WO2023026928A1 - パターン形成用感光性組成物およびフレキソ版 - Google Patents
パターン形成用感光性組成物およびフレキソ版 Download PDFInfo
- Publication number
- WO2023026928A1 WO2023026928A1 PCT/JP2022/031104 JP2022031104W WO2023026928A1 WO 2023026928 A1 WO2023026928 A1 WO 2023026928A1 JP 2022031104 W JP2022031104 W JP 2022031104W WO 2023026928 A1 WO2023026928 A1 WO 2023026928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- block copolymer
- mass
- composition
- conjugated diene
- block
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N1/00—Printing plates or foils; Materials therefor
- B41N1/12—Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F287/00—Macromolecular compounds obtained by polymerising monomers on to block polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
- C08F297/04—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
- C08F297/046—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
- G03F7/033—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0384—Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the main chain of the photopolymer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2002—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
- G03F7/2012—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image using liquid photohardening compositions, e.g. for the production of reliefs such as flexographic plates or stamps
Definitions
- the present invention relates to a pattern-forming photosensitive composition and a flexographic plate using the pattern-forming photosensitive composition.
- Flexographic printing is widely used as a printing method for labels, plastic containers, cartons, plastic bags, boxes and envelopes.
- a flexographic printing plate used in this flexographic printing is formed by exposing a pattern-forming photosensitive composition comprising an elastomer, a polymerizable ethylenically unsaturated monomer and a photopolymerization initiator to light.
- Thermoplastic elastomers which are excellent in workability, are widely used as elastomers used to constitute compositions for photosensitive flexographic plates.
- aromatic vinyl-conjugated diene-aromatic vinyl block copolymers such as styrene-isoprene-styrene block copolymer (SIS) and styrene-butadiene-styrene block copolymer (SBS) are rich in rubber elasticity. Since it has flexibility and impact resilience suitable for constituting a flexographic plate, it is used as an elastomer for constituting a composition for a photosensitive flexographic plate.
- Patent Document 1 discloses a flexographic printing original plate having a support and a photosensitive resin composition layer laminated on the support, wherein the photosensitive resin composition layer is a thermoplastic comprising an elastomer (a), a photopolymerizable unsaturated monomer (b), and a photopolymerization initiator (c), wherein the thermoplastic elastomer (a) contains at least one vinyl aromatic monomer unit; It has a polymer block (A) mainly composed of a polymer block (A) and a polymer block (B) mainly composed of at least one conjugated diene monomer unit, and is represented by any of the following general formulas (I) to (VII) a block copolymer (a-1) composed mainly of at least two vinyl aromatic monomer units (A); and a polymer mainly composed of at least one conjugated diene monomer unit.
- the photosensitive resin composition layer is a thermoplastic comprising an elastomer (a), a photopolymerizable unsatur
- a block copolymer (a-2) having a block (B) and different from the block copolymer (a-1), wherein the thermoplastic elastomer (a) as a whole has a weight average molecular weight of 100,000 or more and 300,000 or less, and the content of the vinyl aromatic monomer unit in each of the block copolymers (a-1) and (a-2) is 25.0% by mass or more.
- the present invention has been made in view of such circumstances, and provides a pattern forming method capable of providing a molded article having excellent photosensitivity, sufficient wear resistance, and excellent flexibility and ink swelling resistance. It is an object of the present invention to provide a photosensitive composition for
- a photosensitive composition for pattern formation containing a block copolymer composition and a photopolymerization initiator, wherein the block copolymer composition is represented by the following general formula (1). or a block copolymer A2 represented by the following general formula (2), and the weight average molecular weight (Mw) of the entire block copolymer composition is 300,000 to 800,000 A patterning photosensitive composition is provided.
- Ar 1 is an aromatic monovinyl polymer block
- D 1 and D 2 are each a conjugated diene polymer block
- m is an integer of 1 or more
- n is 1 or more.
- m+n is an integer of 3 or more
- X 1 is the residue of the polyfunctional coupling agent.
- Ar ⁇ D p X (2)
- Ar is an aromatic monovinyl polymer block
- D is a conjugated diene polymer block
- p is an integer of 3 or more
- X is a residue of a polyfunctional coupling agent.
- the molecular weight distribution (Mw/Mn) of the block copolymer A1 or the block copolymer A2 is 1.40 or less, and The total content of the block copolymer A1 and the block copolymer A2 is preferably 10% by mass or more.
- the block copolymer composition preferably contains the block copolymer A1.
- the block copolymer composition contains the block copolymer A1, and a diblock copolymer B represented by the following general formula (3), or Further containing a polymer C represented by the general formula (4), the molecular weight distribution (Mw / Mn) of the diblock copolymer B or the polymer C is 1.20 or less, the block copolymer
- the total content of the diblock copolymer B and the polymer C in the composition is 60% by mass or less, and the content of aromatic monovinyl monomer units in the block copolymer composition is 5
- the melt index of the block copolymer composition measured according to ASTM D1238 G condition, 200° C., 5 kg load
- ASTM D1238 G condition, 200° C., 5 kg load
- the block copolymer composition contains the block copolymer A1, and the mass of the branched chain represented by D2 in the block copolymer A1 is The mass ratio of the branched chains represented by Ar 1 -D 1 ((Ar 1 -D 1 )/D 2 ) is preferably 1.0/0.15 to 1.0/2.00.
- the block copolymer composition contains the block copolymer A1, and the weight average molecular weight of the branched chain represented by D2 in the block copolymer A1
- the ratio of the weight-average molecular weight (Mw(D 1 )) of the conjugated diene polymer block D 1 in the branched chain represented by Ar 1 -D 1 to (Mw(D 2 )) ((Mw(D 1 )) /(Mw(D 2 ))) is preferably 1.0/0.3 to 1.0/1.1.
- the polyfunctional coupling agent is preferably a compound having two or more radically polymerizable groups in the molecule.
- the pattern-forming photosensitive composition of the present invention preferably further contains a photopolymerizable ethylenically unsaturated monomer.
- the polyfunctional coupling agent is preferably divinylbenzene.
- a flexographic plate using the above photosensitive composition for pattern formation.
- the photosensitive composition for pattern formation which is excellent in photosensitivity, has sufficient wear resistance, and can give a molded article excellent in flexibility and ink swelling resistance can be provided. .
- the pattern-forming photosensitive composition of the present invention contains a block copolymer composition and a photopolymerization initiator, which will be described later.
- Block copolymer composition The block copolymer composition used in the present invention contains a block copolymer A1 described later or a block copolymer A2 described later, and the weight average molecular weight of the entire block copolymer composition (Mw) is 300,000 to 800,000.
- the block copolymer composition used in the present invention may contain either block copolymer A1 or block copolymer A2, or may contain both.
- Block copolymer A1 has the following general formula (1): (Ar 1 ⁇ D 1 ) m X 1 (D 2 ) n (1)
- Ar 1 is an aromatic monovinyl polymer block
- D 1 and D 2 are each a conjugated diene polymer block
- m is an integer of 1 or more
- n is 1 or more.
- m+n is an integer of 3 or more
- X1 is a residue of a polyfunctional coupling agent.
- Ar 1 -D 1 and D 2 are each a branched chain bonded to X 1
- m is the number of branched chains represented by Ar 1 -D 1 bonded to X 1
- n is the number of branches represented by D2 attached to X1
- m+n is the total number of the branched chains represented by Ar 1 -D 1 and the branched chains represented by D 2 and thus represents the number of branches of block copolymer A1.
- Ar 1 is an aromatic monovinyl polymer block and D 1 and D 2 are conjugated diene polymer blocks.
- the block copolymer A1 has a branched structure formed from three or more branched chains, and the branched chain represented by Ar 1 -D 1 (aromatic monovinyl polymer block and diblock chains containing conjugated diene polymer blocks) and branched chains represented by D2 (conjugated diene polymer block chains).
- Ar 1 -D 1 aromatic monovinyl polymer block and diblock chains containing conjugated diene polymer blocks
- D2 conjugated diene polymer block chains
- m+n is an integer of 3 or more and is not particularly limited, but is preferably an integer of 4 to 20, more preferably an integer of 5 to 15, still more preferably an integer of 6 to 10 is.
- m+n is within the above range, the photosensitivity of the photosensitive composition for pattern formation can be further enhanced, and the wear resistance, flexibility and ink swelling resistance of the resulting molded article can be further enhanced.
- the block copolymer A1 may consist of only one type of block copolymer having substantially a single configuration, or two or more types of block copolymers having substantially different configurations. It may be configured by
- the block copolymer A1 may be a mixture of block copolymers in which any one of m, n and m+n is different.
- the average molecular weight of block copolymer A1 is determined by measurement using high-performance liquid chromatography, which will be described later, and m, n and m+n are calculated, the average of m, n and m+n of a plurality of block copolymers in the mixture Since the values are calculated, these calculated values may not necessarily be integers, but in the present invention the integers that are closest to the calculated values may be specified as m, n and m+n.
- Aromatic monovinyl polymer block Ar 1 The aromatic monovinyl polymer block Ar 1 constituting the block copolymer A1 is a polymer block having aromatic monovinyl monomer units as structural units.
- the aromatic monovinyl monomer used for constituting the aromatic monovinyl monomer unit of the aromatic monovinyl polymer block Ar 1 is not particularly limited as long as it is an aromatic vinyl compound having one radically polymerizable group.
- styrene is styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2,4-diisopropylstyrene, 2,4- Dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 4-bromostyrene, 2-methyl-4,6-dichloro Styrene, 2,4-dibromostyrene, vinylnaphthalene and the like can be mentioned.
- the aromatic monovinyl polymer block Ar 1 preferably contains a styrene unit.
- the content of the styrene unit in the aromatic monovinyl polymer block Ar 1 is not particularly limited, but is 80 to 100% by mass. Preferably, 90 to 100% by mass is more preferable.
- These aromatic monovinyl monomers can be used alone or in combination of two or more in the aromatic monovinyl polymer block Ar1 .
- the aromatic monovinyl polymer block Ar 1 may contain monomer units other than aromatic monovinyl monomer units.
- monomers constituting monomer units other than aromatic monovinyl monomer units include conjugated diene monomers such as 1,3-butadiene and isoprene (2-methyl-1,3-butadiene), ⁇ , Examples include ⁇ -unsaturated nitrile monomers, unsaturated carboxylic acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers.
- the content of monomer units other than the aromatic monovinyl monomer units in the aromatic monovinyl polymer block Ar 1 is preferably 20% by mass or less, more preferably 10% by mass or less, and substantially 0% by mass is particularly preferred.
- the weight average molecular weight (Mw(Ar 1 )) of the aromatic monovinyl polymer block Ar 1 is not particularly limited, but can be in the range of 7000 to 18000, preferably in the range of 7500 to 17000, and more It is preferably in the range of 8000-16000.
- the weight-average molecular weight (Mw(Ar 1 )) of the aromatic monovinyl polymer block Ar 1 within the above range, the moldability and photosensitivity of the photosensitive composition for pattern formation can be improved, and the obtained molded article The balance of abrasion resistance, flexibility, ink swelling resistance and mechanical strength can be further enhanced.
- the weight-average molecular weight (Mw) and number-average molecular weight (Mn) of polymer blocks, branched chains, block copolymers, block copolymer compositions, etc. are measured by high-performance liquid chromatography and converted to polystyrene. shall be obtained as the value of More specifically, the weight average molecular weight and number average molecular weight are measured by the methods described in Examples.
- the conjugated diene polymer block D1 constituting the block copolymer A1 is a polymer block having conjugated diene monomer units as structural units.
- the conjugated diene monomer used to form the conjugated diene monomer unit of the conjugated diene polymer block D1 is not particularly limited as long as it is a conjugated diene compound. Examples include 1,3-butadiene, isoprene ( 2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and the like.
- conjugated diene polymer block D1 preferably contains isoprene units.
- the content of isoprene units in the conjugated diene polymer block D1 is not particularly limited, but is preferably 80 to 100% by mass. 90 to 100% by mass is more preferable.
- conjugated diene monomers may be used alone or in combination of two or more in the conjugated diene polymer block D1 .
- a hydrogenation reaction may be performed on a part of the unsaturated bonds of the conjugated diene polymer block D1 . That is, the conjugated diene polymer block D1 may be a non-hydrogenated conjugated diene polymer block or a hydrogenated conjugated diene polymer block.
- the conjugated diene polymer block D1 may contain monomer units other than conjugated diene monomer units.
- monomers constituting monomer units other than conjugated diene monomer units include aromatic monovinyl monomers such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitrile monomers, unsaturated carboxylic acid monomers, Examples include acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers.
- the content of monomer units other than conjugated diene monomer units in the conjugated diene polymer block D1 is preferably 20% by mass or less, more preferably 10% by mass or less, and is substantially zero. % by weight is particularly preferred.
- the weight average molecular weight (Mw(D 1 )) of the conjugated diene polymer block D 1 is preferably in the range of 20,000 to 140,000, more preferably in the range of 25,000 to 120,000, and still more preferably in the range of 30,000 to 100,000. Within range.
- the weight-average molecular weight (Mw(D 1 )) of the conjugated diene polymer block D 1 within the above range, the moldability and photosensitivity of the photosensitive composition for pattern formation can be enhanced, and the obtained molded article The balance of abrasion resistance, flexibility, ink swelling resistance and mechanical strength can be further improved.
- Branched chain represented by Ar 1 -D 1 The branched chain represented by Ar 1 -D 1 constituting the block copolymer A1 was produced using an arbitrary coupling agent It may be one produced without using a coupling agent. That is, the branched chain represented by Ar 1 -D 1 may contain a coupling agent residue in each polymer block or between each polymer block. It may not be included. From the viewpoint of further improving the balance of abrasion resistance, flexibility, ink swelling resistance and mechanical strength of the obtained molded article, the branched chain represented by Ar 1 -D 1 is produced without using a coupling agent. It preferably contains no coupling agent residue in each polymer block or between each polymer block.
- the weight average molecular weight (Mw(Ar 1 -D 1 )) of the branched chain represented by Ar 1 -D 1 is preferably in the range of 30,000 to 150,000, more preferably in the range of 35,000 to 130,000, It is more preferably in the range of 40,000 to 110,000.
- the weight average molecular weight (Mw(Ar 1 -D 1 )) of the branched chain represented by Ar 1 -D 1 within the above range, the moldability and photosensitivity of the photosensitive composition for pattern formation can be enhanced. It is possible to further improve the balance of wear resistance, flexibility, ink swelling resistance and mechanical strength of the resulting molded article.
- the branched chain molecular weight distribution (Mw/Mn) represented by Ar 1 -D 1 is preferably within the range of 1.20 or less, more preferably within the range of 1.00 to 1.20, and further It is preferably within the range of 1.00 to 1.18, particularly preferably within the range of 1.00 to 1.13, and particularly preferably within the range of 1.00 to 1.10.
- Mw/Mn molecular weight distribution
- Branched Chain Represented by D 2 The branched chain represented by D 2 constituting the block copolymer A1 is a polymer block chain having conjugated diene monomer units as constituent units. .
- the conjugated diene monomer used to form the conjugated diene monomer unit of the conjugated diene polymer block D2 is not particularly limited as long as it is a conjugated diene compound.
- Examples include 1,3-butadiene, isoprene ( 2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and the like.
- 1,3-butadiene and/or isoprene are preferably used, and isoprene is particularly preferably used.
- the resulting molded article can have a better balance among wear resistance, flexibility, ink swelling resistance and mechanical strength.
- conjugated diene monomers can be used singly or in combination of two or more in the branched chain represented by D2 .
- a hydrogenation reaction may be carried out on a part of the unsaturated bond of the branched chain represented by D2 .
- the branched chain represented by D2 may contain monomeric units other than conjugated diene monomeric units.
- monomers constituting monomer units other than conjugated diene monomer units include aromatic monovinyl monomers such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitrile monomers, unsaturated carboxylic acid monomers, Examples include acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers.
- the content of monomer units other than conjugated diene monomer units in the conjugated diene polymer block D2 is preferably 20% by mass or less, more preferably 10% by mass or less, and is substantially zero. % by weight is particularly preferred.
- the weight-average molecular weight (Mw(D 2 )) of the branched chain represented by D 2 is not particularly limited, but is preferably within the range of 20,000 to 140,000, more preferably within the range of 25,000 to 120,000, and further It is preferably within the range of 30,000 to 100,000.
- the coupling agent forming residue X 1 of the polyfunctional coupling agent in block copolymer A1 is represented by Ar 1 -D 1 . and the branched chain represented by D2 to give a block copolymer having a total of 3 or more branched chains.
- polyfunctional coupling agents include halogenated silanes such as tetrachlorosilane and tetrabromosilane; silane compounds such as alkoxysilanes such as tetramethoxysilane and tetraethoxysilane; tin halides such as tetrachlorotin; compounds; epoxy compounds such as polycarboxylic acid esters and epoxidized soybean oil; and compounds having two or more radically polymerizable groups in the molecule.
- Compounds having two or more radically polymerizable groups in the molecule include, for example, divinylbenzene (DVB), divinyltoluene, divinylxylene, divinylanthracene, divinylnaphthalene, divinyldurene, 1,2-bis(4- Aromatic divinyl compounds such as vinylphenyl)ethane, aromatic trivinyl compounds such as trivinylbenzene, aromatic tetravinyl compounds such as tetravinylbenzene, etc.
- VVB divinylbenzene
- divinyltoluene divinylxylene
- divinylanthracene divinylnaphthalene
- divinyldurene 1,2-bis(4- Aromatic divinyl compounds
- aromatic trivinyl compounds such as trivinylbenzene
- aromatic tetravinyl compounds such as tetravinylbenzene, etc.
- Aromatic compounds radically polymerizable aliphatic compounds having two or more radically polymerizable groups and aliphatic groups such as pentaerythritol tetraacrylate, and the like can be mentioned.
- the polyfunctional coupling agent is preferably a compound having two or more radically polymerizable groups in the molecule, and among them, preferably a radically polymerizable aromatic compound, particularly An aromatic divinyl compound is preferred, and divinylbenzene is particularly preferred.
- the block copolymer A1 having the number of branches (m+n) within the above preferred range can be easily obtained, and the photosensitivity of the photosensitive composition for pattern formation is further enhanced.
- the wear resistance, flexibility and ink swelling resistance of the resulting molded article can be further enhanced.
- Block copolymer A1 In the block copolymer A1, the ratio of the mass of the branched chain represented by Ar 1 -D 1 to the mass of the branched chain represented by D 2 ((Ar 1 -D 1 )/D 2 ) is particularly limited However, it is preferably 1.0/0.15 to 1.0/2.00, more preferably 1.0/0.20 to 1.0/1.75. By setting the ratio ((Ar 1 -D 1 )/D 2 ) within the above range, the resulting molded article can have a better balance among wear resistance, flexibility, ink swelling resistance and mechanical strength.
- the ratio ((Mw(D 1 ))/(Mw(D 2 )) ) of the average molecular weight (Mw(D 1 )) is not particularly limited, but is 1.0/0.3 to 1.0/1.1. and more preferably 1.0/0.45 to 1.0/1.03.
- the weight average molecular weight (MwA1) of block copolymer A1 is preferably in the range of 300,000 to 800,000, more preferably in the range of 320,000 to 750,000, still more preferably in the range of 340,000 to 700,000, especially It is preferably in the range of 360,000 to 650,000, most preferably in the range of 380,000 to 600,000.
- the molecular weight distribution (Mw/Mn) of the block copolymer A1 is preferably 1.40 or less, more preferably 1.00 to 1.30, still more preferably 1.00 to 1.20, Especially preferably 1.00 to 1.18, most preferably 1.00 to 1.16.
- the content of the aromatic monovinyl monomer units in the block copolymer A1 (the ratio of the aromatic monovinyl monomer units to the total monomer units constituting the block copolymer A1) is preferably 5 to Within the range of 40% by mass, more preferably within the range of 7 to 35% by mass, still more preferably within the range of 9 to 30% by mass, and particularly preferably within the range of 10 to 28% by mass. , most preferably in the range of 13 to 26% by weight.
- Vinyl bond content in conjugated diene monomer units of block copolymer A1 (1,2-vinyl bond and 3,4-vinyl bond in all conjugated diene monomer units constituting block copolymer A1 proportion) is preferably in the range of 1 to 20% by mass, more preferably in the range of 1 to 15% by mass, and particularly preferably in the range of 1 to 10% by mass.
- the vinyl bond content in the conjugated diene monomer unit of the block copolymer A1 within the above range, the resulting molded article has a better balance of wear resistance, flexibility, ink swelling resistance and mechanical strength. can be enhanced.
- Block copolymer A2 The block copolymer composition used in the present invention may contain a block copolymer A2 described later instead of the block copolymer A1, and may contain the block copolymer A2 together with the block copolymer A1. good too.
- Block copolymer A2 has the following general formula (2): (Ar ⁇ D) p X (2) (In general formula (2), Ar is an aromatic monovinyl polymer block, D is a conjugated diene polymer block, p is an integer of 3 or more, and X is a residue of a polyfunctional coupling agent. It is a block copolymer represented by
- Ar-D is a branched chain bonded to X
- p is the number of branched chains represented by Ar-D bonded to X
- block copolymer A2 represents the number of branches.
- Ar is an aromatic monovinyl polymer block and D is a conjugated diene polymer block.
- p is an integer of 3 or more. That is, the block copolymer A2 has a branched structure formed from three or more branched chains, and the branched chains are represented by Ar-D (aromatic monovinyl polymer block and conjugated diblock chains containing diene polymer blocks).
- Ar-D aromatic monovinyl polymer block and conjugated diblock chains containing diene polymer blocks
- p is an integer of 3 or more and is not particularly limited, but is preferably an integer of 4 to 20, more preferably an integer of 5 to 15, still more preferably an integer of 6 to 10 is.
- p can be adjusted by adjusting the structure of the branched chain represented by Ar-D and the coupling conditions (such as the type and amount of the polyfunctional coupling agent used).
- the block copolymer A2 may consist of only one type of block copolymer having substantially a single configuration, or two or more types of block copolymers having substantially different configurations. It may be configured by
- the block copolymer A2 may be a mixture of block copolymers with different p.
- the average molecular weight of block copolymer A2 is determined by measurement using high-performance liquid chromatography, which will be described later, and p is calculated, the average value of p of a plurality of block copolymers in the mixture is calculated.
- the calculated value of may not necessarily be an integer, in the present invention, an integer that is closest to the calculated value may be specified as p.
- Aromatic monovinyl polymer block Ar The aromatic monovinyl polymer block Ar constituting the block copolymer A2 is a polymer block having aromatic monovinyl monomer units as structural units.
- the aromatic monovinyl monomer used for constituting the aromatic monovinyl monomer unit of the aromatic monovinyl polymer block Ar includes the aromatic monovinyl unit of the aromatic monovinyl polymer block Ar 1 of the block copolymer A1.
- the same aromatic monovinyl monomers as those used to form the monomer units can be mentioned, and among them, styrene is preferred. That is, the aromatic monovinyl polymer block Ar preferably contains a styrene unit.
- the content of the styrene unit in the aromatic monovinyl polymer block Ar is not particularly limited, but is preferably 80 to 100% by mass. 90 to 100% by mass is more preferable.
- the aromatic monovinyl monomers may be used alone or in combination of two or more in the aromatic monovinyl polymer block Ar.
- the aromatic monovinyl polymer block Ar may contain monomer units other than aromatic monovinyl monomer units.
- monomers constituting monomer units other than aromatic monovinyl monomer units include conjugated diene monomers such as 1,3-butadiene and isoprene (2-methyl-1,3-butadiene), ⁇ , Examples include ⁇ -unsaturated nitrile monomers, unsaturated carboxylic acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers.
- the content of monomer units other than the aromatic monovinyl monomer units in the aromatic monovinyl polymer block Ar is preferably 20% by mass or less, more preferably 10% by mass or less, and substantially 0% by mass is particularly preferred.
- the weight-average molecular weight (Mw(Ar)) of the aromatic monovinyl polymer block Ar is not particularly limited, but can be in the range of 7000 to 18000, preferably in the range of 7500 to 17000, more preferably It is in the range of 8000-16000.
- the weight-average molecular weight (Mw(Ar)) of the aromatic monovinyl polymer block Ar within the above range, the moldability and photosensitivity of the photosensitive composition for pattern formation can be improved, and the durability of the resulting molded product can be improved.
- the balance of abrasion resistance, flexibility, ink swelling resistance and mechanical strength can be further improved.
- the conjugated diene polymer block D constituting the block copolymer A2 is a polymer block having conjugated diene monomer units as structural units.
- Conjugated diene monomers used for constituting the conjugated diene monomer units of the conjugated diene polymer block D include those constituting the conjugated diene monomer units of the conjugated diene polymer block D1 of the block copolymer A1. Among them, 1,3-butadiene and/or isoprene are preferably used, and isoprene is particularly preferably used. That is, the conjugated diene polymer block D preferably contains isoprene units.
- the content of isoprene units in the conjugated diene polymer block D is not particularly limited, but is preferably 80 to 100% by mass, and 90 to 90% by mass. 100% by mass is more preferred.
- the conjugated diene polymer block D isoprene monomer units, it is possible to further improve the balance of wear resistance, flexibility, ink swelling resistance and mechanical strength of the resulting molded article.
- These conjugated diene monomers may be used alone or in combination of two or more in the conjugated diene polymer block D.
- some of the unsaturated bonds of the conjugated diene polymer block D may be hydrogenated. That is, the conjugated diene polymer block D may be a non-hydrogenated conjugated diene polymer block or a hydrogenated conjugated diene polymer block.
- the conjugated diene polymer block D may contain monomer units other than conjugated diene monomer units.
- monomers constituting monomer units other than conjugated diene monomer units include aromatic monovinyl monomers such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitrile monomers, unsaturated carboxylic acid monomers, Examples include acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers.
- the content of monomer units other than conjugated diene monomer units in the conjugated diene polymer block D is preferably 20% by mass or less, more preferably 10% by mass or less, and substantially 0 mass. % is particularly preferred.
- the weight average molecular weight (Mw(D)) of the conjugated diene polymer block D is preferably within the range of 20000 to 140000, more preferably within the range of 25000 to 120000, and even more preferably within the range of 30000 to 100000. is.
- Branched chain represented by Ar-D The branched chain represented by Ar-D that constitutes the block copolymer A2 was produced using an arbitrary coupling agent. Alternatively, it may be produced without using a coupling agent. That is, the branched chain represented by Ar-D may contain a coupling agent residue in each polymer block or between each polymer block, and may or may not contain a coupling agent residue. can be anything. From the viewpoint of further enhancing the balance of wear resistance, flexibility, ink swelling resistance and mechanical strength of the resulting molded article, the branched chain represented by Ar-D was produced without using a coupling agent. It is preferred that no coupling agent residue is contained in each polymer block or between each polymer block.
- the weight average molecular weight (Mw(Ar-D)) of the branched chain represented by Ar-D is preferably within the range of 30000 to 150000, more preferably within the range of 35000 to 130000, and even more preferably 40000. It is in the range of ⁇ 110000.
- the molecular weight distribution (Mw/Mn) of the branched chain represented by Ar-D is preferably within the range of 1.20 or less, more preferably within the range of 1.00 to 1.20, still more preferably It is within the range of 1.00 to 1.18, particularly preferably within the range of 1.00 to 1.13, and particularly preferably within the range of 1.00 to 1.10.
- the resulting molded article has a better balance of abrasion resistance, flexibility, ink swelling resistance and mechanical strength. be able to.
- the polyfunctional coupling agent forming the residue X of the polyfunctional coupling agent is preferably a compound having two or more radically polymerizable groups in the molecule, and among them, preferably a radically polymerizable aromatic compound, particularly an aromatic divinyl compound. is preferred, and divinylbenzene is particularly preferred.
- the block copolymer A2 having the number of branches (p) within the preferred range can be easily obtained, and the photosensitivity of the photosensitive composition for pattern formation is further enhanced.
- the wear resistance, flexibility and ink swelling resistance of the resulting molded article can be further enhanced.
- the weight average molecular weight (MwA2) of block copolymer A2 is preferably in the range of 300,000 to 800,000, more preferably in the range of 320,000 to 750,000, still more preferably in the range of 340,000 to 700,000, and particularly It is preferably in the range of 360,000 to 650,000, most preferably in the range of 380,000 to 600,000.
- MwA2 weight average molecular weight
- the molecular weight distribution (Mw/Mn) of the block copolymer A2 is preferably 1.40 or less, more preferably 1.00 to 1.30, still more preferably 1.00 to 1.20, Especially preferably 1.00 to 1.18, most preferably 1.00 to 1.16.
- the content of the aromatic monovinyl monomer units in the block copolymer A2 (the ratio of the aromatic monovinyl monomer units to the total monomer units constituting the block copolymer A2) is preferably 5 to Within the range of 40% by mass, more preferably within the range of 7 to 35% by mass, still more preferably within the range of 9 to 30% by mass, and particularly preferably within the range of 10 to 28% by mass. , most preferably in the range of 13 to 26% by weight.
- Vinyl bond content in conjugated diene monomer units of block copolymer A2 (1,2-vinyl bond and 3,4-vinyl bond in all conjugated diene monomer units constituting block copolymer A2 proportion) is preferably in the range of 1 to 20% by mass, more preferably in the range of 1 to 15% by mass, and particularly preferably in the range of 1 to 10% by mass.
- the vinyl bond content in the conjugated diene monomer unit of the block copolymer A2 within the above range, the resulting molded article has a better balance of abrasion resistance, flexibility, ink swelling resistance and mechanical strength. can be enhanced.
- diblock copolymer B The block copolymer composition used in the present invention may contain a diblock copolymer B in addition to block copolymer A1 or block copolymer A2.
- the diblock copolymer B has the following general formula (3): Ar 3 -D 3 (3) (In Formula (3), Ar 3 is an aromatic monovinyl polymer block and D 3 is a conjugated diene polymer block.).
- the diblock copolymer B When the block copolymer composition contains the block copolymer A1, the diblock copolymer B usually has the same structure as the branched chain represented by Ar 1 -D 1 that constitutes the block copolymer A1. , but it is also possible to have a different configuration. In this case, for the aromatic monovinyl polymer block Ar 3 and the conjugated diene polymer block D 3 that constitute the diblock copolymer B, the aromatic monovinyl polymer block Ar 1 and the conjugated diene polymer in the block copolymer A1 The content can be the same as that of block D1 , and the preferred embodiment is also the same. According to the method for producing the block copolymer A1 described later, the structure of the diblock copolymer B is usually the same as the branched chain represented by Ar 1 -D 1 constituting the block copolymer A1. can be configured.
- the diblock copolymer B When the block copolymer composition contains the block copolymer A2, the diblock copolymer B usually has the same structure as the branched chain represented by Ar-D that constitutes the block copolymer A2. However, it is also possible to have a different configuration. In this case, for the aromatic monovinyl polymer block Ar 3 and the conjugated diene polymer block D 3 that constitute the diblock copolymer B, the aromatic monovinyl polymer block Ar and the conjugated diene polymer block in the block copolymer A2 The content can be the same as D, and the preferred aspects are also the same. According to the method for producing the block copolymer A2 described later, the structure of the diblock copolymer B is usually the same structure as the branched chain represented by Ar-D that constitutes the block copolymer A2. sell.
- Diblock copolymer B may be produced using any coupling agent or may be produced without using a coupling agent, but each polymer block It preferably does not contain a residue of a coupling agent in and between each polymer block.
- the weight average molecular weight (MwB) of the diblock copolymer B is preferably within the range of 30,000 to 150,000, more preferably within the range of 35,000 to 130,000, and even more preferably within the range of 40,000 to 110,000.
- MwB weight-average molecular weight
- the molecular weight distribution (Mw/Mn) of the diblock copolymer B is preferably within the range of 1.20 or less, more preferably within the range of 1.00 to 1.20, and still more preferably 1.00. to 1.18, preferably 1.00 to 1.13, particularly preferably 1.00 to 1.10.
- Mw/Mn molecular weight distribution
- the content of the aromatic monovinyl monomer units in the diblock copolymer B is preferably Within the range of 5 to 40% by mass, more preferably within the range of 7 to 35% by mass, still more preferably within the range of 9 to 30% by mass, particularly preferably within the range of 10 to 28% by mass and most preferably in the range of 13 to 26 mass %.
- Vinyl bond content in conjugated diene monomer units of diblock copolymer B (in all conjugated diene monomer units constituting diblock copolymer B, 1,2-vinyl bond and 3,4-vinyl bond
- the proportion occupied by bonds is preferably within the range of 1 to 20% by mass, more preferably within the range of 1 to 15% by mass, and particularly preferably within the range of 1 to 10% by mass.
- the diblock copolymer B constituting the block copolymer composition used in the present invention may consist of only one type of diblock copolymer B having substantially a single configuration. However, it may be composed of two or more diblock copolymers B having substantially different structures.
- the block copolymer composition used in the present invention may contain a polymer C in addition to the block copolymer A1 or the block copolymer A2 and the diblock copolymer B used as necessary. good.
- Polymer C has the following general formula (4): D4 ( 4 ) (In the formula (4), D4 is a conjugated diene polymer block.) It is a conjugated diene polymer having a conjugated diene monomer unit as a structural unit.
- Polymer C is a conjugated diene polymer having conjugated diene monomer units as structural units.
- Conjugated diene monomers used for constituting the conjugated diene monomer units of the polymer C include the conjugated diene monomers used for constituting the conjugated diene polymer block D2 constituting the block copolymer A1.
- Examples of the mer include those mentioned above. Among them, 1,3-butadiene and/or isoprene are preferably used, and isoprene is particularly preferably used. That is, the polymer C preferably contains isoprene units.
- the content of the isoprene units in the polymer C is not particularly limited, but is preferably 80 to 100% by mass, more preferably 90 to 100% by mass. .
- the polymer C By forming the polymer C from isoprene monomer units, it is possible to further improve the balance of wear resistance, flexibility, ink swelling resistance and mechanical strength of the obtained molded article.
- conjugated diene monomers can be used in the polymer C either singly or in combination of two or more. Further, some of the unsaturated bonds of polymer C may be subjected to a hydrogenation reaction. That is, the polymer C may be a non-hydrogenated conjugated diene polymer or a hydrogenated conjugated diene polymer.
- Polymer C may contain monomer units other than conjugated diene monomer units.
- monomers constituting monomer units other than conjugated diene monomer units include aromatic monovinyl monomers such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitrile monomers, unsaturated carboxylic acid monomers, Examples include acid or acid anhydride monomers, unsaturated carboxylic acid ester monomers, and non-conjugated diene monomers.
- the content of monomer units other than conjugated diene monomer units in polymer C is preferably 20% by mass or less, more preferably 10% by mass or less, and substantially 0% by mass. is particularly preferred.
- the polymer C When the block copolymer composition contains the block copolymer A1, the polymer C usually has the same structure as the conjugated diene polymer block D2 constituting the block copolymer A1, but the difference It is also possible to have a configuration for When the block copolymer composition contains the block copolymer A1, the polymer C may have the same content as the conjugated diene polymer block D2 in the block copolymer A1, and the preferred embodiment is also the same. is. According to the method for producing the block copolymer A1, which will be described later, the structure of the polymer C can usually be the same as that of the conjugated diene polymer block D2 constituting the block copolymer A1.
- the weight average molecular weight (MwC) of polymer C is preferably within the range of 20,000 to 140,000, more preferably within the range of 25,000 to 120,000, and even more preferably within the range of 30,000 to 100,000.
- MwC weight-average molecular weight
- the molecular weight distribution (Mw/Mn) of the polymer C is preferably within the range of 1.20 or less, more preferably within the range of 1.00 to 1.20, still more preferably 1.00 to 1.20. 18, preferably 1.00 to 1.13, particularly preferably 1.00 to 1.10.
- Mw/Mn molecular weight distribution
- the vinyl bond content in the conjugated diene monomer units of the polymer C (ratio of 1,2-vinyl bonds and 3,4-vinyl bonds in all conjugated diene monomer units constituting the polymer C) is , preferably in the range of 1 to 20% by mass, more preferably in the range of 1 to 15% by mass, and particularly preferably in the range of 1 to 10% by mass.
- polymer C may be composed of only one type of polymer C having substantially a single configuration, or composed of two or more types of polymers C having substantially different configurations. may have been
- Block copolymer composition used in the present invention contains block copolymer A1 or block copolymer A2, and the weight average molecular weight of the entire block copolymer composition ( Mw) is 300,000 to 800,000.
- the block copolymer composition may optionally contain a diblock copolymer B and may optionally contain a polymer C.
- the weight average molecular weight (Mw) of the entire block copolymer composition is within the range of 300,000 to 800,000. If the weight-average molecular weight (Mw) of the block copolymer composition as a whole is too small, the obtained molded article may be inferior in flexibility. On the other hand, if the weight average molecular weight (Mw) of the entire block copolymer composition is too small, both the processability of the photosensitive composition for pattern formation and the wear resistance and ink swelling resistance of the resulting molded article are achieved. may become difficult.
- the weight-average molecular weight (Mw) of the block copolymer composition as a whole can improve the moldability and photosensitivity of the photosensitive composition for pattern formation, and the wear resistance, flexibility, and ink swelling resistance of the resulting molded product. preferably within the range of 320,000 to 750,000, more preferably within the range of 340,000 to 700,000, and even more preferably within the range of 360,000 to 650,000, because the balance between properties and mechanical strength can be further enhanced; It is particularly preferably within the range of 380,000 to 600,000.
- the molecular weight distribution represented by the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the entire block copolymer composition is preferably in the range of 1.01 to 2.50. , more preferably in the range of 1.02 to 2.20, more preferably in the range of 1.02 to 2.0.
- the content of block copolymer A1 in the block copolymer composition is 100% by mass of the total mass of the block copolymer composition. At times, it is preferably in the range of 10% by mass or more, more preferably in the range of 30 to 99% by mass, still more preferably in the range of 40 to 99% by mass, still more preferably 50 to 99% by mass. % by mass, more preferably in the range of 60 to 99% by mass, particularly preferably in the range of 70 to 99% by mass, and even more preferably in the range of 75 to 98% by mass. and most preferably in the range of 80 to 98% by mass.
- the moldability and photosensitivity of the photosensitive composition for pattern formation can be enhanced, and the abrasion resistance of the resulting molded article
- the balance of flexibility, flexibility, ink swelling resistance and mechanical strength can be further improved.
- the content of block copolymer A2 in the block copolymer composition is 100% by mass of the total mass of the block copolymer composition. At times, it is preferably in the range of 10% by mass or more, more preferably in the range of 30 to 99% by mass, still more preferably in the range of 40 to 99% by mass, still more preferably 50 to 99% by mass. % by mass, more preferably in the range of 60 to 99% by mass, particularly preferably in the range of 70 to 99% by mass, and even more preferably in the range of 75 to 98% by mass. and most preferably in the range of 80 to 98% by mass.
- the moldability and photosensitivity of the photosensitive composition for pattern formation can be enhanced, and the wear resistance of the resulting molded article
- the balance of flexibility, flexibility, ink swelling resistance and mechanical strength can be further improved.
- the total content of block copolymer A1 and block copolymer A2 in the block copolymer composition is preferably 10% by mass or more when the total mass of the block copolymer composition is 100% by mass. within the range, more preferably within the range of 30 to 99% by mass, more preferably within the range of 40 to 99% by mass, still more preferably within the range of 50 to 99% by mass, and still further preferably in the range of 60 to 99% by weight, particularly preferably in the range of 70 to 99% by weight, even more preferably in the range of 75 to 98% by weight, most preferably in the range of 80 to 98% by weight is within the range of
- the moldability and photosensitivity of the photosensitive composition for pattern formation can be enhanced, It is possible to further improve the balance of wear resistance, flexibility, ink swelling resistance and mechanical strength of the resulting molded article.
- the content of the diblock copolymer B in the block copolymer composition is preferably in the range of 60% by mass or less when the total mass of the block copolymer composition is 100% by mass. It is preferably in the range of 0 to 40% by mass, more preferably in the range of 0 to 20% by mass, even more preferably in the range of 0 to 10% by mass, and particularly preferably in the range of 0.5 to 10% by mass. % by weight, most preferably between 1 and 10% by weight.
- the content of polymer C in the block copolymer composition is preferably in the range of 60% by mass or less, more preferably 0, when the total mass of the block copolymer composition is 100% by mass. to 40% by mass, more preferably 0 to 20% by mass, even more preferably 0 to 10% by mass, and particularly preferably 0.5 to 10% by mass. within the range, most preferably within the range of 1 to 10% by weight.
- the total content of the diblock copolymer B and the polymer C in the block copolymer composition is preferably in the range of 60% by mass or less when the total mass of the block copolymer composition is 100% by mass. Within, more preferably in the range of 0 to 40% by mass, more preferably in the range of 0 to 20% by mass, even more preferably in the range of 0 to 10% by mass, particularly preferably It is in the range of 0.5-10% by weight, most preferably in the range of 1-10% by weight.
- the content of block copolymer A1/diblock copolymer B/polymer C in the block copolymer composition is When the total mass of the composition is 100% by mass, it is preferably 10 to 100/0 to 60/0 to 30 (% by mass), and 30 to 100/0 to 50/0 to 20 (% by mass) More preferably, 30 to 99/0.5 to 50/0.5 to 20 (mass%), more preferably 50 to 99/0.5 to 40/0.5 to 10 (mass %), still more preferably 60 to 98/1 to 30/1 to 10 (% by mass), and 70 to 98/1 to 20/1 to 10 (% by mass) is particularly preferred, 75 to 98/1 to 15/1 to 10 (mass %) is even more preferred, and 80 to 98/1 to 10/1 to 10 (mass %) is most preferred.
- the content of block copolymer A2/diblock copolymer B/polymer C in the block copolymer composition is When the total mass of the composition is 100% by mass, it is preferably 10 to 100/0 to 60/0 to 30 (% by mass), and 30 to 100/0 to 50/0 to 20 (% by mass) More preferably, 30 to 99/0.5 to 50/0.5 to 20 (mass%), more preferably 50 to 99/0.5 to 40/0.5 to 10 (mass %), still more preferably 60 to 98/1 to 30/1 to 10 (% by mass), and 70 to 98/1 to 20/1 to 10 (% by mass) is particularly preferred, 75 to 98/1 to 15/1 to 10 (mass %) is even more preferred, and 80 to 98/1 to 10/1 to 10 (mass %) is most preferred.
- Total content of block copolymer A1 and block copolymer A2)/content of diblock copolymer B/polymer C in the block copolymer composition is the total mass of the block copolymer composition. 100% by mass, preferably 10 to 100/0 to 60/0 to 30 (% by mass), more preferably 30 to 100/0 to 50/0 to 20 (% by mass)
- 30 to 99/0.5 to 50/0.5 to 20 (mass%), more preferably 50 to 99/0.5 to 40/0.5 to 10 (mass%) is even more preferable
- 60 to 98/1 to 30/1 to 10 (% by mass) is even more preferable
- 70 to 98/1 to 20/1 to 10 (% by mass) is particularly preferable
- 75 to 98/1 to 15/1 to 10 (mass %) is even more preferred
- 80 to 98/1 to 10/1 to 10 (mass %) is most preferred.
- the block copolymer composition used in the present invention generally comprises at least one of block copolymer A1 and block copolymer A2, optionally diblock copolymer B, and optionally It consists only of the polymer C obtained.
- the photosensitive composition for pattern formation of the present invention contains other polymers other than the block copolymer A1, the block copolymer A2, the diblock copolymer B and the polymer C within a range that does not interfere with the effects of the present invention. may further contain.
- the content of the aromatic monovinyl monomer units in the block copolymer composition is preferably within the range of 5 to 40% by mass, more preferably within the range of 7 to 35% by mass, still more preferably within the range of 9 to 30% by mass, particularly preferably within the range of 10 to 28% by mass and most preferably in the range of 13 to 26 mass %.
- the total content of aromatic monovinyl monomer units should be adjusted by considering the content of aromatic monovinyl monomer units in each polymer constituting the block copolymer composition. can be easily adjusted. If all polymer components constituting the block copolymer composition are composed only of aromatic monovinyl monomer units and conjugated diene monomer units, Rubber Chem. Technol. , 45, 1295 (1972), the polymer component is ozonolyzed and then reduced with lithium aluminum hydride to decompose the conjugated diene monomer unit portion to yield the aromatic monovinyl monomer. Since only the unit portion can be taken out, the total aromatic monovinyl monomer unit content can be easily measured.
- Vinyl bond content in conjugated diene monomer units in the block copolymer composition is preferably in the range of 1 to 20% by mass, more preferably in the range of 1 to 15% by mass, and particularly preferably in the range of 1 to 10% by mass.
- the melt index of the block copolymer composition is preferably within the range of 0.5 to 50 g/10 minutes as a value measured according to ASTM D1238 (G conditions, 200°C, 5 kg load), and more It is preferably within the range of 1 to 35 g/10 minutes, more preferably within the range of 2 to 25 g/10 minutes.
- the type A hardness of the block copolymer composition is preferably 25-65, more preferably 26-64, still more preferably 27-63. When the type A hardness is within the above range, it is possible to further improve the balance of wear resistance, flexibility, ink swelling resistance and mechanical strength of the resulting molded article.
- Type A hardness is a value measured using a durometer hardness tester (type A) according to JIS K6253.
- the content of the block copolymer composition in the photosensitive composition for pattern formation is preferably 20 to 99% by weight, more preferably 30 to 95% by weight, still more preferably 40 to 93% by weight, particularly preferably 50% by weight. ⁇ 92 wt%, most preferably 60-91 wt%.
- (1-6) Method for producing block copolymer composition The method for producing the block copolymer composition used in the present invention is not particularly limited, but the block copolymer composition can be produced by the method for producing a block copolymer composition. When producing, as one component of the block copolymer composition, there is a method for producing block copolymer A1 or block copolymer A2.
- the block copolymer composition used in the present invention can be produced collectively by the production method described later. It may be produced by optionally mixing with copolymer B, polymer C and block copolymer D.
- (1-6-1) Method for Producing Block Copolymer Composition Containing Block Copolymer A1 As a method for producing a block copolymer composition containing block copolymer A1, a polymerization step of polymerizing an aromatic monovinyl monomer in a polymerization solvent using an organolithium initiator to obtain an aromatic monovinyl polymer block chain; Polymerization to obtain a diblock chain and a conjugated diene polymer block chain by polymerizing a conjugated diene monomer in a polymerization solvent using an organic lithium initiator in the presence of the aromatic monovinyl polymer block chain a process, and A preferred example is a production method comprising a coupling step of reacting a diblock chain and a conjugated diene polymer block chain with a polyfunctional coupling agent.
- the organolithium initiator used in the polymerization step a known one capable of initiating polymerization of the aromatic monovinyl monomer and the conjugated diene monomer can be used, and specific examples thereof include methyllithium, n-propyllithium, Examples include organic monolithium initiators such as n-butyllithium and sec-butyllithium. Among these, n-butyllithium is preferred.
- the amount of the organolithium initiator to be used may be calculated according to the molecular weight of the desired polymer by methods well known to those skilled in the art.
- the use of an organolithium initiator allows the polymerization reaction to proceed with living property, so that a polymer having an active terminal is present in the polymerization reaction system. Therefore, in the present invention, the polymer chain obtained in the polymerization step can have an active terminal.
- the polymerization solvent is not particularly limited as long as it is inert to the organolithium initiator, but for example, an open-chain hydrocarbon solvent, a cyclic hydrocarbon solvent, or a mixed solvent thereof is used.
- open chain hydrocarbon solvents include n-butane, isobutane, n-hexane or mixtures thereof; 1-butene, isobutylene, trans-2-butene, cis-2-butene or mixtures thereof; 1-pentene, trans -2-pentene, cis-2-pentene or mixtures thereof; n-pentane, isopentane, neo-pentane or mixtures thereof; and 1-pentene, trans-2-pentene, cis-2-pentene or mixtures thereof; open-chain alkanes and alkenes having 4 to 6 carbon atoms such as
- the cyclic hydrocarbon solvent include aromatic hydrocarbons such as benzene, toluene and x
- a mixture of an open-chain hydrocarbon solvent and a cyclic hydrocarbon solvent It is more preferably used in a weight ratio of 5:95 to 50:50, and more preferably in a weight ratio of 10:90 to 40:60.
- the polymerization reaction can also be carried out in the presence of a polar compound, and the polymerization initiation rate and molecular weight distribution can be adjusted by using the polar compound.
- Polar compounds include aromatic or aliphatic ethers having a dielectric constant (25° C.) of 2.5 to 5.0, or tertiary amines. Specific examples of polar compounds include aromatic ethers such as diphenyl ether and anisole; aliphatic ethers such as diethyl ether and dibutyl ether; tertiary monoamines such as trimethylamine, triethylamine and tripropylamine; tetramethylethylenediamine and tetraethylethylenediamine.
- tertiary polyamines and the like. These polar compounds can be used singly or in combination of two or more.
- the amount of the polar compound used is preferably 0.001 to 50 mol, more preferably 0.005 to 10 mol, per 1 mol of the organolithium initiator.
- the polymerization method of the aromatic monovinyl monomer is not particularly limited, and batch polymerization in which the total amount of the aromatic monovinyl monomer and the total amount of the initiator are charged into the polymerization system at once and reacted, or these are continuously added to the polymerization system. Continuous polymerization in which the monomers and initiator are reacted while being supplied, and a method in which polymerization is performed to a predetermined conversion rate using a part of the monomers and the initiator, and then the remaining monomers and the initiator are added to continue the polymerization. , any of the commonly used methods may be used. Polymerization is usually carried out in the range of 0°C to 90°C, preferably 20°C to 80°C. When it is difficult to control the reaction temperature, it is preferable to control the temperature by reflux cooling using a reaction vessel equipped with a reflux condenser.
- a solution containing an aromatic monovinyl polymer block chain can be obtained by polymerizing an aromatic monovinyl monomer using an organic lithium initiator in a solvent under the above conditions.
- the aromatic monovinyl polymer block chain obtained by polymerization usually has an active terminal.
- the obtained aromatic monovinyl polymer block chain forms an aromatic monovinyl polymer block (Ar 1 ) or an aromatic monovinyl polymer block (Ar 3 ), it is used in this polymerization step.
- the amount of the monomer may be determined according to the weight average molecular weights of the aromatic monovinyl polymer block (Ar 1 ) and the aromatic monovinyl polymer block (Ar 3 ).
- an organolithium initiator and a conjugated diene monomer are added to the resulting solution containing the aromatic monovinyl polymer block chain to carry out polymerization.
- a solution containing diblock chains and conjugated diene polymer block chains can be obtained.
- the timing of adding the organolithium initiator and the conjugated diene monomer to the solution containing the aromatic monovinyl polymer block chain is not particularly limited.
- the organolithium initiator may be added followed by the conjugated diene monomer, and a portion of the conjugated diene monomer is added followed by the organolithium initiator and then the remaining conjugated diene.
- a monomer may be added.
- the diblock chain and the conjugated diene polymer block chain obtained by polymerization usually have an active terminal.
- the obtained diblock chain has the conjugated diene polymer block (D 1 ) attached to the polymer chain to form the aromatic monovinyl polymer block (Ar 1 ) and the aromatic monovinyl polymer block (Ar 3 ).
- polymer chains forming the conjugated diene polymer block (D 3 ) are further bonded.
- the resulting conjugated diene polymer block chain will form a conjugated diene polymer block (D 2 ) and polymer C.
- the amount of monomers used in this polymerization step is the weight of the conjugated diene polymer block (D 1 ), the conjugated diene polymer block (D 2 ), the conjugated diene polymer block (D 3 ) and the weight of the polymer C It may be determined according to the average molecular weight.
- the polymerization reaction temperature, the polymerization time, and the polymerization pressure may be controlled within the same range as in the polymerization of the aromatic monovinyl monomer.
- the vinyl bond content in the conjugated diene monomer unit may be adjusted by using the above-described polar compound as a randomizer during the polymerization of the conjugated diene monomer.
- a polyfunctional coupling agent is then added to the solution containing the diblock chains and the conjugated diene polymer block chains.
- the active terminals of the diblock chain and the conjugated diene polymer block chain react with the polyfunctional coupling agent, and three or more branched chains are bonded via the residue of the polyfunctional coupling agent. and block copolymer A1 is formed.
- the polyfunctional coupling agent those mentioned above can be used. Also, a compound having an effect of promoting the coupling reaction can be added.
- the amount of the polyfunctional coupling agent used is adjusted to an appropriate amount according to the number of branched chains of the block copolymer A1 and the content of the block copolymer A1 in the block copolymer composition.
- the amount of the polyfunctional coupling agent to be used is preferably in the range of 0.0001 to 20 mol, more preferably in the range of 0.01 to 10 mol, per 1 mol of the organolithium initiator. It is preferably within the range of 0.02 to 6 mol.
- an appropriate amount of the polyfunctional coupling agent to be used is calculated according to the number of branched chains of the target block copolymer A1 and the content of the block copolymer A1 in the block copolymer composition.
- a reaction terminator such as methanol can be used to adjust the coupling ratio.
- the diblock chain and the conjugated diene polymer block chain obtained in the polymerization step remain unreacted, and finally, It may be recovered as diblock copolymer B and polymer C.
- the reaction temperature is preferably 10 to 150°C, more preferably 30 to 130°C, still more preferably 40 to 90°C.
- the time required for the reaction varies depending on the conditions, it is usually within 48 hours, preferably 0.5 to 10 hours.
- the polymer component may be recovered from the solution containing the block copolymer composition containing block copolymer A1, optional diblock copolymer B and optional polymer C ( collection process).
- the recovery method is not particularly limited as long as it follows a conventional method.
- a polymerization terminator such as water, methanol, ethanol, propanol, hydrochloric acid, or citric acid, and if necessary, add an additive such as an antioxidant.
- an additive such as an antioxidant.
- the polymer component When the polymer component is recovered as a slurry by applying steam stripping or the like, it is dehydrated using an arbitrary dehydrator such as an extruder type squeezer to obtain a crumb having a moisture content of a predetermined value or less, and The crumb may be dried using any dryer such as a band dryer or an expansion extrusion dryer.
- the block copolymer obtained as described above may be used after being processed into a pellet shape or the like according to a conventional method.
- block copolymer composition containing block copolymer A1 can be produced.
- the polymerization step of obtaining a solution containing an aromatic monovinyl polymer block chain by polymerizing an aromatic monovinyl monomer in a polymerization solvent using an organolithium initiator comprises a block containing block copolymer A1. It can be carried out in the same manner as the corresponding polymerization step in the production method of the copolymer composition, and preferred embodiments are also the same.
- a solution containing an aromatic monovinyl polymer block chain can be obtained by polymerizing an aromatic monovinyl monomer using an organic lithium initiator in a solvent under the above conditions.
- the aromatic monovinyl polymer block chain obtained by polymerization usually has an active terminal.
- the obtained aromatic monovinyl polymer block chain forms an aromatic monovinyl polymer block (Ar) or an aromatic monovinyl polymer block (Ar 3 ).
- the amount of the polymer may be determined according to the weight average molecular weights of the aromatic monovinyl polymer block (Ar) and the aromatic monovinyl polymer block (Ar 3 ).
- a conjugated diene monomer is added to the obtained solution containing the aromatic vinyl polymer block chain to carry out polymerization.
- a diblock chain obtained by polymerization usually has an active end.
- the resulting diblock chain is a conjugated diene polymer block (D) or a conjugated diene polymer block ( D ) or a conjugated
- the polymer chains that form the diene polymer block (D 3 ) are further bound together. Therefore, the amount of the monomer used in this polymerization step may be determined according to the weight average molecular weights of the conjugated diene polymer block (D) and the conjugated diene polymer block (D 3 ).
- the polymerization reaction temperature, the polymerization time, and the polymerization pressure may be controlled within the same range as in the polymerization of the aromatic monovinyl monomer.
- the vinyl bond content in the conjugated diene monomer unit may be adjusted by using the above-described polar compound as a randomizer during the polymerization of the conjugated diene monomer.
- a polyfunctional coupling agent is then added to the solution containing the diblock chains.
- the active terminal of the diblock chain reacts with the polyfunctional coupling agent, and three or more branched chains are bonded via the residue of the polyfunctional coupling agent to form a block copolymer A2. is formed.
- the polyfunctional coupling agent those mentioned above can be used. Also, a compound having an effect of promoting the coupling reaction can be added.
- the amount of the polyfunctional coupling agent used is adjusted to an appropriate amount according to the number of branched chains of the block copolymer A2 and the content of the block copolymer A2 in the block copolymer composition.
- the amount of the polyfunctional coupling agent to be used is preferably in the range of 0.0001 to 20 mol, more preferably in the range of 0.01 to 10 mol, per 1 mol of the organolithium initiator. It is preferably within the range of 0.02 to 6 mol.
- An appropriate amount of the polyfunctional coupling agent to be used is calculated according to the number of branched chains of the target block copolymer A2 and the content of the block copolymer A2 in the block copolymer composition.
- a reaction terminator such as methanol can be used to adjust the coupling rate.
- the diblock chain obtained in the polymerization step is left unreacted, and finally, as a diblock copolymer B may be collected.
- the conditions for the coupling step can be the same as the conditions for the coupling step in the method for producing a block copolymer composition containing the block copolymer A1, and preferred embodiments are also the same.
- the polymer component may be recovered from the solution containing the block copolymer composition containing block copolymer A2 and optional diblock copolymer B (recovery step).
- the conditions for the recovery step can be the same as the conditions for the recovery step in the method for producing a block copolymer composition containing the block copolymer A1, and preferred embodiments are also the same.
- the block copolymer obtained as described above may be used after being processed into a pellet shape or the like according to a conventional method.
- a block copolymer composition containing block copolymer A2 can be produced.
- the pattern-forming photosensitive composition of the present invention contains a photopolymerization initiator in addition to the above block copolymer composition.
- Photopolymerization initiators include methylhydroquinone, benzophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, ⁇ -methylbenzoin, ⁇ -methylbenzoin methyl ether, ⁇ -methoxybenzoin methyl ether, and benzoin.
- 2,2-dimethoxy-1,2-diphenylethan-1-one and phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide are preferable, and 2,2-dimethoxy-1,2-diphenylethane- 1-ones are more preferred. These may be used alone or in combination of two or more.
- the content of the photopolymerization initiator is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 10 parts by weight, with respect to 100 parts by weight of the block copolymer composition in the photosensitive composition for pattern formation. 5 parts by weight, more preferably 0.5 to 3 parts by weight.
- the pattern-forming photosensitive composition of the present invention may contain other components in addition to the above-described block copolymer composition and the above-described photopolymerization initiator.
- the pattern-forming photosensitive composition of the present invention preferably contains a photopolymerizable ethylenically unsaturated monomer.
- Photopolymerizable ethylenically unsaturated monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-tert-butylstyrene, 1,3-dimethylstyrene, vinyltoluene, chlorostyrene, aromatic vinyl monomers such as vinylnaphthalene, vinylanthracene, divinylbenzene, and trivinylbenzene; ethylenically unsaturated nitrile monomers such as acrylonitrile and methacrylonitrile; methyl acrylate, ethyl acrylate, propyl acrylate, n-amyl acrylate, isoamyl acrylate, hexyl acrylate, ethy
- ethylenically unsaturated carboxylic acid ester monomers are preferable, 1,9-nonanediol diacrylate and 1,9-nonanediol dimethacrylate are more preferable, and 1,9-nonanediol diacrylate is still more preferable. These may be used alone or in combination of two or more.
- the content of the photopolymerizable ethylenically unsaturated monomer is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the block copolymer composition in the photosensitive composition for pattern formation, and more It is preferably 0.02 to 5 parts by weight, more preferably 0.05 to 2 parts by weight, and particularly preferably 0.1 to 1 part by weight.
- the content of the photopolymerizable ethylenically unsaturated monomer is within the above range, the moldability and photosensitivity of the photosensitive composition for pattern formation can be enhanced, and the resulting molded article has wear resistance, The balance of flexibility, ink swelling resistance and mechanical strength can be further improved.
- the photosensitive composition for pattern formation of the present invention contains, for example, a plasticizer, a thermal polymerization inhibitor, an antioxidant, an antiozonant, a dye, a pigment, a filler, an additive exhibiting photochromism, a reducing agent, and a relief structure. It may also contain remedial agents, cross-linking agents, flow improvers, release agents, and the like.
- a plasticizer is usually used for the purpose of facilitating the production and molding of the pattern-forming photosensitive composition, promoting the removal of unexposed areas, and adjusting the hardness of exposed and cured areas.
- plasticizers include hydrocarbon oils such as naphthenic oil and paraffin oil; liquid 1,2-polybutadiene, liquid 1,4-polybutadiene and their hydroxides or carboxylates; liquid acrylonitrile-butadiene copolymers and Carboxylated products thereof; liquid styrene-butadiene copolymers and carboxylated products thereof; low molecular weight polystyrene having a molecular weight of 3,000 or less, ⁇ -methylstyrene-vinyltoluene copolymer, petroleum resin, polyacrylate resin, polyester resin, polyterpene resin, etc.
- the content of the plasticizer is preferably 0.1 to 50 parts by weight, more preferably 1 to 40 parts by weight, with respect to 100 parts by weight of the block copolymer composition in the photosensitive composition for pattern formation. Yes, more preferably 2 to 30 parts by weight.
- thermal polymerization inhibitor is used for the purpose of preventing unintended thermal polymerization of a photopolymerizable ethylenically unsaturated monomer when preparing a photosensitive composition for pattern formation.
- thermal polymerization inhibitors include phenols such as hydroquinone, p-methoxyphenol, pt-butylcatechol, 2,6-di-t-butyl-p-cresol, pyrogallol; -quinones such as xyloquinone; and amines such as phenyl- ⁇ -naphthylamine. These may be used alone or in combination of two or more.
- the content of the thermal polymerization inhibitor is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 10 parts by weight, based on 100 parts by weight of the block copolymer composition in the photosensitive composition for pattern formation. 5 parts by weight.
- the method for producing a photosensitive composition for pattern formation is not particularly limited. It can be produced by kneading the block copolymer composition, the above-mentioned photopolymerization initiator and other optional components.
- the pattern-forming photosensitive composition of the present invention is generally molded into a sheet having a desired thickness using a molding machine such as a single-screw or multi-screw extruder, a compression molding machine, or a calender molding machine. .
- a molding machine such as a single-screw or multi-screw extruder, a compression molding machine, or a calender molding machine.
- the components constituting the photosensitive composition for pattern formation are dissolved in a suitable solvent such as chloroform, carbon tetrachloride, trichloroethane, diethyl ketone, methyl ethyl ketone, benzene, toluene, tetrahydrofuran, etc., and this solution is placed in the frame mold.
- a suitable solvent such as chloroform, carbon tetrachloride, trichloroethane, diethyl ketone, methyl ethyl ketone, benzene, toluene, tetrahydrofuran, etc.
- the thickness of the sheet-like pattern-forming photosensitive composition is usually 0.1 to 20 mm, preferably 1 to 10 mm.
- a resin such as polypropylene, polyethylene, polyethylene terephthalate, etc. is applied to the surface of the pattern-forming photosensitive composition after molding.
- a transparent sheet or film can be provided as a base sheet layer or a protective film layer.
- a highly flexible and thin coating material layer is provided on the surface of the pattern-forming photosensitive composition after molding in order to suppress surface tackiness and enable reuse of the negative film after light irradiation.
- the coating material layer when the unexposed portions are removed with a solvent after the exposure of the pattern-forming photosensitive composition is completed, the coating material layer must be removed at the same time.
- a soluble polyamide, a cellulose derivative, or the like is usually used as the coating material layer.
- a molded article for pattern formation can be obtained by using the photosensitive composition for pattern formation.
- the molded article for pattern formation can be obtained by exposing the photosensitive composition for pattern formation of the present invention.
- the production of the molded article for pattern formation is usually carried out according to the following steps.
- a solvent is usually used.
- solvents include aliphatic or aromatic hydrocarbons such as n-hexane, n-heptane, octane, petroleum ether, naphtha, limonene, terpene, toluene, xylene, ethylbenzene, and isopropylbenzene; ketones; ethers such as di-n-butyl ether and di-t-butyl ether; esters such as methyl acetate and ethyl acetate; halogens such as methylene chloride, chloroform, trichloroethane, tetrachloroethylene, dichlorotetrafluoroethane and trichlorotrifluoroethane and hydrocarbons.
- a desired amount of alcohol such as methanol, ethanol, isopropanol, n-butanol can be added to the above solvent and used.
- development can be speeded up by applying a mechanical force using a brush or the like in the presence of the solvent.
- the molded article for pattern formation can be produced with high productivity by using the photosensitive composition for pattern formation of the present invention.
- the pattern-forming photosensitive composition of the present invention can provide a molded article having sufficient wear resistance and excellent flexibility and ink swelling resistance. Therefore, by using the photosensitive composition for pattern formation of the present invention, it is possible to obtain a molded article for pattern formation that has sufficient abrasion resistance and is excellent in flexibility and ink swelling resistance.
- a molded article for pattern formation as a flexographic plate (original plate for flexographic printing plate), it is possible to repeat printing many times even under severe conditions, and moreover, it is excellent in ink transfer during printing, and excellent image quality. Flexographic printing can be performed. Therefore, the molded article for pattern formation using the photosensitive composition for pattern formation of the present invention can be suitably used as a flexographic plate.
- the present invention is not limited to the above embodiments.
- the above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present invention and produces similar effects is the present invention. It is included in the technical scope of the invention.
- the solid product in solution was filtered off and the solid product was extracted with 100 ml of diethyl ether for 10 minutes.
- a solid sample was obtained by combining this extract and the filtrate from the filtration, and distilling off the solvent.
- the weight-average molecular weight of the thus-obtained sample was measured according to the weight-average molecular weight measurement method described above, and the value was taken as the weight-average molecular weight of the styrene polymer block.
- Average number of branches of block copolymer A2 A sample collected before the coupling step was analyzed by high performance liquid chromatography in the same manner as above to determine the weight average molecular weight of Ar-D. Then, the average number of branches of the block copolymer A2 was calculated from the weight average molecular weight of the block copolymer A2 and the weight average molecular weight of Ar-D determined by the method described above.
- Type A hardness of block copolymer composition The type A hardness was measured using a durometer hardness tester (type A) according to JIS K6253.
- a sheet was obtained in the same manner as in the moldability evaluation method.
- the resulting sheet is exposed to actinic rays for 10 minutes using an exposure machine (JE-A3-SS manufactured by Nippon Denshi Seiki Co., Ltd.) equipped with a 20 W ultraviolet fluorescent lamp, and then dried in a warm air dryer at 60°C. and dried for 30 minutes to obtain an exposed sheet.
- the exposed sheet was cut to obtain approximately 500 mg of sample.
- the weight (x) of the sample before the test was accurately weighed.
- the tensile elastic modulus in the direction of melt flow during molding and the tensile elastic modulus in the direction perpendicular to melt flow during molding were measured respectively, and the average of the measured values in the two directions was obtained. It was taken as the tensile modulus.
- a photosensitized sheet was obtained in the same manner as in the photosensitivity (gel fraction) evaluation method. Next, using a Haydon abrasion tester (manufactured by Shinto Kagaku Co., Ltd.), the exposed sheet and No. 1000 waterproof paper were reciprocally rubbed under the conditions of a load of 100 g and a speed of 6000 mm / sec, and the abrasion amount of the sheet surface after 1000 cycles. was measured. In addition, this index
- [Ink swelling resistance of sheet] A photosensitized sheet was obtained in the same manner as in the photosensitivity (gel fraction) evaluation method, and the sheet weight before the test was measured. Next, the exposed sheet was placed in isopropyl alcohol, taken out after 60 minutes, excess isopropyl alcohol was wiped off, and the weight of the sheet after the test was measured. The weight ratio before and after the test (sheet weight after test/sheet weight before test) was calculated and used as an index of ink swelling resistance. The closer this index is to 100%, the better the ink swelling resistance.
- divinylbenzene (DVB) as a coupling agent was added in an amount of 4 equivalents to the total amount of n-butyllithium, and the coupling reaction was carried out for 2 hours.
- 1 ml of methanol as a polymerization terminator and 0.05 g of 2,6-di-tert-butyl-p-cresol as an antioxidant were added to the reaction mixture and mixed well.
- the solvent was volatilized by dropping into hot water heated to ⁇ 95°C.
- the resulting polymer was pulverized and dried with hot air at 85° C. to obtain a block copolymer composition. Using the obtained block copolymer composition, measurements were carried out according to the above. Table 1 shows the results.
- divinylbenzene (DVB) as a coupling agent was added in an amount of 4 equivalents to the total amount of n-butyllithium, and the coupling reaction was carried out for 2 hours.
- 1 ml of methanol as a polymerization terminator and 0.05 g of 2,6-di-tert-butyl-p-cresol as an antioxidant were added to the reaction mixture and mixed well.
- the solvent was volatilized by dropping into hot water heated to ⁇ 95°C.
- the resulting polymer was pulverized and dried with hot air at 85° C. to obtain a block copolymer composition. Using the obtained block copolymer composition, measurements were carried out according to the above. Table 1 shows the results.
- n-butyllithium and 56 g of isoprene were added, and polymerization was carried out for about 1.5 hours while controlling the temperature by reflux cooling so that the reaction temperature was between 50°C and 60°C.
- divinylbenzene (DVB) as a coupling agent was added in an amount of 4 equivalents to the total amount of n-butyllithium, and the coupling reaction was carried out for 2 hours.
- 1 ml of methanol as a polymerization terminator and 0.05 g of 2,6-di-tert-butyl-p-cresol as an antioxidant were added to the reaction mixture and mixed well.
- the solvent was volatilized by dropping into hot water heated to ⁇ 95°C.
- the resulting polymer was pulverized and dried with hot air at 85° C. to obtain a block copolymer composition.
- measurements were carried out according to the above. Table 1 shows the results.
- divinylbenzene (DVB) as a coupling agent was added in an amount of 4 equivalents to the total amount of n-butyllithium, and the coupling reaction was carried out for 2 hours.
- 1 ml of methanol as a polymerization terminator and 0.05 g of 2,6-di-tert-butyl-p-cresol as an antioxidant were added to the reaction mixture and mixed well.
- the solvent was volatilized by dropping into hot water heated to ⁇ 95°C.
- the resulting polymer was pulverized and dried with hot air at 85° C. to obtain a block copolymer composition. Using the obtained block copolymer composition, measurements were carried out according to the above. Table 2 shows the results.
- Example 1 100 parts of the block copolymer composition obtained in Production Example 1, 10 parts of liquid polybutadiene (NISSO-PB-B-2000: manufactured by Nippon Soda Co., Ltd.), and 2,6-di-t-butyl-p - 1 part of cresol was kneaded at 170°C using a kneader kneader. Subsequently, the kneading temperature was lowered to 130° C., and 0.25 parts of 1,9-nonanediol diacrylate and 1 part of 2,2-dimethoxy-1,2-diphenylethan-1-one were added and kneaded. Thus, a photosensitive composition for pattern formation was obtained.
- Examples 2 to 6, Comparative Examples 1 to 3 In the same manner as in Example 1, except that the type of block copolymer composition was changed to that shown in Table 3, and the amount of 1,9-nonanediol diacrylate added was changed to the amount shown in Table 3. , to obtain a photosensitive composition for pattern formation. Measurements were performed in the same manner as in Example 1 using the obtained photosensitive composition for pattern formation. Table 3 shows the results.
- a photosensitive composition for pattern formation containing a block copolymer composition and a photopolymerization initiator, wherein the block copolymer composition is block copolymer A1 or block copolymer A2 and the total weight average molecular weight (Mw) of the block copolymer composition was 300,000 to 800,000.
- Mw total weight average molecular weight
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
(A-B)n (I)
(A-B)nA (II)
(B-A)nB (III)
(A-B)nX (IV)
(B-A)nX (V)
[(A-B)nA]X (VI)
[(B-A)nB]X (VII)
(Aは重合体ブロック(A)を示し、Bは重合体ブロック(B)を示し、Xはカップリング剤の残基又は重合開始剤の残基を示し、nは1~5の整数を示す。)
(Ar1-D1)mX1(D2)n (1)
(一般式(1)中、Ar1は芳香族モノビニル重合体ブロックであり、D1およびD2は、それぞれ共役ジエン重合体ブロックであり、mは1以上の整数であり、nは1以上の整数であり、m+nは3以上の整数であり、X1は多官能性カップリング剤の残基である。)
(Ar-D)pX (2)
(一般式(2)中、Arは芳香族モノビニル重合体ブロックであり、Dは共役ジエン重合体ブロックであり、pは3以上の整数であり、Xは多官能性カップリング剤の残基である。)
本発明のパターン形成用感光性組成物において、前記ブロック共重合体組成物が前記ブロック共重合体A1を含有することが好ましい。
本発明のパターン形成用感光性組成物において、前記ブロック共重合体組成物が前記ブロック共重合体A1を含有し、下記一般式(3)で表されるジブロック共重合体B、または、下記一般式(4)で表される重合体Cをさらに含有し、前記ジブロック共重合体Bまたは前記重合体Cの分子量分布(Mw/Mn)が1.20以下であり、前記ブロック共重合体組成物中の前記ジブロック共重合体Bおよび前記重合体Cの含有量が合計で60質量%以下であり、前記ブロック共重合体組成物中の芳香族モノビニル単量体単位の含有量が5~40質量%であり、前記ブロック共重合体組成物のASTM D1238(G条件、200℃、5kg荷重)に準拠して測定したメルトインデックスが0.5~50g/10分であることが好ましい。
Ar3-D3 (3)
D4 (4)
(一般式(3)および一般式(4)中、Ar3は芳香族モノビニル重合体ブロックであり、D3およびD4は、それぞれ共役ジエン重合体ブロックである。)
本発明のパターン形成用感光性組成物において、前記ブロック共重合体組成物が前記ブロック共重合体A1を含有し、前記ブロック共重合体A1における、D2で表される分岐鎖の質量に対する、Ar1-D1で表される分岐鎖の質量の比率((Ar1-D1)/D2)が1.0/0.15~1.0/2.00であることが好ましい。
本発明のパターン形成用感光性組成物において、前記ブロック共重合体組成物が前記ブロック共重合体A1を含有し、前記ブロック共重合体A1における、D2で表される分岐鎖の重量平均分子量(Mw(D2))に対する、Ar1-D1で表される分岐鎖中の共役ジエン重合体ブロックD1の重量平均分子量(Mw(D1))の比率((Mw(D1))/(Mw(D2)))が、1.0/0.3~1.0/1.1であることが好ましい。
本発明のパターン形成用感光性組成物において、前記多官能性カップリング剤が分子中にラジカル重合性基を2個以上有する化合物であることが好ましい。
本発明のパターン形成用感光性組成物は、さらに光重合性エチレン性不飽和単量体を含有することが好ましい。
本発明のパターン形成用感光性組成物において、前記多官能性カップリング剤がジビニルベンゼンであることが好ましい。
本発明のパターン形成用感光性組成物は、後述するブロック共重合体組成物および光重合開始剤を含有する。
本発明で用いるブロック共重合体組成物は、後述するブロック共重合体A1、または、後述するブロック共重合体A2を含有し、ブロック共重合体組成物全体の重量平均分子量(Mw)が、300000~800000であるものである。本発明で用いるブロック共重合体組成物は、ブロック共重合体A1またはブロック共重合体A2のいずれか一方を含有すればよく、両方を含有してもよい。
ブロック共重合体A1は、下記一般式(1):
(Ar1-D1)mX1(D2)n (1)
(一般式(1)中、Ar1は芳香族モノビニル重合体ブロックであり、D1およびD2は、それぞれ共役ジエン重合体ブロックであり、mは1以上の整数であり、nは1以上の整数であり、m+nは3以上の整数であり、X1は多官能性カップリング剤の残基である。)で表されるブロック共重合体である。
ブロック共重合体A1を構成する芳香族モノビニル重合体ブロックAr1は、芳香族モノビニル単量体単位を構成単位とする重合体ブロックである。芳香族モノビニル重合体ブロックAr1の芳香族モノビニル単量体単位を構成するために用いられる芳香族モノビニル単量体としては、ラジカル重合性基を1個有する芳香族ビニル化合物であれば特に限定されないが、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、4-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、2,4-ジブロモスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、芳香族モノビニル単量体としては、スチレンを用いることが好ましい。すなわち、芳香族モノビニル重合体ブロックAr1は、スチレン単位を含むことが好ましく、この場合、芳香族モノビニル重合体ブロックAr1におけるスチレン単位の含有量は、特に限定されないが、80~100質量%が好ましく、90~100質量%がより好ましい。これらの芳香族モノビニル単量体は、芳香族モノビニル重合体ブロックAr1において、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
ブロック共重合体A1を構成する共役ジエン重合体ブロックD1は、共役ジエン単量体単位を構成単位とする重合体ブロックである。共役ジエン重合体ブロックD1の共役ジエン単量体単位を構成するために用いられる共役ジエン単量体としては、共役ジエン化合物であれば特に限定されないが、例えば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンなどが挙げられる。これら共役ジエン単量体の中でも、1,3-ブタジエンおよび/またはイソプレンを用いることが好ましく、イソプレンを用いることが特に好ましい。すなわち、共役ジエン重合体ブロックD1は、イソプレン単位を含むことが好ましく、この場合、共役ジエン重合体ブロックD1におけるイソプレン単位の含有量は、特に限定されないが、80~100質量%が好ましく、90~100質量%がより好ましい。共役ジエン重合体ブロックD1をイソプレン単量体単位で構成することにより、得られる成形体の耐摩耗性、柔軟性、耐インク膨潤性および機械的強度のバランスを一層高めることができる。これらの共役ジエン単量体は、共役ジエン重合体ブロックD1において、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。さらに、共役ジエン重合体ブロックD1の不飽和結合の一部に対し、水素添加反応を行ってもよい。すなわち、共役ジエン重合体ブロックD1は、非水添の共役ジエン重合体ブロックであってよく、水添された共役ジエン重合体ブロックであってもよい。
ブロック共重合体A1を構成するAr1-D1で表される分岐鎖は、任意のカップリング剤を用いて製造されたものであってもよく、また、カップリング剤を用いずに製造されたものであってもよい。すなわち、Ar1-D1で表される分岐鎖は、各重合体ブロック中または各重合体ブロック間に、カップリング剤の残基を含んでいてもよく、また、カップリング剤の残基を含まないものであってもよい。得られる成形体の耐摩耗性、柔軟性、耐インク膨潤性および機械的強度のバランスを一層高める観点からは、Ar1-D1で表される分岐鎖は、カップリング剤を用いずに製造されたものであり、各重合体ブロック中および各重合体ブロック間にカップリング剤の残基を含まないものであることが好ましい。
ブロック共重合体A1を構成するD2で表される分岐鎖は、共役ジエン単量体単位を構成単位とする重合体ブロック鎖である。
ブロック共重合体A1における多官能性カップリング剤の残基X1を形成するカップリング剤としては、Ar1-D1で表される分岐鎖およびD2で表される分岐鎖と結合し、合計で3以上の分岐鎖を有するブロック共重合体を与えることができるものであればよい。
ブロック共重合体A1において、D2で表される分岐鎖の質量に対する、Ar1-D1で表される分岐鎖の質量の比率((Ar1-D1)/D2)は、特に限定されないが、1.0/0.15~1.0/2.00であることが好ましく、1.0/0.20~1.0/1.75であることがより好ましい。比率((Ar1-D1)/D2)を上記範囲とすることにより、得られる成形体の耐摩耗性、柔軟性、耐インク膨潤性および機械的強度のバランスを一層高めることができる。
本発明で用いるブロック共重合体組成物は、ブロック共重合体A1に代えて、後述するブロック共重合体A2を含有してもよく、ブロック共重合体A1とともにブロック共重合体A2を含有してもよい。
(Ar-D)pX (2)
(一般式(2)中、Arは芳香族モノビニル重合体ブロックであり、Dは共役ジエン重合体ブロックであり、pは3以上の整数であり、Xは多官能性カップリング剤の残基である。)で表されるブロック共重合体である。
ブロック共重合体A2を構成する芳香族モノビニル重合体ブロックArは、芳香族モノビニル単量体単位を構成単位とする重合体ブロックである。芳香族モノビニル重合体ブロックArの芳香族モノビニル単量体単位を構成するために用いられる芳香族モノビニル単量体としては、ブロック共重合体A1の芳香族モノビニル重合体ブロックAr1の芳香族モノビニル単量体単位を構成するために用いられる芳香族モノビニル単量体と同様のものを挙げることができ、なかでも、スチレンが好ましい。すなわち、芳香族モノビニル重合体ブロックArは、スチレン単位を含むことが好ましく、この場合、芳香族モノビニル重合体ブロックArにおけるスチレン単位の含有量は、特に限定されないが、80~100質量%が好ましく、90~100質量%がより好ましい。芳香族モノビニル単量体は、芳香族モノビニル重合体ブロックArにおいて、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
ブロック共重合体A2を構成する共役ジエン重合体ブロックDは、共役ジエン単量体単位を構成単位とする重合体ブロックである。共役ジエン重合体ブロックDの共役ジエン単量体単位を構成するために用いられる共役ジエン単量体としては、ブロック共重合体A1の共役ジエン重合体ブロックD1の共役ジエン単量体単位を構成するために用いられる共役ジエン単量体と同様のものを挙げることができ、なかでも、1,3-ブタジエンおよび/またはイソプレンを用いることが好ましく、イソプレンを用いることが特に好ましい。すなわち、共役ジエン重合体ブロックDは、イソプレン単位を含むことが好ましく、この場合、共役ジエン重合体ブロックDにおけるイソプレン単位の含有量は、特に限定されないが、80~100質量%が好ましく、90~100質量%がより好ましい。共役ジエン重合体ブロックDをイソプレン単量体単位で構成することにより、得られる成形体の耐摩耗性、柔軟性、耐インク膨潤性および機械的強度のバランスを一層高めることができる。これらの共役ジエン単量体は、共役ジエン重合体ブロックDにおいて、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。さらに、共役ジエン重合体ブロックDの不飽和結合の一部に対し、水素添加反応を行ってもよい。すなわち、共役ジエン重合体ブロックDは、非水添の共役ジエン重合体ブロックであってよく、水添された共役ジエン重合体ブロックであってもよい。
ブロック共重合体A2を構成するAr-Dで表される分岐鎖は、任意のカップリング剤を用いて製造されたものであってもよく、また、カップリング剤を用いずに製造されたものであってもよい。すなわち、Ar-Dで表される分岐鎖は、各重合体ブロック中または各重合体ブロック間に、カップリング剤の残基を含んでいてもよく、また、カップリング剤の残基を含まないものであってもよい。得られる成形体の耐摩耗性、柔軟性、耐インク膨潤性および機械的強度のバランスを一層高める観点からは、Ar-Dで表される分岐鎖は、カップリング剤を用いずに製造されたものであり、各重合体ブロック中および各重合体ブロック間にカップリング剤の残基を含まないものであることが好ましい。
ブロック共重合体A2における多官能性カップリング剤の残基Xを形成するカップリング剤としては、Ar-Dで表される分岐鎖と結合し、合計で3以上の分岐鎖を有するブロック共重合体を与えることができるものであればよい。
ブロック共重合体A2の重量平均分子量(MwA2)は、好ましくは300000~800000の範囲内であり、より好ましくは320000~750000の範囲内であり、さらに好ましくは340000~700000の範囲内であり、特に好ましくは360000~650000の範囲内であり、最も好ましくは380000~600000の範囲内である。ブロック共重合体A2の重量平均分子量(MwA2)を上記範囲とすることにより、パターン形成用感光性組成物の成形性および感光性を高めることができ、得られる成形体の耐摩耗性、柔軟性、耐インク膨潤性および機械的強度のバランスを一層高めることができる。
本発明で用いるブロック共重合体組成物は、ブロック共重合体A1またはブロック共重合体A2に加えて、ジブロック共重合体Bを含有してもよい。
Ar3-D3 (3)
(式(3)中、Ar3は芳香族モノビニル重合体ブロックであり、D3は共役ジエン重合体ブロックである。)で表されるジブロック共重合体である。
本発明で用いるブロック共重合体組成物は、ブロック共重合体A1またはブロック共重合体A2と、必要に応じて用いられるジブロック共重合体Bとに加えて、重合体Cを含有してもよい。
D4 (4)
(式(4)中、D4は共役ジエン重合体ブロックである。)で表される、共役ジエン単量体単位を構成単位とする共役ジエン重合体である。
本発明で用いるブロック共重合体組成物は、ブロック共重合体A1またはブロック共重合体A2を含有し、ブロック共重合体組成物全体の重量平均分子量(Mw)が、300000~800000であるものである。ブロック共重合体組成物は、ジブロック共重合体Bを任意で含有してもよいし、重合体Cを任意で含有してもよい。
本発明で用いるブロック共重合体組成物の製造方法は、特に限定されないが、ブロック共重合体組成物の製造方法によりブロック共重合体組成物を製造する際に、ブロック共重合体組成物の一成分として、ブロック共重合体A1またはブロック共重合体A2を製造する方法が挙げられる。
ブロック共重合体A1を含有するブロック共重合体組成物の製造方法としては、
有機リチウム開始剤を用いて、重合溶媒中にて、芳香族モノビニル単量体を重合して、芳香族モノビニル重合体ブロック鎖を得る重合工程、
前記芳香族モノビニル重合体ブロック鎖の存在下に、有機リチウム開始剤を用いて、重合溶媒中にて、共役ジエン単量体を重合して、ジブロック鎖および共役ジエン重合体ブロック鎖を得る重合工程、および、
ジブロック鎖および共役ジエン重合体ブロック鎖に、多官能性カップリング剤を反応させるカップリング工程、を備える製造方法が好適に挙げられる。
重合工程において用いられる有機リチウム開始剤としては、芳香族モノビニル単量体および共役ジエン単量体の重合を開始し得る公知のものが使用でき、その具体例としてはメチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウムなどの有機モノリチウム開始剤が挙げられる。これらの中でもn-ブチルリチウムが好ましい。有機リチウム開始剤の使用量は、当業者に周知の方法で、所望する重合体の分子量に応じて計算によって求めた量とすればよい。本発明においては、有機リチウム開始剤を使用することにより、重合反応がリビング性を伴って進行するので、重合反応系には活性末端を有する重合体が存在することとなる。そのため、本発明においては、重合工程において得られる重合体鎖を、活性末端を有するものとすることができる。
次いで、ジブロック鎖および共役ジエン重合体ブロック鎖を含有する溶液に、多官能性カップリング剤を添加する。これにより、ジブロック鎖および共役ジエン重合体ブロック鎖が有する活性末端と、多官能性カップリング剤とが反応して、3以上の分岐鎖が多官能性カップリング剤の残基を介して結合し、ブロック共重合体A1が形成される。多官能性カップリング剤としては、上述したものを用いることができる。また、カップリング反応を促進する作用をもつ化合物を添加することもできる。
ブロック共重合体A2を含有するブロック共重合体組成物の製造方法としては、
有機リチウム開始剤を用いて、重合溶媒中にて、芳香族モノビニル単量体を重合して、芳香族モノビニル重合体ブロック鎖を含む溶液を得る重合工程、
前記芳香族モノビニル重合体ブロック鎖を含む溶液に共役ジエン単量体を添加し、重合を行うことで、ジブロック鎖を得る重合工程、および、
ジブロック鎖に、多官能性カップリング剤を反応させるカップリング工程、を備える製造方法が好適に挙げられる。
有機リチウム開始剤を用いて、重合溶媒中にて、芳香族モノビニル単量体を重合して、芳香族モノビニル重合体ブロック鎖を含む溶液を得る重合工程は、ブロック共重合体A1を含有するブロック共重合体組成物の製造方法において対応する重合工程と同様に行うことができ、好適な態様も同様である。
次いで、ジブロック鎖を含有する溶液に、多官能性カップリング剤を添加する。これにより、ジブロック鎖が有する活性末端と、多官能性カップリング剤とが反応して、3以上の分岐鎖が多官能性カップリング剤の残基を介して結合し、ブロック共重合体A2が形成される。多官能性カップリング剤としては、上述したものを用いることができる。また、カップリング反応を促進する作用をもつ化合物を添加することもできる。
本発明のパターン形成用感光性組成物は、上記のブロック共重合体組成物に加えて、光重合開始剤を含有する。
本発明のパターン形成用感光性組成物は、上記のブロック共重合体組成物および上記の光重合開始剤に加えて、その他の成分を含有してもよい。
パターン形成用感光性組成物の製造方法は、特に限定されないが、例えば、ニーダー、ロールミル、バンバリー、単軸または多軸の押出機などを用いて、上記のブロック共重合体組成物、上記の光重合開始剤および必要に応じて用いられるその他の成分を混練することにより製造できる。本発明のパターン形成用感光性組成物は、通常、単軸または多軸の押出機、圧縮成形機、カレンダー成形機などの成形機を用いて、所望の厚さを有するシート状に成形される。なお、単軸または多軸の押出機を用いた場合には、パターン形成用感光性組成物の調製とシート状の成形体への成形を同時に行なうこともできる。また、パターン形成用感光性組成物を構成する成分を、クロロホルム、四塩化炭素、トリクロロエタン、ジエチルケトン、メチルエチルケトン、ベンゼン、トルエン、テトラヒドロフランなどの適当な溶媒に溶解し、この溶液を枠型の中に注入し溶媒を蒸発させることにより、シート状のパターン形成用感光性組成物を製造することもできる。
パターン形成用感光性組成物を用いることにより、パターン形成用成形体を得ることができる。パターン形成用成形体は、本発明のパターン形成用感光性組成物を感光することにより得ることができる。
(i):保護フィルム、シート状のパターン形成用感光性組成物の層およびベースシートからなる複層シートのベースシート側から、光を照射して、パターン形成用感光性組成物の層の特定の厚みに達するまで硬化させる。
(ii):保護フィルムを剥がし、ネガフィルムを密着させ、ネガフィルム上から、波長230~450nm、好ましくは350~450nmの光を照射して、パターン形成用感光性組成物の層を露光する。この露光により、パターン形成用感光性組成物の層の光が透過した部分が硬化する。
(iii):パターン形成用感光性組成物の層の未露光部は未硬化の状態であるので、その部分を除去する(現像)。
(iv):(iii)において、通常、溶剤を用いて未硬化の部分を除去するので、パターン形成用成形体中に残存する溶剤を乾燥させる。
(v):所望により、後露光する。
流速0.35ml/分のテトラヒドロフランをキャリアとする高速液体クロマトグラフィによりポリスチレン換算分子量として求めた。装置は、東ソー社製HLC8320、カラムは昭和電工社製Shodex(登録商標) KF-404HQを3本連結したもの(カラム温度40℃)、検出器は示差屈折計および紫外検出器を用い、分子量の較正はポリマーラボラトリー社製の標準ポリスチレン(500から300万)の12点で実施した。
上記の高速液体クロマトグラフィにより得られたチャートの各重合体(ブロック共重合体A1、ブロック共重合体A2、ジブロック共重合体B、重合体C)に対応するピークの面積比から求めた。
Rubber Chem. Technol.,45,1295(1972)に記載された方法に従い、ブロック共重合体をオゾンと反応させ、水素化リチウムアルミニウムで還元することにより、ブロック共重合体のイソプレン重合体ブロックを分解した。具体的には、以下の手順で行なった。すなわち、モレキュラーシーブで処理したジクロロメタン100mlを入れた反応容器に、試料を300mg溶解した。この反応容器を冷却槽に入れ-25℃としてから、反応容器に170ml/minの流量で酸素を流しながら、オゾン発生器により発生させたオゾンを導入した。反応開始から30分経過後、反応容器から流出する気体をヨウ化カリウム水溶液に導入することにより、反応が完了したことを確認した。次いで、窒素置換した別の反応容器に、ジエチルエーテル50mlと水素化リチウムアルミニウム470mgを仕込み、氷水で反応容器を冷却しながら、この反応容器にオゾンと反応させた溶液をゆっくり滴下した。そして、反応容器を水浴に入れ、徐々に昇温して、40℃で30分間還流させた。その後、溶液を撹拌しながら、反応容器に希塩酸を少量ずつ滴下し、水素の発生がほとんど認められなくなるまで滴下を続けた。この反応の後、溶液に生じた固形の生成物をろ別し、固形の生成物は、100mlのジエチルエーテルで10分間抽出した。この抽出液と、ろ別した際のろ液とをあわせ、溶媒を留去することにより、固形の試料を得た。このようにして得られた試料につき、上記の重量平均分子量の測定法に従い、重量平均分子量を測定し、その値をスチレン重合体ブロックの重量平均分子量とした。
上記のようにして求められた、ブロック共重合体の重量平均分子量から、対応するスチレン重合体ブロックの重量平均分子量を引き、その計算値に基づいてイソプレン重合体ブロックの重量平均分子量を求めた。
カップリング工程前の重合体溶液を2mL採取し、過剰のメタノール1mLと混合させて重合活性を失活させた。この試料を高速液体クロマトグラフィにより分析し、得られたチャートの各ピークの面積比からブロック共重合体A1中の分岐鎖の質量の比率((Ar1-D1)/D2)を求めた。
上記と同様にして、カップリング工程前に採取した試料を高速液体クロマトグラフィにより分析し、Ar1-D1およびD2の重量平均分子量を求めたのち、上記した方法により求めたブロック共重合体A1のスチレン重合体ブロックの重量平均分子量をさしひいて、ブロック共重合体A1中のイソプレン重合体ブロックの重量平均分子量の比率((Mw(D1))/(Mw(D2)))を求めた。
上記した方法により求めたブロック共重合体A1の重量平均分子量、Ar1-D1およびD2の重量平均分子量、ならびに、ブロック共重合体A1中の分岐鎖の質量の比率((Ar1-D1)/D2)から、ブロック共重合体A1の平均分岐数を算出した。
上記と同様にして、カップリング工程前に採取した試料を高速液体クロマトグラフィにより分析し、Ar-Dの重量平均分子量を求めた。そして、上記した方法により求めたブロック共重合体A2の重量平均分子量およびAr-Dの重量平均分子量から、ブロック共重合体A2の平均分岐数を算出した。
プロトンNMRの測定に基づき求めた。
ASTM D1238(G条件、200℃、5kg荷重)に準拠して測定した。
タイプA硬度は、JIS K6253に従い、デュロメータ硬さ試験機(タイプA)を用いて測定した。
パターン形成用感光性組成物を、T-ダイを装着した二軸押出機を用いて、150℃で加熱溶融し、連続して押し出すことにより、厚さ2mmのシートに成形し、シートを目視で観察することにより、以下の基準で評価した。
〇:表面が滑らかなシートが得られた。
△:表面が荒れている(表面に凹凸がある)シートが得られた。
×:パターン形成用感光性組成物を二軸押出機から押し出すことができなかった。
組成物処理速度 :25kg/hr
引き取り速度 :1.0m/min
押出機温度 :投入口140℃、T-ダイ160℃に調整
スクリュー :フルフライト
押出機L/D :20
T-ダイ :幅200mm、リップ2.5mm
成形性の評価方法と同様にして、シートを得た。得られたシートを、20Wの紫外線蛍光灯を装着した露光機(日本電子精機製型式JE-A3-SS)を用いて、10分間活性光線を照射して感光させ、60℃の温風乾燥機で30分間乾燥させることで、感光させたシートを得た。感光させたシートを切り取り、約500mgの試料を得た。試験前の試料の重量(x)を精秤した。精秤後のシートを酢酸エチル100ml中に常温で3日間浸漬した後、不溶解分を80メッシュの金網で濾過し、15時間常温下で風乾し、その後100℃で2時間乾燥させ、常温下で冷却した後、試験後の試料の重量(y)を測定し、下式に従い、ゲル分率を算出した。ゲル分率が高いほど、感光性に優れる。
ゲル分率(%)=(y)/(x)×100
感光性(ゲル分率)の評価方法と同様にして、感光させたシートを得た。感光させたシートを用いて、引張弾性率を測定した。測定手順は以下の通りである。ORIENTEC社製のテンシロン万能試験機RTC-1210を用いて、引張速度300mm/minで100%まで伸張させ、その過程における100%伸張時の引張応力を測定し、100%伸張時におけるシートの引張弾性率を求めた。なお、成形時の溶融流れ方向の引張弾性率と、成形時の溶融流れ垂直方向の引張弾性率の2方向それぞれについて測定し、2方向の測定値の平均を求め、100%伸張時におけるシートの引張弾性率とした。
感光性(ゲル分率)の評価方法と同様にして、感光させたシートを得た。感光させたシートについて、ASTM 412に準拠して上記のテンシロン万能試験機を用いて、永久伸びを測定した。具体的には、サンプル形状はDieAを使用し、伸張前の標線間距離を40mmとしてシートを伸び率200%で伸張させ、そのままの状態で10分間保持した後、はね返させることなく急に収縮させて、10分間放置後、標線間距離を測定し、下式に基づいて永久伸びを求めた。なお、成形時の溶融流れ方向の永久伸びと、成形時の溶融流れ垂直方向の永久伸びの2方向それぞれについて測定し、2方向の測定値の平均を求め、永久伸びとした。永久伸びの値が小さいほど、ゴム弾性に優れ、柔軟性に優れる。
永久伸び(%)=(L1-L0)/L0×100
L0:伸張前の標線間距離(mm)
L1:収縮させて10分間放置後の標線間距離(mm)
感光性(ゲル分率)の評価方法と同様にして、感光させたシートを得た。次いで、ヘイドン摩耗試験機(新東化学社製)を用い、感光させたシートと1000番耐水ペーパーとを荷重100g、速度6000mm/secの条件で往復摩擦させ、1000サイクル後のシート表面の摩耗量を測定した。なお、この指標は、比較例1を100とする指数で示す。指数が大きいほど耐摩耗性に優れる。
感光性(ゲル分率)の評価方法と同様にして、感光させたシートを得て、試験前のシート重量を測定した。次いで、イソプロピルアルコール中に、感光させたシートを入れ、60分後に取り出し、余分なイソプロピルアルコールを拭き取ってから、試験後のシート重量を測定した。試験前後の重量比率(試験後のシート重量/試験前のシート重量)を算出し、耐インク膨潤性の指標とした。この指標が100%に近いほど耐インク膨潤性に優れる。
2リットルの耐圧反応器を用い、n-ブタン/シクロヘキサン=30/70の割合の混合溶剤400g、テトラメチルエチレンジアミン0.07ミリモル、開始剤n-ブチルリチウム2.25ミリモルを存在させ、スチレン22gを添加して、30℃で1時間重合し、続いてイソプレン78gを添加し、反応温度が50℃から60℃の間になるように還流冷却により温度制御しながら約1時間半重合した。次いで、カップリング剤としてジビニルベンゼン(DVB)を全n-ブチルリチウムに対し4倍当量を添加して2時間カップリング反応を行った。こののち、反応混合物に重合停止剤としてメタノールを1ml、酸化防止剤として2,6-ジ-tert-ブチル-p-クレゾールを0.05g加えてよく混合し、得られた混合溶液を少量ずつ85~95℃に加熱された温水中に滴下して溶剤を揮発させた。得られたポリマーを粉砕し、85℃で熱風乾燥してブロック共重合体組成物を得た。得られたブロック共重合体組成物を用いて、上記に従い測定を行った。結果を表1に示す。
スチレンおよびイソプレンの添加量を表1に記載のとおりに変更した以外は、製造例1と同様にして、ブロック共重合体組成物を得た。得られたブロック共重合体組成物を用いて、上記に従い測定を行った。結果を表1に示す。
2リットルの耐圧反応器を用い、n-ブタン/シクロヘキサン=30/70の割合の混合溶剤400g、テトラメチルエチレンジアミン0.07ミリモル、開始剤n-ブチルリチウム1.75ミリモルを存在させ、スチレン22gを添加して、30℃で1時間重合した。続いて、n-ブチルリチウム0.75ミリモルおよびイソプレン78gを添加し、反応温度が50℃から60℃の間になるように還流冷却により温度制御しながら約1時間半重合した。次いで、カップリング剤としてジビニルベンゼン(DVB)を全n-ブチルリチウムに対し4倍当量を添加して2時間カップリング反応を行った。こののち、反応混合物に重合停止剤としてメタノールを1ml、酸化防止剤として2,6-ジ-tert-ブチル-p-クレゾールを0.05g加えてよく混合し、得られた混合溶液を少量ずつ85~95℃に加熱された温水中に滴下して溶剤を揮発させた。得られたポリマーを粉砕し、85℃で熱風乾燥してブロック共重合体組成物を得た。得られたブロック共重合体組成物を用いて、上記に従い測定を行った。結果を表1に示す。
n-ブチルリチウム、スチレンおよびイソプレンの添加量を表1に記載のとおりに変更した以外は、製造例3と同様にして、ブロック共重合体組成物を得た。得られたブロック共重合体組成物を用いて、上記に従い測定を行った。結果を表1に示す。
2リットルの耐圧反応器を用い、n-ブタン/シクロヘキサン=30/70の割合の混合溶剤400g、テトラメチルエチレンジアミン0.07ミリモル、開始剤n-ブチルリチウム1.25ミリモルを存在させ、スチレン16gを添加して、30℃で1時間重合させた後、イソプレン28gを添加して、反応温度が50℃から60℃の間になるように還流冷却により温度制御しながら約1時間半重合した。続いて、n-ブチルリチウム1.25ミリモルおよびイソプレン56gを添加し、反応温度が50℃から60℃の間になるように還流冷却により温度制御しながら約1時間半重合した。次いで、カップリング剤としてジビニルベンゼン(DVB)を全n-ブチルリチウムに対し4倍当量を添加して2時間カップリング反応を行った。こののち、反応混合物に重合停止剤としてメタノールを1ml、酸化防止剤として2,6-ジ-tert-ブチル-p-クレゾールを0.05g加えてよく混合し、得られた混合溶液を少量ずつ85~95℃に加熱された温水中に滴下して溶剤を揮発させた。得られたポリマーを粉砕し、85℃で熱風乾燥してブロック共重合体組成物を得た。得られたブロック共重合体組成物を用いて、上記に従い測定を行った。結果を表1に示す。
n-ブチルリチウムの添加量、ならびに、カップリング剤の種類および添加量を表2に記載のとおりに変更した以外は、製造例1と同様にして、ブロック共重合体組成物を得た。得られたブロック共重合体組成物を用いて、上記に従い測定を行った。結果を表2に示す。
2リットルの耐圧反応器を用い、n-ブタン/シクロヘキサン=30/70の割合の混合溶剤400g、テトラメチルエチレンジアミン0.07ミリモル、開始剤n-ブチルリチウム0.63ミリモルを存在させ、スチレン3gを添加して、30℃で1時間重合した。続いて、n-ブチルリチウム0.63ミリモルを添加した後、スチレン7gを添加して、30℃で1時間重合させた後、イソプレン90gを添加し、反応温度が50℃から60℃の間になるように還流冷却により温度制御しながら約1時間半重合した。次いで、カップリング剤としてジビニルベンゼン(DVB)を全n-ブチルリチウムに対し4倍当量を添加して2時間カップリング反応を行った。こののち、反応混合物に重合停止剤としてメタノールを1ml、酸化防止剤として2,6-ジ-tert-ブチル-p-クレゾールを0.05g加えてよく混合し、得られた混合溶液を少量ずつ85~95℃に加熱された温水中に滴下して溶剤を揮発させた。得られたポリマーを粉砕し、85℃で熱風乾燥してブロック共重合体組成物を得た。得られたブロック共重合体組成物を用いて、上記に従い測定を行った。結果を表2に示す。
製造例1で得られたブロック共重合体組成物100部、液状ポリブタジエン(NISSO-PB-B-2000:日本曹達(株)製)10部、および、2,6-ジ-t-ブチル-p-クレゾール1部を、ニーダ-混練機を用いて、170℃で混練した。引き続き、混練温度を130℃に降温し、1,9-ノナンジオールジアクリレート0.25部、および、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン1部を添加して混練して、パターン形成用感光性組成物を得た。得られたパターン形成用感光性組成物を用いて、成形性、感光性(ゲル分率)、シートの引張弾性率、シートの永久伸び、シートの耐摩耗性およびシートの耐インク膨潤性を測定、評価した。結果を表3に示す。
ブロック共重合体組成物の種類を、表3に示すものに変更し、1,9-ノナンジオールジアクリレートの添加量を、表3に示す量に変更した以外は、実施例1と同様にして、パターン形成用感光性組成物を得た。得られたパターン形成用感光性組成物を用いて、実施例1と同様に測定を行った。結果を表3に示す。
Claims (10)
- ブロック共重合体組成物および光重合開始剤を含有するパターン形成用感光性組成物であって、
前記ブロック共重合体組成物が、下記一般式(1)で表されるブロック共重合体A1、または、下記一般式(2)で表されるブロック共重合体A2を含有し、
前記ブロック共重合体組成物全体の重量平均分子量(Mw)が300000~800000であるパターン形成用感光性組成物。
(Ar1-D1)mX1(D2)n (1)
(一般式(1)中、Ar1は芳香族モノビニル重合体ブロックであり、D1およびD2は、それぞれ共役ジエン重合体ブロックであり、mは1以上の整数であり、nは1以上の整数であり、m+nは3以上の整数であり、X1は多官能性カップリング剤の残基である。)
(Ar-D)pX (2)
(一般式(2)中、Arは芳香族モノビニル重合体ブロックであり、Dは共役ジエン重合体ブロックであり、pは3以上の整数であり、Xは多官能性カップリング剤の残基である。) - 前記ブロック共重合体A1または前記ブロック共重合体A2の分子量分布(Mw/Mn)が1.40以下であり、
前記ブロック共重合体組成物中の前記ブロック共重合体A1および前記ブロック共重合体A2の含有量が合計で10質量%以上である請求項1に記載のパターン形成用感光性組成物。 - 前記ブロック共重合体組成物が、下記一般式(3)で表されるジブロック共重合体B、または、下記一般式(4)で表される重合体Cをさらに含有し、
前記ジブロック共重合体Bまたは前記重合体Cの分子量分布(Mw/Mn)が1.20以下であり、
前記ブロック共重合体組成物中の前記ジブロック共重合体Bおよび前記重合体Cの含有量が合計で60質量%以下であり、
前記ブロック共重合体組成物中の芳香族モノビニル単量体単位の含有量が5~40質量%であり、
前記ブロック共重合体組成物のASTM D1238(G条件、200℃、5kg荷重)に準拠して測定したメルトインデックスが0.5~50g/10分である請求項1または2に記載のパターン形成用感光性組成物。
Ar3-D3 (3)
D4 (4)
(一般式(3)および一般式(4)中、Ar3は芳香族モノビニル重合体ブロックであり、D3およびD4は、それぞれ共役ジエン重合体ブロックである。) - 前記ブロック共重合体組成物が、前記ブロック共重合体A1を含有する請求項1~3のいずれかに記載のパターン形成用感光性組成物。
- 前記ブロック共重合体組成物が前記ブロック共重合体A1を含有し、
前記ブロック共重合体A1における、D2で表される分岐鎖の質量に対する、Ar1-D1で表される分岐鎖の質量の比率((Ar1-D1)/D2)が1.0/0.15~1.0/2.00である請求項1~4のいずれかに記載のパターン形成用感光性組成物。 - 前記ブロック共重合体組成物が前記ブロック共重合体A1を含有し、
前記ブロック共重合体A1における、D2で表される分岐鎖の重量平均分子量(Mw(D2))に対する、Ar1-D1で表される分岐鎖中の共役ジエン重合体ブロックD1の重量平均分子量(Mw(D1))の比率((Mw(D1))/(Mw(D2)))が、1.0/0.3~1.0/1.1である請求項1~5のいずれかに記載のパターン形成用感光性組成物。 - 前記多官能性カップリング剤が分子中にラジカル重合性基を2個以上有する化合物である請求項1~6のいずれかに記載のパターン形成用感光性組成物。
- 前記多官能性カップリング剤がジビニルベンゼンである請求項1~7のいずれかに記載のパターン形成用感光性組成物。
- さらに光重合性エチレン性不飽和単量体を含有する請求項1~8のいずれかに記載のパターン形成用感光性組成物。
- 請求項1~9のいずれかに記載のパターン形成用感光性組成物を用いてなるフレキソ版。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023543847A JPWO2023026928A1 (ja) | 2021-08-25 | 2022-08-17 | |
CN202280055463.0A CN117813552A (zh) | 2021-08-25 | 2022-08-17 | 图案形成用感光性组合物和柔性版 |
EP22861216.4A EP4394509A1 (en) | 2021-08-25 | 2022-08-17 | Photosensitive composition for pattern formation, and flexographic plate |
US18/683,247 US20240353754A1 (en) | 2021-08-25 | 2022-08-17 | Photosensitive composition for pattern formation, and flexographic plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021137237 | 2021-08-25 | ||
JP2021-137237 | 2021-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023026928A1 true WO2023026928A1 (ja) | 2023-03-02 |
Family
ID=85321937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/031104 WO2023026928A1 (ja) | 2021-08-25 | 2022-08-17 | パターン形成用感光性組成物およびフレキソ版 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240353754A1 (ja) |
EP (1) | EP4394509A1 (ja) |
JP (1) | JPWO2023026928A1 (ja) |
CN (1) | CN117813552A (ja) |
WO (1) | WO2023026928A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006284615A (ja) * | 2005-03-31 | 2006-10-19 | Nippon Zeon Co Ltd | 感光性エラストマー組成物の製造方法 |
JP2007279422A (ja) * | 2006-04-07 | 2007-10-25 | Asahi Kasei Chemicals Corp | フレキソ印刷用感光性樹脂組成物 |
JP2021047322A (ja) | 2019-09-19 | 2021-03-25 | 旭化成株式会社 | フレキソ印刷原版、及びブロック共重合体組成物 |
-
2022
- 2022-08-17 JP JP2023543847A patent/JPWO2023026928A1/ja active Pending
- 2022-08-17 US US18/683,247 patent/US20240353754A1/en active Pending
- 2022-08-17 WO PCT/JP2022/031104 patent/WO2023026928A1/ja active Application Filing
- 2022-08-17 CN CN202280055463.0A patent/CN117813552A/zh active Pending
- 2022-08-17 EP EP22861216.4A patent/EP4394509A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006284615A (ja) * | 2005-03-31 | 2006-10-19 | Nippon Zeon Co Ltd | 感光性エラストマー組成物の製造方法 |
JP2007279422A (ja) * | 2006-04-07 | 2007-10-25 | Asahi Kasei Chemicals Corp | フレキソ印刷用感光性樹脂組成物 |
JP2021047322A (ja) | 2019-09-19 | 2021-03-25 | 旭化成株式会社 | フレキソ印刷原版、及びブロック共重合体組成物 |
Non-Patent Citations (1)
Title |
---|
RUBBER CHEM. TECHNOL., vol. 45, 1972, pages 1295 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023026928A1 (ja) | 2023-03-02 |
CN117813552A (zh) | 2024-04-02 |
US20240353754A1 (en) | 2024-10-24 |
EP4394509A1 (en) | 2024-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102334068B (zh) | 柔性版用嵌段共聚物组合物 | |
US7012118B2 (en) | Photopolymerizable compositions and flexographic plates prepared from controlled distribution block copolymers | |
JP4519129B2 (ja) | 光硬化性組成物および光硬化性組成物含むフレキソ印刷版 | |
CN1860412B (zh) | 感光性柔性版用嵌段共聚物组合物 | |
US7432037B2 (en) | Curable resin composition and flexographic plate material using the same | |
EP1881370B1 (en) | Photosensitive resin composition | |
JP7105240B2 (ja) | 耐摩耗性に優れた感光性印刷版材用ブロック共重合体及びその製造方法 | |
JP7173132B2 (ja) | フレキソ版用ブロック共重合体組成物 | |
WO2018168647A1 (ja) | フレキソ版用ブロック共重合体組成物 | |
WO2023026928A1 (ja) | パターン形成用感光性組成物およびフレキソ版 | |
TW202336041A (zh) | 感光性樹脂組成物 | |
JP2006284615A (ja) | 感光性エラストマー組成物の製造方法 | |
CN112457457A (zh) | 兼顾柔韧性和耐磨耗性的感光性印刷版材用嵌段共聚物及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22861216 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023543847 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280055463.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18683247 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022861216 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022861216 Country of ref document: EP Effective date: 20240325 |