the radio frequency module is a radio remote unit; the control module is a baseband processing unit.
  • the present application provides an apparatus, including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so as to realize the method in the above-mentioned first aspect or any one of the possible implementations of the first aspect, or realize the above-mentioned fourth aspect or any one of the fourth aspects Methods in Possible Implementations.
  • the device also includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the apparatus is a radio frequency device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the apparatus is a chip or a chip system configured in a radio frequency device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the present application provides an apparatus, including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory, so as to realize the method in the above-mentioned second aspect or any possible implementation manner of the second aspect, or realize the above-mentioned third aspect or any of the third aspects Methods in Possible Implementations.
  • the device also includes a memory.
  • the device also includes a communication interface, and the processor is coupled with the communication interface.
  • the apparatus is a control device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the apparatus is a chip or a chip system configured in the control device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the present application provides a processor, including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in each aspect above.
  • the above-mentioned processor can be a chip
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by the receiver, for example but not limited to, the signal output by the output circuit may be output to the transmitter and transmitted by the transmitter, for example but not limited to, and the input circuit and the output
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • the present application provides a processing device, including a communication interface and a processor.
  • the communication interface is coupled with the processor.
  • the communication interface is used for input and/or output of information.
  • the information includes at least one of instructions or data.
  • the processor is configured to execute a computer program, so that the processing device executes the methods in the various aspects above.
  • the present application provides a processing device, including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter, so that the processing device executes the methods in the above aspects.
  • processors there are one or more processors. If there is a memory, the memory can also be one or more.
  • the memory may be integrated with the processor, or the memory may be set separately from the processor.
  • the memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the configuration of the memory and the processor.
  • a non-transitory memory such as a read-only memory (read only memory, ROM)
  • ROM read only memory
  • sending indication information may be a process of outputting indication information from a processor
  • receiving indication information may be a process of inputting received indication information to a processor.
  • the processed output information may be output to the transmitter, and the input information received by the processor may be from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the above devices in the thirteenth aspect and the fourteenth aspect may be a chip, and the processor may be implemented by hardware or software, and when implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.;
  • the processor can be a general-purpose processor, and can be implemented by reading software codes stored in a memory, and the memory can be integrated in the processor, or it can be located outside the processor and exist independently.
  • the present application provides a computer program product, the computer program product comprising: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer is made to execute the above-mentioned aspects method in .
  • a computer program also referred to as code, or an instruction
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program (also referred to as code, or instruction) which, when run on a computer, causes the computer to perform the above-mentioned methods in various aspects.
  • a computer program also referred to as code, or instruction
  • the present application provides a system, including the aforementioned control device and radio frequency device.
  • Fig. 1 is a schematic diagram of a system suitable for the method provided by the embodiment of the present application
  • Fig. 2 is a schematic diagram of symbol off
  • Figure 3 is a schematic diagram of channel shutdown
  • FIG. 4 is a schematic diagram of cell shutdown
  • FIG. 5 is a schematic diagram of a method for controlling temperature difference in an energy-saving scenario
  • FIG. 6 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of a control method provided by another embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a device provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of the device provided by the implementation of the present application.
  • Fig. 10 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a chip system provided by an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, frequency division duplex (frequency division duplex, FDD) system, time division duplex (time division duplex, TDD) ) system, worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5th generation, 5G) system or new radio (new radio, NR), sixth generation (6th generation, 6G) system Or future communication systems, etc.
  • the 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system or a standalone (standalone, SA) 5G mobile communication system.
  • the communication system may also be a public land mobile network (PLMN), a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, or an Internet of Things (Internet of Things).
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • Internet of Things Internet of Things
  • IoT Internet of Things
  • V2X vehicle to everything
  • UAV uncrewed aerial vehicle
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easy understanding.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 To facilitate understanding of the embodiment of the present application, an application scenario of the embodiment of the present application is described in detail first with reference to FIG. 1 .
  • Fig. 1 is a system architecture applicable to the method provided by the embodiment of the present application.
  • the system includes: a control device 110 and a radio frequency device 120 .
  • the control device 110 may serve as the main device of the base station, process digital baseband signals, and provide control and management of functions of various devices of the base station.
  • the radio frequency device 120 may serve as a radio frequency module of the base station, and may be used for processing intermediate frequency signals and/or radio frequency signals, and may also be used for receiving and transmitting wireless signals.
  • the control device 110 and the radio frequency device 120 are connected through a first interface
  • the first interface may be any one of the following interfaces: common public radio interface (common public radio interface, CPRI), enhanced CPRI (enhanced CPRI, eCPRI) interface, Or the interface defined in the future for connecting control equipment and radio frequency equipment.
  • CPRI common public radio interface
  • eCPRI enhanced CPRI
  • the first interface may be called a fronthaul (fronthaul) interface.
  • control device 110 may be any one of the following: a baseband processing unit (baseband unit, BBU), a distributed unit (distributed unit, DU), and a centralized unit (centralized unit, CU).
  • control device 110 may be any one of the following: a baseband processing unit (baseband unit, BBU), a distributed unit (distributed unit, DU), and a centralized unit (centralized unit, CU).
  • the radio frequency device 120 may be any one of the following: a radio remote unit (radio remote unit, RRU), a radio frequency unit (radio unit, RU), and an active antenna unit (active antenna unit, AAU).
  • control device 110 may include a centralized unit (centralized unit, CU) and a DU, where the DU is connected to the radio frequency device 120 through a first interface.
  • CU can also adopt a structure in which the control plane (control plane, CP) and the user plane (user plane, UP) are separated, that is, the CU can include a CU-CP entity and a CU-UP entity.
  • control device 110 is only connected to one radio frequency device 120 as an example, and the control device 110 may also be connected to more radio frequency devices.
  • radio frequency module such as components and printed circuit boards (printed circuit board, PCB)
  • PCB printed circuit board
  • the main factors affecting the reliability of solder joints of radio frequency modules are structural constraints, device packaging, temperature difference between business and environment, and business temperature difference. Take the influence of temperature difference on the reliability of the solder joints of the RF module as an example. During the temperature change, the solder joints of the RF module are affected by the stress introduced by the different thermal expansion dimensions of components and PCBs, which causes the solder joints to undergo long-term temperature difference cycles. After failure.
  • the temperature difference refers to the difference between the highest temperature and the lowest temperature within a period of time.
  • the temperature difference of the radio frequency device described in the following embodiments refers to the difference between the highest temperature of the radio frequency device and the lowest temperature of the radio frequency device within a period of time.
  • the temperature difference of the RF equipment is determined by the temperature difference between the environment and the service.
  • the ambient temperature difference refers to the temperature difference of the environment where the radio frequency device is located within a period of time.
  • the service temperature difference refers to the temperature difference of the radio frequency device caused by the radio frequency device performing different services within a period of time when the temperature of the environment where the radio frequency device is located remains constant.
  • the energy consumption of the base station equipment is mainly the energy consumption of the radio frequency module.
  • energy-saving technologies such as symbol off, channel off, carrier off (or cell off), and deep sleep are proposed. Turn off part of the hardware resources of the base station when idle, so as to achieve the effect of energy saving. For example, the triggering of each energy-saving technology needs to be judged based on the business load. If the business load of the base station is lower than the preset energy-saving trigger threshold and meets the energy-saving trigger condition, the corresponding energy-saving technology can be executed to make the base station equipment enter the corresponding energy-saving state.
  • the channel shutdown technology supports shutting down part of the radio frequency channels of the base station when the service load of the base station is low, so as to save energy consumption of the base station.
  • the carrier-off technology is mainly used in the scenario where multiple base stations provide coverage in the same area at the same time.
  • One of the base stations is used as the coverage layer base station, and the other base stations are planned as capacity layer base stations. override relationship.
  • the carrier-off technology judges the business volume of each base station in the coverage area, uses the base station with low business load as an energy-saving base station, and turns off all radio frequency channels to achieve the purpose of energy saving.
  • the deep sleep technology is based on turning off all radio frequency channels of the base station, and further shuts down more hardware resources such as the digital baseband chip of the base station to save more energy consumption.
  • the baseband processing unit (such as BBU) will control the radio frequency module (such as RRU) to turn on the energy saving feature (such as energy saving feature A), and when the radio frequency module turns on the energy saving feature , the main factor affecting the reliability of the solder joints of the radio frequency module is the increase of the service temperature difference.
  • the radio frequency module can periodically detect its own temperature difference when the energy saving feature is enabled, and automatically turn off the energy saving feature when its own temperature difference exceeds the preset threshold. Turn on the energy-saving feature when it is within the threshold.
  • the radio frequency module determines whether to turn on or off the energy-saving feature according to its own temperature difference, which will also cause the actual on-off state of the energy-saving feature to be inconsistent with the on-off state of the energy-saving feature displayed on the customer interface of the control device.
  • the embodiment of the present application provides a control method, so as to obtain more energy-saving gain while satisfying the stability of the temperature difference of the radio frequency device.
  • Fig. 6 shows a schematic flowchart of the control method provided by the embodiment of the present application. As shown in FIG. 6 , the method 600 may include S610 to S660 , and each step will be described in detail below.
  • the radio frequency device sends first information.
  • the control device receives first information.
  • the radio frequency device may be an RRU, RU or AAU
  • the control device may be a BBU, BU, CU or DU.
  • the first information is used to indicate a switching suggestion of at least one energy-saving feature.
  • the energy-saving feature includes one or more of the following: deep sleep feature, carrier turn-off feature, channel turn-off feature, and symbol turn-off feature.
  • the on-off suggestion of the energy-saving feature includes suggesting to enable the energy-saving feature or suggesting not to enable the energy-saving feature.
  • the on/off suggestion of the energy-saving feature includes suggesting to turn on the energy-saving feature or suggesting to turn off the energy-saving feature.
  • turning on the energy-saving feature can also be understood as activating the energy-saving feature or making the energy-saving feature take effect, for example, turning on the energy-saving feature can refer to turning off the hardware resources corresponding to the energy-saving feature to achieve the purpose of saving energy; turning off the energy-saving feature can also be understood as Deactivating the energy-saving feature or making the energy-saving feature ineffective, for example, disabling the energy-saving feature may refer to enabling hardware resources corresponding to the energy-saving feature.
  • enabling the channel shutdown feature means turning off some radio frequency channels when the service load is low, and disabling the channel shutdown feature means turning on all radio frequency channels all the time.
  • the first information is determined according to the first temperature difference of the radio frequency device and/or the degree of influence of different energy saving characteristics on the temperature difference of the radio frequency device.
  • the first temperature difference represents the difference between the highest temperature and the lowest temperature of the radio frequency device in the first detection cycle.
  • the duration of the first detection cycle can be 1 hour, 12 hours or 1 day, etc., which is not limited in this embodiment of the present application.
  • the influence of the energy-saving feature on the temperature difference of the radio frequency device is proportional to the energy-saving gain brought by the energy-saving feature, that is, the greater the energy-saving gain brought by the energy-saving feature, the greater the impact on the temperature difference of the radio frequency device after the energy-saving feature is turned on.
  • the minimum temperature of the radio-frequency device will decrease, and the temperature difference of the radio-frequency device will increase. may be the degree to which the temperature difference of the radio frequency device increases after the energy-saving feature is turned on.
  • the degree of influence of different energy-saving features on the temperature difference of the radio frequency device may be represented by an increase in the temperature difference of the radio frequency device after the energy-saving feature is turned on for a unit period of time.
  • the unit duration may be 1 minute, 1 quarter of an hour, 1 hour or 1 day, etc., which is not limited in this embodiment of the present application.
  • the increase of the temperature difference of the radio frequency device can be used to represent the difference between the temperature difference of the radio frequency device before and after the energy saving feature is turned on, or can be used to represent the increase percentage of the temperature difference of the radio frequency device after the energy saving feature is turned on, which is not limited in this embodiment of the present application.
  • Table 1 shows the degree of influence of different energy-saving characteristics on the temperature difference of the radio frequency device.
  • Energy-saving feature Energy-saving gain The increase in temperature difference of the RF device after the energy-saving feature is turned on for a quarter of an hour
  • the degree of influence of different energy-saving characteristics on the temperature difference of the radio frequency device may be preconfigured in the radio frequency device, or may be determined by the radio frequency device according to historical data, which is not limited in this embodiment of the present application.
  • the historical data includes the duration of different energy-saving features being turned on, the temperature difference of the radio frequency equipment before and after the different energy-saving features are turned on, and the like.
  • the embodiment of the present application does not limit the manner in which the radio frequency device determines the first information.
  • the radio frequency device determines the first information according to the first temperature difference. For example, if the first temperature difference is relatively low (for example, the first temperature difference is 1/2 of the temperature difference threshold), the radio frequency device determines that it is recommended to enable all energy-saving features; It is definitely recommended not to enable all power saving features. Further, the radio frequency device determines the first information according to switch suggestions of different energy-saving characteristics.
  • the radio frequency device determines the first information according to the degree of influence of different energy-saving characteristics on the temperature difference of the radio frequency device. For example, the radio frequency device determines that it is recommended not to enable the energy saving feature that has the greatest impact on the temperature difference of the radio frequency device. Alternatively, the radio frequency device determines that it is recommended to enable the energy saving feature that has the least impact on the temperature difference of the radio frequency device. Further, the radio frequency device determines the first information according to switch suggestions of different energy-saving characteristics.
  • the radio frequency device determines the temperature difference of the radio frequency device after different energy saving features are turned on for a unit time according to the first temperature difference and the degree of influence of different energy saving features on the temperature difference of the radio frequency device; the radio frequency device turns on the preset time according to different energy saving features After the temperature difference of the radio frequency device, the first information is determined.
  • the radio frequency device may determine switching suggestions for different energy saving features by comparing the temperature difference and the temperature difference threshold of the radio frequency device after different energy saving features are turned on for a preset period of time.
  • the radio frequency device may determine to suggest not enabling the energy saving feature, or, if the energy saving feature has been turned on, the radio frequency device may determine to recommend The energy-saving feature is turned off; if the temperature difference of the radio frequency device is lower than the temperature difference threshold after a certain energy-saving feature is turned on for a unit period of time, the radio frequency device may determine to suggest turning on the energy-saving feature. For another example, the radio frequency device may determine switching suggestions for different energy saving features by comparing the temperature difference of the radio frequency device after the unit time period when different energy saving features are turned on.
  • the radio frequency device determines that it is recommended to enable the energy saving feature corresponding to the lowest temperature difference, or the radio frequency device determines that it is recommended not to enable the energy saving feature corresponding to the highest temperature difference. Further, the radio frequency device determines the first information according to switch suggestions of different energy-saving characteristics.
  • the temperature difference threshold represents a maximum value of the temperature difference of the radio frequency device that is allowed without affecting the reliability of the solder joint of the radio frequency device.
  • the unit duration may represent the duration for which the expected energy-saving feature of the radio frequency device is turned on.
  • the temperature difference reached by the radio frequency device after being turned on for 15 minutes according to the first temperature difference and different energy-saving features determined in Table 1 is shown in Table 2. .
  • the radio frequency device may determine that the first information is used to indicate that the switch suggestion of the energy-saving feature 1 to the energy-saving feature 4 is recommended to be turned on, and/or the first information is used to indicate that the switch suggestion of the energy-saving feature 5 is suggested not to be turned on.
  • the radio frequency device determines that it is recommended to enable energy-saving feature 1
  • the radio frequency device determines that it is recommended not to enable energy-saving feature 5.
  • the radio frequency device uses the first model to determine the temperature difference of the radio frequency device after different energy saving features are turned on for a unit time period.
  • the input parameters of the first model are the first temperature difference, the unit duration, and the identification of different energy-saving characteristics or the energy-saving gain of different energy-saving characteristics
  • the output parameters of the first model are the temperature difference of the radio frequency device after the unit duration of different energy-saving characteristics is turned on.
  • the first model is obtained by training according to historical data, and the historical data includes the duration of different energy-saving features being turned on, and the temperature difference of the radio frequency device before and after different energy-saving features are turned on.
  • the identification or energy-saving gain of different energy-saving features, the duration of different energy-saving features being turned on, and the temperature difference of radio frequency equipment before different energy-saving features are turned on are used as input parameters for training the first model, and the temperature difference of radio frequency equipment after different energy-saving features are turned on is used to judge the first Whether the model is trained successfully.
  • the identification or energy-saving gain of energy-saving feature 1 the duration when energy-saving feature 1 is turned on, and the temperature difference of the radio frequency device before energy-saving feature 1 is turned on are used as input parameters for training the first model.
  • the temperature difference of the radio frequency equipment is compared, if the difference between the two is less than the preset threshold, it is considered that the first model training is successful; if the difference between the two is not less than the preset threshold, the first model is continued to be trained.
  • the radio frequency device determines the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy saving features are turned on according to the first temperature difference and the degree of influence of different energy saving features on the temperature difference of the radio frequency device;
  • the first information is determined according to the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy-saving features are turned on.
  • the radio frequency device may determine switching suggestions for different energy saving features by comparing the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold and the unit time after different energy saving features are turned on.
  • the radio frequency device determines to suggest turning on the energy-saving feature; if the temperature difference of the radio-frequency device reaches the temperature difference threshold after a certain energy-saving feature is turned on If the required duration does not exceed the unit duration, the radio frequency device determines to suggest not enabling the energy saving feature, or, if the energy saving feature is already enabled, the radio frequency device determines to recommend disabling the energy saving feature. For another example, the radio frequency device may determine switching suggestions for different energy saving features by comparing the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold when different energy saving features are turned on.
  • the radio frequency device determines that it is recommended to enable the energy saving feature corresponding to the longest duration, or the radio frequency device determines that it is recommended not to enable the energy saving feature corresponding to the shortest duration. Further, the radio frequency device determines the first information according to switch suggestions of different energy-saving characteristics.
  • the temperature difference threshold represents a maximum value of the temperature difference of the radio frequency device that is allowed without affecting the reliability of the solder joint of the radio frequency device.
  • the unit duration may represent the duration for which the expected energy-saving feature of the radio frequency device is turned on.
  • the time required for the temperature difference of the radio frequency device to reach the temperature difference threshold after the radio frequency device is turned on according to the first temperature difference and different energy-saving features determined in Table 1 is as follows: Table 3 shows.
  • Energy-saving feature The time required for the temperature difference of the RF device to reach the temperature difference threshold after the energy-saving feature is turned on
  • the energy-saving features recommended to be turned on by the radio frequency device include the energy-saving feature 1 to energy saving feature 4.
  • the time required for the temperature difference of the radio frequency device to reach 25°C is equal to 15 minutes, so it is recommended not to enable the energy-saving feature 5 of the radio frequency device.
  • the radio frequency device may determine that the first information is used to indicate that the switch suggestion of the energy-saving feature 1 to the energy-saving feature 4 is recommended to be turned on, and/or the first information is used to indicate that the switch suggestion of the energy-saving feature 5 is suggested not to be turned on.
  • the radio frequency device determines to recommend enabling energy-saving feature 1
  • the radio frequency device determines to recommend not enabling energy-saving feature 5.
  • the radio frequency device determines the switching suggestion of the energy-saving characteristic according to the first temperature difference and the second model.
  • the input parameters of the second model are the first temperature difference and the identification of the energy-saving feature or the energy-saving gain, and the output parameters of the second model are a suggestion of whether to enable the energy-saving feature.
  • the second model is trained based on historical data, and the historical data includes the duration of different energy-saving features being turned on, and the temperature difference of the radio frequency device before and after different energy-saving features are turned on.
  • the identification or energy-saving gain of different energy-saving features, the duration of different energy-saving features, and the temperature difference of radio frequency equipment before different energy-saving features are turned on are used as input parameters for training the second model, and the temperature difference of radio frequency equipment after different energy-saving features are turned on.
  • the relationship is used to judge whether the second model is trained successfully.
  • the identification or energy-saving gain of energy-saving feature 1, the turn-on duration of energy-saving feature 1, and the temperature difference of the radio frequency device before energy-saving feature 1 is turned on are used as input parameters for training the first model, and the second model outputs suggestions whether to turn on energy-saving feature 1 based on the input parameters ; If the temperature difference of the RF device is not lower than the temperature difference threshold after the energy-saving feature 1 is enabled, and the output of the second model suggests not to enable the energy-saving feature 1, or, if the temperature difference of the RF device is lower than the temperature difference threshold after the energy-saving feature 1 is enabled, and the second model If the output suggests turning on the energy-saving feature 1, it means that the second model outputs a correct result. If the probability of the second model outputting a correct result is greater than the preset threshold, it is considered that the second model is trained successfully.
  • the embodiment of the present application does not limit the specific content of the first information.
  • the first information may be used to indicate that the energy-saving feature is recommended to be turned on, or it may be used to implicitly indicate that the energy-saving feature is recommended to be turned on, or the first information may be used to indicate that the energy-saving feature
  • the energy-saving features that are enabled can also be used to implicitly indicate the energy-saving features that are not recommended to be enabled.
  • the first information includes an identifier of at least one energy-saving feature
  • the at least one energy-saving feature may include an energy-saving feature that is recommended to be enabled and/or an energy-saving feature that is recommended not to be enabled.
  • the first information includes an identification of the energy-saving feature suggested to be turned on, that is, the first information is used to explicitly indicate the energy-saving feature suggested to be turned on.
  • the control device determines the energy-saving characteristics suggested to be turned on according to the identification of the energy-saving characteristics included in the first information.
  • the identification of the energy-saving feature may be the energy-saving gain achieved by the energy-saving feature.
  • the first information includes the identifications of energy-saving characteristics 1 to 4, and the energy-saving characteristics suggested by the first information include energy-saving characteristics 1 to 4.
  • the control device determines, according to the identifications of the energy-saving characteristics 1 to 4, that the energy-saving characteristics recommended to be turned on include the energy-saving characteristics 1 to 4.
  • the first information may also be used to implicitly indicate an energy saving feature that is not recommended to be enabled.
  • the energy-saving feature suggested not to be enabled indicated by the first information corresponds to the identifier of the energy-saving feature not included in the first information. For example, if the first information does not include the identification of the energy-saving feature 5, the first information is also used to indicate that it is recommended not to enable the energy-saving feature 5 .
  • the first information includes an identification of an energy-saving feature that is recommended not to be enabled, that is, the first information is used to display an energy-saving feature indicating that it is not recommended to be enabled.
  • the control device determines the energy-saving feature that is not recommended to be turned on according to the identification of the energy-saving feature included in the first information. For example, if the first information includes the identification of the energy-saving feature 5, the control device determines that the energy-saving feature 5 is not recommended to be turned on according to the first information.
  • the first information may also be used to implicitly indicate an energy saving feature that is recommended to be turned on.
  • the recommended energy-saving feature indicated by the first information corresponds to an identifier of an energy-saving feature not included in the first information. For example, if the first information does not include the identifications of energy-saving characteristics 1 to 4, the first information is also used to indicate that the energy-saving characteristics recommended to be turned on include energy-saving characteristics 1 to 4.
  • the first information includes the identification of the energy-saving feature recommended to be enabled and the identification of the energy-saving feature recommended not to be enabled, that is, the first information is used to display the energy-saving feature recommended to be enabled and the energy-saving feature not recommended to be enabled.
  • the first information is shown in Table 4.
  • the first information includes first indication information corresponding to at least one energy-saving feature, and the first indication information is used to indicate whether it is recommended to turn on the at least one energy-saving feature.
  • the first indication information is 1-bit information. When the first indication information is "0", the first indication information is used to indicate that it is recommended not to enable the energy-saving feature; when the first indication information is "1", the first indication information is The indication information is used to indicate that it is recommended to enable the energy-saving feature; or, when the first indication information is "1", the first indication information is used to indicate that it is recommended not to enable the energy-saving feature; when the first indication information is "0", the first indication The information is used to indicate that the energy saving feature is turned on for energy saving.
  • the control device determines a switch suggestion for at least one energy-saving characteristic according to the first indication information corresponding to the at least one energy-saving characteristic.
  • the first information is shown in Table 5. It should be noted that Table 5 only takes the example that the first information includes a plurality of first indication information corresponding to different energy-saving characteristics one-to-one, and does not limit that there must be a one-to-one correspondence relationship between different energy-saving characteristics and the first indication information . For example, if the switch suggestions for multiple energy-saving features are the same, the multiple energy-saving features may correspond to one piece of first indication information.
  • the first information includes a correspondence between the identifier of the energy-saving feature and the first indication information.
  • the first information includes a one-to-one correspondence between the identification of the energy-saving feature and the first instruction information, or, in the case that the switch suggestions of multiple energy-saving characteristics are the same, the first information includes the identification of the energy-saving feature and the first instruction information. Many-to-one relationship.
  • the first information further includes second indication information corresponding to the at least one energy-saving feature, and the second indication information is used to indicate an on/off state of the at least one energy-saving feature.
  • the control device can determine the switch state of at least one energy-saving feature according to the second indication information.
  • the switch state of the energy-saving feature includes energy-saving or non-energy-saving (or includes on or off), wherein, energy-saving or on refers to a state in which the energy-saving feature is in an on state, an activated state, or an effective state, etc. Or off refers to a state where the energy-saving feature is in an off state, in an inactive state, or in an ineffective state and cannot achieve energy saving.
  • the second indication information is a 1-bit information.
  • the second indication information is used to indicate that the switch state of the energy saving feature is energy saving; when the second indication information is "1", The second indication information is used to indicate that the switch state of the energy saving feature is not energy saving; or, when the second indication information is "1", the second indication information is used to indicate that the switch state of the energy saving feature is energy saving; when the second indication information is When "0", the second indication information is used to indicate that the switch state of the energy-saving feature is not energy-saving.
  • the on/off state of the energy-saving feature includes full energy-saving, partial energy-saving or no energy-saving at all, wherein, all energy-saving means that the energy-saving feature is on, all non-energy-saving means that the energy-saving feature is off, and partial energy-saving means is the power saving feature is partially on.
  • the second indication information is a 1-bit information.
  • the second indication information When the second indication information is "0", the second indication information is used to indicate that the switch state of the energy-saving feature is all energy-saving; when the second indication information is "1", , the second indication information is used to indicate that the switching state of the energy-saving feature is partial energy saving; when the second indication information is "2", the second indication information is used to indicate that the switching state of the energy-saving feature is no energy saving at all.
  • the first information is shown in Table 6. It should be noted that Table 6 only takes the example that the first information includes a plurality of second indication information corresponding to different energy-saving characteristics one-to-one, and does not limit that there must be a one-to-one correspondence relationship between different energy-saving characteristics and the second indication information . For example, if the switching states of multiple energy-saving features are the same, the multiple energy-saving features may correspond to one piece of second indication information. It should also be noted that Table 6 uses an example in which the first information includes first indication information and second indication information for illustration.
  • the first information may include the identification of the energy-saving feature recommended to be turned on and the second indication information, or the first information It may include an identifier of an energy-saving feature that is recommended not to be enabled and second indication information, or the first information includes an identifier of an energy-saving feature, first indication information, and second indication information.
  • the first information further includes temperature information, where the temperature information is used to determine a first temperature difference of the radio frequency device.
  • the temperature information is the first temperature difference of the radio frequency device, that is, the first information further includes the first temperature difference.
  • the temperature information includes the minimum temperature value and the maximum temperature value of the radio frequency device during the first detection period, that is, the first information also includes the minimum temperature value and the maximum temperature value of the radio frequency device during the first detection period.
  • the temperature information includes a difference between the first temperature difference of the radio frequency device and the temperature difference threshold, that is, the first information further includes a difference between the first temperature difference of the radio frequency device and the temperature difference threshold.
  • the control device sends a first instruction.
  • the radio frequency device receives a first instruction.
  • the first instruction is used to instruct to turn on the first energy-saving feature and/or turn off the second energy-saving feature, and the first instruction is determined by the control device according to the first information.
  • the first energy-saving feature includes at least one energy-saving feature suggested to be turned on in the first information
  • the second energy-saving feature includes at least one energy-saving feature suggested not to be turned on in the first information.
  • the energy-saving features suggested by the first information include energy-saving features 1 to 4, then the first energy-saving features include one or more of energy-saving features 1-4, and the second energy-saving features may include energy-saving features 5.
  • the first energy-saving feature is an energy-saving feature that is in an off state among the energy-saving features suggested by the first information to be turned on
  • the second energy-saving feature is an energy-saving feature that is in an on state among the energy-saving features that the first information suggests not to be turned on.
  • the first instruction determined by the control device according to the first information is used to instruct to enable the first energy-saving features.
  • all energy-saving characteristics include energy-saving characteristics 1 to 5
  • the energy-saving characteristics recommended by the first information include energy-saving characteristics 1 to 5
  • the first instruction determined by the control device is used to instruct to turn on the first energy-saving characteristics
  • the first energy saving characteristic includes one or more of the energy saving characteristic 1 to the energy saving characteristic 5 .
  • the first instruction determined by the control device according to the first information is used to instruct to turn off the second energy-saving feature.
  • all energy-saving features include energy-saving features 1 to 5
  • the energy-saving features not enabled by the first information include energy-saving features 1 to 5
  • the first instruction determined by the control device is used to instruct to turn off the second energy-saving feature
  • the second energy-saving characteristic includes one or more of the energy-saving characteristics that have been turned on among the energy-saving characteristic 1 to the energy-saving characteristic 5 .
  • the control device may not generate the first instruction.
  • the control device determines according to the first information
  • the first instruction may be used to instruct to turn on the first energy saving feature, and the first instruction may also be used to instruct to turn off the second energy saving feature.
  • the first energy-saving feature includes at least one energy-saving feature that the first information suggests to enable, and the second energy-saving feature includes at least one energy-saving feature that the first information suggests not to enable.
  • the embodiment of the present application does not limit how the control device determines the switch state of the energy-saving feature that the first information suggests not to be turned on.
  • control device determines that the energy-saving feature that the first information recommends not enabling has been enabled.
  • the control device may determine switch states of different energy-saving characteristics according to the second indication information.
  • the control device determines the first energy-saving characteristic according to the energy-saving characteristic suggested to be turned on by the first information
  • activation conditions of different energy-saving characteristics may also be considered. That is to say, the first energy-saving feature may be an energy-saving feature that meets an activation condition among the energy-saving features suggested to be turned on by the first information.
  • the energy-saving features suggested by the first information include energy-saving features 1 to 4, and if the control device determines that the activation conditions of energy-saving features 1 and 2 have been met, the first instruction determined by the control device can be used to instruct to turn on energy-saving features Feature 1 and/or Energy Saving Feature 2.
  • the control device may determine the first instruction according to the temperature information, the energy-saving feature suggested to be turned on by the first information, and/or the energy-saving feature suggested not to be turned on.
  • the control device first determines the first temperature difference of the radio frequency device according to the temperature information, and then determines the switching strategy of at least one energy saving characteristic according to the first temperature difference and the degree of influence of different energy saving characteristics on the temperature difference of the radio frequency device.
  • the switching policy of the energy-saving feature includes enabling the energy-saving feature or disallowing the energy-saving feature. Further, the control device determines the first instruction according to the switching strategy of at least one energy-saving feature and/or the first information.
  • the control device Determine the first command.
  • the switching strategy of the energy-saving feature 1 determined by the control device is to allow the switching of the energy-saving feature 1
  • the switching suggestion of the energy-saving feature 1 indicated by the first information is to suggest that the switching strategy of the energy-saving feature 1 be turned on. Determine the first command.
  • the control device determines the first instruction according to the switching strategy of the at least one energy-saving feature. For example, the switching strategy of the energy-saving feature 1 determined by the control device is not allowed to turn on the energy-saving feature 1, and the switching suggestion of the energy-saving feature 1 indicated by the first information is a suggestion to turn on the energy-saving feature 1, then the control device determines the first an instruction.
  • the method for the control device to determine the switching policy of at least one energy-saving feature is the same as the method for the radio frequency device to determine the switch suggestion for at least one energy-saving feature.
  • the embodiments of the present application will not describe it in detail.
  • the method 600 further includes S630.
  • the radio frequency device turns on the first energy-saving feature and/or turns off the second energy-saving feature according to the first instruction.
  • the method 600 may continue to execute S640 to S660.
  • the radio frequency device sends third information.
  • the control device receives third information.
  • the third information is used to indicate a switching suggestion of at least one energy-saving feature.
  • the third information is determined according to the second temperature difference of the radio frequency device and/or the influence degree of different energy saving characteristics on the temperature difference of the radio frequency device.
  • the second temperature difference indicates the difference between the highest temperature and the lowest temperature of the radio frequency device in the second detection cycle.
  • the duration of the second detection cycle can be 1 hour, 12 hours, or 1 day, which is not limited in this embodiment of the present application. It should be noted that the second temperature difference is different from the first temperature difference, and the second detection period is after the first detection period. Exemplarily, the difference between the second temperature difference and the first temperature difference is greater than a preset threshold.
  • the manner in which the radio frequency device determines the third information is the same as the manner in which the radio frequency device determines the first information, which is not described in detail here for brevity.
  • the energy-saving characteristics recommended by the third information to be turned on are not exactly the same as those suggested by the first information to be turned on, or the energy-saving characteristics suggested by the third information not to be turned on are not exactly the same as those suggested by the first information to be turned off.
  • the energy-saving features suggested by the first information include energy-saving features 1 to 4
  • the energy-saving features suggested by the third information include energy-saving features 1 and 2.
  • control device sends a third instruction.
  • radio frequency device receives the third instruction.
  • the third instruction is used to instruct to turn on the fifth energy-saving characteristic and/or turn off the sixth energy-saving characteristic, and the third instruction is determined by the control device according to the third information.
  • the fifth energy-saving feature includes at least one energy-saving feature suggested to be turned on in the third information
  • the sixth energy-saving feature includes at least one energy-saving feature suggested not to be turned on in the third information.
  • the energy-saving features suggested to be turned on in the third information include energy-saving features 1 and 2
  • the fifth energy-saving features include energy-saving features 1 and/or 2
  • the sixth energy-saving features include energy-saving features 3 to 5. one or more.
  • control device determines the third instruction according to the third information is the same as the manner in which the first instruction is determined according to the first information, which will not be described in detail this time for the sake of brevity.
  • the third instruction determined by the control device may be the same as or different from the first instruction, and if the third instruction determined by the control device is the same as the first instruction, the control device may not send the third instruction to the radio frequency device.
  • the radio frequency device turns on the fifth energy-saving feature and/or turns off the sixth energy-saving feature according to the third instruction.
  • the radio frequency device may send at least one switching suggestion of an energy-saving feature to the control device, so that the control device may send a first instruction to the radio frequency device according to the switching suggestion of at least one energy-saving feature, so that the control device may send a first instruction to the radio frequency device
  • a more reasonable first instruction indicates that the first energy-saving feature can be turned on stably for a period of time without causing the temperature difference of the radio frequency device to exceed the preset temperature difference threshold, thereby preventing the radio frequency device from turning on the energy-saving feature and turning off the energy-saving feature Repeatedly, it can also avoid the energy-saving gain loss caused by disabling the energy-saving feature of the radio frequency equipment.
  • the radio frequency device will adjust radio frequency resources when the energy saving feature is turned on and off. Therefore, based on the embodiment of the present application, the radio frequency device will not repeatedly turn on and off the energy saving feature, thereby ensuring wireless service performance.
  • the radio frequency device can be turned on stably for a period of time without causing the temperature difference of the radio frequency device to exceed the temperature difference threshold, it can not only obtain the energy-saving gain corresponding to the energy-saving feature, but also ensure that the temperature difference of the radio frequency device is stable below the temperature difference threshold , so as to obtain more energy-saving gain while ensuring the stability of the temperature difference of the radio frequency device.
  • the temperature difference of the radio frequency device is related to the reliability of the solder joints of the radio frequency device. When the temperature difference of the radio frequency device is stable, the reliability of the solder joints of the radio frequency device can also be guaranteed.
  • the radio frequency device can send third information to the control device, so that the control device can adjust the opening and/or closing of the energy saving feature in time according to the third information, which is beneficial to avoid the energy saving feature being always on
  • the state causes the temperature difference of the radio frequency device to exceed the temperature difference threshold. That is to say, according to the embodiment of the present application, the radio frequency device sends the switch suggestion of the energy saving feature to the control device, so that the control device issues different instructions according to the switch suggestion to control the radio frequency device to turn on and/or turn off the energy saving feature, so that the radio frequency device can Control its own temperature differential by turning energy saving features on and/or off.
  • the information (the first information or the third information) determined by the radio frequency device according to its own temperature difference and the degree of influence of different energy saving features on the temperature difference of the radio frequency device (the first information or the third information) suggests that the energy saving feature to be enabled includes energy saving feature 1 to energy saving feature 4.
  • the instruction sent by the control device to the radio frequency device according to the information received from the radio frequency device is used to instruct to turn on the energy saving feature 4 .
  • the radio frequency device turns on the energy saving feature 4 according to the instruction received from the control device.
  • the radio frequency device When the energy-saving feature 4 is turned on for a period of time, and the radio frequency device detects that its own temperature difference is 23°C, the information (the first information or the third information) determined by the radio frequency device based on its own temperature difference and the degree of influence of different energy-saving features on the radio frequency device is recommended to be turned on
  • the energy-saving features include energy-saving feature 1 and energy-saving feature 2.
  • the instruction (first instruction or third instruction) sent by the control device to the radio frequency device according to the information received from the radio frequency device is used to instruct to turn on the energy saving feature 2 and turn off the energy saving feature 4 .
  • the radio frequency device turns on the energy-saving feature 2 and turns off the energy-saving feature 4 according to the instruction received from the control device.
  • the radio frequency device After the energy-saving feature 2 is enabled for a period of time, the radio frequency device detects that its own temperature difference is 25°C. Since the temperature difference of the radio-frequency device has reached the temperature difference threshold, the radio-frequency device sends a message to the control device suggesting not to enable energy-saving features 1 to 5 (first information or third information). Further, the instruction (first instruction or third instruction) sent by the control device to the radio frequency device according to the information received from the radio frequency device is used to instruct to turn off the energy saving feature 2 .
  • the radio frequency device can re-indicate the energy-saving features recommended to be turned on to the control device (for example, the energy-saving features recommended to be turned on include energy-saving feature 1 and energy-saving feature 2).
  • the control device can determine the switch status of different energy-saving characteristics according to the second indication information, so that the display of the user interface of the control device can be avoided.
  • the switch state of the energy-saving feature is inconsistent with the actual switch state of the energy-saving feature. For example, there will be no scenario where the user interface of the control device displays that the energy-saving feature is enabled, but the radio frequency device does not actually enable the energy-saving feature. After the control device determines the actual on-off state of the energy-saving feature, it can send accurate instructions to the radio frequency device.
  • control device determines that the energy-saving feature #1 is on according to the second instruction information, and determines that the energy-saving feature #1 is an energy-saving feature that is not recommended to be turned on according to the first information, then the control device can send an instruction to turn off the energy-saving feature #1 to the radio frequency device .
  • Fig. 7 shows a schematic flowchart of the control method provided by the embodiment of the present application. As shown in FIG. 7 , the method 700 may include S710 to S730, each step will be described in detail below.
  • the radio frequency device sends temperature information.
  • the control device receives temperature information.
  • the radio frequency device may be an RRU, RU or AAU
  • the control device may be a BBU, BU, CU or DU.
  • the temperature information is used to determine the first temperature difference of the radio frequency device.
  • the first temperature difference represents the difference between the highest temperature and the lowest temperature of the radio frequency device in the first detection cycle.
  • the duration of the first detection cycle can be 1 hour, 12 hours or 1 day, etc., which is not limited in this embodiment of the present application.
  • the temperature information is the first temperature difference of the radio frequency device.
  • the temperature information includes a minimum temperature value and a maximum temperature value of the radio frequency device in the first detection period.
  • the control device determines the first temperature difference according to the difference between the highest temperature value and the lowest temperature value included in the temperature information.
  • the temperature information includes a difference between the first temperature difference of the radio frequency device and the temperature difference threshold, that is, the first information further includes a difference between the first temperature difference of the radio frequency device and the temperature difference threshold.
  • the temperature difference threshold represents a maximum value of the temperature difference of the radio frequency device that is allowed without affecting the reliability of the solder joint of the radio frequency device.
  • the radio frequency device further sends second indication information corresponding to different energy saving characteristics to the control device.
  • second indication information For the description of the second indication information, reference may be made to the above S610.
  • control device sends a second instruction.
  • radio frequency device receives the second instruction.
  • control device sends a second instruction to the radio frequency device according to the first temperature difference.
  • control device first determines the switching strategy of at least one energy-saving characteristic according to the first temperature difference and/or the degree of influence of different energy-saving characteristics on the temperature difference of the radio frequency device, and then determines the second instruction according to the switching strategy of at least one energy-saving characteristic.
  • the second instruction is used to instruct to turn on at least one energy-saving feature and/or turn off at least one energy-saving feature.
  • the switching policy of the energy-saving feature includes enabling the energy-saving feature or disallowing the energy-saving feature.
  • the embodiment of the present application does not limit the manner in which the control device determines the switching policy of the energy-saving feature.
  • the control device determines the switching strategy of the energy-saving feature according to the first temperature difference. For example, if the first temperature difference is relatively low (for example, the first temperature difference is 1/2 of the temperature difference threshold), the control device determines that all energy-saving features are allowed to be turned on; if the first temperature difference is relatively high (for example, it is close to the temperature difference threshold), the control device Make sure you do not allow all power saving features to be enabled.
  • the control device determines switching strategies for different energy-saving characteristics according to the degree of influence of different energy-saving characteristics on the temperature difference of the control device. For example, the control device determines that it is allowed not to enable the energy-saving feature that has the greatest impact on the temperature difference of the radio frequency device. Alternatively, the control device determines that it is not allowed to enable the energy-saving feature that has the least impact on the temperature difference of the radio frequency device.
  • the control device determines the temperature difference of the radio frequency device after different energy saving features are turned on for a unit time according to the first temperature difference and the degree of influence of different energy saving features on the temperature difference of the radio frequency device;
  • the temperature difference of the radio frequency equipment determines the switching strategy of the energy-saving characteristic.
  • the control device may determine switching strategies for different energy-saving features by comparing the temperature difference and the temperature difference threshold of the radio frequency device after the different energy-saving features are turned on for a preset period of time.
  • the control device determines that the energy-saving feature is not allowed to be turned on, or, if the energy-saving feature is already turned on, the control device determines to turn off the energy-saving feature. feature; if the temperature difference of the radio frequency device is lower than the temperature difference threshold after a certain energy-saving feature is turned on for a unit time, the control device determines that the energy-saving feature is allowed to be turned on.
  • the control device may determine switching strategies for different energy-saving features by comparing the temperature difference of the radio frequency device after the unit time period when different energy-saving features are turned on. For example, the control device determines that the energy-saving feature corresponding to the lowest temperature difference is allowed to be turned on, or the control device determines that the energy-saving feature corresponding to the highest temperature difference is not allowed to be turned on.
  • the temperature difference threshold represents a maximum value of the temperature difference of the radio frequency device that is allowed without affecting the reliability of the solder joint of the radio frequency device.
  • the unit duration may represent the duration during which the energy-saving feature is expected to be turned on.
  • the control device uses the first model to determine the temperature difference of the radio frequency device after different energy-saving features are turned on for a unit time period.
  • the first model refers to the above S610
  • the description of determining the temperature difference of the radio frequency device after different energy-saving features are turned on for a unit time according to the first model refer to the above S610.
  • the control device determines the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy saving features are enabled according to the first temperature difference and the degree of influence of different energy saving features on the temperature difference of the radio frequency device. According to the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold after different energy-saving features are turned on, the switching strategy of the energy-saving features is determined. For example, the control device may determine switching strategies for different energy-saving features by comparing the time required for the temperature difference of the radio frequency device to increase to the temperature difference threshold and the unit time after different energy-saving features are turned on.
  • the control device determines that the energy-saving feature is allowed to be turned on; if the temperature difference of the radio frequency device reaches the temperature difference threshold after a certain energy-saving feature is turned on If the required duration does not exceed the unit duration, the radio frequency device determines that the energy saving feature is not allowed to be enabled, or, in the case that the energy saving feature is already enabled, the radio frequency device determines to disable the energy saving feature.
  • the control device may determine switching strategies for different energy-saving characteristics by comparing the time required for the temperature difference of the radio frequency device to be turned on by different energy-saving characteristics to increase to the temperature difference threshold. For example, the control device determines that the energy saving feature corresponding to the longest duration is allowed to be enabled, or the radio frequency device determines that the energy saving feature corresponding to the shortest duration is not allowed to be enabled.
  • control device determines the second instruction according to switching strategies of different energy-saving characteristics, and the second instruction is used to instruct to turn on at least one energy-saving characteristic and/or turn off at least one energy-saving characteristic.
  • the control device receives second instruction information corresponding to different energy-saving characteristics
  • the control device determines the switch states of different energy-saving characteristics according to the second instruction information, and combines the switch states of different energy-saving characteristics with the switches of different energy-saving characteristics
  • the policy determines the second instruction. For example, if the switching state of the energy-saving feature 1 is energy-saving, and the switching policy of the energy-saving feature 1 is not allowed to be turned on, the second instruction may be used to instruct to turn off the energy-saving feature 1 .
  • activation conditions of different energy-saving features may also be considered. That is, the energy-saving feature indicated to be turned on is the energy-saving feature that meets the activation condition among the energy-saving features that are allowed to be turned on.
  • the method 700 further includes S730.
  • the radio frequency device turns on at least one energy saving feature and/or turns off at least one energy saving feature according to the second instruction.
  • the control device determines the switching strategy of different energy-saving characteristics according to the temperature difference of the radio frequency device and/or the degree of influence of different energy-saving characteristics on the temperature difference of the radio-frequency device, which is beneficial to determine that even if it is turned on stably for a period of time, it will not cause the radio-frequency device to
  • the energy-saving feature of the temperature difference exceeding the temperature difference threshold can prevent the radio frequency device from repeatedly turning on the energy-saving feature and turning off the energy-saving feature, and can also avoid the loss of energy-saving gain caused by the radio frequency device turning off the energy-saving feature. It can be understood that the radio frequency device will adjust radio frequency resources when the energy saving feature is turned on and off. Therefore, based on the embodiment of the present application, the radio frequency device will not repeatedly turn on and off the energy saving feature, thereby ensuring wireless service performance.
  • the radio frequency device can also send second instruction information corresponding to different energy-saving characteristics to the control device, so that the control device can determine the on-off status of different energy-saving characteristics according to the second instruction information, thereby avoiding the switching of energy-saving characteristics displayed on the user interface of the control device.
  • the state is inconsistent with the actual switch state of the energy-saving feature. For example, there will be no scenario where the user interface of the control device displays that the energy-saving feature is enabled, but the radio frequency device does not actually enable the energy-saving feature. After the control device determines the actual on-off state of the energy-saving feature, it can send accurate instructions to the radio frequency device.
  • control device determines that the energy-saving feature #1 is on according to the second instruction information, and determines that the energy-saving feature #1 is an energy-saving feature that is not recommended to be turned on according to the first information, then the control device can send an instruction to turn off the energy-saving feature #1 to the radio frequency device .
  • FIG. 8 is a schematic block diagram of an apparatus 800 provided by an embodiment of the present application. As shown in the figure, the apparatus 800 may include: a transceiver unit 810 and a processing unit 820 .
  • the apparatus 800 may be the radio frequency device in the above method embodiment, or may be a chip for realizing the function of the radio frequency device in the above method embodiment.
  • the apparatus 800 may correspond to the radio frequency device in the method 600 or the method 700 according to the embodiment of the present application, and the apparatus 800 may include a radio frequency device for performing the method 600 in FIG. 6 or the method 100 in FIG. 7 The method unit of execution. Moreover, each unit in the apparatus 800 and other operations and/or functions described above are respectively intended to implement the corresponding flow of the method 600 in FIG. 6 or the method 700 in FIG. 7 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the apparatus 800 may be the control device in the above method embodiment, or a chip for realizing the functions of the control device in the above method embodiment.
  • the apparatus 800 may correspond to the control device in the method 600 or the method 700 according to the embodiment of the present application, and the apparatus 800 may include a control device for executing the method 600 in FIG. 6 or the method 700 in FIG. 7
  • the unit of method to execute The unit of method to execute.
  • each unit in the apparatus 800 and other operations and/or functions described above are respectively intended to implement the corresponding flow of the method 600 in FIG. 6 or the method 700 in FIG. 7 .
  • the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • transceiver unit 810 in the device 800 may correspond to the transceiver 1020 in the device 1000 shown in FIG. 10
  • processing unit 820 in the device 800 may correspond to the Processor 1010.
  • the chip when the device 800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the transceiver unit 810 is used to realize the signal sending and receiving operation of the device 800
  • the processing unit 820 is used to realize the signal processing operation of the device 800 .
  • the apparatus 800 further includes a storage unit 830 configured to store instructions.
  • FIG. 9 is a schematic block diagram of an apparatus 900 provided by an embodiment of the present application.
  • the apparatus 900 includes a radio frequency module 910 and a control module 920, and the radio frequency module 910 and the control module 920 are connected through a first interface, and the description about the first interface can refer to the above.
  • the radio frequency module 910 is configured to execute the method executed by the radio frequency device in FIG. 6 or FIG. 7
  • the control module 920 is configured to execute the method executed by the control device in FIG. 6 or FIG. 7 .
  • the radio frequency module is RRU, RU or AAU
  • the control module is BBU, BU, CU or DU.
  • Fig. 10 is a schematic block diagram of an apparatus 1000 provided by an embodiment of the present application.
  • the apparatus 1000 includes: at least one processor 1010 and a transceiver 1020 .
  • the processor 1010 is coupled to the memory for executing instructions stored in the memory to control the transceiver 1020 to send signals and/or receive signals.
  • the device 1000 further includes a memory 1030 for storing instructions.
  • processor 1010 and the memory 1030 may be combined into one processing device, and the processor 1010 is configured to execute program codes stored in the memory 1030 to implement the above functions.
  • the memory 1030 may also be integrated in the processor 1010 , or be independent of the processor 1010 .
  • the transceiver 1020 may include a receiver (or called a receiver) and a transmitter (or called a transmitter).
  • the transceiver 1020 may further include antennas, and the number of antennas may be one or more.
  • the transceiver 1020 may be a communication interface or an interface circuit.
  • the chip When the device 1000 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • FIG. 11 is a schematic diagram of a chip system according to an embodiment of the present application.
  • the chip system here may also be a system composed of circuits.
  • the chip system 1100 shown in FIG. 11 includes: a logic circuit 1110 and an input/output interface (input/output interface) 1120, the logic circuit is used to couple with the input interface, and transmit data through the input/output interface (for example, the first instruction information) to execute the method described in FIG. 6 or FIG. 7 .
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the methods in the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the computer program described in Fig. 6 to Fig. 7 .
  • the method of any one of the embodiments is illustrated.
  • the present application also provides a computer-readable medium, the computer-readable medium stores program codes, and when the program codes are run on a computer, the computer is made to perform the operations shown in Fig. 6 to Fig. 7 .
  • the method of any one of the embodiments is illustrated.
  • the present application further provides a system, which includes the aforementioned radio frequency device and control device.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer instructions may be stored in, or transmitted from, one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种控制方法和装置,该方法包括:射频设备向控制设备发送第一信息,该第一信息用于指示至少一个节能特性的开关建议;该射频设备接收来自该控制设备的指令,该指令用于指示开启第一节能特性和/或关闭第二节能特性,该第一节能特性包括至少一个该第一信息中建议开启的节能特性,该第二节能特性包括至少一个该第一信息中建议不开启的节能特性。基于本申请,可以在控制温差稳定以及确保射频设备硬件可靠性的情况下获取更多的节能增益。

Description

控制方法及装置 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种控制方法及装置。
背景技术
随着移动通信网络的发展,无线通信网络设备能耗越来越大,运营商节能降耗的需求也越来越迫切。在无线网络设备的能耗构成中,基站设备的能耗占比最高。而基站设备的能耗主要是射频模块的能耗。
为了减小射频模块的能耗,基带处理单元会控制射频模块开启节能特性。在射频模块开启节能特性的情况下,为了避免射频设备温差增大引起射频模块的焊点失效,射频模块可以在节能特性开启场景下定期检测自身的温差,当自身的温差超过预设门限后主动关闭节能特性,当自身温差恢复到预设门限以内时再开启节能特性。
然而上述方式中,若射频模块的温差处于预设门限附近,则容易引起射频模块在开启节能特性和关闭节能特性之间不断地反复,并且当射频模块关闭节能特性时,将损失节能特性所带来的节能增益。
发明内容
本申请实施例提供一种控制方法和装置,以期在满足射频设备温差稳定的同时获取更多的节能增益。
第一方面,提供了一种控制方法,该方法包括:射频设备向控制设备发送第一信息,该第一信息用于指示至少一个节能特性的开关建议;该射频设备接收来自该控制设备的指令,该指令用于指示开启第一节能特性和/或关闭第二节能特性,该第一节能特性包括至少一个该第一信息中建议开启的节能特性,该第二节能特性包括至少一个该第一信息中建议不开启的节能特性。
其中,节能特性的开关建议包括建议开启节能特性或建议不开启节能特性,或者,节能特性的开关建议包括建议开启节能特性或建议关闭节能特性。
基于上述技术方案,射频设备向控制设备发送用于指示至少一个节能特性的开关建议的第一信息,使得控制设备可以根据第一信息控制射频设备开启第一节能特性和/或关闭第二节能特性。由于控制设备根据射频设备发送的节能特性的开关建议向射频设备发送指令,从而控制设备可以向射频设备发送更合理的指令,例如指令指示开启的第一节能特性可以稳定开启一段时间也不会引起射频设备的温差超过温差阈值,从而有利于实现在满足射频设备温差稳定的同时获取更多的节能增益。同时,通过控制设备来指示节能特性的开始和关闭,也更有利于控制设备准确的掌握节能特性真实的开关或者生效状态。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该射频设备根据该指令开启该第一节能特性和/或关闭该第二节能特性。
结合第一方面,在第一方面的某些实现方式中,该第一信息是根据该射频设备的温差和/或不同节能特性对该射频设备的温差的影响程度确定的。
基于上述技术方案,射频设备在确定节能特性的开关建议时,考虑了射频设备的温差和/或不同节能特性对射频设备的温差的影响程度,从而有利于确定出合理的开关建议。例如, 若射频设备的温差比较小,则射频设备可以建议开启更多的节能特性。又例如,若射频设备的温差较大,且某个节能特性对射频设备的温差影响较大,则射频设备可以建议不开启该节能特性。
一种可能的实现方式中,该射频设备根据该温差以及不同节能特性对该射频设备的温差的影响程度,确定不同节能特性开启单位时长后该射频设备的温差;该射频设备根据不同节能特性开启该单位时长后该射频设备的温差,确定该第一信息。
示例性地,射频设备通过比较不同节能特性开启单位时长后射频设备的温差和温差阈值,确定该第一信息。
又示例性地,射频设备通过比较不同节能特性开启后射频设备的温差,确定第一信息。
另一种可能的实现方式中,该射频设备根据该温差以及不同节能特性对该射频设备的温差的影响程度,确定不同节能特性开启后该射频设备的温差增大到温差阈值所需的时长;该射频设备根据不同节能特性开启后该射频设备的温差增大到该温差阈值所需的时长,确定该第一信息。
示例性地,射频设备通过比较不同节能特性开启后射频设备的温差增大到温差阈值所需的时长和单位时长,确定第一信息。
又示例性地,射频设备通过比较不同节能特性开启后射频设备的温差增大到温差阈值所需的时长,确定第一信息。
结合第一方面,在第一方面的某些实现方式中,该第一信息包括该至少一个节能特性的标识。
示例性地,该至少一个节能特性是建议开启的节能特性,即第一信息包括建议开启的节能特性的标识。
又示例性地,该至少一个节能特性是建议不开启的节能特性,即第一信息包括建议不开启的节能特性的标识。
再示例性地,该至少一个节能特性包括建议开启的节能特性和建议不开启的节能特性,即第一信息既包括建议开启的节能特性的标识,也包括建议不开启的节能特性的标识。
结合第一方面,在第一方面的某些实现方式中,该第一信息包括与该至少一个节能特性对应的第一指示信息,该第一指示信息用于指示是否建议开启该至少一个节能特性。
结合第一方面,在第一方面的某些实现方式中,该第一信息还包括与该至少一个节能特性对应的第二指示信息,该第二指示信息用于指示该至少一个节能特性的开关状态。
基于上述技术方案,在第一信息包括与至少一个节能特性对应的第二指示信息的情况下,使得控制设备根据第二指示信息确定至少一个节能特性的开关状态,从而避免控制设备客户界面显示的节能特性的开关状态与节能特性实际开关状态不一致。此外,控制设备还可以根据不同节能特性的实际开关状态和第一信息,向射频设备发送准确的指令。例如,控制设备根据第二指示信息确定节能特性#1为开启状态,根据第一信息确定节能特性#1是建议不开启的节能特性,则控制设备可以向射频设备发送关闭节能特性#1的指令。如果控制设备根据第二指示信息确定节能特性#1为关闭状态,根据第一信息确定节能特性#1是建议不开启的节能特性,则控制设备可以省略向射频设备发送关闭节能特性#1的指令,从而进一步简化信令,节省带宽。
结合第一方面,在第一方面的某些实现方式中,该第一节能特性是该至少一个节能特性中处于关闭状态的节能特性,该第二节能特性是该至少一个节能特性中处于开启状态的节能特性。
结合第一方面,在第一方面的某些实现方式中,该第一信息还包括温度信息,该温度信息用于确定该射频设备的温差。
基于上述技术方案,在第一信息包括温度信息的情况下,使得控制设备根据温度信息确定射频设备的温差,从而使得控制设备可以结合射频设备的温差和第一信息向射频设备发送指令,更有利于指示射频设备开启可以稳定开启一段时间也不会引起射频设备的温差超过温差阈值的节能特性。
第二方面,提供了一种控制方法,该方法包括:控制设备接收来自射频设备的第一信息,该第一信息用于指示至少一个节能特性的开关建议;该控制设备根据该第一信息向该射频设备发送指令,该指令用于指示开启第一节能特性和/或关闭第二节能特性,该第一节能特性包括至少一个该第一信息中建议开启的节能特性,该第二节能特性包括至少一个该第一信息中建议不开启的节能特性。
其中,节能特性的开关建议包括建议开启节能特性或建议不开启节能特性,或者,节能特性的开关建议包括建议开启节能特性或建议关闭节能特性。
基于上述技术方案,射频设备向控制设备发送用于指示至少一个节能特性的开关建议的第一信息,使得控制设备可以根据第一信息控制射频设备开启第一节能特性和/或关闭第二节能特性。由于控制设备根据射频设备发送的节能特性的开关建议向射频设备发送指令,从而控制设备可以向射频设备发送更合理的指令,例如指令指示开启的第一节能特性可以稳定开启一段时间也不会引起射频设备的温差超过温差阈值,从而有利于实现在满足射频设备温差稳定的同时获取更多的节能增益。
结合第二方面,在第二方面的某些实现方式中,该第一信息是根据该射频设备的温差和/或不同节能特性对该射频设备的温差的影响程度确定的。
结合第二方面,在第二方面的某些实现方式中,该第一信息包括该至少一个节能特性的标识。
示例性地,该至少一个节能特性是建议开启的节能特性,即第一信息包括建议开启的节能特性的标识。
又示例性地,该至少一个节能特性是建议不开启的节能特性,即第一信息包括建议不开启的节能特性的标识。
再示例性地,该至少一个节能特性包括建议开启的节能特性和建议不开启的节能特性,即第一信息既包括建议开启的节能特性的标识,也包括建议不开启的节能特性的标识。
结合第二方面,在第二方面的某些实现方式中,该第一信息包括与该至少一个节能特性对应的第一指示信息,该第一指示信息用于指示是否建议开启该至少一个节能特性。
结合第二方面,在第二方面的某些实现方式中,该第一信息还包括与该至少一个节能特性对应的第二指示信息,该第二指示信息用于指示该至少一个节能特性的开关状态;该方法还包括:该控制设备根据该第二指示信息确定该第一节能特性的开关状态。
基于上述技术方案,在第一信息包括与至少一个节能特性对应的第二指示信息的情况下,使得控制设备根据第二指示信息确定至少一个节能特性的开关状态,从而避免控制设备客户界面显示的节能特性的开关状态与节能特性实际开关状态不一致。
结合第二方面,在第二方面的某些实现方式中,该第一节能特性是该至少一个节能特性中处于关闭状态的节能特性,该第二节能特性是该至少一个节能特性中处于开启状态的节能特性。
基于上述技术方案,控制设备可以根据不同节能特性的实际开关状态和第一信息,向射 频设备发送准确的指令。
结合第二方面,在第二方面的某些实现方式中,该第一信息还包括温度信息,该温度信息用于确定该射频设备的温差;该控制设备根据该第一信息向该射频设备发送指令,包括:该控制设备根据该温差和该第一信息向该射频设备发送该指令。
基于上述技术方案,在第一信息包括温度信息的情况下,使得控制设备根据温度信息确定射频设备的温差,从而使得控制设备可以结合射频设备的温差和第一信息向射频设备发送指令,更有利于指示射频设备开启可以稳定开启一段时间也不会引起射频设备的温差超过温差阈值的节能特性。
第三方面,提供了一种控制方法,该方法包括:控制设备接收来自射频设备的温度信息,该温度信息用于确定该射频设备的温差;该控制设备根据该温差和/或不同节能特性对该射频设备的温差的影响程度确定至少一个节能特性的开关策略;该控制设备根据该至少一个节能特性的开关策略向该射频设备发送指令,该指令用于指示开启至少一个节能特性和/或关闭至少一个节能特性。同时,通过控制设备来指示节能特性的开始和关闭,也更有利于控制设备准确的掌握节能特性真实的开关或者生效状态。
其中,节能特性的开关策略包括允许开启节能特性或不允许开启节能特性。
基于上述技术方案,在射频设备向控制设备发送温度信息,使得控制设备根据温度信息确定射频设备的温差,从而使得控制设备可以根据射频设备的温差和/或不同节能特性对射频设备的温差的影响程度确定不同节能特性的开关策略,有利于确定出可以稳定开启一段时间也不会引起射频设备的温差超过温差阈值的节能特性,从而有利于实现在满足射频设备温差稳定的同时获取更多的节能增益。
一种可能的实现方式中,该控制设备根据该温差和不同节能特性对该射频设备的温差的影响程度确定至少一个节能特性的开关策略,包括:该控制设备根据该温差以及不同节能特性对该射频设备的温差的影响程度,确定不同节能特性开启单位时长后该射频设备的温差;该控制设备根据不同节能特性开启该单位时长后该射频设备的温差,确定该至少一个节能特性的开关策略。
示例性地,控制设备通过比较不同节能特性开启单位时长后射频设备的温差和温差阈值,确定至少一个节能特性的开关策略。
又示例性地,控制设备通过比较不同节能特性开启后射频设备的温差,确定至少一个节能特性的开关策略。
另一种可能的实现方式中,该控制设备根据该温差和不同节能特性对该射频设备的温差的影响程度确定至少一个节能特性的开关策略,包括:该控制设备根据该温差以及不同节能特性对该射频设备的温差的影响程度,确定不同节能特性开启后该射频设备的温差增大到温差阈值所需的时长;该控制设备根据不同节能特性开启后该射频设备的温差增大到该温差阈值所需的时长,确定该至少一个节能特性的开关策略。
示例性地,控制设备通过比较不同节能特性开启后射频设备的温差增大到温差阈值所需的时长和单位时长,确定至少一个节能特性的开关策略。
又示例性地,控制设备通过比较不同节能特性开启后射频设备的温差增大到温差阈值所需的时长,确定至少一个节能特性的开关策略。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该控制设备接收来自该射频设备的与至少一个节能特性对应的指示信息,该指示信息用于指示至少一个节能特性的开关状态;该控制设备根据该指示信息确定至少一个节能特性的开关状态。
基于上述技术方案,在射频设备向控制设备发送与至少一个节能特性对应的第二指示信息的情况下,使得控制设备根据第二指示信息确定至少一个节能特性的开关状态,从而避免控制设备客户界面显示的节能特性的开关状态与节能特性实际开关状态不一致。
结合第三方面,在第三方面的某些实现方式中,该指令指示开启的至少一个节能特性是处于关闭状态的节能特性,该指令指示关闭的至少一个节能特性是处于开启状态的节能特性。
基于上述技术方案,控制设备可以根据不同节能特性的实际开关状态和第一信息,向射频设备发送准确的指令。
第四方面,提供了一种控制方法,该方法包括:射频设备向控制设备发送温度信息,该温度信息用于确定该射频设备的温差;该射频设备接收来自该控制设备的指令,该指令用于指示开启至少一个节能特性和/或关闭至少一个节能特性。
基于上述技术方案,射频设备向控制设备发送温度信息,使得控制设备可以根据温度信息确定射频设备的温差,从而使得控制设备可以根据射频设备的温差和/或不同节能特性对射频设备的温差的影响程度确定不同节能特性的开关策略,有利于确定出可以稳定开启一段时间也不会引起射频设备的温差超过温差阈值的节能特性,从而有利于实现在满足射频设备温差稳定的同时获取更多的节能增益。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该射频设备向该控制设备发送指示信息,该指示信息用于指示至少一个节能特性的开关状态。
基于上述技术方案,射频设备向控制设备发送指示信息,使得控制设备根据指示信息确定至少一个节能特性的开关状态,从而避免控制设备客户界面显示的节能特性的开关状态与节能特性实际开关状态不一致。此外,控制设备还可以根据不同节能特性的实际开关状态,向射频设备发送准确的指令。例如,控制设备根据指示信息确定节能特性#1为开启状态,根据节能特性#1的开关策略确定节能特性#1是不允许开启的节能特性,则控制设备可以向射频设备发送关闭节能特性#1的指令。
结合第四方面,在第四方面的某些实现方式中,该指令指示开启的至少一个节能特性是处于关闭状态的节能特性,该指令指示关闭的至少一个节能特性是处于开启状态的节能特性。
第五方面,提供了一种装置,该装置包括收发单元,该收发单元用于向控制设备发送第一信息,该第一信息用于指示至少一个节能特性的开关建议;该收发单元还用于接收来自该控制设备的指令,该指令用于指示开启第一节能特性和/或关闭第二节能特性,该第一节能特性包括至少一个该第一信息中建议开启的节能特性,该第二节能特性包括至少一个该第一信息中建议不开启的节能特性。
结合第五方面,在第五方面的某些实现方式中,该装置还包括处理单元,该处理单元用于根据该指令开启该第一节能特性和/或关闭该第二节能特性。
结合第五方面,在第五方面的某些实现方式中,该第一信息是根据该装置的温差和/或不同节能特性对该装置的温差的影响程度确定的。
结合第五方面,在第五方面的某些实现方式中,该装置还包括处理单元,该处理单元还用于根据该温差以及不同节能特性对该装置的温差的影响程度,确定不同节能特性开启单位时长后该装置的温差;该处理单元还用于根据不同节能特性开启该单位时长后该装置的温差,确定该第一信息。
结合第五方面,在第五方面的某些实现方式中,该装置还包括处理单元,该处理单元用于根据该温差以及不同节能特性对该装置的温差的影响程度,确定不同节能特性开启后该装置的温差增大到温差阈值所需的时长;该处理单元还用于根据不同节能特性开启后该装置的 温差增大到该温差阈值所需的时长,确定该第一信息。
结合第五方面,在第五方面的某些实现方式中,该第一信息包括该至少一个节能特性的标识。
结合第五方面,在第五方面的某些实现方式中,该第一信息包括与该至少一个节能特性对应的第一指示信息,该第一指示信息用于指示是否建议开启该至少一个节能特性。
结合第五方面,在第五方面的某些实现方式中,该第一信息还包括与该至少一个节能特性对应的第二指示信息,该第二指示信息用于指示该至少一个节能特性的开关状态。
结合第五方面,在第五方面的某些实现方式中,该第一节能特性是该至少一个节能特性中处于关闭状态的节能特性,该第二节能特性是该至少一个节能特性中处于开启状态的节能特性。
结合第五方面,在第五方面的某些实现方式中,该第一信息还包括温度信息,该温度信息用于确定该装置的温差。
第六方面,提供了一种装置,该装置包括收发单元,该收发单元用于接收来自射频设备的第一信息,该第一信息用于指示至少一个节能特性的开关建议;该收发单元还用于根据该第一信息向该射频设备发送指令,该指令用于指示开启第一节能特性和/或关闭第二节能特性,该第一节能特性包括至少一个该第一信息中建议开启的节能特性,该第二节能特性包括至少一个该第一信息中建议不开启的节能特性。
结合第六方面,在第六方面的某些实现方式中,该第一信息是根据该射频设备的温差和/或不同节能特性对该射频设备的温差的影响程度确定的。
结合第六方面,在第六方面的某些实现方式中,该第一信息包括该至少一个节能特性的标识。
结合第六方面,在第六方面的某些实现方式中,该第一信息包括与该至少一个节能特性对应的第一指示信息,该第一指示信息用于指示是否建议开启该至少一个节能特性。
结合第六方面,在第六方面的某些实现方式中,该第一信息还包括与该至少一个节能特性对应的第二指示信息,该第二指示信息用于指示该至少一个节能特性的开关状态;该装置还包括处理单元,该处理单元用于根据该第二指示信息确定该第一节能特性的开关状态。
结合第六方面,在第六方面的某些实现方式中,该第一信息还包括温度信息,该温度信息用于确定该射频设备的温差;该收发单元还用于根据该温差和该第一信息向该射频设备发送该指令。
结合第六方面,在第六方面的某些实现方式中,该第一节能特性是该至少一个节能特性中处于关闭状态的节能特性,该第二节能特性是所述至少一个节能特性中处于开启状态的节能特性。
第七方面,提供了一种装置,该装置包括收发单元和处理单元,该收发单元用于接收来自射频设备的温度信息,该温度信息用于确定该射频设备的温差;该处理单元用于根据该温差和/或不同节能特性对该射频设备的温差的影响程度确定至少一个节能特性的开关策略;该收发单元还用于根据该至少一个节能特性的开关策略向该射频设备发送指令,该指令用于指示开启至少一个节能特性和/或关闭至少一个节能特性。
结合第七方面,在第七方面的某些实现方式中,该处理单元还用于根据该温差和/或不同节能特性对该射频设备的温差的影响程度,确定不同节能特性开启单位时长后该射频设备的温差;该处理单元还用于根据不同节能特性开启该单位时长后该射频设备的温差,确定该至少一个节能特性的开关策略。
结合第七方面,在第七方面的某些实现方式中,该处理单元还用于根据该温差以及不同节能特性对该射频设备的温差的影响程度,确定不同节能特性开启后该射频设备的温差增大到温差阈值所需的时长;该处理单元还用于根据不同节能特性开启后该射频设备的温差增大到该温差阈值所需的时长,确定该至少一个节能特性的开关策略。
结合第七方面,在第七方面的某些实现方式中,该收发单元还用于来自该射频设备的与至少一个节能特性对应的指示信息,该指示信息用于指示至少一个节能特性的开关状态;该处理单元还用于根据该指示信息确定至少一个节能特性的开关状态。
结合第七方面,在第七方面的某些实现方式中,该指令指示开启的至少一个节能特性是处于关闭状态的节能特性,该指令指示关闭的至少一个节能特性是处于开启状态的节能特性。
第八方面,提供了一种装置,该装置包括收发单元,该收发单元用于向控制设备发送温度信息,该温度信息用于确定该装置的温差;该收发单元还用于接收来自该控制设备的指令,该指令用于指示开启至少一个节能特性和/或关闭至少一个节能特性。
结合第八方面,在第八方面的某些实现方式中,该收发单元还用于向该控制设备发送指示信息,该指示信息用于指示至少一个节能特性的开关状态。
结合第八方面,在第八方面的某些实现方式中,该指令指示开启的至少一个节能特性是处于关闭状态的节能特性,该指令指示关闭的至少一个节能特性是处于开启状态的节能特性。
第九方面,提供了一种装置,该装置包括射频模块和控制模块,该射频模块用于向所述控制模块发送第一信息,该第一信息用于指示至少一个节能特性的开关建议;该控制模块用于根据该第一信息向该射频模块发送指令,该指令用于指示该射频模块开启第一节能特性和/或关闭第二节能特性,该第一节能特性包括至少一个该第一信息中建议开启的节能特性,该第二节能特性包括至少一个该第一信息中建议不开启的节能特性。
结合第九方面,在第九方面的某些实现方式中,该射频模块还用于根据该指令开启该第一节能特性和/或关闭该第二节能特性。
结合第九方面,在第九方面的某些实现方式中,该第一信息是根据该射频模块的温差和/或不同节能特性对该射频模块的温差的影响程度确定的。
结合第九方面,在第九方面的某些实现方式中,该射频模块还用于根据该温差以及不同节能特性对该射频模块的温差的影响程度,确定不同节能特性开启单位时长后该射频模块的温差;该射频模块还用于根据不同节能特性开启该单位时长后该射频模块的温差,确定该第一信息。
结合第九方面,在第九方面的某些实现方式中,该射频模块还用于根据该温差以及不同节能特性对该射频模块的温差的影响程度,确定不同节能特性开启后该射频模块的温差增大到温差阈值所需的时长;该射频模块还用于根据不同节能特性开启后该射频模块的温差增大到该温差阈值所需的时长,确定该第一信息。
结合第九方面,在第九方面的某些实现方式中,该第一信息包括该至少一个节能特性的标识。
结合第九方面,在第九方面的某些实现方式中,该第一信息包括与该至少一个节能特性对应的第一指示信息,该第一指示信息用于指示是否建议开启该至少一个节能特性。
结合第九方面,在第九方面的某些实现方式中,该第一信息还包括与该第一节能特性对应的第二指示信息,该第二指示信息用于指示该至少一个节能特性的开关状态;该控制模块还用于根据该第二指示信息确定该至少一个节能特性的开关状态。
结合第九方面,在第九方面的某些实现方式中,该第一节能特性是该至少一个节能特性 中处于关闭状态的节能特性,该第二节能特性是该至少一个节能特性中处于开启状态的节能特性。
结合第九方面,在第九方面的某些实现方式中,该第一信息还包括温度信息,该温度信息用于确定该射频模块的温差;该控制模块还用于根据该温差和该第一信息向该射频模块发送该指令。
结合第九方面,在第九方面的某些实现方式中,该射频模块是射频拉远单元;该控制模块是基带处理单元。
第十方面,本申请提供了一种装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能实现方式中的方法,或者实现上述第四方面或第四方面中任一种可能实现方式中的方法。其中,该装置还包括存储器。其中,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为射频设备。当装置为射频设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于射频设备中的芯片或芯片系统。当该装置为配置于射频设备中的芯片或芯片系统时,该通信接口可以是输入/输出接口。
其中,该收发器可以为收发电路。其中,该输入/输出接口可以为输入/输出电路。
第十一方面,本申请提供了一种装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第二方面中任一种可能实现方式中的方法,或者实现上述第三方面或第三方面中任一种可能实现方式中的方法。其中,该装置还包括存储器。其中,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为控制设备。当该装置为控制设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于控制设备中的芯片或芯片系统。当该装置为配置于控制设备中的芯片或芯片系统时,该通信接口可以是输入/输出接口。
其中,该收发器可以为收发电路。其中,该输入/输出接口可以为输入/输出电路。
第十二方面,本申请提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行上述各个方面中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十三方面,本申请提供了一种处理装置,包括通信接口和处理器。所述通信接口与所述处理器耦合。所述通信接口用于输入和/或输出信息。所述信息包括指令或数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述各个方面中的方法。
第十四方面,本申请提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以使得所述处理装置执行上述各个方面中的方法。
可选地,上述处理器为一个或多个。如果有存储器,存储器也可以为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的信息交互过程,例如发送指示信息可以为从处理器输出指示信息的过程,接收指示信息可以为向处理器输入接收到的指示信息的过程。具体地,处理输出的信息可以输出给发射器,处理器接收的输入信息可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十三方面和第十四方面中的装置可以是芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十五方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述各个方面中的方法。
第十六方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述各个方面中的方法。
第十七方面,本申请提供了一种系统,包括前述的控制设备和射频设备。
附图说明
图1是适用于本申请实施例提供的方法的系统的示意图;
图2是符号关断的示意图;
图3是通道关断的示意图;
图4是小区关断的示意图;
图5是在节能场景下控制温差的方法的示意图;
图6是本申请实施例提供的控制方法的示意性流程图;
图7是本申请另一实施例提供的控制方法的示意性流程图;
图8是本申请实施例提供的装置的示意性框图;
图9是本申请实施提供的装置的示意性结构图;
图10是本申请实施例提供的装置的示意性结构图;
图11是本申请实施例提供的芯片系统的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、频分双工(frequency division duplex,FDD)系统、时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、第六代(6th generation,6G)系统或未来的通信系统等。本申请中所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA) 的5G移动通信系统。通信系统还可以是公共陆地移动网络(public land mobile network,PLMN)、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of things,IoT)通信系统、车联万物(vehicle to everything,V2X)通信系统、无人机(uncrewed aerial vehicle,UAV)通信系统或者其他通信系统。
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先结合图1详细说明本申请实施例的一个应用场景。
图1是适用于本申请实施例提供的方法的系统架构。如图1所示,该系统包括:控制设备110和射频设备120。控制设备110可以作为基站的主设备,处理数字基带信号,提供对基站各设备功能的控制管理。射频设备120可以作为基站的射频模块,可以用于处理中频信号和/或射频信号,也可以用于接收和发射无线信号。
控制设备110和射频设备120通过第一接口连接,第一接口可以是以下接口中的任意一种:通用公共无线接口(common public radio interface,CPRI)、增强型CPRI(enhanced CPRI,eCPRI)接口、或者未来定义的用于连接控制设备和射频设备的接口。示例性地,第一接口可以称为前传(fronthaul)接口。
需要说明的是,本申请实施例不限定控制设备110和射频设备120的具体类型,只要是通过第一接口连接的两个设备,都可以等同于本申请实施例中的控制设备110和射频设备120。示例性地,控制设备110可以是以下任意一种:基带处理单元(baseband unit,BBU)、分布式单元(distributed unit,DU)、集中式单元(centralized unit,CU)。示例性地,射频设备120可以是以下任意一种:射频拉远单元(radio remote unit,RRU)、射频单元(radio unit,RU)、有源天线单元(active antenna unit,AAU)。
在一些部署中,控制设备110可以包括集中式单元(centralized unit,CU)和DU,其中DU通过第一接口与射频设备120连接。进一步地,CU还可以采用控制面(control plane,CP)和用户面(user plane,UP)分离的架构,即CU可以包括CU-CP实体和CU-UP实体。
还需要说明的是,图1中仅以控制设备110与一个射频设备120相连为例,控制设备110 还可以与更多的射频设备相连。
射频模块的各个组件(如元器件、印刷电路板(printed circuit board,PCB))可以通过焊接连接在一起,并且射频模块的各个组件之间的焊点对射频模块的功能有很大的影响,若焊点失效,则射频模块的功能会部分或全部失常。
通常,影响射频模块的焊点的可靠性的主要因素有结构约束、器件封装、业务和环境的温差及业务温差。以温差对射频模块的焊点的可靠性的影响为例,射频模块的焊点在温度变化过程中受元器件、PCB等热膨胀尺寸不同而引入的应力作用,而引起焊点在长时间温差循环后失效。其中,温差指的是一段时间内的最高温和最低温的差值。下文实施例所述的射频设备的温差指的是一段时间内射频设备的最高温和射频设备的最低温的差值。射频设备的温差由到环境温差和业务温差决定。环境温差指的是射频设备所处的环境在一段时间内的温差。业务温差指的,在射频设备所处的环境的温度保持不变的情况下,射频设备在一段时间内执行不同的业务所引起的射频设备的温差。
随着移动通信网络的发展,无线网络设备的能耗越来越大,运营商节能降耗的需求也越来越迫切。在无线网络设备的能耗构成中,基站设备的能耗占比最高。而基站设备的能耗主要是射频模块的能耗。
为了降低基站设备的能耗,提出了符号关断、通道关断、载波关断(或称为小区关断)、深度休眠等节能技术(或称为节能特性),其基本原理是通过在网络闲时关闭基站的部分硬件资源,从而达到节能的效果。例如,各节能技术的触发需基于业务负荷进行判断,若基站的业务负荷低于预设的节能触发门限,满足节能触发条件,则可执行相应的节能技术,使基站设备进入相应的节能状态。
如图2所示,基站开启符号关断的节能特性后,在无业务数据传输的空闲符号时间内关断基站的所有射频通道,在有业务数据传输的符号时间内开启所有的射频通道。如图3所示,通道关断技术支持在基站业务负荷较低时,关断基站的部分射频通道,以节约基站能耗。
如图4所示,载波关断技术主要用于同一区域同时有多个基站提供覆盖的场景,其中一个基站作为覆盖层基站,其他基站规划为容量层基站,该区域内的各基站间存在同覆盖关系。载波关断技术通过判断覆盖区域内各基站的业务量,将业务负荷低的基站作为节能基站,关断所有的射频通道,以达到节能的目的。深度休眠技术则是在关断基站所有的射频通道的基础上,进一步关闭基站的数字基带芯片等更多硬件资源,以节约更多能耗。
如图5所示,为了减小射频模块的能耗,基带处理单元(如BBU)会控制射频模块(如RRU)开启节能特性(例如节能特性A),而当射频模块开启节能特性的情况下,影响射频模块的焊点的可靠性的主要因素是业务温差的增大。为了避免业务温差增大引起射频模块的焊点失效,射频模块可以在节能特性开启的场景下定期检测自身的温差,当自身的温差超过预设门限后主动关闭节能特性,当自身温差恢复到预设门限以内时再开启节能特性。
然而上述方式中,若射频模块的温差处于预设门限附近,则容易引起射频模块在开启节能特性和关闭节能特性之间不断地反复,并且当射频模块关闭节能特性时,将损失节能特性所带来的节能增益。此外,射频模块根据自身的温差确定开启节能特性或关闭特性,也会导致节能特性的实际开关状态与控制设备的客户界面显示的节能特性开关状态不一致。
有鉴于此,本申请实施例提供一种控制方法,以期在满足射频设备温差稳定的同时获取更多的节能增益。
图6示出了本申请实施例提供的控制方法的示意性流程图。如图6所示,方法600可以包括S610至S660,下面详细描述各个步骤。
S610,射频设备发送第一信息。相应地,在S610中,控制设备接收第一信息。
示例性地,射频设备可以是RRU、RU或AAU,控制设备可以是BBU、BU、CU或DU。
其中,第一信息用于指示至少一个节能特性的开关建议。示例性地,节能特性包括以下一项或多项:深度休眠特性、载波关断特性、通道关断特性、符号关断特性。节能特性的开关建议包括建议开启该节能特性或建议不开启该节能特性。或者,节能特性的开关建议包括建议开启该节能特性或建议关闭该节能特性。其中,开启节能特性也可以理解为激活该节能特性或者使该节能特性生效,例如开启节能特性可以指的是关闭该节能特性对应的硬件资源,以达到节能的目的;关闭节能特性也可以理解为去激活该节能特性或者使该节能特性不生效,例如关闭节能特性可以指的是打开该节能特性对应的硬件资源。例如,开启通道关断特性指的在业务负荷较低时关闭部分射频通道,关闭通道关断特性指的是始终开启所有射频通道。
示例性地,第一信息是根据射频设备的第一温差和/或不同节能特性对射频设备的温差的影响程度确定的。第一温差表示第一检测周期内射频设备的最高温与最低温的差值,第一检测周期的时长可以是1小时、12小时或1天等,本申请实施例对此不做限定。节能特性对射频设备的温差的影响程度与节能特性所带来的节能增益成正比,即节能特性所带来的节能增益越大,节能特性开启后对射频设备的温差的影响程度越大。需要说明的是,当射频设备开启节能特性之后,射频设备的最低温会减小,进而射频设备的温差会增大,因此,本申请实施例所提及的节能特性对射频设备的影响程度指的可以是开启节能特性后射频设备的温差增大的程度。
示例性地,不同节能特性对射频设备的温差的影响程度可以用节能特性开启单位时长后射频设备的温差的增大量表示。其中,单位时长可以是1分钟、1刻钟、1小时或1天等,本申请实施例对此不做限定。射频设备的温差的增大量可以用于节能特性开启前后射频设备的温差的差值表示,也可以用于节能特性开启后射频设备的温差的增长百分比表示,本申请实施例对此不做限定。例如,不同节能特性对射频设备的温差的影响程度如表1所示。
表1
节能特性 节能增益 节能特性开启1刻钟后射频设备的温差的增大量
节能特性1 10%1℃或5%
节能特性2 20%2℃或10%
节能特性3 30%3℃或15%
节能特性4 40%4℃或20%
节能特性5 50%5℃或25%
不同节能特性对射频设备的温差的影响程度可以预配置在射频设备中,也可以是射频设备根据历史数据确定的,本申请实施例对此不做限定。其中,历史数据包括不同节能特性开启的时长、不同节能特性开启前后射频设备的温差等。
本申请实施例对射频设备确定第一信息的方式不做限定。
一种可能的实现方式中,射频设备根据第一温差确定第一信息。例如,若第一温差比较低(例如第一温差是温差阈值的1/2),则射频设备确定建议开启所有的节能特性,若第一温差比较高(例如接近于温差阈值),则射频设备确定建议不开启所有的节能特性。进一步地,射频设备根据不同节能特性的开关建议确定第一信息。
一种可能的实现方式中,射频设备根据不同节能特性对射频设备的温差的影响程度,确定第一信息。例如,射频设备确定建议不开启对射频设备的温差影响程度最大的节能特性。或者,射频设备确定建议开启对射频设备的温差影响程度最小的节能特性。进一步地,射频 设备根据不同节能特性的开关建议确定第一信息。
一种可能的实现方式中,射频设备根据第一温差以及不同节能特性对射频设备的温差的影响程度,确定不同节能特性开启单位时长后射频设备的温差;射频设备根据不同节能特性开启预设时长后射频设备的温差,确定第一信息。例如,射频设备可以通过比较不同节能特性开启预设时长后射频设备的温差和温差阈值,确定不同节能特性的开关建议。例如,若某个节能特性开启单位时长后射频设备的温差不低于温差阈值,则射频设备可以确定建议不开启该节能特性,或者,在该节能特性已经开启的情况下,射频设备可以确定建议关闭该节能特性;若某个节能特性开启单位时长后射频设备的温差低于温差阈值,则射频设备可以确定建议开启该节能特性。又例如,射频设备可以通过比较不同节能特性开启单位时长后射频设备的温差,确定不同节能特性的开关建议。例如,射频设备确定建议开启最低温差对应的节能特性,或者,射频设备确定建议不开启最高温差对应的节能特性。进一步地,射频设备根据不同节能特性的开关建议确定第一信息。
示例性地,温差阈值表示不影响射频设备的焊点的可靠性的情况下所允许射频设备的温差的最大值。单位时长可以表示射频设备所期望的节能特性开启的时长。
以第一温差为20℃、温差阈值为25℃以及单位时长为15分钟为例,射频设备根据第一温差和表1确定的不同节能特性开启15分钟后射频设备达到的温差如表2所示。
表2
节能特性 节能特性开启15分钟后射频设备的温差
节能特性1 21℃
节能特性2 22℃
节能特性3 23℃
节能特性4 24℃
节能特性5 25℃
由表2可知,节能特性1至节能特性4中的任意一个节能特性开启15分钟后,射频设备的温差都低于25℃,因此射频设备确定建议开启的节能特性包括节能特性1至节能特性4。而节能特性5开启15分钟后,射频设备的温差将达到25℃,因此射频设备确定建议不开启节能特性5。因此,射频设备可以确定第一信息用于指示节能特性1至节能特性4的开关建议为建议开启,和/或,第一信息用于指示节能特性5的开关建议为建议不开启。
或者,由表2可知,最低温差对应的是节能特性1,则射频设备确定建议开启节能特性1,最高温差对应的是节能特性5,则射频设备确定建议不开启节能特性5。
示例性地,射频设备通过第一模型确定不同节能特性开启单位时长后射频设备的温差。第一模型的输入参数为第一温差、单位时长以及不同节能特性的标识或不同节能特性的节能增益,第一模型的输出参数为不同节能特性开启单位时长后射频设备的温差。示例性地,第一模型是根据历史数据训练得到的,历史数据包括不同节能特性开启的时长、不同节能特性开启前后射频设备的温差。其中,不同节能特性的标识或节能增益、不同节能特性开启的时长、不同节能特性开启前射频设备的温差作为训练第一模型的输入参数,不同节能特性开启后射频设备的温差用于判断第一模型是否训练成功。例如,将节能特性1的标识或节能增益、节能特性1开启的时长、节能特性1开启前射频设备的温差作为训练第一模型的输入参数,将第一模型输出的数据与节能特性1开启后射频设备的温差作比较,若两者的差值小于预设阈值,则认为第一模型训练成功;若两者的差值不小于预设阈值,则继续训练第一模型。
另一种可能的实现方式中,射频设备根据第一温差以及不同节能特性对射频设备的温差 的影响程度,确定不同节能特性开启后射频设备的温差增大到温差阈值所需的时长;射频设备根据不同节能特性开启后射频设备的温差增大到温差阈值所需的时长,确定第一信息。例如,射频设备可以通过比较不同节能特性开启后射频设备的温差增大到温差阈值所需的时长和单位时长,确定不同节能特性的开关建议。例如,若某个节能特性开启后射频设备的温差增大到温差阈值所需的时长超过单位时长,则射频设备确定建议开启该节能特性;若某个节能特性开启后射频设备的温差达到温差阈值所需的时长不超过单位时长,则射频设备确定建议不开启该节能特性,或者,在该节能特性已经开启的情况下,射频设备确定建议关闭该节能特性。又例如,射频设备可以通过比较不同节能特性开启射频设备的温差增大到温差阈值所需的时长,确定不同节能特性的开关建议。例如,射频设备确定建议开启最长时长对应的节能特性,或者,射频设备确定建议不开启最短时长对应的节能特性。进一步地,射频设备根据不同节能特性的开关建议确定第一信息。
示例性地,温差阈值表示不影响射频设备的焊点的可靠性的情况下所允许射频设备的温差的最大值。单位时长可以表示射频设备所期望的节能特性开启的时长。
以第一温差为20℃、温差阈值为25℃以及单位时长为15分钟为例,射频设备根据第一温差和表1确定的不同节能特性开启后射频设备的温差达到温差阈值所需的时长如表3所示。
表3
节能特性 节能特性开启后射频设备的温差达到温差阈值所需的时长
节能特性1 75分钟
节能特性2 60分钟
节能特性3 45分钟
节能特性4 30分钟
节能特性5 15分钟
由表3可知,节能特性1至节能特性4中的任意一个节能特性开启后,射频设备的温差达到25℃所需的时长都超过15分钟,因此射频设备确定建议开启的节能特性包括节能特性1至节能特性4。而节能特性5开启后,射频设备的温差达到25℃所需的时长等于15分钟,因此射频设备确定建议不开启节能特性5。因此,射频设备可以确定第一信息用于指示节能特性1至节能特性4的开关建议为建议开启,和/或,第一信息用于指示节能特性5的开关建议为建议不开启。
或者,由表3可知,最长时长对应的是节能特性1,则射频设备确定建议开启节能特性1,最短时长对应的是节能特性5,则射频设备确定建议不开启节能特性5。
再一种可能的实现方式中,射频设备根据第一温差以及第二模型确定节能特性的开关建议。第二模型的输入参数为第一温差以及节能特性的标识或节能增益,第二模型的输出参数为建议是否开启节能特性。第二模型是根据历史数据训练得到的,历史数据包括不同节能特性开启的时长、不同节能特性开启前后射频设备的温差。其中,不同节能特性的标识或节能增益、不同节能特性开启的时长、不同节能特性开启前射频设备的温差作为训练第二模型的输入参数,不同节能特性开启后射频设备的温差与温差阈值的大小关系用于判断第二模型是否训练成功。例如,将节能特性1的标识或节能增益、节能特性1的开启时长、节能特性1开启前射频设备的温差作为训练第一模型的输入参数,第二模型根据输入参数输出建议是否开启节能特性1;若节能特性1开启后射频设备的温差不低于温差阈值,且第二模型输出建议不开启节能特性1,或者,若节能特性1开腔后射频设备的温差低于温差阈值,且第二模 型输出建议开启节能特性1,则表示第二模型输出正确的结果。若第二模型输出正确结果的概率大于预设的阈值,则认为第二模型训练成功。
本申请实施例不限定第一信息的具体内容。在第一信息包括不同内容的情况下,第一信息可以用于显示指示建议开启的节能特性,也可以用于隐式指示建议开启的节能特性,或者,第一信息可以用于显示指示建议不开启的节能特性,也可以用于隐式指示建议不开启的节能特性。
示例性地,第一信息包括至少一个节能特性的标识,该至少一个节能特性可以包括建议开启的节能特性和/或建议不开启的节能特性。
示例性地,第一信息包括建议开启的节能特性的标识,即第一信息用于显示地指示建议开启的节能特性。相应地,控制设备根据第一信息包括的节能特性的标识,确定建议开启的节能特性。节能特性的标识可以是节能特性所能达到的节能增益。例如,第一信息包括节能特性1至节能特性4的标识,则第一信息建议开启的节能特性包括节能特性1至节能特性4。相应地,控制设备根据节能特性1至节能特性4的标识,确定建议开启的节能特性包括节能特性1至节能特性4。
可以理解,在该示例性中,第一信息也可以用于隐式指示建议不开启的节能特性。具体地,第一信息所指示的建议不开启的节能特性对应于第一信息没有包括的节能特性的标识。例如,第一信息没有包括节能特性5的标识,则第一信息还用于指示建议不开启节能特性5。
又示例性地,第一信息包括建议不开启的节能特性的标识,即第一信息用于显示指示建议不开启的节能特性。相应地,控制设备根据第一信息包括的节能特性的标识,确定建议不开启的节能特性。例如,第一信息包括节能特性5的标识,则控制设备根据第一信息,确定建议不开启节能特性5。
可以理解,在该示例性中,第一信息也可以用于隐式指示建议开启的节能特性。具体地,第一信息所指示的建议开启的节能特性对应于第一信息没有包括的节能特性的标识。例如,第一信息没有包括节能特性1至节能特性4的标识,则第一信息还用于指示建议开启的节能特性包括节能特性1至节能特性4。
再示例性地,第一信息包括建议开启的节能特性的标识和建议不开启的节能特性的标识,即第一信息用于显示指示建议开启的节能特性和建议不开启的节能特性。例如,第一信息如表4所示。
表4
建议开启的节能特性的标识建议不开启的节能特性的标识
节能特性1的标识
节能特性2的标识
节能特性3的标识
节能特性4的标识节能特性5的标识
再示例性地,第一信息包括与至少一个节能特性对应的第一指示信息,第一指示信息用于指示是否建议开启该至少一个节能特性。例如,第一指示信息是一个1比特的信息,当第一指示信息为“0”时,第一指示信息用于指示建议不开启节能特性;当第一指示信息为“1”时,第一指示信息用于指示建议开启节能特性;或者,当第一指示信息为“1”时,第一指示信息用于指示建议不开启节能特性;当第一指示信息为“0”时,第一指示信息用于指示节能开启节能特性。相应地,控制设备根据与至少一个节能特性对应的第一指示信息,确定至少一个节能特性的开关建议。
例如,第一信息如表5所示。需要说明的是,表5仅以第一信息包括与不同节能特性一一对应的多个第一指示信息为例,而不是限定不同节能特性与第一指示信息之间一定是一一对应的关系。例如,若多个节能特性的开关建议相同,则该多个节能特性可以与一个第一指示信息对应。
表5
节能特性 第一指示信息
深度休眠 “0”或“1”
载波关断 “0”或“1”
通道关断 “0”或“1”
符号关断 “0”或“1”
可选地,第一信息包括节能特性的标识和第一指示信息的对应关系。例如,第一信息包括节能特性的标识和第一指示信息的一一对应关系,或者,在多个节能特性的开关建议相同的情况下,第一信息包括节能特性的标识和第一指示信息的多对一的关系。
可选地,第一信息还包括与至少一个节能特性对应的第二指示信息,第二指示信息用于指示至少一个节能特性的开关状态。相应地,控制设备根据第二指示信息可以确定至少一个节能特性的开关状态。
示例性地,节能特性的开关状态包括节能或不节能(或者包括开启或关闭),其中,节能或开启指的是节能特性处于开启状态、激活状态或者生效状态等可以实现节能的状态,不节能或关闭指的是节能特性处于关闭状态、未激活状态或者不生效状态等不能实现节能的状态。例如,第二指示信息是一个1比特的信息,当第二指示信息为“0”时,第二指示信息用于指示节能特性的开关状态为节能;当第二指示信息为“1”时,第二指示信息用于指示节能特性的开关状态为不节能;或者,当第二指示信息为“1”时,第二指示信息用于指示节能特性的开关状态为节能;当第二指示信息为“0”时,第二指示信息用于指示节能特性的开关状态为不节能。
又示例性地,节能特性的开关状态包括全部节能、部分节能或全部不节能,其中,全部节能指的是节能特性处于开启状态,全部不节能指的是节能特性处于关闭状态,部分节能指的是节能特性处于部分开启状态。例如,第二指示信息是一个1比特的信息,当第二指示信息为“0”时,第二指示信息用于指示节能特性的开关状态为全部节能;当第二指示信息为“1”时,第二指示信息用于指示节能特性的开关状态为部分节能;当第二指示信息为“2”时,第二指示信息用于指示节能特性的开关状态为全部不节能。
例如,第一信息如表6所示。需要说明的是,表6仅以第一信息包括与不同节能特性一一对应的多个第二指示信息为例,而不是限定不同节能特性与第二指示信息之间一定是一一对应的关系。例如,若多个节能特性的开关状态相同,则该多个节能特性可以与一个第二指示信息对应。还需要说明的是,表6以第一信息包括第一指示信息和第二指示信息为例进行说明,第一信息可以包括建议开启的节能特性的标识和第二指示信息,或者,第一信息可以包括建议不开启的节能特性的标识和第二指示信息,或者,第一信息包括节能特性的标识、第一指示信息和第二指示信息。
表6
节能特性 第一指示信息 第二指示信息
深度休眠 “0”或“1” “0”或“1”或“2”
载波关断 “0”或“1” “0”或“1”或“2”
通道关断 “0”或“1” “0”或“1”或“2”
符号关断 “0”或“1” “0”或“1”或“2”
可选地,第一信息还包括温度信息,该温度信息用于确定射频设备的第一温差。
示例性地,该温度信息是射频设备的第一温差,即第一信息还包括第一温差。
又示例性地,该温度信息包括第一检测周期内射频设备的最低温度值和最高温度值,即第一信息还包括第一检测周期内射频设备的最低温度值和最高温度值。
再示例性地,该温度信息包括射频设备的第一温差与温差阈值的差值,即第一信息还包括射频设备的第一温差与温差阈值的差值。
S620,控制设备发送第一指令。相应地,在S620中,射频设备接收第一指令。
第一指令用于指示开启第一节能特性和/或关闭第二节能特性,第一指令是控制设备根据第一信息确定的。其中,第一节能特性包括至少一个第一信息中建议开启的节能特性,第二节能特性包括至少一个第一信息中建议不开启的节能特性。例如,第一信息建议开启的节能特性包括节能特性1至节能特性4,则第一节能特性包括节能特性1至节能特性4中的一个或多个,第二节能特性可以包括节能特性5。
可选地,第一节能特性是第一信息建议开启的节能特性中处于关闭状态的节能特性,第二节能特性是第一信息建议不开启的节能特性中处于开启状态的节能特性。
示例性地,若第一信息建议开启的节能特性包括所有节能特性,则控制设备根据第一信息确定的第一指令用于指示开启第一节能特性。例如,所有的节能特性包括节能特性1至节能特性5,若第一信息建议开启的节能特性包括节能特性1至节能特性5,则控制设备确定的第一指令用于指示开启第一节能特性,第一节能特性包括节能特性1至节能特性5中的一个或多个。
又示例性地,若第一信息建议不开启的节能特性包括所有的节能特性,则控制设备根据第一信息确定的第一指令用于指示关闭第二节能特性。例如,所有的节能特性包括节能特性1至节能特性5,若第一信息建议不开启的节能特性包括节能特性1至节能特性5,则控制设备确定的第一指令用于指示关闭第二节能特性,第二节能特性包括节能特性1至节能特性5中已开启的节能特性的一个或多个。当然,若节能特性1至节能特性5都没有开启,则控制设备可以不生成第一指令。
再示例性地,若第一信息建议开启的节能特性包括部分节能特性,且第一信息建议不开启的部分节能特性中的一个或多个节能特性已开启,则控制设备根据第一信息确定的第一指令可以用于指示开启第一节能特性,以及第一指令还可以用于指示关闭第二节能特性。第一节能特性包括至少一个第一信息建议开启的节能特性,第二节能特性包括至少一个第一信息建议不开启的节能特性中已开启的节能特性。
本申请实施例不限定控制设备如何确定第一信息建议不开启的节能特性的开关状态。
示例性地,若控制设备在先指示射频设备开启了第一信息建议不开启的节能特性,则控制设备确定第一信息建议不开启的节能特性已开启。
又示例性地,若第一信息包括与不同节能特性对应的第二指示信息,则控制设备可以根据第二指示信息确定不同节能特性的开关状态。
可选的,控制设备根据第一信息建议开启的节能特性确定第一节能特性时,还可以考虑不同节能特性的激活条件。也就是说,第一节能特性可以是第一信息建议开启的节能特性中 达到激活条件的节能特性。例如,第一信息建议开启的节能特性包括节能特性1至节能特性4,若控制设备确定节能特性1和节能特性2的激活条件已达到,则控制设备确定的第一指令可以用于指示开启节能特性1和/或节能特性2。
可选地,若第一信息还包括温度信息,则控制设备可以根据温度信息、第一信息建议开启的节能特性和/或建议不开启的节能特性确定第一指令。
示例性地,控制设备首先根据温度信息确定射频设备的第一温差,再根据第一温差以及不同节能特性对射频设备的温差的影响程度确定至少一个节能特性的开关策略。节能特性的开关策略包括允许开启节能特性或不允许开启节能特性。进一步地,控制设备根据至少一个节能特性的开关策略和/或第一信息确定第一指令。
示例性地,若控制设备确定的至少一个节能特性的开关策略与第一信息指示的至少一个节能特性的开关建议匹配,则控制设备根据至少一个节能特性的开关策略或至少一个节能特性的开关建议确定第一指令。例如,控制设备确定的节能特性1的开关策略是允许开启节能特性1,第一信息指示的节能特性1的开关建议是建议开启节能特性1,则控制设备根据节能特性1的开关策略或开关建议确定第一指令。
又示例性地,若控制设备确定的至少一个节能特性的开关策略与第一信息指示的至少一个节能特性的开关建议不同,则控制设备根据至少一个节能特性的开关策略确定第一指令。例如,控制设备确定的节能特性1的开关策略是不允许开启节能特性1,第一信息指示的节能特性1的开关建议是建议开启节能特性1,则控制设备根据节能特性1的开关策略确定第一指令。
控制设备确定至少一个节能特性的开关策略的方法与射频设备确定至少一个节能特性的开关建议的方法相同,为了简洁,本申请实施例不再详述。
可选地,方法600还包括S630。
S630,射频设备根据第一指令开启第一节能特性和/或关闭第二节能特性。
可选地,若射频设备根据第一指令开启第一节能特性和/或关闭第二节能特性之后,射频设备的温差发生了变化,则方法600还可以继续执行S640至S660。
S640,射频设备发送第三信息。相应地,在S640中,控制设备接收第三信息。
其中,第三信息用于指示至少一个节能特性的开关建议。
第三信息是根据射频设备的第二温差和/或不同节能特性对射频设备的温差的影响程度确定的。第二温差表示第二检测周期内射频设备的最高温与最低温的差值,第二检测周期的时长可以是1小时、12小时或1天等,本申请实施例对此不做限定。需要说明的是,第二温差不同于第一温差,第二检测周期在第一检测周期之后。示例性地,第二温差与第一温差的差值大于预设阈值。
射频设备确定第三信息的方式与射频设备确定第一信息的方式相同,为了简洁,此处不再详述。
关于第三信息的具体内容的描述可以参考上文对第一信息的具体内容的描述。
需要说明的是,第三信息建议开启的节能特性与第一信息建议开启的节能特性不完全相同,或者,第三信息建议不开启的节能特性与第一信息建议不开启的节能特性不完全相同。例如,第一信息建议开启的节能特性包括节能特性1至节能特性4,第三信息建议开启的节能特性包括节能特性1和节能特性2。
S650,控制设备发送第三指令。相应地,在S650中,射频设备接收第三指令。
第三指令用于指示开启第五节能特性和/或关闭第六节能特性,第三指令是控制设备根据 第三信息确定的。其中,第五节能特性包括至少一个第三信息中建议开启的节能特性,第六节能特性包括至少一个第三信息中建议不开启的节能特性。例如,第三信息中建议开启的节能特性包括节能特性1和节能特性2,则第五节能特性包括节能特性1和/或节能特性2,第六节能特性包括节能特性3至节能特性5中的一个或多个。
具体地,控制设备根据第三信息确定第三指令的方式与根据第一信息确定第一指令的方式相同,为了简洁,此次不再详述。
需要说明的是,控制设备确定的第三指令与第一指令可能相同,也可能不同,若控制设备确定的第三指令与第一指令相同,则控制设备可以不向射频设备发送第三指令。
S660,射频设备根据第三指令开启第五节能特性和/或关闭第六节能特性。
在本申请实施例中,射频设备可以向控制设备发送至少一个节能特性的开关建议,使得控制设备可以根据至少一个节能特性的开关建议向射频设备发送第一指令,从而控制设备可以向射频设备发送更合理的第一指令,例如第一指令指示开启的第一节能特性可以稳定开启一段时间也不会引起射频设备的温差超出预设温差阈值,从而可以避免射频设备在开启节能特性和关闭节能特性之间反复,也可以避免射频设备关闭节能特性所造成的节能增益损失。
可以理解,射频设备在开启节能特性和关闭节能特性时都会调整无线射频资源,因此基于本申请实施例,射频设备不会在开启节能特性和关闭节能特性之间反复,从而可以保证无线业务性能。
还可以理解,射频设备开启可以稳定开启一段时间也不会引起射频设备温差超出温差阈值的节能特性之后,既可以获得该节能特性对应的节能增益,也可以保证射频设备的温差稳定在温差阈值以下,从而可以实现在保证射频设备温差稳定的同时获取更多的节能增益。如上文所述,射频设备的温差与射频设备的焊点可靠性相关,在射频设备的温差稳定的情况下,射频设备的焊点的可靠性也可以得到保障。
此外,当射频设备的温差发生变化时,射频设备可以向控制设备发送第三信息,从而使得控制设备可以根据第三信息及时调整节能特性的开启和/或关闭,有利于避免节能特性始终处于开启状态而引起射频设备的温差超过温差阈值。也就是说,根据本申请实施例,射频设备通过向控制设备发送节能特性的开关建议,使得控制设备根据开关建议下发不同的指令以控制射频设备开启和/或关闭节能特性,从而射频设备可以通过开启和/或关闭节能特性来控制自身的温差。
例如,当射频设备的温差为20℃时,射频设备根据自身温差和不同节能特性对射频设备的温差的影响程度确定的信息(第一信息或第三信息)建议开启的节能特性包括节能特性1至节能特性4。进一步地,控制设备根据从射频设备接收的信息向射频设备发送的指令(第一指令或第三指令)用于指示开启节能特性4。相应地,射频设备根据从控制设备接收的指令开启节能特性4。当节能特性4开启一段时间后,射频设备检测到自身的温差为23℃,则射频设备根据自身温差和不同节能特性对射频设备的影响程度确定的信息(第一信息或第三信息)建议开启的节能特性包括节能特性1和节能特性2。进一步地,控制设备根据从射频设备接收的信息向射频设备发送的指令(第一指令或第三指令)用于指示开启节能特性2以及关闭节能特性4。相应地,射频设备根据从控制设备接收的指令开启节能特性2以及关闭节能特性4。当节能特性2开启一段时间后,射频设备检测到自身的温差为25℃,由于射频设备的温差已达到温差阈值,则射频设备向控制设备发送建议不开启节能特性1至节能特性5的信息(第一信息或第三信息)。进一步地,控制设备根据从射频设备接收的信息向射频设备发送的指令(第一指令或第三指令)用于指示关闭节能特性2。当所有节能特性都关闭之 后,若射频设备的温差下降(例如下降到23℃),则射频设备可以重新向控制设备指示建议开启的节能特性(例如建议开启的节能特性包括节能特性1和节能特性2)。
此外,在第一信息或第三信息包括与不同节能特性对应的第二指示信息的情况下,控制设备可以根据第二指示信息确定不同节能特性的开关情况,从而可以避免控制设备客户界面显示的节能特性开关状态与节能特性实际开关状态不一致。例如,不会存在控制设备客户界面显示节能特性开启,而射频设备实际未开启该节能特性的场景。控制设备确定节能特性的实际开关状态之后,可以向射频设备发送准确的指令。例如,控制设备根据第二指示信息确定节能特性#1为开启状态,根据第一信息确定节能特性#1是建议不开启的节能特性,则控制设备可以向射频设备发送关闭节能特性#1的指令。
图7示出了本申请实施例提供的控制方法的示意性流程图。如图7所示,方法700可以包括S710至S730,下面详细描述各个步骤。
S710,射频设备发送温度信息。相应地,在S710中,控制设备接收温度信息。
示例性地,射频设备可以是RRU、RU或AAU,控制设备可以是BBU、BU、CU或DU。
温度信息用于确定射频设备的第一温差。第一温差表示第一检测周期内射频设备的最高温与最低温的差值,第一检测周期的时长可以是1小时、12小时或1天等,本申请实施例对此不做限定。
示例性地,该温度信息是射频设备的第一温差。
又示例性地,温度信息包括第一检测周期内射频设备的最低温度值和最高温度值。相应地,控制设备根据温度信息包括的最高温度值和最低温度值的差值确定第一温差。
再示例性地,该温度信息包括射频设备的第一温差与温差阈值的差值,即第一信息还包括射频设备的第一温差与温差阈值的差值。
示例性地,温差阈值表示不影响射频设备的焊点的可靠性的情况下所允许射频设备的温差的最大值。
可选地,在S710中,射频设备还向控制设备发送与不同节能特性对应的第二指示信息。关于第二指示信息的描述可以参考上文S610。
S720,控制设备发送第二指令。相应地,在S720中,射频设备接收第二指令。
具体地,在S720中,控制设备根据第一温差向射频设备发送第二指令。
示例性地,控制设备首先根据第一温差和/或不同节能特性对射频设备的温差的影响程度确定至少一个节能特性的开关策略,再根据至少一个节能特性的开关策略确定第二指令。第二指令用于指示开启至少一个节能特性和/或关闭至少一个节能特性。节能特性的开关策略包括允许开启节能特性或不允许开启节能特性。
关于不同节能特性对射频设备的温差的影响程度的描述可以参考上文S610。
本申请实施例对控制设备确定节能特性的开关策略的方式不做限定。
一种可能的实现方式中,控制设备根据第一温差确定节能特性的开关策略。例如,若第一温差比较低(例如第一温差是温差阈值的1/2),则控制设备确定允许开启所有的节能特性,若第一温差比较高(例如接近于温差阈值),则控制设备确定不允许开启所有的节能特性。
一种可能的实现方式中,控制设备根据不同节能特性对控制设备的温差的影响程度,确定不同节能特性的开关策略。例如,控制设备确定允许不开启对射频设备的温差影响程度最大的节能特性。或者,控制设备确定不允许开启对射频设备的温差影响程度最小的节能特性。
一种可能的实现方式中,控制设备根据第一温差以及不同节能特性对射频设备的温差的影响程度,确定不同节能特性开启单位时长后射频设备的温差;控制设备根据不同节能特性 开启单位时长后射频设备的温差,确定节能特性的开关策略。例如,控制设备可以通过比较不同节能特性开启预设时长后射频设备的温差和温差阈值,确定不同节能特性的开关策略。例如,若某个节能特性开启单位时长后射频设备的温差不低于温差阈值,则控制设备确定不允许开启该节能特性,或者,在该节能特性已经开启的情况下,控制设备确定关闭该节能特性;若某个节能特性开启单位时长后射频设备的温差低于温差阈值,则控制设备确定允许开启该节能特性。又例如,控制设备可以通过比较不同节能特性开启单位时长后射频设备的温差,确定不同节能特性的开关策略。例如,控制设备确定允许开启最低温差对应的节能特性,或者,控制设备确定不允许开启最高温差对应的节能特性。
示例性地,温差阈值表示不影响射频设备的焊点的可靠性的情况下允许的射频设备的温差的最大值。单位时长可以表示期望节能特性开启的时长。
示例性地,控制设备通过第一模型确定不同节能特性开启单位时长后射频设备的温差。关于第一模型的描述可以参考上文S610,以及关于根据第一模型确定不同节能特性开启单位时长后射频设备的温差的描述可以参考上文S610。
另一种可能的实现方式中,控制设备根据第一温差以及不同节能特性对射频设备的温差的影响程度,确定不同节能特性开启后射频设备的温差增大到温差阈值所需的时长,射频设备根据不同节能特性开启后射频设备的温差增大到温差阈值所需的时长,确定节能特性的开关策略。例如,控制设备可以通过比较不同节能特性开启后射频设备的温差增大到温差阈值所需的时长和单位时长,确定不同节能特性的开关策略。例如,若某个节能特性开启后射频设备的温差增大到温差阈值所需的时长超过单位时长,则控制设备确定允许开启该节能特性;若某个节能特性开启后射频设备的温差达到温差阈值所需的时长不超过单位时长,则射频设备确定不允许开启该节能特性,或者,在该节能特性已经开启的情况下,射频设备确定关闭该节能特性。又例如,控制设备可以通过比较不同节能特性开启射频设备的温差增大到温差阈值所需的时长,确定不同节能特性的开关策略。例如,控制设备确定允许开启最长时长对应的节能特性,或者,射频设备确定不允许开启最短时长对应的节能特性。
进一步地,控制设备根据不同节能特性的开关策略确定第二指令,第二指令用于指示开启至少一个节能特性和/或关闭至少一个节能特性。可选地,若控制设备接收到与不同节能特性对应的第二指示信息,则控制设备根据第二指示信息确定不同节能特性的开关状态,并结合不同节能特性的开关状态和不同节能特性的开关策略确定第二指令。例如,若节能特性1的开关状态为节能,且节能特性1的开关策略为不允许开启,则第二指令可以用于指示关闭节能特性1。
可选地,控制设备根据节能特性的开关策略确定开启的节能特性时,还可以考虑不同节能特性的激活条件。也就是说,指示开启的节能特性是允许开启的节能特性中达到激活条件的节能特性。
可选地,方法700还包括S730。
S730,射频设备根据第二指令开启至少一个节能特性和/或关闭至少一个节能特性。
在本申请实施例,控制设备根据射频设备的温差和/或不同节能特性对射频设备的温差的影响程度确定不同节能特性的开关策略,有利于确定出即使稳定开启一段时间也不会引起射频设备的温差超过温差阈值的节能特性,从而可以避免射频设备在开启节能特性和关闭节能特性之间反复,也可以避免射频设备关闭节能特性所造成的节能增益损失。可以理解,射频设备在开启节能特性和关闭节能特性时都会调整无线射频资源,因此基于本申请实施例,射频设备不会在开启节能特性和关闭节能特性之间反复,从而可以保证无线业务性能。
此外,射频设备还可以向控制设备发送与不同节能特性对应的第二指示信息,使得控制设备可以根据第二指示信息确定不同节能特性的开关情况,从而避免控制设备客户界面显示的节能特性的开关状态与节能特性实际开关状态不一致。例如,不会存在控制设备客户界面显示节能特性开启,而射频设备实际未开启该节能特性的场景。控制设备确定节能特性的实际开关状态之后,可以向射频设备发送准确的指令。例如,控制设备根据第二指示信息确定节能特性#1为开启状态,根据第一信息确定节能特性#1是建议不开启的节能特性,则控制设备可以向射频设备发送关闭节能特性#1的指令。
以上,结合图6和图7详细说明了本申请实施例提供的方法。以下,结合图8至图11详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图8是本申请实施例提供的装置800的示意性框图。如图所示,该装置800可以包括:收发单元810和处理单元820。
在一种可能的设计中,该装置800可以是上文方法实施例中的射频设备,也可以是用于实现上文方法实施例中射频设备的功能的芯片。
应理解,该装置800可对应于根据本申请实施例的方法600或方法700中的射频设备,该装置800可以包括用于执行图6中的方法600或图7中的方法100中的射频设备执行的方法单元。并且,该装置800中的各单元和上述其他操作和/或功能分别为了实现图6中的方法600或图7中的方法700的相应流程。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该装置800可以是上文方法实施例中的控制设备,也可以是用于实现上文方法实施例中控制设备的功能的芯片。
应理解,该装置800可对应于根据本申请实施例的方法600或方法700中的控制设备,该装置800可以包括用于执行图6中的方法600或图7中的方法700中的控制设备执行的方法的单元。并且,该装置800中的各单元和上述其他操作和/或功能分别为了实现图6中的方法600或图7中的方法700的相应流程。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该装置800中的收发单元810可对应于图10中示出的装置1000中的收发器1020,该装置800中的处理单元820可对应于图10中示出的装置1000中的处理器1010。
还应理解,当该装置800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
收发单元810用于实现装置800的信号的收发操作,处理单元820用于实现装置800的信号的处理操作。
可选地,该装置800还包括存储单元830,该存储单元830用于存储指令。
图9是本申请实施例提供的装置900的示意性框图。如图9所示。该装置900包括射频模块910和控制模块920,射频模块910和控制模块920通过第一接口连接,关于第一接口的描述可以参考上文。其中,射频模块910用于执行图6或图7中由射频设备执行的方法,控制模块920用于执行图6或图7中由控制设备执行的方法。示例性地,射频模块是RRU、RU或AAU,控制模块是BBU、BU、CU或DU。
图10是本申请实施例提供的装置1000的示意性框图。如图10所示,该装置1000包括:至少一个处理器1010和收发器1020。该处理器1010与存储器耦合,用于执行存储器中存储 的指令,以控制收发器1020发送信号和/或接收信号。可选地,该装置1000还包括存储器1030,用于存储指令。
应理解,上述处理器1010和存储器1030可以合成一个处理装置,处理器1010用于执行存储器1030中存储的程序代码来实现上述功能。具体实现时,该存储器1030也可以集成在处理器1010中,或者独立于处理器1010。
还应理解,收发器1020可以包括接收器(或者称,接收机)和发射器(或者称,发射机)。收发器1020还可以进一步包括天线,天线的数量可以为一个或多个。收发器1020有可以是通信接口或者接口电路。
当该装置1000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
图11是本申请实施例的一种芯片系统的示意图。这里的芯片系统也可为电路组成的系统。图11所示的芯片系统1100包括:逻辑电路1110以及输入/输出接口(input/output interface)1120,所述逻辑电路用于与输入接口耦合,通过所述输入/输出接口传输数据(例如第一指示信息),以执行图6或图7所述的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品 包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图6至图7所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图6至图7所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的射频设备和控制设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种控制方法,其特征在于,包括:
    射频设备向控制设备发送第一信息,所述第一信息用于指示至少一个节能特性的开关建议;
    所述射频设备接收来自所述控制设备的指令,所述指令用于指示开启第一节能特性和/或关闭第二节能特性,所述第一节能特性包括至少一个所述第一信息中建议开启的节能特性,所述第二节能特性包括至少一个所述第一信息中建议不开启的节能特性。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述射频设备根据所述指令开启所述第一节能特性和/或关闭所述第二节能特性。
  3. 根据权利要求1或2所述的方法,所述第一信息是根据所述射频设备的温差和/或不同节能特性对所述射频设备的温差的影响程度确定的。
  4. 根据权利要求1至3任一项所述的方法,其中,所述方法还包括:
    所述射频设备根据所述温差以及不同节能特性对所述射频设备的温差的影响程度,确定不同节能特性开启单位时长后所述射频设备的温差;
    所述射频设备根据不同节能特性开启所述单位时长后所述射频设备的温差,确定所述第一信息。
  5. 根据权利要求1至3任一项所述的方法,其中,所述方法还包括:
    所述射频设备根据所述温差以及不同节能特性对所述射频设备的温差的影响程度,确定不同节能特性开启后所述射频设备的温差增大到温差阈值所需的时长;
    所述射频设备根据不同节能特性开启后所述射频设备的温差增大到所述温差阈值所需的时长,确定所述第一信息。
  6. 根据权利要求1至5中任一项所述的方法,所述第一信息包括所述至少一个节能特性的标识。
  7. 根据权利要求1至6中任一项所述的方法,所述第一信息包括与所述至少一个节能特性对应的第一指示信息,所述第一指示信息用于指示是否建议开启所述至少一个节能特性。
  8. 根据权利要求1至7中任一项所述的方法,所述第一信息还包括与所述至少一个节能特性对应的第二指示信息,所述第二指示信息用于指示所述至少一个节能特性的开关状态。
  9. 根据权利要求8所述的方法,其特征在于,所述第一节能特性是所述至少一个节能特性中处于关闭状态的节能特性,所述第二节能特性是所述至少一个节能特性中处于开启状态的节能特性。
  10. 根据权利要求1至9中任一项所述的方法,所述第一信息还包括温度信息,所述温度信息用于确定所述射频设备的温差。
  11. 一种控制方法,其特征在于,包括:
    控制设备接收来自射频设备的第一信息,所述第一信息用于指示至少一个节能特性的开关建议;
    所述控制设备根据所述第一信息向所述射频设备发送指令,所述指令用于指示开启第一节能特性和/或关闭第二节能特性,所述第一节能特性包括至少一个所述第一信息中建议开启的节能特性,所述第二节能特性包括至少一个所述第一信息中建议不开启的节能特性。
  12. 根据权利要求11所述的方法,所述第一信息是根据所述射频设备的温差和/或不同节能特性对所述射频设备的温差的影响程度确定的。
  13. 根据权利要求11或12所述的方法,所述第一信息包括所述至少一个节能特性的标 识。
  14. 根据权利要求11至13中任一项所述的方法,所述第一信息包括与所述至少一个节能特性对应的第一指示信息,所述第一指示信息用于指示是否建议开启所述至少一个节能特性。
  15. 根据权利要求11至14中任一项所述的方法,所述第一信息还包括与所述至少一个节能特性对应的第二指示信息,所述第二指示信息用于指示所述至少一个节能特性的开关状态;所述方法还包括:
    所述控制设备根据所述第二指示信息确定所述至少一个节能特性的开关状态。
  16. 根据权利要求15所述的方法,其特征在于,所述第一节能特性是所述至少一个节能特性中处于关闭状态的节能特性,所述第二节能特性是所述至少一个节能特性中处于开启状态的节能特性。
  17. 根据权利要求11至16中任一项所述的方法,所述第一信息还包括温度信息,所述温度信息用于确定所述射频设备的温差;
    所述控制设备根据所述第一信息向所述射频设备发送指令,包括:
    所述控制设备根据所述温差和所述第一信息向所述射频设备发送所述指令。
  18. 一种控制方法,其特征在于,包括:
    控制设备接收来自射频设备的温度信息,所述温度信息用于确定所述射频设备的温差;
    所述控制设备根据所述温差和/或不同节能特性对所述射频设备的温差的影响程度确定至少一个节能特性的开关策略;
    所述控制设备根据所述至少一个节能特性的开关策略向所述射频设备发送指令,所述指令用于指示开启至少一个节能特性和/或关闭至少一个节能特性。
  19. 根据权利要求18所述的方法,其中,所述控制设备根据所述温差和不同节能特性对所述射频设备的温差的影响程度确定至少一个节能特性的开关策略,包括:
    所述控制设备根据所述温差以及不同节能特性对所述射频设备的温差的影响程度,确定不同节能特性开启单位时长后所述射频设备的温差;
    所述控制设备根据不同节能特性开启所述单位时长后所述射频设备的温差,确定所述至少一个节能特性的开关策略。
  20. 根据权利要求18所述的方法,其中,所述控制设备根据所述温差以及不同节能特性对所述射频设备的温差的影响程度确定至少一个节能特性的开关策略,包括:
    所述控制设备根据所述温差以及不同节能特性对所述射频设备的温差的影响程度,确定不同节能特性开启后所述射频设备的温差增大到温差阈值所需的时长;
    所述控制设备根据不同节能特性开启后所述射频设备的温差增大到所述温差阈值所需的时长,确定所述至少一个节能特性的开关策略。
  21. 根据权利要求18至20中任一项所述的方法,其中,所述方法还包括:
    所述控制设备接收来自所述射频设备的与至少一个节能特性对应的指示信息,所述指示信息用于指示至少一个节能特性的开关状态;
    所述控制设备根据所述指示信息确定至少一个节能特性的开关状态。
  22. 根据权利要求21所述的方法,所述指令指示开启的至少一个节能特性是处于关闭状态的节能特性,所述指令指示关闭的至少一个节能特性是处于开启状态的节能特性。
  23. 一种控制方法,其特征在于,包括:
    射频设备向控制设备发送温度信息,所述温度信息用于确定所述射频设备的温差;
    所述射频设备接收来自所述控制设备的指令,所述指令用于指示开启至少一个节能特性和/或关闭至少一个节能特性。
  24. 根据权利要求23所述的方法,其中,所述方法还包括:
    所述射频设备向所述控制设备发送指示信息,所述指示信息用于指示至少一个节能特性的开关状态。
  25. 根据权利要求24所述的方法,所述指令指示开启的至少一个节能特性是处于关闭状态的节能特性,所述指令指示关闭的至少一个节能特性是处于开启状态的节能特性。
  26. 一种装置,其特征在于,用于实现如权利要求1至10中任意一项所述的方法,或者,用于实现如权利要求23至25中任意一项所述的方法。
  27. 一种装置,其特征在于,用于实现如权利要求11至17中任意一项所述的方法,或者,用于实现如权利要求18至22中任意一项所述的方法。
  28. 一种装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述装置执行如权利要求1至10中任一项所述的方法,或者,以使所述装置执行如权利要求23至25中任一项所述的方法。
  29. 一种装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述装置执行如权利要求11至17中任一项所述的方法,或者,以使所述装置执行如权利要求18至22中任一项所述的方法。
  30. 一种系统,其特征在于,包括如权利要求26和27所述的装置,或者,包括如权利要求28和29所述的装置。
PCT/CN2022/133977 2021-12-02 2022-11-24 控制方法及装置 WO2023098553A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2024532788A JP2024542747A (ja) 2021-12-02 2022-11-24 制御方法及び装置
EP22900358.7A EP4432740A4 (en) 2021-12-02 2022-11-24 CONTROL METHOD AND APPARATUS
KR1020247021777A KR20240117118A (ko) 2021-12-02 2022-11-24 제어 방법 및 장치
US18/679,689 US20240323836A1 (en) 2021-12-02 2024-05-31 Control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111459007.6A CN114466433B (zh) 2021-12-02 2021-12-02 控制方法及装置
CN202111459007.6 2021-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/679,689 Continuation US20240323836A1 (en) 2021-12-02 2024-05-31 Control method and apparatus

Publications (1)

Publication Number Publication Date
WO2023098553A1 true WO2023098553A1 (zh) 2023-06-08

Family

ID=81405887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133977 WO2023098553A1 (zh) 2021-12-02 2022-11-24 控制方法及装置

Country Status (6)

Country Link
US (1) US20240323836A1 (zh)
EP (1) EP4432740A4 (zh)
JP (1) JP2024542747A (zh)
KR (1) KR20240117118A (zh)
CN (1) CN114466433B (zh)
WO (1) WO2023098553A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4496389A1 (en) * 2023-07-20 2025-01-22 Nokia Solutions and Networks Oy Apparatus for a network device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466433B (zh) * 2021-12-02 2024-11-22 华为技术有限公司 控制方法及装置
CN118215108A (zh) * 2022-12-15 2024-06-18 中兴通讯股份有限公司 通信设备的节能控制方法、电子设备及可读存储介质
EP4398653A1 (en) * 2023-01-09 2024-07-10 Nokia Solutions and Networks Oy Apparatus and method for a distributed unit of a communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000104A1 (zh) * 2015-06-29 2017-01-05 华为技术有限公司 一种站点设备的节能控制方法、装置及系统
CN110858994A (zh) * 2018-08-23 2020-03-03 中国移动通信有限公司研究院 一种节能信息发送方法、装置和存储介质
CN111194071A (zh) * 2018-11-14 2020-05-22 华为技术有限公司 控制功放的方法和装置
CN113055903A (zh) * 2019-12-26 2021-06-29 中国电信股份有限公司 用于基站的节能关断的方法、设备和介质
CN114466433A (zh) * 2021-12-02 2022-05-10 华为技术有限公司 控制方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387570B (zh) * 2010-09-02 2014-03-19 中兴通讯股份有限公司 一种无线网络的节能控制方法及系统
CN109151960A (zh) * 2017-06-28 2019-01-04 中兴通讯股份有限公司 一种基站控制方法、装置及设备
EP4005290A1 (en) * 2019-07-30 2022-06-01 Telefonaktiebolaget LM Ericsson (publ) Thermal management by systematic network reconfiguration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000104A1 (zh) * 2015-06-29 2017-01-05 华为技术有限公司 一种站点设备的节能控制方法、装置及系统
CN110858994A (zh) * 2018-08-23 2020-03-03 中国移动通信有限公司研究院 一种节能信息发送方法、装置和存储介质
CN111194071A (zh) * 2018-11-14 2020-05-22 华为技术有限公司 控制功放的方法和装置
CN113055903A (zh) * 2019-12-26 2021-06-29 中国电信股份有限公司 用于基站的节能关断的方法、设备和介质
CN114466433A (zh) * 2021-12-02 2022-05-10 华为技术有限公司 控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4432740A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4496389A1 (en) * 2023-07-20 2025-01-22 Nokia Solutions and Networks Oy Apparatus for a network device

Also Published As

Publication number Publication date
JP2024542747A (ja) 2024-11-15
KR20240117118A (ko) 2024-07-31
CN114466433B (zh) 2024-11-22
EP4432740A4 (en) 2025-02-26
US20240323836A1 (en) 2024-09-26
CN114466433A (zh) 2022-05-10
EP4432740A1 (en) 2024-09-18

Similar Documents

Publication Publication Date Title
US20220110083A1 (en) Network connection method, terminal device, and network device
WO2023098553A1 (zh) 控制方法及装置
US9459879B2 (en) Systems and methods for thermal mitigation with multiple processors
US9177467B2 (en) Electrical gateway and communication method of electrical gateway
EP3078237A1 (en) Coordination techniques for radio resource control state management in dual-connectivity architectures
US9560597B2 (en) Battery status indication within a Wi-Fi Beacon
CN107113903A (zh) 用于控制到车辆部件的数据交换和数据传输的车辆、装置、方法和计算机程序
US20190349016A1 (en) Bluetooth assisted remote discovery and wakeup
US9913279B2 (en) Method for establishing a radio connection, network apparatus and terminal apparatus
WO2016209545A1 (en) Notification techniques for wireless power transfer systems
US20240406782A1 (en) Capability management for concurrency mode control
KR102622293B1 (ko) 정보 보고 방법, 수신 방법, 단말 장치 및 네트워크 장치
US20240007947A1 (en) Wireless fidelity wi-fi communication method and apparatus
US20240348395A1 (en) Downlink transmission method and apparatus
CN116017782A (zh) 主链路更新方法、装置、设备及存储介质
US20170171914A9 (en) Portable wireless signal transfer system, method and terminal
TW201914237A (zh) 一種通道跳頻的確定方法及裝置、電腦儲存媒介
US20240107529A1 (en) Data transmission method and apparatus
WO2023116680A1 (zh) 一种故障检测的方法、信号处理装置和控制装置
US12184388B2 (en) Abnormal offline state determining method and related apparatus
CN115551073A (zh) 空间关系指示方法和设备
CN118201077A (zh) 一种通信方法及相关设备
CN118741725A (zh) 一种上行通信方法及通信装置
CN115442845A (zh) 一种单双流调度方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024532788

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202417044980

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022900358

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022900358

Country of ref document: EP

Effective date: 20240613

ENP Entry into the national phase

Ref document number: 20247021777

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE