WO2022264872A1 - Photodetection element and image sensor - Google Patents
Photodetection element and image sensor Download PDFInfo
- Publication number
- WO2022264872A1 WO2022264872A1 PCT/JP2022/022892 JP2022022892W WO2022264872A1 WO 2022264872 A1 WO2022264872 A1 WO 2022264872A1 JP 2022022892 W JP2022022892 W JP 2022022892W WO 2022264872 A1 WO2022264872 A1 WO 2022264872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- layer
- photodetector
- photoelectric conversion
- atoms
- Prior art date
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 118
- 239000002096 quantum dot Substances 0.000 claims abstract description 94
- 238000006243 chemical reaction Methods 0.000 claims abstract description 67
- 239000011787 zinc oxide Substances 0.000 claims abstract description 59
- 239000004065 semiconductor Substances 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims abstract description 48
- 239000002184 metal Substances 0.000 claims abstract description 48
- 150000001875 compounds Chemical class 0.000 claims abstract description 46
- 239000011701 zinc Substances 0.000 claims abstract description 43
- 230000005525 hole transport Effects 0.000 claims abstract description 18
- 125000004429 atom Chemical group 0.000 claims description 95
- 239000003446 ligand Substances 0.000 claims description 79
- 125000005843 halogen group Chemical group 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052744 lithium Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 206
- 239000010408 film Substances 0.000 description 64
- 239000000243 solution Substances 0.000 description 56
- 239000002245 particle Substances 0.000 description 50
- 239000006185 dispersion Substances 0.000 description 40
- 238000000034 method Methods 0.000 description 36
- 239000000463 material Substances 0.000 description 28
- -1 halogen ion Chemical class 0.000 description 27
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 22
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 21
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 21
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 18
- 239000003086 colorant Substances 0.000 description 18
- 239000004246 zinc acetate Substances 0.000 description 18
- 125000001424 substituent group Chemical group 0.000 description 17
- 239000002904 solvent Substances 0.000 description 14
- 238000002834 transmittance Methods 0.000 description 13
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 11
- 238000009616 inductively coupled plasma Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 125000004450 alkenylene group Chemical group 0.000 description 9
- 125000002947 alkylene group Chemical group 0.000 description 9
- 125000003277 amino group Chemical group 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 8
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 7
- 239000000038 blue colorant Substances 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000001062 red colorant Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 125000003396 thiol group Chemical group [H]S* 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 125000004419 alkynylene group Chemical group 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 150000002430 hydrocarbons Chemical group 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 229910001887 tin oxide Inorganic materials 0.000 description 6
- 239000001060 yellow colorant Substances 0.000 description 6
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 6
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 5
- 125000000732 arylene group Chemical group 0.000 description 5
- 229910001502 inorganic halide Inorganic materials 0.000 description 5
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 5
- RXMRGBVLCSYIBO-UHFFFAOYSA-M tetramethylazanium;iodide Chemical compound [I-].C[N+](C)(C)C RXMRGBVLCSYIBO-UHFFFAOYSA-M 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 4
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 4
- 239000000040 green colorant Substances 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 3
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 3
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 3
- SHLSSLVZXJBVHE-UHFFFAOYSA-N 3-sulfanylpropan-1-ol Chemical compound OCCCS SHLSSLVZXJBVHE-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 3
- RLECCBFNWDXKPK-UHFFFAOYSA-N bis(trimethylsilyl)sulfide Chemical compound C[Si](C)(C)S[Si](C)(C)C RLECCBFNWDXKPK-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- WQABCVAJNWAXTE-UHFFFAOYSA-N dimercaprol Chemical compound OCC(S)CS WQABCVAJNWAXTE-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 235000011090 malic acid Nutrition 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 2
- QYIGOGBGVKONDY-UHFFFAOYSA-N 1-(2-bromo-5-chlorophenyl)-3-methylpyrazole Chemical compound N1=C(C)C=CN1C1=CC(Cl)=CC=C1Br QYIGOGBGVKONDY-UHFFFAOYSA-N 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 2
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- JGDITNMASUZKPW-UHFFFAOYSA-K aluminium trichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Al](Cl)Cl JGDITNMASUZKPW-UHFFFAOYSA-K 0.000 description 2
- 229940009861 aluminum chloride hexahydrate Drugs 0.000 description 2
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 125000005605 benzo group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OTBHHUPVCYLGQO-UHFFFAOYSA-N bis(3-aminopropyl)amine Chemical compound NCCCNCCCN OTBHHUPVCYLGQO-UHFFFAOYSA-N 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- KPWJBEFBFLRCLH-UHFFFAOYSA-L cadmium bromide Chemical compound Br[Cd]Br KPWJBEFBFLRCLH-UHFFFAOYSA-L 0.000 description 2
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 2
- OKIIEJOIXGHUKX-UHFFFAOYSA-L cadmium iodide Chemical compound [Cd+2].[I-].[I-] OKIIEJOIXGHUKX-UHFFFAOYSA-L 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 125000004663 dialkyl amino group Chemical group 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 229960001051 dimercaprol Drugs 0.000 description 2
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 229940012017 ethylenediamine Drugs 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229940044658 gallium nitrate Drugs 0.000 description 2
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- ATFCOADKYSRZES-UHFFFAOYSA-N indium;oxotungsten Chemical compound [In].[W]=O ATFCOADKYSRZES-UHFFFAOYSA-N 0.000 description 2
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 2
- 229940071536 silver acetate Drugs 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 description 2
- YZYKBQUWMPUVEN-UHFFFAOYSA-N zafuleptine Chemical compound OC(=O)CCCCCC(C(C)C)NCC1=CC=C(F)C=C1 YZYKBQUWMPUVEN-UHFFFAOYSA-N 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical class [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- BJEPYKJPYRNKOW-UWTATZPHSA-N (R)-malic acid Chemical compound OC(=O)[C@H](O)CC(O)=O BJEPYKJPYRNKOW-UWTATZPHSA-N 0.000 description 1
- AFENDNXGAFYKQO-VKHMYHEASA-N (S)-2-hydroxybutyric acid Chemical compound CC[C@H](O)C(O)=O AFENDNXGAFYKQO-VKHMYHEASA-N 0.000 description 1
- MGRVRXRGTBOSHW-UHFFFAOYSA-N (aminomethyl)phosphonic acid Chemical compound NCP(O)(O)=O MGRVRXRGTBOSHW-UHFFFAOYSA-N 0.000 description 1
- JRNVQLOKVMWBFR-UHFFFAOYSA-N 1,2-benzenedithiol Chemical compound SC1=CC=CC=C1S JRNVQLOKVMWBFR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- KODLUXHSIZOKTG-UHFFFAOYSA-N 1-aminobutan-2-ol Chemical compound CCC(O)CN KODLUXHSIZOKTG-UHFFFAOYSA-N 0.000 description 1
- ZRUPXAZUXDFLTG-UHFFFAOYSA-N 1-aminopentan-2-ol Chemical compound CCCC(O)CN ZRUPXAZUXDFLTG-UHFFFAOYSA-N 0.000 description 1
- KUODZPPJVMDYTK-UHFFFAOYSA-N 1-sulfanylbutan-2-ol Chemical compound CCC(O)CS KUODZPPJVMDYTK-UHFFFAOYSA-N 0.000 description 1
- BJTDCRZMGHJWBF-UHFFFAOYSA-N 1-sulfanylpentan-2-ol Chemical compound CCCC(O)CS BJTDCRZMGHJWBF-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- ISADKHQORCWQLD-UHFFFAOYSA-N 2-(2-aminoethylamino)ethanethiol Chemical compound NCCNCCS ISADKHQORCWQLD-UHFFFAOYSA-N 0.000 description 1
- PHTJBUCAVSBDHM-UHFFFAOYSA-N 2-(2-sulfanylethylamino)ethanethiol Chemical compound SCCNCCS PHTJBUCAVSBDHM-UHFFFAOYSA-N 0.000 description 1
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical compound CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 1
- JYAKNSNAABYQBU-UHFFFAOYSA-N 2h-dibenzofuran-1-one Chemical class O1C2=CC=CC=C2C2=C1C=CCC2=O JYAKNSNAABYQBU-UHFFFAOYSA-N 0.000 description 1
- NWNQYXMSXBJEPU-UHFFFAOYSA-N 3-[bis(3-aminopropyl)amino]propan-1-ol Chemical compound NCCCN(CCCN)CCCO NWNQYXMSXBJEPU-UHFFFAOYSA-N 0.000 description 1
- RSFDFESMVAIVKO-UHFFFAOYSA-N 3-sulfanylbenzoic acid Chemical compound OC(=O)C1=CC=CC(S)=C1 RSFDFESMVAIVKO-UHFFFAOYSA-N 0.000 description 1
- LMJXSOYPAOSIPZ-UHFFFAOYSA-N 4-sulfanylbenzoic acid Chemical compound OC(=O)C1=CC=C(S)C=C1 LMJXSOYPAOSIPZ-UHFFFAOYSA-N 0.000 description 1
- DTRIDVOOPAQEEL-UHFFFAOYSA-N 4-sulfanylbutanoic acid Chemical compound OC(=O)CCCS DTRIDVOOPAQEEL-UHFFFAOYSA-N 0.000 description 1
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical group CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 1
- 229910002688 Ag2Te Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910020187 CeF3 Inorganic materials 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UWTATZPHSA-N D-Cysteine Chemical compound SC[C@@H](N)C(O)=O XUJNEKJLAYXESH-UWTATZPHSA-N 0.000 description 1
- 229930182843 D-Lactic acid Natural products 0.000 description 1
- UKAUYVFTDYCKQA-GSVOUGTGSA-N D-homoserine Chemical compound OC(=O)[C@H](N)CCO UKAUYVFTDYCKQA-GSVOUGTGSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- 229930195710 D‐cysteine Natural products 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical group NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 1
- 229910004262 HgTe Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- 229910002319 LaF3 Inorganic materials 0.000 description 1
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 101100489867 Mus musculus Got2 gene Proteins 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910017557 NdF3 Inorganic materials 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910002637 Pr6O11 Inorganic materials 0.000 description 1
- 229910007271 Si2O3 Inorganic materials 0.000 description 1
- 229910005642 SnTe Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229910004366 ThF4 Inorganic materials 0.000 description 1
- 229910004369 ThO2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004947 alkyl aryl amino group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- ZHWLPDIRXJCEJY-UHFFFAOYSA-N alpha-hydroxyglycine Chemical compound NC(O)C(O)=O ZHWLPDIRXJCEJY-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- IAANMKMHMYZVOC-UHFFFAOYSA-N aminomethyl dihydrogen phosphate Chemical compound NCOP(O)(O)=O IAANMKMHMYZVOC-UHFFFAOYSA-N 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- ZWOASCVFHSYHOB-UHFFFAOYSA-N benzene-1,3-dithiol Chemical compound SC1=CC=CC(S)=C1 ZWOASCVFHSYHOB-UHFFFAOYSA-N 0.000 description 1
- WYLQRHZSKIDFEP-UHFFFAOYSA-N benzene-1,4-dithiol Chemical compound SC1=CC=C(S)C=C1 WYLQRHZSKIDFEP-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical group [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229940075417 cadmium iodide Drugs 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate group Chemical group [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229940022769 d- lactic acid Drugs 0.000 description 1
- 229960001270 d- tartaric acid Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000004986 diarylamino group Chemical group 0.000 description 1
- CCAFPWNGIUBUSD-UHFFFAOYSA-N diethyl sulfoxide Chemical compound CCS(=O)CC CCAFPWNGIUBUSD-UHFFFAOYSA-N 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- FPHIOHCCQGUGKU-UHFFFAOYSA-L difluorolead Chemical compound F[Pb]F FPHIOHCCQGUGKU-UHFFFAOYSA-L 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- SRVXDMYFQIODQI-UHFFFAOYSA-K gallium(iii) bromide Chemical compound Br[Ga](Br)Br SRVXDMYFQIODQI-UHFFFAOYSA-K 0.000 description 1
- DWRNSCDYNYYYHT-UHFFFAOYSA-K gallium(iii) iodide Chemical compound I[Ga](I)I DWRNSCDYNYYYHT-UHFFFAOYSA-K 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical group [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940116298 l- malic acid Drugs 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- FEWJPZIEWOKRBE-LWMBPPNESA-N levotartaric acid Chemical compound OC(=O)[C@@H](O)[C@H](O)C(O)=O FEWJPZIEWOKRBE-LWMBPPNESA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229940097364 magnesium acetate tetrahydrate Drugs 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- XKPKPGCRSHFTKM-UHFFFAOYSA-L magnesium;diacetate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].CC([O-])=O.CC([O-])=O XKPKPGCRSHFTKM-UHFFFAOYSA-L 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 229940099690 malic acid Drugs 0.000 description 1
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical class [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000001061 orange colorant Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- RQGPLDBZHMVWCH-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole Chemical class C1=NC2=CC=NC2=C1 RQGPLDBZHMVWCH-UHFFFAOYSA-N 0.000 description 1
- GGVMPKQSTZIOIU-UHFFFAOYSA-N quaterrylene Chemical group C12=C3C4=CC=C2C(C2=C56)=CC=C5C(C=57)=CC=CC7=CC=CC=5C6=CC=C2C1=CC=C3C1=CC=CC2=CC=CC4=C21 GGVMPKQSTZIOIU-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- FSJWWSXPIWGYKC-UHFFFAOYSA-M silver;silver;sulfanide Chemical compound [SH-].[Ag].[Ag+] FSJWWSXPIWGYKC-UHFFFAOYSA-M 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052959 stibnite Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000213 sulfino group Chemical group [H]OS(*)=O 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229960001367 tartaric acid Drugs 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 1
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- GBECUEIQVRDUKB-UHFFFAOYSA-M thallium monochloride Chemical compound [Tl]Cl GBECUEIQVRDUKB-UHFFFAOYSA-M 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M thiocyanate group Chemical group [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- NJRXVEJTAYWCQJ-UHFFFAOYSA-N thiomalic acid Chemical compound OC(=O)CC(S)C(O)=O NJRXVEJTAYWCQJ-UHFFFAOYSA-N 0.000 description 1
- NBOMNTLFRHMDEZ-UHFFFAOYSA-N thiosalicylic acid Chemical compound OC(=O)C1=CC=CC=C1S NBOMNTLFRHMDEZ-UHFFFAOYSA-N 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OVTCUIZCVUGJHS-VQHVLOKHSA-N trans-dipyrrin Chemical class C=1C=CNC=1/C=C1\C=CC=N1 OVTCUIZCVUGJHS-VQHVLOKHSA-N 0.000 description 1
- JKNHZOAONLKYQL-UHFFFAOYSA-K tribromoindigane Chemical compound Br[In](Br)Br JKNHZOAONLKYQL-UHFFFAOYSA-K 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- RMUKCGUDVKEQPL-UHFFFAOYSA-K triiodoindigane Chemical compound I[In](I)I RMUKCGUDVKEQPL-UHFFFAOYSA-K 0.000 description 1
- VMDCDZDSJKQVBK-UHFFFAOYSA-N trimethyl(trimethylsilyltellanyl)silane Chemical compound C[Si](C)(C)[Te][Si](C)(C)C VMDCDZDSJKQVBK-UHFFFAOYSA-N 0.000 description 1
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a photodetector having a photoelectric conversion layer containing semiconductor quantum dots, and an image sensor.
- silicon photodiodes that use silicon wafers as the material for the photoelectric conversion layer have been used for photodetection elements used in image sensors and the like.
- silicon photodiodes have low sensitivity in the infrared region with a wavelength of 900 nm or more.
- InGaAs-based semiconductor materials which are known as light-receiving elements for near-infrared light, require extremely high-cost processes such as epitaxial growth and substrate bonding processes in order to achieve high quantum efficiency.
- the problem is that the
- Non-Patent Documents 1 and 2 describe a solar cell having a photoelectric conversion film containing AgBiS 2 quantum dots.
- one of the characteristics required for a photodetector is to have a high external quantum efficiency with respect to light of a target wavelength to be detected by the photodetector. By increasing the external quantum efficiency of the photodetector, it is possible to improve the light detection accuracy of the photodetector.
- the dark current is small.
- a higher signal-to-noise ratio (SN ratio) can be obtained in the image sensor by reducing the dark current of the photodetector.
- a dark current is a current that flows when light is not applied.
- Non-Patent Documents 1 and 2 The inventor of the present invention has extensively studied the solar cells described in Non-Patent Documents 1 and 2. In these solar cells, the external quantum efficiency for light with a wavelength in the infrared region (especially light with a wavelength of 900 nm or more) is found to be low. Also, the dark current was relatively high.
- an object of the present invention is to provide a photodetector and an image sensor that have a high external quantum efficiency for light with wavelengths in the infrared region and a reduced dark current.
- the inventor of the present invention has extensively studied a photodetector having a photoelectric conversion layer containing quantum dots of a compound semiconductor containing Ag element and Bi element, and found that the electron transport layer was doped with metal atoms other than Zn.
- the inventors have found that the use of zinc oxide enables a photodetector with high external quantum efficiency and low dark current, and have completed the present invention. Accordingly, the present invention provides the following.
- the photoelectric conversion layer includes quantum dots of a compound semiconductor containing Ag element and Bi element,
- ⁇ 3> The photodetector according to ⁇ 1>, wherein the metal atom other than Zn includes at least one selected from Li, Mg, Al and Ga.
- the ratio of the metal atoms other than Zn to the total of Zn and the metal atoms other than Zn is 1 atomic % or more.
- ⁇ 5> The photodetector according to any one of ⁇ 1> to ⁇ 4>, wherein the compound semiconductor of the quantum dots further contains at least one element selected from S element and Te element.
- ⁇ 6> The photodetector according to any one of ⁇ 1> to ⁇ 5>, wherein the photoelectric conversion layer contains a ligand that coordinates to the quantum dot.
- the ligand includes at least one selected from ligands containing halogen atoms and multidentate ligands containing two or more coordinating moieties.
- An image sensor including the photodetector according to any one of ⁇ 1> to ⁇ 7>.
- FIG. 11 illustrates an embodiment of a photodetector
- ⁇ is used to include the numerical values before and after it as lower and upper limits.
- a description that does not describe substitution or unsubstituted includes a group (atomic group) having no substituent as well as a group (atomic group) having a substituent.
- an "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
- the photodetector of the present invention is a first electrode layer; a second electrode layer; a photoelectric conversion layer provided between the first electrode layer and the second electrode layer; an electron transport layer provided between the first electrode layer and the photoelectric conversion layer; a hole transport layer provided between the photoelectric conversion layer and the second electrode layer;
- the photoelectric conversion layer contains quantum dots of a compound semiconductor containing Ag element and Bi element,
- the electron transport layer is characterized by containing zinc oxide doped with metal atoms other than Zn.
- the photodetector of the present invention can be a photodetector with high external quantum efficiency and low dark current. Although the detailed reason why such an effect is obtained is unknown, it is believed that the use of an electron transport layer containing zinc oxide doped with a metal atom other than Zn provides an appropriate energy level. guessed.
- the quantum dots of the photoelectric conversion layer are composed of quantum dots other than "quantum dots of a compound semiconductor containing Ag element and Bi element" such as PbS
- the electron transport layer is zinc oxide not doped with metal atoms other than Zn (non-doped zinc oxide), and a photodetector whose electron transport layer is zinc oxide doped with metal atoms other than Zn (doped zinc oxide). It was found that there was no particular difference in changes in external quantum efficiency, dark current, etc.
- the quantum dots of the photoelectric conversion layer are composed of quantum dots other than "quantum dots of a compound semiconductor containing Ag element and Bi element" such as PbS
- the electron transport layer is doped with metal atoms other than Zn. Even if zinc oxide (doped zinc oxide) is used, the above effects such as improvement of external quantum efficiency and reduction of dark current cannot be obtained.
- FIG. 1 is a diagram showing an embodiment of a photodiode-type photodetector.
- the arrows in the drawing represent incident light to the photodetector.
- the photodetector 1 shown in FIG. 1 includes a second electrode layer 12, a first electrode layer 11 facing the second electrode layer 12, and a Between the photoelectric conversion layer 13 provided between, the electron transport layer 21 provided between the first electrode layer 11 and the photoelectric conversion layer 13, and the second electrode layer 12 and the photoelectric conversion layer 13 and a provided hole transport layer 22 .
- the photodetector 1 shown in FIG. 1 is used so that light enters from above the first electrode layer 11 .
- a transparent substrate may be arranged on the surface of the first electrode layer 11 on the light incident side. Types of transparent substrates include glass substrates, resin substrates, ceramic substrates, and the like.
- the first electrode layer 11 is preferably a transparent electrode made of a conductive material substantially transparent to the wavelength of light to be detected by the photodetector.
- substantially transparent means that the light transmittance is 50% or more, preferably 60% or more, and particularly preferably 80% or more.
- materials for the first electrode layer 11 include conductive metal oxides. Specific examples include tin oxide, zinc oxide, indium oxide, indium tungsten oxide, indium zinc oxide (IZO), indium tin oxide (ITO), and fluorine-doped tin oxide (ITO). tin oxide: FTO) and the like.
- the film thickness of the first electrode layer 11 is not particularly limited, and is preferably 0.01 to 100 ⁇ m, more preferably 0.01 to 10 ⁇ m, even more preferably 0.01 to 1 ⁇ m. .
- the film thickness of each layer can be measured by observing the cross section of the photodetector 1 using a scanning electron microscope (SEM) or the like.
- the electron transport layer 21 is provided between the first electrode layer 11 and the photoelectric conversion layer 13 .
- the electron transport layer 21 is a layer having a function of transporting electrons generated in the photoelectric conversion layer 13 to the electrode layer.
- the electron transport layer is also called a hole blocking layer.
- the electron transport layer 21 contains zinc oxide doped with metal atoms other than Zn.
- zinc oxide doped with metal atoms other than Zn is also referred to as doped zinc oxide.
- the metal atom other than Zn in the doped zinc oxide is preferably a monovalent to trivalent metal atom, and more preferably contains at least one selected from Li, Mg, Al and Ga. Effects of the present invention Li, Mg, Al, or Ga is more preferred, and Li or Mg is particularly preferred, because it is possible to more significantly obtain the
- the ratio of metal atoms other than Zn to the total of Zn and metal atoms other than Zn is preferably 1 atomic % or more for the reason that the effects of the present invention can be obtained more remarkably. It is more preferably at least 4 atomic %, even more preferably at least 4 atomic %. From the viewpoint of suppressing an increase in crystal defects, the upper limit is preferably 20 atomic % or less, more preferably 15 atomic % or less, and even more preferably 12 atomic % or less.
- the proportion of metal atoms other than Zn in the doped zinc oxide can be measured by a high frequency inductively coupled plasma (ICP) method.
- ICP inductively coupled plasma
- the doped zinc oxide is preferably particles (doped zinc oxide particles) from the viewpoint of reducing residual organic components and increasing the contact area with the photoelectric conversion layer.
- the average particle size of the doped zinc oxide particles is preferably 2 to 30 nm.
- the lower limit of the average particle size of the doped zinc oxide particles is preferably 3 nm or more, more preferably 5 nm or more.
- the upper limit of the average particle diameter of the doped zinc oxide particles is preferably 20 nm or less, more preferably 15 nm or less.
- the value of the average particle size of the doped zinc oxide particles is the average value of the particle sizes of 10 arbitrarily selected quantum dots. A transmission electron microscope may be used to measure the particle size of the doped zinc oxide particles.
- the electron transport layer 21 can be formed through a process of applying a dispersion containing doped zinc oxide particles.
- the electron transport layer 21 can also be formed by a method such as a physical vapor deposition method (PVD method) such as a vacuum deposition method, sputtering, or a chemical vapor deposition method (CVD method).
- PVD method physical vapor deposition method
- CVD method chemical vapor deposition method
- the thickness of the electron transport layer 21 is preferably 10-1000 nm.
- the upper limit is preferably 800 nm or less.
- the lower limit is preferably 20 nm or more, more preferably 50 nm or more.
- the thickness of the electron transport layer 21 is preferably 0.05 to 10 times the thickness of the photoelectric conversion layer 13, more preferably 0.1 to 5 times, and 0.2 to 2 times. is more preferable.
- an oxide layer doped with metal atoms other than Zn is provided between the first electrode layer 11 and the electron transport layer 21, or between the electron transport layer 21 and the photoelectric conversion layer 13, an oxide layer doped with metal atoms other than Zn is provided. It may have another electron transport layer composed of an electron transport material other than zinc.
- Other electron transport materials include fullerene compounds such as [6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PC61BM), perylene compounds such as perylenetetracarboxydiimide, tetracyanoquinodimethane, titanium oxide, and tin oxide. , zinc oxide, indium oxide, indium tungsten oxide, indium zinc oxide, indium tin oxide, and fluorine-doped tin oxide.
- fullerene compounds such as [6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PC61BM), perylene compounds such as perylenetetracarboxydi
- the other electron-transporting layer is preferably present between the first electrode layer 11 and the electron-transporting layer 21 .
- the thickness of the other electron transport layer 21 is preferably 10-1000 nm.
- the upper limit is preferably 800 nm or less.
- the lower limit is preferably 20 nm or more, more preferably 50 nm or more.
- the photoelectric conversion layer 13 contains quantum dots of a compound semiconductor containing Ag (silver) element and Bi (bismuth) element.
- a compound semiconductor is a semiconductor composed of two or more elements. Therefore, in this specification, "a compound semiconductor containing Ag element and Bi element” means a compound semiconductor containing Ag element and Bi element as elements constituting the compound semiconductor.
- semiconductor means a substance having a resistivity value of 10 ⁇ 2 ⁇ cm or more and 10 8 ⁇ cm or less.
- the compound semiconductor which is the quantum dot material constituting the quantum dots, is preferably a compound semiconductor further containing at least one element selected from S (sulfur) and Te (tellurium) elements. According to this aspect, it is easy to obtain a photoelectric conversion film having a high external quantum efficiency for light with a wavelength in the infrared region.
- the compound semiconductor is a compound semiconductor containing Ag element, Bi element, and S element (hereinafter also referred to as Ag—Bi—S-based semiconductor), or Ag element, Bi element, Te element, and S It is preferably a compound semiconductor containing elements (hereinafter also referred to as Ag--Bi--Te--S semiconductor).
- the number of Te elements is divided by the sum of the number of Te elements and the number of S elements (the number of Te elements/(the number of Te elements + the number of S elements )) is preferably between 0.05 and 0.5.
- the lower limit is preferably 0.1 or more, more preferably 0.15 or more, and even more preferably 0.2 or more.
- the upper limit is preferably 0.45 or less, more preferably 0.4 or less.
- the type and number of each element constituting the compound semiconductor can be measured by ICP (Inductively Coupled Plasma) emission spectroscopy or energy dispersive X-ray analysis.
- the crystal structure of the compound semiconductor is not particularly limited. Various crystal structures can be formed depending on the types and composition ratios of the elements that make up the compound semiconductor. A crystalline or hexagonal crystal structure is preferred. In this specification, the crystal structure of a compound semiconductor can be measured by an X-ray diffraction method or an electron beam diffraction method.
- the bandgap of the quantum dots of the compound semiconductor is preferably 1.2 eV or less, more preferably 1.1 eV or less.
- the lower limit of the bandgap of the quantum dots of the compound semiconductor is not particularly limited, it is preferably 0.3 eV or more, more preferably 0.5 eV or more.
- the average particle diameter of the quantum dots of the compound semiconductor is preferably 3 to 20 nm.
- the lower limit of the average particle diameter of the quantum dots of the compound semiconductor is preferably 4 nm or more, more preferably 5 nm or more.
- the upper limit of the average particle size of the quantum dots of the compound semiconductor is preferably 15 nm or less, more preferably 10 nm or less. If the average particle size of the quantum dots of the compound semiconductor is within the above range, the photodetector can have a higher external quantum efficiency with respect to light with wavelengths in the infrared region.
- the value of the average particle size of quantum dots is the average value of the particle sizes of 10 arbitrarily selected quantum dots. A transmission electron microscope may be used to measure the particle size of the quantum dots.
- the photoelectric conversion layer 13 preferably contains ligands that coordinate to the quantum dots of the compound semiconductor.
- Ligands include ligands containing halogen atoms and multidentate ligands containing two or more coordinating sites.
- the photoelectric conversion layer 13 may contain only one type of ligand, or may contain two or more types.
- the photoelectric conversion layer 13 preferably contains a ligand containing a halogen atom and a multidentate ligand.
- Multidentate ligands are presumed to chelate coordinate with quantum dots, and are presumed to be able to more effectively suppress peeling of ligands from quantum dots.
- steric hindrance between quantum dots can be suppressed by chelate coordination. Therefore, it is considered that the steric hindrance between the quantum dots is reduced, the quantum dots are closely arranged, and the overlapping of the wave functions between the quantum dots can be strengthened.
- the ligand containing a halogen atom is further included as a ligand coordinated to the quantum dot, the ligand containing a halogen atom is coordinated in the gap where the multidentate ligand is not coordinated.
- the surface defects of quantum dots can be reduced. For this reason, it is presumed that a photodetector element with low dark current and excellent performance such as electrical conductivity, photocurrent value, external quantum efficiency, and in-plane uniformity of external quantum efficiency can be obtained.
- the photoelectric conversion layer 13 contains a ligand containing a halogen atom and a multidentate ligand, their molar ratio is preferably 1:99 to 99:1, and 10:90 to 90:10. is more preferred, and 20:80 to 80:20 is even more preferred.
- halogen atom contained in the ligand includes fluorine atom, chlorine atom, bromine atom and iodine atom, and iodine atom is preferable from the viewpoint of coordinating power.
- a ligand containing a halogen atom may be an organic halide or an inorganic halide.
- inorganic halides are preferable because they are easily coordinated to both the cationic site and the anionic site of the quantum dot.
- an inorganic halide is used, the effect of coordinating with both the cationic site and the anionic site of the quantum dot can be expected.
- an inorganic halide is used, it is preferably a compound containing a metal element selected from Zn (zinc) atoms, In (indium) atoms and Cd (cadmium) atoms, more preferably a compound containing a Zn atom.
- the inorganic halide is preferably a salt of a metal atom and a halogen atom because it is easily ionized and easily coordinated to the quantum dots.
- ligands containing halogen atoms include zinc iodide, zinc bromide, zinc chloride, indium iodide, indium bromide, indium chloride, cadmium iodide, cadmium bromide, cadmium chloride, gallium iodide, gallium bromide, gallium chloride, tetrabutylammonium iodide, tetramethylammonium iodide and the like.
- the halogen ion may be dissociated from the ligand described above and coordinated to the surface of the quantum dot.
- sites other than the halogen atoms of the aforementioned ligand may also be coordinated to the surface of the quantum dot.
- zinc iodide zinc iodide may be coordinated to the surface of the quantum dot, and iodine ions and zinc ions may be coordinated to the surface of the quantum dot.
- Coordinating moieties included in the polydentate ligand include thiol groups, amino groups, hydroxy groups, carboxy groups, sulfo groups, phospho groups, and phosphonic acid groups.
- Multidentate ligands include ligands represented by any one of formulas (A) to (C).
- X A1 and X A2 each independently represent a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group or a phosphonic acid group; L A1 represents a hydrocarbon group.
- X B1 and X B2 each independently represent a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group or a phosphonic acid group;
- X B3 represents S, O or NH,
- L B1 and L B2 each independently represent a hydrocarbon group.
- X C1 to X C3 each independently represent a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group or a phosphonic acid group;
- X C4 represents N, L C1 to L C3 each independently represent a hydrocarbon group.
- the amino groups represented by X A1 , X A2 , X B1 , X B2 , X C1 , X C2 and X C3 are not limited to —NH 2 but also include substituted amino groups and cyclic amino groups.
- Substituted amino groups include monoalkylamino groups, dialkylamino groups, monoarylamino groups, diarylamino groups, alkylarylamino groups and the like.
- the amino group represented by these groups is preferably -NH 2 , a monoalkylamino group or a dialkylamino group, and more preferably -NH 2 .
- the hydrocarbon group represented by L A1 , L B1 , L B2 , L C1 , L C2 and L C3 is preferably an aliphatic hydrocarbon group or a group containing an aromatic ring, more preferably an aliphatic hydrocarbon group. .
- the aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group.
- the number of carbon atoms in the hydrocarbon group is preferably 1-20.
- the upper limit of the number of carbon atoms is preferably 10 or less, more preferably 6 or less, and even more preferably 3 or less.
- Specific examples of hydrocarbon groups include alkylene groups, alkenylene groups, alkynylene groups, and arylene groups.
- the alkylene group includes a linear alkylene group, a branched alkylene group and a cyclic alkylene group, preferably a linear alkylene group or a branched alkylene group, more preferably a linear alkylene group.
- the alkenylene group includes a linear alkenylene group, a branched alkenylene group and a cyclic alkenylene group, preferably a linear alkenylene group or a branched alkenylene group, more preferably a linear alkenylene group.
- the alkynylene group includes a linear alkynylene group and a branched alkynylene group, preferably a linear alkynylene group.
- Arylene groups may be monocyclic or polycyclic.
- a monocyclic arylene group is preferred.
- Specific examples of the arylene group include a phenylene group and a naphthylene group, with the phenylene group being preferred.
- the alkylene group, alkenylene group, alkynylene group and arylene group may further have a substituent.
- the substituent is preferably a group having 1 to 10 atoms.
- groups having 1 to 10 atoms include alkyl groups having 1 to 3 carbon atoms [methyl group, ethyl group, propyl group and isopropyl group], alkenyl groups having 2 to 3 carbon atoms [ethenyl group and propenyl group], an alkynyl group having 2 to 4 carbon atoms [ethynyl group, propynyl group, etc.], a cyclopropyl group, an alkoxy group having 1 to 2 carbon atoms [methoxy group and ethoxy group], an acyl group having 2 to 3 carbon atoms [ acetyl group and propionyl group], alkoxycarbonyl group having 2 to 3 carbon atoms [methoxycarbonyl group and ethoxycarbonyl group], acyloxy group having 2 carbon atoms [acetyloxy group], acylamino group having 2 carbon atoms [acetylamino group] , hydroxyalkyl group having 1
- X A1 and X A2 are preferably separated by 1 to 10 atoms, more preferably by 1 to 6 atoms, and more preferably by 1 to 4 atoms, by L A1 . is more preferable, more preferably 1 to 3 atoms apart, and particularly preferably 1 or 2 atoms apart.
- X 1 B1 and X 1 B3 are preferably separated by 1 to 10 atoms, more preferably 1 to 6 atoms, and 1 to 4 atoms by L 1 B1 . is more preferable, more preferably 1 to 3 atoms apart, and particularly preferably 1 or 2 atoms apart.
- X B2 and X B3 are preferably separated by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, by L B2 , More preferably, they are separated by 1 to 3 atoms, and particularly preferably separated by 1 or 2 atoms.
- X C1 and X C4 are preferably separated by 1 to 10 atoms, more preferably by 1 to 6 atoms, and further by 1 to 4 atoms, by L C1 . is more preferable, more preferably 1 to 3 atoms apart, and particularly preferably 1 or 2 atoms apart.
- X C2 and X C4 are preferably separated by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, by L C2 , More preferably, they are separated by 1 to 3 atoms, and particularly preferably separated by 1 or 2 atoms.
- X C3 and X C4 are preferably separated by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, by L C3 , More preferably, they are separated by 1 to 3 atoms, and particularly preferably separated by 1 or 2 atoms.
- X A1 and X A2 are separated by 1 to 10 atoms by L A1 means that the number of atoms forming the shortest molecular chain connecting X A1 and X A2 is 1 to 10.
- L A1 means that the number of atoms forming the shortest molecular chain connecting X A1 and X A2 is 1 to 10.
- X A1 and X A2 are separated by two atoms
- X A1 and X A2 are separated by three atoms. ing.
- the numbers attached to the following structural formulas represent the order of arrangement of atoms forming the shortest molecular chain connecting XA1 and XA2 .
- 3-mercaptopropionic acid has a structure in which the site corresponding to X A1 is a carboxy group, the site corresponding to X A2 is a thiol group, and the site corresponding to L A1 is an ethylene group. (a compound having the following structure).
- X A1 carboxy group
- X A2 thiol group
- L A1 ethylene group
- X B1 and X B3 are separated by 1 to 10 atoms by L B1 ; X B2 and X B3 are separated by 1 to 10 atoms by L B2 ; X C1 and X C4 are separated by L C1 ; X C2 and X C4 are separated by 1 to 10 atoms, and X C3 and X C4 are separated by L C3 by 1 to 10 atoms.
- the meaning is also the same as above.
- multidentate ligands include 1,2-ethanedithiol, 3-mercaptopropionic acid, thioglycolic acid, 2-aminoethanol, 2-aminoethanethiol, 2-mercaptoethanol, glycolic acid, ethylene glycol, Ethylenediamine, aminosulfonic acid, glycine, aminomethylphosphoric acid, guanidine, diethylenetriamine, tris(2-aminoethyl)amine, 4-mercaptobutanoic acid, 3-aminopropanol, 3-mercaptopropanol, N-(3-aminopropyl) -1,3-propanediamine, 3-(bis(3-aminopropyl)amino)propan-1-ol, 1-thioglycerol, dimercaprol, 1-mercapto-2-butanol, 1-mercapto-2-pen Tanol, 3-mercapto-1-propanol, 2,3-dimercapto-1-propanol, 2-
- the polydentate ligand is preferably a compound having a boiling point of 90°C or higher.
- the thickness of the photoelectric conversion layer 13 is preferably 10-1000 nm.
- the lower limit of the thickness is preferably 20 nm or more, more preferably 30 nm or more.
- the upper limit of the thickness is preferably 600 nm or less, more preferably 550 nm or less, even more preferably 500 nm or less, and particularly preferably 450 nm or less.
- the photoelectric conversion layer 13 can have a refractive index of 1.5 to 5.0 with respect to light of a target wavelength to be detected by the photodetector.
- the photoelectric conversion layer 13 is formed by applying a dispersion liquid containing compound semiconductor quantum dots containing Ag element and Bi element, ligands coordinated to the quantum dots, and a solvent onto a substrate to form a group of quantum dots. It can be formed through a process of forming a body film (quantum dot assembly forming process).
- Coating methods such as a spin coating method, a dipping method, an inkjet method, a dispenser method, a screen printing method, a letterpress printing method, an intaglio printing method, and a spray coating method can be mentioned.
- the film thickness of the film of the quantum dot aggregates formed by the quantum dot aggregate forming step is preferably 3 nm or more, more preferably 10 nm or more, and more preferably 20 nm or more.
- the upper limit is preferably 200 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less.
- a ligand exchange step may be further performed to exchange the ligands coordinated to the quantum dots with other ligands.
- a ligand different from the ligand contained in the dispersion liquid hereinafter referred to as ligand A
- ligand A a ligand different from the ligand contained in the dispersion liquid
- solvent to exchange the ligands coordinated to the quantum dots with the ligands A contained in the ligand solution.
- the quantum dot assembly formation step and the ligand exchange step may be alternately repeated multiple times.
- ligand A examples include ligands containing halogen atoms and multidentate ligands containing two or more coordinating moieties. Details of these include those described in the section on the photoelectric conversion film described above, and the preferred range is also the same.
- the ligand solution used in the ligand exchange step may contain only one type of ligand A, or may contain two or more types. Also, two or more ligand solutions may be used.
- the solvent contained in the ligand solution is preferably selected as appropriate according to the type of ligand contained in each ligand solution, and is preferably a solvent that easily dissolves each ligand.
- the solvent contained in the ligand solution is preferably an organic solvent having a high dielectric constant. Specific examples include ethanol, acetone, methanol, acetonitrile, dimethylformamide, dimethylsulfoxide, butanol, propanol and the like.
- the solvent contained in the ligand solution is preferably a solvent that hardly remains in the photoelectric conversion film to be formed.
- the solvent contained in the ligand solution is preferably immiscible with the solvent contained in the quantum dot dispersion.
- the solvent contained in the quantum dot dispersion is an alkane such as hexane or octane, or when toluene is used, the solvent contained in the ligand solution is a polar solvent such as methanol or acetone. is preferred.
- a step of rinsing the film after the ligand exchange step by contacting a rinse solution may be performed.
- a rinse solution By performing the rinsing step, excess ligands contained in the film and ligands detached from the quantum dots can be removed. In addition, residual solvent and other impurities can be removed.
- As a rinsing liquid it is easier to remove excess ligands contained in the film and ligands detached from the quantum dots more effectively, and it keeps the film surface uniform by rearranging the quantum dot surface.
- Aprotic solvents are preferred because they are easier to use.
- aprotic solvents include acetonitrile, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, diethyl ether, tetrahydrofuran, cyclopentyl methyl ether, dioxane, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, hexane, octane. , cyclohexane, benzene, toluene, chloroform, carbon tetrachloride and dimethylformamide, preferably acetonitrile and tetrahydrofuran, more preferably acetonitrile.
- the rinsing process may be performed multiple times using two or more rinsing liquids with different polarities (relative dielectric constants). For example, first rinse with a rinse solution having a higher relative dielectric constant (also referred to as a first rinse solution), and then rinse with a rinse solution having a lower relative dielectric constant than the first rinse solution (also referred to as a second rinse solution). It is preferable to perform rinsing using By performing rinsing in this way, the surplus component of ligand A used for ligand exchange is first removed, and then the desorbed ligand component (originally bound to the particles) generated during the ligand exchange process is removed. By removing the ligand component), both the surplus/or desorbed ligand component can be removed more efficiently.
- the dielectric constant of the first rinse is preferably 15-50, more preferably 20-45, and even more preferably 25-40.
- the dielectric constant of the second rinse is preferably 1-15, more preferably 1-10, and even more preferably 1-5.
- the method for manufacturing the photoelectric conversion film may have a drying process. By performing the drying process, the solvent remaining on the photoelectric conversion film can be removed.
- the drying time is preferably 1 to 100 hours, more preferably 1 to 50 hours, even more preferably 5 to 30 hours.
- the drying temperature is preferably 10 to 100°C, more preferably 20 to 90°C, even more preferably 20 to 50°C.
- the hole transport layer 22 is provided between the second electrode layer 12 and the photoelectric conversion layer 13 .
- the hole transport layer is a layer having a function of transporting holes generated in the photoelectric conversion layer to the electrode layer.
- a hole transport layer is also called an electron blocking layer.
- the hole-transporting layer 22 is made of a hole-transporting material capable of performing this function.
- hole transport materials include PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid)), PTB7 (poly ⁇ 4,8-bis[(2-ethylhexyl) oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-lt-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4 -b]thiophene-4,6-diyl ⁇ ), MoO 3 and the like.
- Quantum dots can also be used as the hole transport material.
- Quantum dot materials constituting quantum dots include general semiconductor crystals [a) Group IV semiconductors, b) Group IV-IV, III-V, or II-VI compound semiconductors, c) Groups II, III Compound semiconductors composed of a combination of three or more of Group, IV, V and VI elements] nanoparticles (particles with a size of 0.5 nm or more and less than 100 nm).
- a ligand may be coordinated to the surface of the quantum dot.
- an organic semiconductor having a structure represented by any one of formulas 3-1 to 3-5 can also be used as the hole-transporting material.
- X 1 and X 2 each independently represent S, O, Se, NR X1 or CR X2 R X3 , and R X1 to R X3 each independently represent a hydrogen atom or a substituent.
- Z 1 and Z 2 each independently represent N or CR Z1
- R Z1 represents a hydrogen atom or a substituent
- R 1 to R 4 each independently represent a hydrogen atom or a substituent
- n1 represents an integer from 0 to 2
- * represents a bond.
- R 1 and R 2 is a halogen atom, hydroxy group, cyano group, acylamino group, acyloxy group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, silyl group, alkyl group, alkenyl group, alkynyl group , an aryl group, an aryloxy group, an alkylthio group, an arylthio group, a heteroaryl group, a group represented by formula (R-100), or a group containing an inner salt structure.
- L 100 represents a single bond or a divalent group
- R 100 represents an acid group, a basic group, a group having an anion or a group having a cation.
- X 3 to X 8 each independently represent S, O, Se, NR X4 or CR X5 R X6 , and R X4 to R X6 each independently represent a hydrogen atom or a substituent.
- Z 3 and Z 4 each independently represent N or CR Z2
- R Z2 represents a hydrogen atom or a substituent
- R 5 to R 8 each independently represent a hydrogen atom or a substituent
- n2 represents an integer from 0 to 2
- * represents a bond.
- X 9 to X 16 each independently represent S, O, Se, NR X7 or CR X8 R X9 , and R X7 to R X9 each independently represent a hydrogen atom or a substituent.
- Z 5 and Z 6 each independently represent N or CR Z3 , R Z3 represents a hydrogen atom or a substituent, * represents a bond.
- R 9 to R 16 each independently represent a hydrogen atom or a substituent, n3 represents an integer of 0 to 2, * represents a bond.
- X 17 to X 23 each independently represent S, O, Se, NR X10 or CR X11 R X12 , and R X10 to R X12 each independently represent a hydrogen atom or a substituent.
- Z 7 to Z 10 each independently represent N or CR Z4 , R Z4 represents a hydrogen atom or a substituent, * represents a bond.
- the thickness of the hole transport layer 22 is preferably 5 to 100 nm.
- the lower limit is preferably 10 nm or more.
- the upper limit is preferably 50 nm or less, more preferably 30 nm or less.
- the second electrode layer 12 contains at least one metal atom selected from Au, Pt, Ir, Pd, Cu, Pb, Sn, Zn, Ti, W, Mo, Ta, Ge, Ni, Cr and In. It is preferably made of a metal material. By forming the second electrode layer 12 from such a metal material, a photodetector element with high external quantum efficiency and low dark current can be obtained.
- the second electrode layer 12 is made of a metal material containing at least one metal atom selected from Au, Cu, Mo, Ni, Pd, W, Ir, Pt and Ta. It is more preferable to use a metal material containing at least one metal atom selected from Au, Pd, Ir, and Pt for the reason that it is large and migration is easily suppressed.
- the Ag atom content in the second electrode layer 12 is preferably 98% by mass or less, more preferably 95% by mass or less, and even more preferably 90% by mass or less. It is also preferable that the second electrode layer 12 does not substantially contain Ag atoms.
- the case where the second electrode layer 12 does not substantially contain Ag atoms means that the content of Ag atoms in the second electrode layer 12 is 1% by mass or less, and 0.1% by mass or less. preferably contains no Ag atoms, and more preferably contains no Ag atoms.
- the work function of the second electrode layer 12 is preferably 4.6 eV or more for the reason that the electron blocking property of the hole transport layer is enhanced and the holes generated in the device are easily collected. It is more preferably 5.7 eV, and even more preferably 4.9 to 5.3 eV.
- the film thickness of the second electrode layer 12 is not particularly limited, and is preferably 0.01-100 ⁇ m, more preferably 0.01-10 ⁇ m, and particularly preferably 0.01-1 ⁇ m.
- the photodetector of the present invention may have a blocking layer between the first electrode layer 11 and the electron transport layer 21 .
- a blocking layer is a layer having a function of preventing reverse current.
- a blocking layer is also called an anti-short circuit layer.
- Materials forming the blocking layer include, for example, silicon oxide, magnesium oxide, aluminum oxide, calcium carbonate, cesium carbonate, polyvinyl alcohol, polyurethane, titanium oxide, tin oxide, zinc oxide, niobium oxide, and tungsten oxide.
- the blocking layer may be a single layer film or a laminated film of two or more layers.
- the wavelength ⁇ of the light to be detected by the photodetector and the surface of the second electrode layer 12 on the side of the photoelectric conversion layer 13 to the side of the first electrode layer 11 of the photoelectric conversion layer 13 It is preferable that the optical path length L ⁇ of the light of the wavelength ⁇ to the surface of the surface satisfies the relationship of the following formula (1-1), and that the relationship of the following formula (1-2) is satisfied. more preferred.
- the photoelectric conversion layer 13 When the wavelength ⁇ and the optical path length L ⁇ satisfy such a relationship, in the photoelectric conversion layer 13, the light (incident light) incident from the first electrode layer 11 side and the second electrode layer It is possible to match the phase with the light reflected by the surface of 12 (reflected light), as a result, the light is strengthened by the optical interference effect, and a higher external quantum efficiency can be obtained.
- ⁇ is the wavelength of light to be detected by the photodetector
- L ⁇ is the optical path length of light of wavelength ⁇ from the surface of the second electrode layer 12 on the side of the photoelectric conversion layer 13 to the surface of the photoelectric conversion layer 13 on the side of the first electrode layer
- m is an integer of 0 or more.
- m is preferably an integer of 0 to 4, more preferably an integer of 0 to 3, and even more preferably an integer of 0 to 2. According to this aspect, the transport characteristics of charges such as holes and electrons are excellent, and the external quantum efficiency of the photodetector can be further increased.
- the optical path length means a value obtained by multiplying the physical thickness of a substance through which light passes by the refractive index.
- the photoelectric conversion layer 13 when the thickness of the photoelectric conversion layer is d 1 and the refractive index of the photoelectric conversion layer with respect to the wavelength ⁇ 1 is N 1 , the wavelength ⁇ 1 transmitted through the photoelectric conversion layer 13 is The optical path length of light is N 1 ⁇ d 1 .
- the photoelectric conversion layer 13 and the hole transport layer 22 are composed of a laminated film of two or more layers, or when an intermediate layer exists between the hole transport layer 22 and the second electrode layer 12,
- the integrated value of the optical path length of each layer is the optical path length L ⁇ .
- the photodetector of the present invention is preferably used for detecting light with wavelengths in the infrared region. That is, the photodetector of the present invention is preferably an infrared photodetector. Moreover, it is preferable that the light to be detected by the above-described photodetector is light having a wavelength in the infrared region. In addition, the light with a wavelength in the infrared region is preferably light with a wavelength exceeding 700 nm, more preferably light with a wavelength of 800 nm or longer, still more preferably light with a wavelength of 900 nm or longer, and a wavelength of 1000 nm or longer. is more preferable.
- the light with a wavelength in the infrared region is preferably light with a wavelength of 2000 nm or less, more preferably light with a wavelength of 1800 nm or less, and even more preferably light with a wavelength of 1600 nm or less.
- the photodetector of the present invention may simultaneously detect light with a wavelength in the infrared region and light with a wavelength in the visible region (preferably light with a wavelength in the range of 400 to 700 nm).
- An image sensor of the present invention includes the photodetector of the present invention described above. Since the photodetector of the present invention has excellent sensitivity to light with wavelengths in the infrared region, it can be particularly preferably used as an infrared image sensor. Further, the image sensor of the present invention can be preferably used for sensing light with a wavelength of 900 to 2000 nm, and more preferably for sensing light with a wavelength of 900 to 1600 nm.
- the configuration of the image sensor is not particularly limited as long as it includes the photodetector of the present invention and functions as an image sensor.
- the image sensor may include an infrared transmission filter layer.
- the infrared transmission filter layer preferably has low transmittance for light in the visible wavelength band, and more preferably has an average transmittance of 10% or less for light in the wavelength range of 400 to 650 nm. 0.5% or less is more preferable, and 5% or less is particularly preferable.
- Examples of the infrared transmission filter layer include those composed of a resin film containing a coloring material.
- Colorants include chromatic colorants such as red colorants, green colorants, blue colorants, yellow colorants, purple colorants, and orange colorants, and black colorants.
- the colorant contained in the infrared transmission filter layer preferably forms a black color by combining two or more chromatic colorants or contains a black colorant.
- the combination of chromatic colorants includes, for example, the following modes (C1) to (C7).
- (C1) A mode containing a red colorant and a blue colorant.
- C2 A mode containing a red colorant, a blue colorant, and a yellow colorant.
- C3 A mode containing a red colorant, a blue colorant, a yellow colorant, and a purple colorant.
- C4 A mode containing a red colorant, a blue colorant, a yellow colorant, a purple colorant, and a green colorant.
- C5 A mode containing a red colorant, a blue colorant, a yellow colorant, and a green colorant.
- C6 A mode containing a red colorant, a blue colorant, and a green colorant.
- C7 An embodiment containing a yellow colorant and a purple colorant.
- the chromatic colorant may be a pigment or a dye. It may contain pigments and dyes.
- the black colorant is preferably an organic black colorant. Examples of organic black colorants include bisbenzofuranone compounds, azomethine compounds, perylene compounds, and azo compounds.
- the infrared transmission filter layer may further contain an infrared absorber.
- an infrared absorbing agent in the infrared transmission filter layer, the wavelength of light to be transmitted can be shifted to a longer wavelength side.
- infrared absorbers include pyrrolopyrrole compounds, cyanine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterrylene compounds, merocyanine compounds, croconium compounds, oxonol compounds, iminium compounds, dithiol compounds, triarylmethane compounds, pyrromethene compounds, and azomethine. compounds, anthraquinone compounds, dibenzofuranone compounds, dithiolene metal complexes, metal oxides, metal borides, and the like.
- the spectral characteristics of the infrared transmission filter layer can be appropriately selected according to the application of the image sensor.
- a filter layer that satisfies any one of the following spectral characteristics (1) to (5) may be used.
- the maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 830 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the light in the thickness direction of the film. of 70% or more (preferably 75% or more, more preferably 80% or more) in the wavelength range of 1000 to 1500 nm.
- the maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the light in the film thickness direction of 70% or more (preferably 75% or more, more preferably 80% or more) in the wavelength range of 1100 to 1500 nm.
- the maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 1100 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the wavelength range is 1400 to 1500 nm. is 70% or more (preferably 75% or more, more preferably 80% or more).
- the maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 1300 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the wavelength range is 1600 to 2000 nm. is 70% or more (preferably 75% or more, more preferably 80% or more).
- the infrared transmission filter JP 2013-077009, JP 2014-130173, JP 2014-130338, International Publication No. 2015/166779, International Publication No. 2016/178346, International Publication
- the films described in WO 2016/190162, WO 2018/016232, JP 2016-177079, 2014-130332, and WO 2016/027798 can be used.
- the infrared transmission filter may be used in combination of two or more filters, or a dual bandpass filter that transmits two or more specific wavelength regions with one filter may be used.
- the image sensor may include an infrared shielding filter for the purpose of improving various performances such as noise reduction.
- Specific examples of the infrared shielding filter include, for example, International Publication No. 2016/186050, International Publication No. 2016/035695, Patent No. 6248945, International Publication No. 2019/021767, JP 2017-067963, Patent A filter described in Japanese Patent No. 6506529 and the like are included.
- the image sensor may include a dielectric multilayer film.
- the dielectric multilayer film include those obtained by alternately laminating dielectric thin films with a high refractive index (high refractive index material layers) and dielectric thin films with a low refractive index (low refractive index material layers).
- the number of laminated dielectric thin films in the dielectric multilayer film is not particularly limited, but is preferably 2 to 100 layers, more preferably 4 to 60 layers, and even more preferably 6 to 40 layers.
- a material having a refractive index of 1.7 to 2.5 is preferable as the material used for forming the high refractive index material layer.
- Specific examples include Sb2O3 , Sb2S3 , Bi2O3 , CeO2 , CeF3 , HfO2 , La2O3 , Nd2O3 , Pr6O11 , Sc2O3 , SiO , Ta 2 O 5 , TiO 2 , TlCl, Y 2 O 3 , ZnSe, ZnS, ZrO 2 and the like.
- a material having a refractive index of 1.2 to 1.6 is preferable as the material used for forming the low refractive index material layer.
- the method for forming the dielectric multilayer film is not particularly limited, but examples include vacuum deposition methods such as ion plating and ion beam, physical vapor deposition methods (PVD methods) such as sputtering, and chemical vapor deposition methods. (CVD method) and the like.
- each of the high refractive index material layer and the low refractive index material layer is preferably 0.1 ⁇ to 0.5 ⁇ when the wavelength of light to be blocked is ⁇ (nm).
- dielectric multilayer films include dielectric multilayer films described in JP-A-2014-130344 and JP-A-2018-010296.
- the dielectric multilayer film preferably has a transmission wavelength band in the infrared region (preferably a wavelength region exceeding 700 nm, more preferably a wavelength region exceeding 800 nm, still more preferably a wavelength region exceeding 900 nm).
- the maximum transmittance in the transmission wavelength band is preferably 70% or more, more preferably 80% or more, even more preferably 90% or more.
- the maximum transmittance in the light shielding wavelength band is preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less.
- the average transmittance in the transmission wavelength band is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
- the wavelength range of the transmission wavelength band is preferably center wavelength ⁇ t1 ⁇ 100 nm, more preferably center wavelength ⁇ t1 ⁇ 75 nm, where ⁇ t1 is the wavelength showing the maximum transmittance. More preferably, the center wavelength ⁇ t1 ⁇ 50 nm.
- the dielectric multilayer film may have only one transmission wavelength band (preferably a transmission wavelength band with a maximum transmittance of 90% or more), or may have a plurality of transmission wavelength bands.
- the image sensor may include a color separation filter layer.
- the color separation filter layer includes a filter layer containing colored pixels. Types of colored pixels include red pixels, green pixels, blue pixels, yellow pixels, cyan pixels, and magenta pixels.
- the color separation filter layer may contain colored pixels of two or more colors, or may contain only one color. It can be appropriately selected according to the application and purpose.
- a filter described in International Publication No. 2019/039172 can be used as the color separation filter layer.
- the colored pixels of each color may be adjacent to each other, and partition walls may be provided between the colored pixels.
- the material of the partition is not particularly limited. Examples include organic materials such as siloxane resins and fluorine resins, and inorganic particles such as silica particles.
- the partition may be made of a metal such as tungsten or aluminum.
- the color separation layer is preferably provided on a separate optical path from the infrared transmission filter layer. It is also preferable that the infrared transmission filter layer and the color separation layer are two-dimensionally arranged. In addition, the two-dimensional arrangement of the infrared transmission filter layer and the color separation layer means that at least a part of both of them are present on the same plane.
- the image sensor may include an intermediate layer such as a flattening layer, a base layer, an adhesion layer, an antireflection film, and a lens.
- an antireflection film for example, a film produced from the composition described in International Publication No. 2019/017280 can be used.
- the lens for example, the structure described in International Publication No. 2018/092600 can be used.
- Quantum dot dispersion 1 An excess amount of acetone was added to the solution, centrifugation was performed at 10000 rpm for 10 minutes, and the precipitate was dispersed in toluene to obtain an AgBiS 2 quantum dot dispersion (quantum dot dispersion 1) with a concentration of about 30 mg/mL.
- Quantum dot dispersion 1 A quantum dot thin film was prepared using the obtained quantum dot dispersion liquid 1, and a tauc plot of an indirect transition semiconductor was prepared from absorption measurement of the quantum dot thin film. The bandgap estimated from tauc plot was about 1.1 eV.
- Production Example 1-2 (Production of AgBiSTe quantum dot dispersion (quantum dot dispersion 2)) 5.4 ml of oleic acid, 0.8 mmol of silver acetate, 1 mmol of bismuth acetate and 30 mL of octadecene were weighed into a flask and heated at 100° C. for 3 hours under vacuum to obtain a precursor solution. After the system was under nitrogen flow, 5 mL of oleylamine was added to the precursor solution. Immediately thereafter, 0.9 mmol of hexamethyldisilathiane and 0.1 mmol of bis(trimethylsilyl)telluride were injected along with 5 mL of octadecene.
- TMAH tetramethylammonium hydroxide
- Production Example 2-2 Li-doped zinc oxide particle dispersion Measure 15 ml of DMSO and 0.075 mmol of lithium chloride (LiCl) into a flask, dissolve the LiCl by ultrasonic treatment, and then add 1.425 mmol of zinc acetate to dissolve the zinc acetate to form a zinc acetate solution. got 2.
- Li-doped zinc oxide particle dispersion (concentration 30 mg/mL, average particle size of Li-doped zinc oxide particles) was prepared in the same manner as in Production Example 2-1, except that zinc acetate solution 2 was used instead of zinc acetate solution 1. 8 nm).
- Production Example 2-3 (Al-doped zinc oxide particle dispersion) Measure 15 ml of DMSO and 0.15 mmol of aluminum chloride hexahydrate in a flask, dissolve the aluminum chloride hexahydrate by ultrasonic treatment, and then add 1.35 mmol of zinc acetate to dissolve the zinc acetate. to obtain a zinc acetate solution 3.
- Al-doped zinc oxide particle dispersion (concentration 30 mg/mL, average particle size of Al-doped zinc oxide particles 8 nm).
- Production Example 2-4 (Ga-doped zinc oxide particle dispersion) Measure 15 ml of DMSO and 0.12 mmol of gallium nitrate hydrate in a flask, dissolve the gallium nitrate hydrate by ultrasonic treatment, and then add 1.38 mmol of zinc acetate to dissolve the zinc acetate. , a zinc acetate solution 4 was obtained.
- Ga-doped Z zinc oxide particle dispersion (concentration 30 mg/mL, average grain size of Ga-doped zinc oxide particles) was prepared in the same manner as in Production Example 2-1, except that zinc acetate solution 4 was used instead of zinc acetate solution 1. diameter 8 nm).
- Production Example 2-5 (Mg-doped zinc oxide particle dispersion) 0.075 mmol of magnesium acetate tetrahydrate, 1.425 mmol of zinc acetate dihydrate and 15 ml of DMSO were weighed into a flask and stirred to obtain zinc acetate solution 5 .
- Mg-doped zinc oxide particle dispersion (concentration 30 mg/mL, average particle size of Mg-doped zinc oxide particles) was prepared in the same manner as in Production Example 2-1, except that zinc acetate solution 5 was used instead of zinc acetate solution 1 8 nm).
- the electron transport layer formed using the non-doped zinc oxide particle dispersion of Production Example 2-1 is a non-doped zinc oxide film, and the content of metal atoms in this film is measured by high frequency inductively coupled plasma (ICP). According to the method, the content of metal atoms other than Zn was below the detection limit.
- the electron transport layer formed using the Li-doped zinc oxide particle dispersion of Production Example 2-2 is a Li-doped zinc oxide film.
- the electron transport layer formed using the Al-doped zinc oxide particle dispersion liquid of Production Example 2-3 is an Al-doped zinc oxide film, and the content of metal atoms in this film is measured by high-frequency inductively coupled plasma ( When measured by the ICP) method, Al was confirmed as a metal atom other than Zn. Also, the ratio of Al to the total of Zn and Al atoms in the film was 10 atomic %.
- the electron transport layer formed using the Ga-doped zinc oxide particle dispersion of Production Example 2-4 is a Ga-doped zinc oxide film, and the content of metal atoms in this film is determined by high-frequency inductively coupled plasma ( When measured by the ICP) method, Ga was confirmed as a metal atom other than Zn. The ratio of Ga to the total of Zn and Ga atoms in the film was 8 atomic %.
- the electron transport layer formed using the Mg-doped zinc oxide particle dispersion of Production Example 2-5 is a Mg-doped zinc oxide film, and the content of metal atoms in this film is measured by high-frequency inductively coupled plasma ( When measured by the ICP) method, Mg was confirmed as a metal atom other than Zn. Also, the ratio of Mg to the total of Zn and Mg atoms in the film was 5 atomic %.
- ligand solution 1 tetramethylammonium iodide (TMAI) methanol solution (concentration 1 mg / mL)) or ligand solution 2
- TMAI tetramethylammonium iodide
- EDT 1,2-ethanedithiol
- step 2 methanol or acetonitrile was dropped onto the quantum dot assembly film as a rinsing liquid and spin-dried at 2000 rpm for 20 seconds.
- toluene was dropped onto the quantum dot assembly film and spin-dried at 2000 rpm for 20 seconds (step 2).
- the operation of step 1 and step 2 as one cycle was repeated four times, and tetramethylammonium iodide (TMAI) or 1,2-ethanedithiol (EDT) was added as a ligand to AgBiS2 quantum dots or AgBiSTe quantum dots.
- TMAI tetramethylammonium iodide
- EDT 1,2-ethanedithiol
- a coordinated photoelectric conversion layer was formed with a thickness of 60 nm.
- the photoelectric conversion layer was dried at 100°C for 10 minutes in a nitrogen atmosphere, and then dried at room temperature for 10 hours in a nitrogen atmosphere under light-shielding conditions.
- PTB7 poly ⁇ 4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-lt -alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl ⁇ ) in 1,2-dichlorobenzene at a concentration of 5 mg/mL
- the dissolved solution was dropped and spin-coated at 2000 rpm for 60 seconds to form a hole transport layer with a thickness of about 10 nm.
- a 15 nm-thick MoO3 film was formed on the hole transport layer by a vacuum evaporation method through a metal mask, and then a 100 nm-thick Au film (second electrode layer) was formed.
- a photodiode-type photodetector was manufactured using the above method.
- an image sensor is produced by a known method together with an optical filter produced according to the method described in WO 2016/186050 and WO 2016/190162. By incorporating it into an imaging element, it is possible to obtain an image sensor having good visible/infrared imaging performance.
- Example 1 and Comparative Example 1 the photodetector elements of Reference Examples 1 and 2 were prepared in the same manner as in Example 1 and Comparative Example 1, except that the photoelectric conversion layer was formed using the following PbS quantum dot dispersion. manufactured.
- the external quantum efficiency (EQE) and dark current of the resulting photodetector were measured in the same manner as described above, no particular difference was observed between Reference Example 1 and Reference Example 2. From this fact, the above-mentioned effect achieved by using zinc oxide doped with metal atoms other than Zn as the electron transport layer is due to the use of quantum dots of a compound semiconductor containing Ag element and Bi element as the photoelectric conversion layer. It was found that this is a unique effect that is exhibited depending on the use.
- Photodetector 11 First electrode layer 12: Second electrode layer 13: Photoelectric conversion layer 21: Electron transport layer 22: Hole transport layer
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
本発明は、半導体量子ドットを含む光電変換層を有する光検出素子、および、イメージセンサに関する。 The present invention relates to a photodetector having a photoelectric conversion layer containing semiconductor quantum dots, and an image sensor.
近年、スマートフォンや監視カメラ、車載カメラ等の領域において、赤外領域の光を検出可能な光検出素子に注目が集まっている。 In recent years, attention has been focused on photodetectors capable of detecting light in the infrared region in areas such as smartphones, surveillance cameras, and vehicle-mounted cameras.
従来より、イメージセンサなどに用いられる光検出素子には、光電変換層の素材としてシリコンウエハを用いたシリコンフォトダイオードが使用されている。しかしながら、シリコンフォトダイオードでは、波長900nm以上の赤外領域では感度が低い。 Conventionally, silicon photodiodes that use silicon wafers as the material for the photoelectric conversion layer have been used for photodetection elements used in image sensors and the like. However, silicon photodiodes have low sensitivity in the infrared region with a wavelength of 900 nm or more.
また、近赤外光の受光素子として知られるInGaAs系の半導体材料は、高い量子効率を実現するためにはエピタキシャル成長や基板の貼り合わせ工程が必要であるなど、非常に高コストなプロセスを必要としていることが課題であり、普及が進んでいない。 InGaAs-based semiconductor materials, which are known as light-receiving elements for near-infrared light, require extremely high-cost processes such as epitaxial growth and substrate bonding processes in order to achieve high quantum efficiency. The problem is that the
また、近年では、量子ドットについての研究が進められている。非特許文献1、2には、AgBiS2の量子ドットを含む光電変換膜を有する太陽電池セルについて記載されている。
Further, in recent years, research on quantum dots is progressing. Non-Patent
近年、イメージセンサなどの性能向上の要求に伴い、これらに使用される光検出素子に求められる諸特性に関しても更なる向上が求められている。例えば、光検出素子に求められる特性の一つとして、光検出素子にて検出する目的の波長の光に対して高い外部量子効率を有することなどがある。光検出素子の外部量子効率を高めることで、光検出素子での光の検出精度を高めることなどができる。 In recent years, with the demand for improved performance of image sensors, etc., there is a demand for further improvements in the various characteristics required of the photodetectors used in these. For example, one of the characteristics required for a photodetector is to have a high external quantum efficiency with respect to light of a target wavelength to be detected by the photodetector. By increasing the external quantum efficiency of the photodetector, it is possible to improve the light detection accuracy of the photodetector.
また、光検出素子においては、暗電流が小さいことが好ましい。光検出素子の暗電流を低減することにより、イメージセンサにおいては、より高い信号ノイズ比(SN比)を得ることができる。暗電流とは光非照射時に流れる電流のことである。 Also, in the photodetector, it is preferable that the dark current is small. A higher signal-to-noise ratio (SN ratio) can be obtained in the image sensor by reducing the dark current of the photodetector. A dark current is a current that flows when light is not applied.
本発明者が、非特許文献1、2に記載された太陽電池セルについて鋭意検討したところ、これらの太陽電池セルでは、赤外域の波長の光(特に波長900nm以上の光)に対する外部量子効率が低いことが分かった。また、暗電流も比較的高かった。
The inventor of the present invention has extensively studied the solar cells described in
よって、本発明の目的は、赤外域の波長の光に対して高い外部量子効率を有し、かつ、暗電流の低減された光検出素子およびイメージセンサを提供することにある。 Accordingly, an object of the present invention is to provide a photodetector and an image sensor that have a high external quantum efficiency for light with wavelengths in the infrared region and a reduced dark current.
本発明者が、Ag元素とBi元素とを含む化合物半導体の量子ドットを含む光電変換層を有する光検出素子について鋭意検討を進めたところ、電子輸送層は、Zn以外の金属原子がドープされた酸化亜鉛を用いることで、外部量子効率が高く、暗電流の低い光検出素子とすることができることを見出し、本発明を完成するに至った。よって、本発明は以下を提供する。
<1> 第1の電極層と、
第2の電極層と、
上記第1の電極層と上記第2の電極層との間に設けられた光電変換層と、
上記第1の電極層と上記光電変換層との間に設けられた電子輸送層と、
上記光電変換層と上記第2の電極層との間に設けられた正孔輸送層と、を有し、
上記光電変換層は、Ag元素とBi元素とを含む化合物半導体の量子ドットを含み、
上記電子輸送層は、Zn以外の金属原子がドープされた酸化亜鉛を含む、光検出素子。
<2> 上記Zn以外の金属原子は、1~3価の金属原子である、<1>に記載の光検出素子。
<3> 上記Zn以外の金属原子は、Li、Mg、AlおよびGaから選ばれる少なくとも1種を含む、<1>に記載の光検出素子。
<4> 上記Zn以外の金属原子がドープされた酸化亜鉛は、Znと上記Zn以外の金属原子との合計に対する、上記Zn以外の金属原子の割合が1原子%以上である、<1>~<3>のいずれか1つに記載の光検出素子。
<5> 上記量子ドットの化合物半導体は、更に、S元素及びTe元素から選ばれる少なくとも1種の元素を含む、<1>~<4>のいずれか1つに記載の光検出素子。
<6> 上記光電変換層は、上記量子ドットに配位する配位子を含む、<1>~<5>のいずれか1つに記載の光検出素子。
<7> 上記配位子は、ハロゲン原子を含む配位子、及び配位部を2以上含む多座配位子から選ばれる少なくとも1種を含む、<6>に記載の光検出素子。
<8> <1>~<7>のいずれか1つに記載の光検出素子を含むイメージセンサ。
The inventor of the present invention has extensively studied a photodetector having a photoelectric conversion layer containing quantum dots of a compound semiconductor containing Ag element and Bi element, and found that the electron transport layer was doped with metal atoms other than Zn. The inventors have found that the use of zinc oxide enables a photodetector with high external quantum efficiency and low dark current, and have completed the present invention. Accordingly, the present invention provides the following.
<1> a first electrode layer;
a second electrode layer;
a photoelectric conversion layer provided between the first electrode layer and the second electrode layer;
an electron transport layer provided between the first electrode layer and the photoelectric conversion layer;
a hole transport layer provided between the photoelectric conversion layer and the second electrode layer;
The photoelectric conversion layer includes quantum dots of a compound semiconductor containing Ag element and Bi element,
The photodetector, wherein the electron transport layer contains zinc oxide doped with a metal atom other than Zn.
<2> The photodetector according to <1>, wherein the metal atom other than Zn is a monovalent to trivalent metal atom.
<3> The photodetector according to <1>, wherein the metal atom other than Zn includes at least one selected from Li, Mg, Al and Ga.
<4> In the zinc oxide doped with metal atoms other than Zn, the ratio of the metal atoms other than Zn to the total of Zn and the metal atoms other than Zn is 1 atomic % or more. The photodetector according to any one of <3>.
<5> The photodetector according to any one of <1> to <4>, wherein the compound semiconductor of the quantum dots further contains at least one element selected from S element and Te element.
<6> The photodetector according to any one of <1> to <5>, wherein the photoelectric conversion layer contains a ligand that coordinates to the quantum dot.
<7> The photodetector according to <6>, wherein the ligand includes at least one selected from ligands containing halogen atoms and multidentate ligands containing two or more coordinating moieties.
<8> An image sensor including the photodetector according to any one of <1> to <7>.
本発明によれば、外部量子効率が高く、暗電流の低減された光検出素子およびイメージセンサを提供することができる。 According to the present invention, it is possible to provide a photodetector and an image sensor with high external quantum efficiency and reduced dark current.
以下において、本発明の内容について詳細に説明する。
本明細書において、「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
The contents of the present invention will be described in detail below.
In the present specification, the term "~" is used to include the numerical values before and after it as lower and upper limits.
In the description of a group (atomic group) in the present specification, a description that does not describe substitution or unsubstituted includes a group (atomic group) having no substituent as well as a group (atomic group) having a substituent. For example, an "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
<光検出素子>
本発明の光検出素子は、
第1の電極層と、
第2の電極層と、
第1の電極層と第2の電極層との間に設けられた光電変換層と、
第1の電極層と光電変換層との間に設けられた電子輸送層と、
光電変換層と第2の電極層との間に設けられた正孔輸送層と、を有し、
光電変換層は、Ag元素とBi元素とを含む化合物半導体の量子ドットを含み、
電子輸送層は、Zn以外の金属原子がドープされた酸化亜鉛を含む、ことを特徴とする。
<Photodetector>
The photodetector of the present invention is
a first electrode layer;
a second electrode layer;
a photoelectric conversion layer provided between the first electrode layer and the second electrode layer;
an electron transport layer provided between the first electrode layer and the photoelectric conversion layer;
a hole transport layer provided between the photoelectric conversion layer and the second electrode layer;
The photoelectric conversion layer contains quantum dots of a compound semiconductor containing Ag element and Bi element,
The electron transport layer is characterized by containing zinc oxide doped with metal atoms other than Zn.
本発明の光検出素子は、上記構成を有することにより、外部量子効率が高く、暗電流の低い光検出素子とすることができる。このような効果が得られる詳細な理由は不明であるが、電子輸送層としてZn以外の金属原子がドープされた酸化亜鉛を含むものを用いることにより、適切なエネルギー準位となったためであると推測される。 By having the above configuration, the photodetector of the present invention can be a photodetector with high external quantum efficiency and low dark current. Although the detailed reason why such an effect is obtained is unknown, it is believed that the use of an electron transport layer containing zinc oxide doped with a metal atom other than Zn provides an appropriate energy level. guessed.
なお、本発明者の検討によれば、光電変換層の量子ドットがPbSなどの「Ag元素とBi元素とを含む化合物半導体の量子ドット」以外の量子ドットで構成されている場合、電子輸送層がZn以外の金属原子がドープされていない酸化亜鉛(ノンドープ酸化亜鉛)である光検出素子と、電子輸送層がZn以外の金属原子がドープされた酸化亜鉛(ドープド酸化亜鉛)である光検出素子との間で、外部量子効率や、暗電流などの変化に差異は特にみられないことが分かった。すなわち、光電変換層の量子ドットがPbSなどの「Ag元素とBi元素とを含む化合物半導体の量子ドット」以外の量子ドットで構成されている場合、電子輸送層としてZn以外の金属原子がドープされた酸化亜鉛(ドープド酸化亜鉛)を用いても、上述した外部量子効率の向上や、暗電流の低減などの効果は得られない。 According to the study of the present inventor, when the quantum dots of the photoelectric conversion layer are composed of quantum dots other than "quantum dots of a compound semiconductor containing Ag element and Bi element" such as PbS, the electron transport layer is zinc oxide not doped with metal atoms other than Zn (non-doped zinc oxide), and a photodetector whose electron transport layer is zinc oxide doped with metal atoms other than Zn (doped zinc oxide). It was found that there was no particular difference in changes in external quantum efficiency, dark current, etc. That is, when the quantum dots of the photoelectric conversion layer are composed of quantum dots other than "quantum dots of a compound semiconductor containing Ag element and Bi element" such as PbS, the electron transport layer is doped with metal atoms other than Zn. Even if zinc oxide (doped zinc oxide) is used, the above effects such as improvement of external quantum efficiency and reduction of dark current cannot be obtained.
以下、本発明の光検出素子の詳細について、図1を合わせて参照しながら説明する。図1は、フォトダイオード型の光検出素子の一実施形態を示す図である。なお、図中の矢印は光検出素子への入射光を表す。図1に示す光検出素子1は、第2の電極層12と、第2の電極層12に対向する第1の電極層11と、第2の電極層12および第1の電極層11との間に設けられた光電変換層13と、第1の電極層11および光電変換層13との間に設けられた電子輸送層21と、第2の電極層12および光電変換層13との間に設けられた正孔輸送層22と、を含んでいる。図1に示す光検出素子1は、第1の電極層11の上方から光が入射するように用いられる。なお、図示しないが、第1の電極層11の光入射側の表面には透明基板が配置されていてもよい。透明基板の種類としては、ガラス基板、樹脂基板、セラミック基板等が挙げられる。
Details of the photodetector of the present invention will be described below with reference to FIG. FIG. 1 is a diagram showing an embodiment of a photodiode-type photodetector. The arrows in the drawing represent incident light to the photodetector. The
(第1の電極層)
第1の電極層11は、光検出素子で検出する目的の光の波長に対して実質的に透明な導電材料で形成された透明電極であることが好ましい。なお、本発明において、「実質的に透明である」とは、光の透過率が50%以上であることを意味し、60%以上が好ましく、80%以上が特に好ましい。第1の電極層11の材料としては、導電性金属酸化物などが挙げられる。具体例としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウムタングステン、酸化インジウム亜鉛(indium zinc oxide:IZO)、酸化インジウム錫(indium tin oxide:ITO)、フッ素をドープした酸化錫(fluorine-doped tin oxide:FTO)等が挙げられる。
(First electrode layer)
The
第1の電極層11の膜厚は、特に限定されず、0.01~100μmであることが好ましく、0.01~10μmであることがより好ましく、0.01~1μmであることが更に好ましい。なお、本発明において、各層の膜厚は、走査型電子顕微鏡(scanning electron microscope:SEM)等を用いて光検出素子1の断面を観察することにより、測定できる。
The film thickness of the
(電子輸送層)
図1に示すように、電子輸送層21は、第1の電極層11と光電変換層13との間に設けられている。電子輸送層21は、光電変換層13で発生した電子を電極層へと輸送する機能を有する層である。電子輸送層は正孔ブロック層ともいわれている。
(Electron transport layer)
As shown in FIG. 1 , the
電子輸送層21は、Zn以外の金属原子がドープされた酸化亜鉛を含む。以下、Zn以外の金属原子がドープされた酸化亜鉛を、ドープド酸化亜鉛ともいう。
The
ドープド酸化亜鉛における上記Zn以外の金属原子は、1~3価の金属原子であることが好ましく、Li、Mg、AlおよびGaから選ばれる少なくとも1種を含むものであることがより好ましく、本発明の効果がより顕著に得られるという理由からLi、Mg、AlまたはGaであることがより好ましく、LiまたはMgであることが特に好ましい。 The metal atom other than Zn in the doped zinc oxide is preferably a monovalent to trivalent metal atom, and more preferably contains at least one selected from Li, Mg, Al and Ga. Effects of the present invention Li, Mg, Al, or Ga is more preferred, and Li or Mg is particularly preferred, because it is possible to more significantly obtain the
ドープド酸化亜鉛は、本発明の効果がより顕著に得られるという理由から、ZnとZn以外の金属原子との合計に対する、Zn以外の金属原子の割合が1原子%以上であることが好ましく、2原子%以上であることがより好ましく、4原子%以上であることが更に好ましい。上限は、結晶欠陥の増加抑制の観点から20原子%以下であることが好ましく、15原子%以下であることがより好ましく、12原子%以下であることが更に好ましい。なお、ドープド酸化亜鉛の上記Zn以外の金属原子の割合は、高周波誘導結合プラズマ(ICP)法にて測定することができる。 In the doped zinc oxide, the ratio of metal atoms other than Zn to the total of Zn and metal atoms other than Zn is preferably 1 atomic % or more for the reason that the effects of the present invention can be obtained more remarkably. It is more preferably at least 4 atomic %, even more preferably at least 4 atomic %. From the viewpoint of suppressing an increase in crystal defects, the upper limit is preferably 20 atomic % or less, more preferably 15 atomic % or less, and even more preferably 12 atomic % or less. The proportion of metal atoms other than Zn in the doped zinc oxide can be measured by a high frequency inductively coupled plasma (ICP) method.
ドープド酸化亜鉛は、有機残存成分の低減及び光電変換層との接触面積増大の観点から粒子(ドープド酸化亜鉛粒子)であることが好ましい。また、ドープド酸化亜鉛粒子の平均粒径は、2~30nmであることが好ましい。ドープド酸化亜鉛粒子の平均粒径の下限値は、3nm以上であることが好ましく、5nm以上であることがより好ましい。また、ドープド酸化亜鉛粒子の平均粒径の上限値は、20nm以下であることが好ましく、15nm以下であることがより好ましい。ドープド酸化亜鉛粒子の平均粒径が上記範囲であれば、光電変換層との接触面積が大きく、かつ、平坦性の高い膜が得られやすい。なお、本明細書において、ドープド酸化亜鉛粒子の平均粒径の値は、任意に選択された量子ドット10個の粒径の平均値である。ドープド酸化亜鉛粒子の粒径の測定には、透過型電子顕微鏡を用いればよい。 The doped zinc oxide is preferably particles (doped zinc oxide particles) from the viewpoint of reducing residual organic components and increasing the contact area with the photoelectric conversion layer. Also, the average particle size of the doped zinc oxide particles is preferably 2 to 30 nm. The lower limit of the average particle size of the doped zinc oxide particles is preferably 3 nm or more, more preferably 5 nm or more. Also, the upper limit of the average particle diameter of the doped zinc oxide particles is preferably 20 nm or less, more preferably 15 nm or less. When the average particle size of the doped zinc oxide particles is within the above range, a film having a large contact area with the photoelectric conversion layer and high flatness can be easily obtained. In this specification, the value of the average particle size of the doped zinc oxide particles is the average value of the particle sizes of 10 arbitrarily selected quantum dots. A transmission electron microscope may be used to measure the particle size of the doped zinc oxide particles.
電子輸送層21は、ドープド酸化亜鉛粒子を含む分散液を塗布する工程を経て形成することができる。また、電子輸送層21は、真空蒸着法、スパッタリング等の物理的気相成長法(PVD法)、化学的気相成長法(CVD法)などの方法で形成することもできる。
The
電子輸送層21の厚さは、10~1000nmであることが好ましい。上限は、800nm以下であることが好ましい。下限は、20nm以上であることが好ましく、50nm以上であることがより好ましい。また、電子輸送層21の厚さは、光電変換層13の厚さの0.05~10倍であることが好ましく、0.1~5倍であることがより好ましく、0.2~2倍であることが更に好ましい。
The thickness of the
(他の電子輸送層)
図示しないが、本発明の光検出素子は、第1の電極層11と電子輸送層21、または、電子輸送層21と光電変換層13との間に、Zn以外の金属原子がドープされた酸化亜鉛以外の他の電子輸送材料で構成された他の電子輸送層を有していてもよい。他の電子輸送材料としては、[6,6]-Phenyl-C61-Butyric Acid Methyl Ester(PC61BM)等のフラーレン化合物、ペリレンテトラカルボキシジイミド等のペリレン化合物、テトラシアノキノジメタン、酸化チタン、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウムタングステン、酸化インジウム亜鉛、酸化インジウム錫、フッ素をドープした酸化錫等が挙げられる。
(Another electron transport layer)
Although not shown, in the photodetector of the present invention, between the
光検出素子が他の電子輸送層を有する場合、他の電子輸送層は、第1の電極層11と電子輸送層21との間に存在していることが好ましい。
When the photodetector has another electron-transporting layer, the other electron-transporting layer is preferably present between the
他の電子輸送層21の厚さは、10~1000nmであることが好ましい。上限は、800nm以下であることが好ましい。下限は、20nm以上であることが好ましく、50nm以上であることがより好ましい。
The thickness of the other
(光電変換層)
光電変換層13は、Ag(銀)元素とBi(ビスマス)元素を含む化合物半導体の量子ドットを含む。なお、化合物半導体とは、2種以上の元素で構成される半導体のことである。したがって、本明細書において、「Ag元素とBi元素とを含む化合物半導体」とは、化合物半導体を構成する元素として、Ag元素とBi元素とを含む化合物半導体のことである。また、本明細書において、「半導体」とは、比抵抗値が10-2Ωcm以上108Ωcm以下の物質のことを意味する。
(Photoelectric conversion layer)
The
上記量子ドットを構成する量子ドット材料である上記化合物半導体は、更に、S(硫黄)元素およびTe(テルル)元素から選ばれる少なくとも1種の元素を含む化合物半導体であることが好ましい。この態様によれば、赤外域の波長の光に対して高い外部量子効率を有する光電変換膜が得られやすい。なかでも、化合物半導体は、Ag元素と、Bi元素と、S元素とを含む化合物半導体(以下、Ag-Bi-S系半導体ともいう)、または、Ag元素と、Bi元素と、Te元素とS元素とを含む化合物半導体(以下、Ag-Bi-Te-S系半導体ともいう)であることが好ましい。また、Ag-Bi-Te-S系半導体としては、Te元素の数を、Te元素の数とS元素の数の合計で割った値(Te元素の数/(Te元素の数+S元素の数))が0.05~0.5であることが好ましい。下限は、0.1以上であることが好ましく、0.15以上であることがより好ましく、0.2以上であることが更に好ましい。上限は、0.45以下であることが好ましく、0.4以下であることがより好ましい。本明細書において、化合物半導体を構成する各元素の種類および数については、ICP(Inductively Coupled Plasma)発光分光法や、エネルギー分散型X線分析法によって測定することができる。 The compound semiconductor, which is the quantum dot material constituting the quantum dots, is preferably a compound semiconductor further containing at least one element selected from S (sulfur) and Te (tellurium) elements. According to this aspect, it is easy to obtain a photoelectric conversion film having a high external quantum efficiency for light with a wavelength in the infrared region. Among them, the compound semiconductor is a compound semiconductor containing Ag element, Bi element, and S element (hereinafter also referred to as Ag—Bi—S-based semiconductor), or Ag element, Bi element, Te element, and S It is preferably a compound semiconductor containing elements (hereinafter also referred to as Ag--Bi--Te--S semiconductor). Further, as the Ag-Bi-Te-S semiconductor, the number of Te elements is divided by the sum of the number of Te elements and the number of S elements (the number of Te elements/(the number of Te elements + the number of S elements )) is preferably between 0.05 and 0.5. The lower limit is preferably 0.1 or more, more preferably 0.15 or more, and even more preferably 0.2 or more. The upper limit is preferably 0.45 or less, more preferably 0.4 or less. In this specification, the type and number of each element constituting the compound semiconductor can be measured by ICP (Inductively Coupled Plasma) emission spectroscopy or energy dispersive X-ray analysis.
化合物半導体の結晶構造については、特に限定はされない。化合物半導体を構成する元素の種類や元素の組成比により種々の結晶構造をとることができるが、半導体としてのバンドギャップを適切に制御しやすく、また高い結晶性を実現しやすいという理由から立方晶系または六方晶系の結晶構造であることが好ましい。本明細書において、化合物半導体の結晶構造は、X線回折法や電子線回折法によって測定することができる。 The crystal structure of the compound semiconductor is not particularly limited. Various crystal structures can be formed depending on the types and composition ratios of the elements that make up the compound semiconductor. A crystalline or hexagonal crystal structure is preferred. In this specification, the crystal structure of a compound semiconductor can be measured by an X-ray diffraction method or an electron beam diffraction method.
上記化合物半導体の量子ドットのバンドギャップは、1.2eV以下であることが好ましく、1.1eV以下であることがより好ましい。上記化合物半導体の量子ドットのバンドギャップの下限値は、特に限定はないが、0.3eV以上であることが好ましく、0.5eV以上であることがより好ましい。 The bandgap of the quantum dots of the compound semiconductor is preferably 1.2 eV or less, more preferably 1.1 eV or less. Although the lower limit of the bandgap of the quantum dots of the compound semiconductor is not particularly limited, it is preferably 0.3 eV or more, more preferably 0.5 eV or more.
上記化合物半導体の量子ドットの平均粒径は、3~20nmであることが好ましい。上記化合物半導体の量子ドットの平均粒径の下限値は、4nm以上であることが好ましく、5nm以上であることがより好ましい。また、上記化合物半導体の量子ドットの平均粒径の上限値は、15nm以下であることが好ましく、10nm以下であることがより好ましい。上記化合物半導体の量子ドットの平均粒径が上記範囲であれば、赤外域の波長の光に対してより高い外部量子効率を有する光検出素子とすることができる。なお、本明細書において、量子ドットの平均粒径の値は、任意に選択された量子ドット10個の粒径の平均値である。量子ドットの粒径の測定には、透過型電子顕微鏡を用いればよい。 The average particle diameter of the quantum dots of the compound semiconductor is preferably 3 to 20 nm. The lower limit of the average particle diameter of the quantum dots of the compound semiconductor is preferably 4 nm or more, more preferably 5 nm or more. The upper limit of the average particle size of the quantum dots of the compound semiconductor is preferably 15 nm or less, more preferably 10 nm or less. If the average particle size of the quantum dots of the compound semiconductor is within the above range, the photodetector can have a higher external quantum efficiency with respect to light with wavelengths in the infrared region. In this specification, the value of the average particle size of quantum dots is the average value of the particle sizes of 10 arbitrarily selected quantum dots. A transmission electron microscope may be used to measure the particle size of the quantum dots.
光電変換層13は、上記化合物半導体の量子ドットに配位する配位子を含むことが好ましい。配位子としては、ハロゲン原子を含む配位子、および、配位部を2以上含む多座配位子が挙げられる。光電変換層13は、配位子を1種のみ含んでいてもよく、2種以上含んでいてもよい。なかでも、光電変換層13は、ハロゲン原子を含む配位子と多座配位子とを含むことが好ましい。この態様によれば、暗電流が低く、かつ、電気伝導度、光電流値、外部量子効率、外部量子効率の面内均一性などの性能に優れた光検出素子とすることができる。このような効果が得られる理由は次によるものであると推測される。多座配位子は量子ドットに対してキレート配位すると推測され、量子ドットからの配位子の剥がれなどをより効果的に抑制できると推測される。また、キレート配位することで量子ドット同士の立体障害を抑制できると推測される。このため、量子ドット間の立体障害が小さくなり、量子ドットが緻密に並んで量子ドット間の波動関数の重なりを強めることができると考えられる。そして、量子ドットに配位する配位子として、更に、ハロゲン原子を含む配位子を含む場合には、多座配位子が配位していない隙間にハロゲン原子を含む配位子が配位すると推測され、量子ドットの表面欠陥を低減することができると推測される。このため、暗電流が低く、かつ、電気伝導度、光電流値、外部量子効率、外部量子効率の面内均一性などの性能に優れた光検出素子とすることができると推測される。光電変換層13がハロゲン原子を含む配位子と多座配位子とを含む場合、それらのモル比は1:99~99:1であることが好ましく、10:90~90:10であることがより好ましく、20:80~80:20であることがさらに好ましい。
The
まず、ハロゲン原子を含む配位子について説明する。配位子に含まれるハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられ、配位力の観点からヨウ素原子であることが好ましい。 First, ligands containing halogen atoms will be explained. The halogen atom contained in the ligand includes fluorine atom, chlorine atom, bromine atom and iodine atom, and iodine atom is preferable from the viewpoint of coordinating power.
ハロゲン原子を含む配位子は、有機ハロゲン化物であってもよく、無機ハロゲン化物であってもよい。なかでも、量子ドットの陽イオンサイト及び陰イオンサイトの両方に配位しやすいという理由から無機ハロゲン化物であることが好ましい。無機ハロゲン物を用いた場合には、量子ドットの陽イオンサイト及び陰イオンサイトの両方に配位する効果が期待できる。無機ハロゲン化物を用いる場合には、Zn(亜鉛)原子、In(インジウム)原子およびCd(カドミウム)原子から選ばれる金属元素を含む化合物であることが好ましく、Zn原子を含む化合物であることがより好ましい。無機ハロゲン化物としては、容易にイオン化して、量子ドットに配位しやすいという理由から金属原子とハロゲン原子との塩であることが好ましい。 A ligand containing a halogen atom may be an organic halide or an inorganic halide. Among them, inorganic halides are preferable because they are easily coordinated to both the cationic site and the anionic site of the quantum dot. When an inorganic halide is used, the effect of coordinating with both the cationic site and the anionic site of the quantum dot can be expected. When an inorganic halide is used, it is preferably a compound containing a metal element selected from Zn (zinc) atoms, In (indium) atoms and Cd (cadmium) atoms, more preferably a compound containing a Zn atom. preferable. The inorganic halide is preferably a salt of a metal atom and a halogen atom because it is easily ionized and easily coordinated to the quantum dots.
ハロゲン原子を含む配位子の具体例としては、ヨウ化亜鉛、臭化亜鉛、塩化亜鉛、ヨウ化インジウム、臭化インジウム、塩化インジウム、ヨウ化カドミウム、臭化カドミウム、塩化カドミウム、ヨウ化ガリウム、臭化ガリウム、塩化ガリウム、テトラブチルアンモニウムヨージド、テトラメチルアンモニウムヨージドなどが挙げられる。 Specific examples of ligands containing halogen atoms include zinc iodide, zinc bromide, zinc chloride, indium iodide, indium bromide, indium chloride, cadmium iodide, cadmium bromide, cadmium chloride, gallium iodide, gallium bromide, gallium chloride, tetrabutylammonium iodide, tetramethylammonium iodide and the like.
なお、ハロゲン原子を含む配位子では、前述の配位子からハロゲンイオンが解離して量子ドットの表面にハロゲンイオンが配位していることもある。また、前述の配位子のハロゲン原子以外の部位についても、量子ドットの表面に配位している場合もある。具体例を挙げて説明すると、ヨウ化亜鉛の場合は、ヨウ化亜鉛が量子ドットの表面に配位していることもあれば、ヨウ素イオンや亜鉛イオンが量子ドットの表面に配位していることもある。 In the case of a ligand containing a halogen atom, the halogen ion may be dissociated from the ligand described above and coordinated to the surface of the quantum dot. In addition, sites other than the halogen atoms of the aforementioned ligand may also be coordinated to the surface of the quantum dot. To give a specific example, in the case of zinc iodide, zinc iodide may be coordinated to the surface of the quantum dot, and iodine ions and zinc ions may be coordinated to the surface of the quantum dot. Sometimes.
次に、多座配位子について説明する。多座配位子に含まれる配位部としては、チオール基、アミノ基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基、ホスホン酸基が挙げられる。 Next, the multidentate ligand will be explained. Coordinating moieties included in the polydentate ligand include thiol groups, amino groups, hydroxy groups, carboxy groups, sulfo groups, phospho groups, and phosphonic acid groups.
多座配位子としては、式(A)~(C)のいずれかで表される配位子が挙げられる。
式(A)中、XA1及びXA2はそれぞれ独立して、チオール基、アミノ基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基又はホスホン酸基を表し、
LA1は炭化水素基を表す。
In formula (A), X A1 and X A2 each independently represent a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group or a phosphonic acid group;
L A1 represents a hydrocarbon group.
式(B)中、XB1及びXB2はそれぞれ独立して、チオール基、アミノ基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基又はホスホン酸基を表し、
XB3は、S、O又はNHを表し、
LB1及びLB2は、それぞれ独立して炭化水素基を表す。
In formula (B), X B1 and X B2 each independently represent a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group or a phosphonic acid group;
X B3 represents S, O or NH,
L B1 and L B2 each independently represent a hydrocarbon group.
式(C)中、XC1~XC3はそれぞれ独立して、チオール基、アミノ基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基又はホスホン酸基を表し、
XC4は、Nを表し、
LC1~LC3は、それぞれ独立して炭化水素基を表す。
In formula (C), X C1 to X C3 each independently represent a thiol group, an amino group, a hydroxy group, a carboxy group, a sulfo group, a phospho group or a phosphonic acid group;
X C4 represents N,
L C1 to L C3 each independently represent a hydrocarbon group.
XA1、XA2、XB1、XB2、XC1、XC2およびXC3が表すアミノ基には、-NH2に限定されず、置換アミノ基および環状アミノ基も含まれる。置換アミノ基としては、モノアルキルアミノ基、ジアルキルアミノ基、モノアリールアミノ基、ジアリールアミノ基、アルキルアリールアミノ基などが挙げられる。これらの基が表すアミノ基としては、-NH2、モノアルキルアミノ基、ジアルキルアミノ基が好ましく、-NH2であることがより好ましい。 The amino groups represented by X A1 , X A2 , X B1 , X B2 , X C1 , X C2 and X C3 are not limited to —NH 2 but also include substituted amino groups and cyclic amino groups. Substituted amino groups include monoalkylamino groups, dialkylamino groups, monoarylamino groups, diarylamino groups, alkylarylamino groups and the like. The amino group represented by these groups is preferably -NH 2 , a monoalkylamino group or a dialkylamino group, and more preferably -NH 2 .
LA1、LB1、LB2、LC1、LC2およびLC3が表す炭化水素基としては、脂肪族炭化水素基または芳香環を含む基が好ましく、脂肪族炭化水素基であることがより好ましい。脂肪族炭化水素基は、飽和脂肪族炭化水素基であってもよく、不飽和脂肪族炭化水素基であってもよい。炭化水素基の炭素数は、1~20が好ましい。炭素数の上限は、10以下が好ましく、6以下がより好ましく、3以下が更に好ましい。炭化水素基の具体例としては、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基が挙げられる。 The hydrocarbon group represented by L A1 , L B1 , L B2 , L C1 , L C2 and L C3 is preferably an aliphatic hydrocarbon group or a group containing an aromatic ring, more preferably an aliphatic hydrocarbon group. . The aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The number of carbon atoms in the hydrocarbon group is preferably 1-20. The upper limit of the number of carbon atoms is preferably 10 or less, more preferably 6 or less, and even more preferably 3 or less. Specific examples of hydrocarbon groups include alkylene groups, alkenylene groups, alkynylene groups, and arylene groups.
アルキレン基は、直鎖アルキレン基、分岐アルキレン基および環状アルキレン基が挙げられ、直鎖アルキレン基または分岐アルキレン基であることが好ましく、直鎖アルキレン基であることがより好ましい。アルケニレン基は、直鎖アルケニレン基、分岐アルケニレン基および環状アルケニレン基が挙げられ、直鎖アルケニレン基または分岐アルケニレン基であることが好ましく、直鎖アルケニレン基であることがより好ましい。アルキニレン基は、直鎖アルキニレン基および分岐アルキニレン基が挙げられ、直鎖アルキニレン基であることが好ましい。アリーレン基は単環であってもよく、多環であってもよい。単環のアリーレン基であることが好ましい。アリーレン基の具体例としては、フェニレン基、ナフチレン基などが挙げられ、フェニレン基であることが好ましい。アルキレン基、アルケニレン基、アルキニレン基およびアリーレン基は更に置換基を有していてもよい。置換基は、原子数1以上10以下の基であることが好ましい。原子数1以上10以下の基の好ましい具体例としては、炭素数1~3のアルキル基〔メチル基、エチル基、プロピル基、及びイソプロピル基〕、炭素数2~3のアルケニル基〔エテニル基およびプロペニル基〕、炭素数2~4のアルキニル基〔エチニル基、プロピニル基等〕、シクロプロピル基、炭素数1~2のアルコキシ基〔メトキシ基およびエトキシ基〕、炭素数2~3のアシル基〔アセチル基、及びプロピオニル基〕、炭素数2~3のアルコキシカルボニル基〔メトキシカルボニル基およびエトキシカルボニル基〕、炭素数2のアシルオキシ基〔アセチルオキシ基〕、炭素数2のアシルアミノ基〔アセチルアミノ基〕、炭素数1~3のヒドロキシアルキル基〔ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基〕、アルデヒド基、ヒドロキシ基、カルボキシ基、スルホ基、ホスホ基、カルバモイル基、シアノ基、イソシアネート基、チオール基、ニトロ基、ニトロキシ基、イソチオシアネート基、シアネート基、チオシアネート基、アセトキシ基、アセトアミド基、ホルミル基、ホルミルオキシ基、ホルムアミド基、スルファミノ基、スルフィノ基、スルファモイル基、ホスホノ基、アセチル基、ハロゲン原子、アルカリ金属原子等が挙げられる。 The alkylene group includes a linear alkylene group, a branched alkylene group and a cyclic alkylene group, preferably a linear alkylene group or a branched alkylene group, more preferably a linear alkylene group. The alkenylene group includes a linear alkenylene group, a branched alkenylene group and a cyclic alkenylene group, preferably a linear alkenylene group or a branched alkenylene group, more preferably a linear alkenylene group. The alkynylene group includes a linear alkynylene group and a branched alkynylene group, preferably a linear alkynylene group. Arylene groups may be monocyclic or polycyclic. A monocyclic arylene group is preferred. Specific examples of the arylene group include a phenylene group and a naphthylene group, with the phenylene group being preferred. The alkylene group, alkenylene group, alkynylene group and arylene group may further have a substituent. The substituent is preferably a group having 1 to 10 atoms. Preferred specific examples of groups having 1 to 10 atoms include alkyl groups having 1 to 3 carbon atoms [methyl group, ethyl group, propyl group and isopropyl group], alkenyl groups having 2 to 3 carbon atoms [ethenyl group and propenyl group], an alkynyl group having 2 to 4 carbon atoms [ethynyl group, propynyl group, etc.], a cyclopropyl group, an alkoxy group having 1 to 2 carbon atoms [methoxy group and ethoxy group], an acyl group having 2 to 3 carbon atoms [ acetyl group and propionyl group], alkoxycarbonyl group having 2 to 3 carbon atoms [methoxycarbonyl group and ethoxycarbonyl group], acyloxy group having 2 carbon atoms [acetyloxy group], acylamino group having 2 carbon atoms [acetylamino group] , hydroxyalkyl group having 1 to 3 carbon atoms [hydroxymethyl group, hydroxyethyl group, hydroxypropyl group], aldehyde group, hydroxy group, carboxy group, sulfo group, phospho group, carbamoyl group, cyano group, isocyanate group, thiol group , nitro group, nitroxy group, isothiocyanate group, cyanate group, thiocyanate group, acetoxy group, acetamide group, formyl group, formyloxy group, formamide group, sulfamino group, sulfino group, sulfamoyl group, phosphono group, acetyl group, halogen atom , an alkali metal atom, and the like.
式(A)において、XA1とXA2はLA1によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。 In formula (A), X A1 and X A2 are preferably separated by 1 to 10 atoms, more preferably by 1 to 6 atoms, and more preferably by 1 to 4 atoms, by L A1 . is more preferable, more preferably 1 to 3 atoms apart, and particularly preferably 1 or 2 atoms apart.
式(B)において、XB1とXB3はLB1によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。また、XB2とXB3はLB2によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。
In formula (B),
式(C)において、XC1とXC4はLC1によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。また、XC2とXC4はLC2によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。また、XC3とXC4はLC3によって、1~10原子隔てられていることが好ましく、1~6原子隔てられていることがより好ましく、1~4原子隔てられていることが更に好ましく、1~3原子隔てられていることがより一層好ましく、1または2原子隔てられていることが特に好ましい。 In formula (C), X C1 and X C4 are preferably separated by 1 to 10 atoms, more preferably by 1 to 6 atoms, and further by 1 to 4 atoms, by L C1 . is more preferable, more preferably 1 to 3 atoms apart, and particularly preferably 1 or 2 atoms apart. X C2 and X C4 are preferably separated by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, by L C2 , More preferably, they are separated by 1 to 3 atoms, and particularly preferably separated by 1 or 2 atoms. X C3 and X C4 are preferably separated by 1 to 10 atoms, more preferably by 1 to 6 atoms, even more preferably by 1 to 4 atoms, by L C3 , More preferably, they are separated by 1 to 3 atoms, and particularly preferably separated by 1 or 2 atoms.
なお、XA1とXA2はLA1によって、1~10原子隔てられているとは、XA1とXA2とをつなぐ最短距離の分子鎖を構成する原子の数が1~10個であることを意味する。例えば、下記式(A1)の場合は、XA1とXA2とが2原子隔てられており、下記式(A2)および式(A3)の場合は、XA1とXA2とが3原子隔てられている。以下の構造式に付記した数字は、XA1とXA2とをつなぐ最短距離の分子鎖を構成する原子の配列の順番を表している。
具体的化合物を挙げて説明すると、3-メルカプトプロピオン酸は、XA1に相当する部位がカルボキシ基で、XA2に相当する部位がチオール基で、LA1に相当する部位がエチレン基である構造の化合物である(下記構造の化合物)。3-メルカプトプロピオン酸においては、XA1(カルボキシ基)とXA2(チオール基)とがLA1(エチレン基)によって2原子隔てられている。
XB1とXB3はLB1によって、1~10原子隔てられていること、XB2とXB3はLB2によって、1~10原子隔てられていること、XC1とXC4はLC1によって、1~10原子隔てられていること、XC2とXC4はLC2によって、1~10原子隔てられていること、XC3とXC4はLC3によって、1~10原子隔てられていることの意味についても上記と同様である。 X B1 and X B3 are separated by 1 to 10 atoms by L B1 ; X B2 and X B3 are separated by 1 to 10 atoms by L B2 ; X C1 and X C4 are separated by L C1 ; X C2 and X C4 are separated by 1 to 10 atoms, and X C3 and X C4 are separated by L C3 by 1 to 10 atoms. The meaning is also the same as above.
多座配位子の具体例としては、1,2-エタンジチオール、3-メルカプトプロピオン酸、チオグリコール酸、2-アミノエタノール、2-アミノエタンチオール、2-メルカプトエタノール、グリコール酸、エチレングリコール、エチレンジアミン、アミノスルホン酸、グリシン、アミノメチルリン酸、グアニジン、ジエチレントリアミン、トリス(2-アミノエチル)アミン、4-メルカプトブタン酸、3-アミノプロパノール、3-メルカプトプロパノール、N-(3-アミノプロピル)-1,3-プロパンジアミン、3-(ビス(3-アミノプロピル)アミノ)プロパン-1-オール、1-チオグリセロール、ジメルカプロール、1-メルカプト-2-ブタノール、1-メルカプト-2-ペンタノール、3-メルカプト-1-プロパノール、2,3-ジメルカプト-1-プロパノール、ジエタノールアミン、2-(2-アミノエチル)アミノエタノール、ジメチレントリアミン、1,1-オキシビスメチルアミン、1,1-チオビスメチルアミン、2-[(2-アミノエチル)アミノ]エタンチオール、ビス(2-メルカプトエチル)アミン、2-アミノエタン-1-チオール、1-アミノ-2-ブタノール、1-アミノ-2-ペンタノール、L-システイン、D-システイン、3-アミノ-1-プロパノール、L-ホモセリン、D-ホモセリン、アミノヒドロキシ酢酸、L-乳酸、D-乳酸、L-リンゴ酸、D-リンゴ酸、グリセリン酸、2-ヒドロキシ酪酸、L-酒石酸、D-酒石酸、タルトロン酸、1,2-ベンゼンジチオール、1,3-ベンゼンジチオール、1,4-ベンゼンジチオール、2-メルカプト安息香酸、3-メルカプト安息香酸、4-メルカプト安息香酸およびこれらの誘導体が挙げられ、暗電流が低く、外部量子効率の高い半導体膜が得られやすいという理由から、チオグリコール酸、2-アミノエタノール、2-アミノエタンチオール、2-メルカプトエタノール、グリコール酸、ジエチレントリアミン、トリス(2-アミノエチル)アミン、1-チオグリセロール、ジメルカプロール、エチレンジアミン、エチレングリコール、アミノスルホン酸、グリシン、(アミノメチル)ホスホン酸、グアニジン、ジエタノールアミン、2-(2-アミノエチル)アミノエタノール、ホモセリン、システイン、チオリンゴ酸、リンゴ酸および酒石酸が好ましく、チオグリコール酸、2-アミノエタノール、2-メルカプトエタノールおよび2-アミノエタンチオールがより好ましく、チオグリコール酸が更に好ましい。多座配位子は、沸点が90℃以上の化合物が好ましい。 Specific examples of multidentate ligands include 1,2-ethanedithiol, 3-mercaptopropionic acid, thioglycolic acid, 2-aminoethanol, 2-aminoethanethiol, 2-mercaptoethanol, glycolic acid, ethylene glycol, Ethylenediamine, aminosulfonic acid, glycine, aminomethylphosphoric acid, guanidine, diethylenetriamine, tris(2-aminoethyl)amine, 4-mercaptobutanoic acid, 3-aminopropanol, 3-mercaptopropanol, N-(3-aminopropyl) -1,3-propanediamine, 3-(bis(3-aminopropyl)amino)propan-1-ol, 1-thioglycerol, dimercaprol, 1-mercapto-2-butanol, 1-mercapto-2-pen Tanol, 3-mercapto-1-propanol, 2,3-dimercapto-1-propanol, diethanolamine, 2-(2-aminoethyl)aminoethanol, dimethylenetriamine, 1,1-oxybismethylamine, 1,1- Thiobismethylamine, 2-[(2-aminoethyl)amino]ethanethiol, bis(2-mercaptoethyl)amine, 2-aminoethane-1-thiol, 1-amino-2-butanol, 1-amino-2- Pentanol, L-cysteine, D-cysteine, 3-amino-1-propanol, L-homoserine, D-homoserine, aminohydroxyacetic acid, L-lactic acid, D-lactic acid, L-malic acid, D-malic acid, glycerin acid, 2-hydroxybutyric acid, L-tartaric acid, D-tartaric acid, tartronic acid, 1,2-benzenedithiol, 1,3-benzenedithiol, 1,4-benzenedithiol, 2-mercaptobenzoic acid, 3-mercaptobenzoic acid , 4-mercaptobenzoic acid and derivatives thereof, which are low in dark current and easy to obtain semiconductor films with high external quantum efficiency. Thioglycolic acid, 2-aminoethanol, 2-aminoethanethiol, 2 - mercaptoethanol, glycolic acid, diethylenetriamine, tris(2-aminoethyl)amine, 1-thioglycerol, dimercaprol, ethylenediamine, ethylene glycol, aminosulfonic acid, glycine, (aminomethyl)phosphonic acid, guanidine, diethanolamine, 2 - (2-aminoethyl)aminoethanol, homoserine, cysteine, thiomalic acid, malic acid and tartaric acid are preferred, thioglycolic acid, 2-aminoethyl Tanol, 2-mercaptoethanol and 2-aminoethanethiol are more preferred, and thioglycolic acid is even more preferred. The polydentate ligand is preferably a compound having a boiling point of 90°C or higher.
光電変換層13の厚みは10~1000nmであることが好ましい。厚みの下限は、20nm以上であることが好ましく、30nm以上であることがより好ましい。厚みの上限は、600nm以下であることが好ましく、550nm以下であることがより好ましく、500nm以下であることが更に好ましく、450nm以下であることが特に好ましい。
The thickness of the
光検出素子で検出する目的の波長の光に対する光電変換層13の屈折率は1.5~5.0とすることができる。
The
光電変換層13は、Ag元素とBi元素を含む化合物半導体の量子ドットと、量子ドットに配位する配位子と、溶剤と、を含む分散液を基板上に付与して、量子ドットの集合体の膜を形成する工程(量子ドット集合体形成工程)を経て形成することができる。
The
量子ドット分散液を基板上に付与する手法は、特に限定はない。スピンコート法、ディップ法、インクジェット法、ディスペンサー法、スクリーン印刷法、凸版印刷法、凹版印刷法、スプレーコート法等の塗布方法が挙げられる。 There are no particular restrictions on the method of applying the quantum dot dispersion onto the substrate. Coating methods such as a spin coating method, a dipping method, an inkjet method, a dispenser method, a screen printing method, a letterpress printing method, an intaglio printing method, and a spray coating method can be mentioned.
量子ドット集合体形成工程によって形成される量子ドットの集合体の膜の膜厚は、3nm以上であることが好ましく、10nm以上であることがより好ましく、20nm以上であることがより好ましい。上限は、200nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることが更に好ましい。 The film thickness of the film of the quantum dot aggregates formed by the quantum dot aggregate forming step is preferably 3 nm or more, more preferably 10 nm or more, and more preferably 20 nm or more. The upper limit is preferably 200 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less.
量子ドットの集合体の膜を形成した後、更に配位子交換工程を行って量子ドットに配位している配位子を他の配位子に交換してもよい。配位子交換工程では、量子ドット集合体形成工程によって形成された量子ドットの集合体の膜に対して、上記分散液に含まれる配位子とは異なる配位子(以下、配位子Aともいう)および溶剤を含む配位子溶液を付与して、量子ドットに配位する配位子を配位子溶液に含まれる配位子Aと交換する。また、量子ドット集合体形成工程と配位子交換工程を交互に複数回繰り返し行ってもよい。 After forming the film of the quantum dot assembly, a ligand exchange step may be further performed to exchange the ligands coordinated to the quantum dots with other ligands. In the ligand exchange step, a ligand different from the ligand contained in the dispersion liquid (hereinafter referred to as ligand A ) and a solvent to exchange the ligands coordinated to the quantum dots with the ligands A contained in the ligand solution. Alternatively, the quantum dot assembly formation step and the ligand exchange step may be alternately repeated multiple times.
配位子Aとしては、ハロゲン原子を含む配位子、および、配位部を2以上含む多座配位子などが挙げられる。これらの詳細については、上述した光電変換膜の項で説明したものが挙げられ、好ましい範囲も同様である。 Examples of the ligand A include ligands containing halogen atoms and multidentate ligands containing two or more coordinating moieties. Details of these include those described in the section on the photoelectric conversion film described above, and the preferred range is also the same.
配位子交換工程で用いられる配位子溶液には、配位子Aを1種のみ含んでいてもよく、2種以上含んでいてもよい。また、2種以上の配位子溶液を用いてもよい。 The ligand solution used in the ligand exchange step may contain only one type of ligand A, or may contain two or more types. Also, two or more ligand solutions may be used.
配位子溶液に含まれる溶剤は、各配位子溶液に含まれる配位子の種類に応じて適宜選択することが好ましく、各配位子を溶解しやすい溶剤であることが好ましい。また、配位子溶液に含まれる溶剤は、誘電率が高い有機溶剤が好ましい。具体例としては、エタノール、アセトン、メタノール、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ブタノール、プロパノール等が挙げられる。また、配位子溶液に含まれる溶剤は、形成される光電変換膜中に残存し難い溶剤が好ましい。乾燥し易く、洗浄により除去し易いとの観点から、低沸点のアルコール、または、ケトン、ニトリルが好ましく、メタノール、エタノール、アセトン、またはアセトニトリルがより好ましい。配位子溶液に含まれる溶剤は量子ドット分散液に含まれる溶剤とは交じり合わないものが好ましい。好ましい溶剤の組み合わせとしては、量子ドット分散液に含まれる溶剤が、ヘキサン、オクタン等のアルカンや、トルエンの場合は、配位子溶液に含まれる溶剤は、メタノール、アセトン等の極性溶剤を用いることが好ましい。 The solvent contained in the ligand solution is preferably selected as appropriate according to the type of ligand contained in each ligand solution, and is preferably a solvent that easily dissolves each ligand. Moreover, the solvent contained in the ligand solution is preferably an organic solvent having a high dielectric constant. Specific examples include ethanol, acetone, methanol, acetonitrile, dimethylformamide, dimethylsulfoxide, butanol, propanol and the like. Moreover, the solvent contained in the ligand solution is preferably a solvent that hardly remains in the photoelectric conversion film to be formed. Low-boiling alcohols, ketones, and nitriles are preferred, and methanol, ethanol, acetone, and acetonitrile are more preferred, from the viewpoint of being easy to dry and easy to remove by washing. The solvent contained in the ligand solution is preferably immiscible with the solvent contained in the quantum dot dispersion. As a preferred combination of solvents, the solvent contained in the quantum dot dispersion is an alkane such as hexane or octane, or when toluene is used, the solvent contained in the ligand solution is a polar solvent such as methanol or acetone. is preferred.
配位子交換工程の後の膜にリンス液を接触させてリンスする工程(リンス工程)を行ってもよい。リンス工程を行うことで、膜中に含まれる過剰な配位子や量子ドットから脱離した配位子を除去することができる。また、残存した溶剤、その他不純物を除去することができる。リンス液としては、膜中に含まれる過剰な配位子や量子ドットから脱離した配位子をより効果的に除去しやすく、量子ドット表面を再配列させる事で膜面状を均一に保ちやすいという理由から非プロトン性溶剤であることが好ましい。非プロトン性溶剤の具体例としては、アセトニトリル、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、ジエチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテル、ジオキサン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ヘキサン、オクタン、シクロヘキサン、ベンゼン、トルエン、クロロホルム、四塩化炭素、ジメチルホルムアミドが挙げられ、アセトニトリル、テトラヒドロフランが好ましく、アセトニトリルがより好ましい。 A step of rinsing the film after the ligand exchange step by contacting a rinse solution (rinsing step) may be performed. By performing the rinsing step, excess ligands contained in the film and ligands detached from the quantum dots can be removed. In addition, residual solvent and other impurities can be removed. As a rinsing liquid, it is easier to remove excess ligands contained in the film and ligands detached from the quantum dots more effectively, and it keeps the film surface uniform by rearranging the quantum dot surface. Aprotic solvents are preferred because they are easier to use. Specific examples of aprotic solvents include acetonitrile, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, diethyl ether, tetrahydrofuran, cyclopentyl methyl ether, dioxane, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, hexane, octane. , cyclohexane, benzene, toluene, chloroform, carbon tetrachloride and dimethylformamide, preferably acetonitrile and tetrahydrofuran, more preferably acetonitrile.
また、リンス工程は、極性(比誘電率)の異なるリンス液を2種以上用いて複数回行ってもよい。例えば、最初に比誘電率の高いリンス液(第1のリンス液ともいう)を用いてリンスを行ったのち、第1のリンス液よりも比誘電率の低いリンス液(第2のリンス液ともいう)を用いてリンスを行うことが好ましい。このようにしてリンスを行うことで、配位子交換に用いる配位子Aの余剰成分を先に除去し、その後配位子交換過程で生じた脱離した配位子成分(元々粒子に配位していた成分)を除去する事で、余剰/あるいは脱離した配位子成分の両方をより効率的に除去する事が出来る。 In addition, the rinsing process may be performed multiple times using two or more rinsing liquids with different polarities (relative dielectric constants). For example, first rinse with a rinse solution having a higher relative dielectric constant (also referred to as a first rinse solution), and then rinse with a rinse solution having a lower relative dielectric constant than the first rinse solution (also referred to as a second rinse solution). It is preferable to perform rinsing using By performing rinsing in this way, the surplus component of ligand A used for ligand exchange is first removed, and then the desorbed ligand component (originally bound to the particles) generated during the ligand exchange process is removed. By removing the ligand component), both the surplus/or desorbed ligand component can be removed more efficiently.
第1のリンス液の比誘電率は、15~50であることが好ましく、20~45であることがより好ましく、25~40であることが更に好ましい。第2のリンス液の比誘電率は、1~15であることが好ましく、1~10であることがより好ましく、1~5であることが更に好ましい。 The dielectric constant of the first rinse is preferably 15-50, more preferably 20-45, and even more preferably 25-40. The dielectric constant of the second rinse is preferably 1-15, more preferably 1-10, and even more preferably 1-5.
光電変換膜の製造方法は、乾燥工程を有していてもよい。乾燥工程を行うことで光電変換膜に残存する溶剤を除去することができる。乾燥時間は、1~100時間であることが好ましく、1~50時間であることがより好ましく、5~30時間であることが更に好ましい。乾燥温度は10~100℃であることが好ましく、20~90℃であることがより好ましく、20~50℃であることが更に好ましい。 The method for manufacturing the photoelectric conversion film may have a drying process. By performing the drying process, the solvent remaining on the photoelectric conversion film can be removed. The drying time is preferably 1 to 100 hours, more preferably 1 to 50 hours, even more preferably 5 to 30 hours. The drying temperature is preferably 10 to 100°C, more preferably 20 to 90°C, even more preferably 20 to 50°C.
(正孔輸送層)
図1に示すように、正孔輸送層22は、第2の電極層12と光電変換層13との間に設けられている。正孔輸送層とは、光電変換層で発生した正孔を電極層へと輸送する機能を有する層である。正孔輸送層は電子ブロック層ともいわれている。
(Hole transport layer)
As shown in FIG. 1 , the
正孔輸送層22は、この機能を発揮することができる正孔輸送材料で形成されている。例えば、正孔輸送材料としては、PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸))、PTB7(ポリ{4,8-ビス[(2-エチルヘキシル)オキシ]ベンゾ[1,2-b:4,5-b’]ジチオフェン-2,6-ジイル-lt-alt-3-フルオロ-2-[(2-エチルへキシル)カルボニル]チエノ[3,4-b]チオフェン-4,6-ジイル})、MoO3などが挙げられる。また、特開2001-291534号公報の段落番号0209~0212に記載の有機正孔輸送材料等を用いることもできる。また、正孔輸送材料には量子ドットを用いることもできる。量子ドットを構成する量子ドット材料としては、一般的な半導体結晶〔a)IV族半導体、b)IV-IV族、III-V族、またはII-VI族の化合物半導体、c)II族、III族、IV族、V族、および、VI族元素の内3つ以上の組み合わせからなる化合物半導体〕のナノ粒子(0.5nm以上100nm未満大の粒子)が挙げられる。具体的には、PbS、PbSe、PbSeS、InN、Ge、InAs、InGaAs、CuInS、CuInSe、CuInGaSe、InSb、HgTe、HgCdTe、Ag2S、Ag2Se、Ag2Te、SnS、SnSe、SnTe、Si、InP等の比較的バンドギャップの狭い半導体材料が挙げられる。量子ドットの表面には配位子が配位していてもよい。
The hole-transporting
また、正孔輸送材料には、式3-1~式3-5のいずれかで表される構造を含む有機半導体を用いることもできる。
式3-1中、X1およびX2は、それぞれ独立して、S、O、Se、NRX1またはCRX2RX3を表し、RX1~RX3はそれぞれ独立して水素原子または置換基を表し、
Z1およびZ2はそれぞれ独立してNまたはCRZ1を表し、RZ1は水素原子または置換基を表し、
R1~R4は、それぞれ独立して水素原子または置換基を表し、
n1は、0~2の整数を表し、
*は結合手を表す。
ただし、R1およびR2の少なくとも一方は、ハロゲン原子、ヒドロキシ基、シアノ基、アシルアミノ基、アシルオキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、シリル基、アルキル基、アルケニル基、アルキニル基、アリール基、アリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリール基、式(R-100)で表される基、または、分子内塩構造を含む基を表す。
-L100-R100 ・・・(R-100)
(R-100)中、L100は、単結合または2価の基を表し、R100は、酸基、塩基性基、アニオンを有する基またはカチオンを有する基を表す。
In formula 3-1, X 1 and X 2 each independently represent S, O, Se, NR X1 or CR X2 R X3 , and R X1 to R X3 each independently represent a hydrogen atom or a substituent. represent,
Z 1 and Z 2 each independently represent N or CR Z1 , R Z1 represents a hydrogen atom or a substituent,
R 1 to R 4 each independently represent a hydrogen atom or a substituent,
n1 represents an integer from 0 to 2,
* represents a bond.
provided that at least one of R 1 and R 2 is a halogen atom, hydroxy group, cyano group, acylamino group, acyloxy group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, silyl group, alkyl group, alkenyl group, alkynyl group , an aryl group, an aryloxy group, an alkylthio group, an arylthio group, a heteroaryl group, a group represented by formula (R-100), or a group containing an inner salt structure.
-L 100 -R 100 (R-100)
In (R-100), L 100 represents a single bond or a divalent group, and R 100 represents an acid group, a basic group, a group having an anion or a group having a cation.
式3-2中、X3~X8は、それぞれ独立して、S、O、Se、NRX4またはCRX5RX6を表し、RX4~RX6はそれぞれ独立して水素原子または置換基を表し、
Z3およびZ4はそれぞれ独立してNまたはCRZ2を表し、RZ2は水素原子または置換基を表し、
R5~R8は、それぞれ独立して水素原子または置換基を表し、
n2は、0~2の整数を表し、
*は結合手を表す。
In formula 3-2, X 3 to X 8 each independently represent S, O, Se, NR X4 or CR X5 R X6 , and R X4 to R X6 each independently represent a hydrogen atom or a substituent. represent,
Z 3 and Z 4 each independently represent N or CR Z2 , R Z2 represents a hydrogen atom or a substituent,
R 5 to R 8 each independently represent a hydrogen atom or a substituent,
n2 represents an integer from 0 to 2,
* represents a bond.
式3-3中、X9~X16は、それぞれ独立して、S、O、Se、NRX7またはCRX8RX9を表し、RX7~RX9はそれぞれ独立して水素原子または置換基を表し、
Z5およびZ6はそれぞれ独立してNまたはCRZ3を表し、RZ3は水素原子または置換基を表し、
*は結合手を表す。
In formula 3-3, X 9 to X 16 each independently represent S, O, Se, NR X7 or CR X8 R X9 , and R X7 to R X9 each independently represent a hydrogen atom or a substituent. represent,
Z 5 and Z 6 each independently represent N or CR Z3 , R Z3 represents a hydrogen atom or a substituent,
* represents a bond.
式3-4中、R9~R16は、それぞれ独立して水素原子または置換基を表し、
n3は、0~2の整数を表し、
*は結合手を表す。
In formula 3-4, R 9 to R 16 each independently represent a hydrogen atom or a substituent,
n3 represents an integer of 0 to 2,
* represents a bond.
式3-5中、X17~X23は、それぞれ独立して、S、O、Se、NRX10またはCRX11RX12を表し、RX10~RX12はそれぞれ独立して水素原子または置換基を表し、
Z7~Z10はそれぞれ独立してNまたはCRZ4を表し、RZ4は水素原子または置換基を表し、
*は結合手を表す。
In formula 3-5, X 17 to X 23 each independently represent S, O, Se, NR X10 or CR X11 R X12 , and R X10 to R X12 each independently represent a hydrogen atom or a substituent. represent,
Z 7 to Z 10 each independently represent N or CR Z4 , R Z4 represents a hydrogen atom or a substituent,
* represents a bond.
正孔輸送層22の厚みは、5~100nmであることが好ましい。下限は10nm以上が好ましい。上限は、50nm以下が好ましく、30nm以下が更に好ましい。
The thickness of the
(第2の電極層)
第2の電極層12は、Au、Pt、Ir、Pd、Cu、Pb、Sn、Zn、Ti、W、Mo、Ta、Ge、Ni、CrおよびInから選ばれる少なくとも1種の金属原子を含む金属材料で構成されていることが好ましい。第2の電極層12がこのような金属材料で構成されていることにより、外部量子効率が高く、暗電流の低い光検出素子とすることができる。
(Second electrode layer)
The
第2の電極層12は、Au、Cu、Mo、Ni、Pd、W、Ir、PtおよびTaから選ばれる少なくとも1種の金属原子を含む金属材料で構成されていることがより好ましく、仕事関数が大きく、且つマイグレーションを抑制しやすいという理由からAu、Pd、IrおよびPtから選ばれる少なくとも1種の金属原子を含む金属材料で構成されていることが更に好ましい。
More preferably, the
第2の電極層12において、Ag原子の含有量が98質量%以下であることが好ましく、95質量%以下であることがより好ましく、90質量%以下であることが更に好ましい。また、第2の電極層12は、Ag原子を実質的に含まないことも好ましい。第2の電極層12は、Ag原子を実質的に含まない場合とは、第2の電極層12におけるAg原子の含有量が1質量%以下であること意味し、0.1質量%以下であることが好ましく、Ag原子を含有しないことがより好ましい。
The Ag atom content in the
第2の電極層12の仕事関数は、正孔輸送層による電子ブロック性を高め、且つ素子中で生じた正孔を集めやすいという理由から4.6eV以上であることが好ましく、4.8~5.7eVであることがより好ましく、4.9~5.3eVであることが更に好ましい。
The work function of the
第2の電極層12の膜厚は、特に限定されず、0.01~100μmが好ましく、0.01~10μmがさらに好ましく、0.01~1μmが特に好ましい。
The film thickness of the
(ブロッキング層)
図示しないが、本発明の光検出素子は、第1の電極層11と電子輸送層21との間にブロッキング層を有していてもよい。ブロッキング層は逆電流を防止する機能を有する層である。ブロッキング層は短絡防止層ともいう。ブロッキング層を形成する材料は、例えば、酸化ケイ素、酸化マグネシウム、酸化アルミニウム、炭酸カルシウム、炭酸セシウム、ポリビニルアルコール、ポリウレタン、酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ、酸化タングステン等が挙げられる。ブロッキング層は単層膜であってもよく、2層以上の積層膜であってもよい。
(blocking layer)
Although not shown, the photodetector of the present invention may have a blocking layer between the
(光検出素子の特性)
本発明の光検出素子において、光検出素子で検出する目的の光の波長λと、第2の電極層12の光電変換層13側の表面から、光電変換層13の第1の電極層11側の表面までの上記波長λの光の光路長Lλとが下記式(1-1)の関係を満していることが好ましく、下記式(1-2)の関係を満していることがより好ましい。波長λと光路長Lλとがこのような関係を満たしている場合には、光電変換層13において、第1の電極層11側から入射された光(入射光)と、第2の電極層12の表面で反射された光(反射光)との位相を揃えることができ、その結果、光学干渉効果によって光が強め合い、より高い外部量子効率を得ることができる。
(Characteristics of photodetector)
In the photodetector of the present invention, the wavelength λ of the light to be detected by the photodetector and the surface of the
0.05+m/2≦Lλ/λ≦0.35+m/2 ・・・(1-1)
0.10+m/2≦Lλ/λ≦0.30+m/2 ・・・(1-2)
0.05+m/2≤Lλ/ λ≤0.35 +m/2 (1-1)
0.10+m/2≦Lλ/ λ ≦0.30+m/2 (1-2)
上記式中、λは、光検出素子で検出する目的の光の波長であり、
Lλは、第2の電極層12の光電変換層13側の表面から、光電変換層13の第1の電極層11側の表面までの波長λの光の光路長であり、
mは0以上の整数である。
In the above formula, λ is the wavelength of light to be detected by the photodetector,
L λ is the optical path length of light of wavelength λ from the surface of the
m is an integer of 0 or more.
mは0~4の整数であることが好ましく、0~3の整数であることがより好ましく、0~2の整数であることが更に好ましい。この態様によれば、正孔や電子などの電荷の輸送特性が良好であり、光検出素子の外部量子効率をより高めることができる。 m is preferably an integer of 0 to 4, more preferably an integer of 0 to 3, and even more preferably an integer of 0 to 2. According to this aspect, the transport characteristics of charges such as holes and electrons are excellent, and the external quantum efficiency of the photodetector can be further increased.
ここで、光路長とは、光が透過する物質の物理的な厚みと屈折率を乗じたものを意味する。光電変換層13を例に挙げて説明すると、光電変換層の厚さをd1、光電変換層の波長λ1に対する屈折率をN1としたとき、光電変換層13を透過する波長λ1の光の光路長はN1×d1である。光電変換層13や正孔輸送層22が2層以上の積層膜で構成されている場合や、正孔輸送層22と第2の電極層12との間に中間層が存在する場合には、各層の光路長の積算値が上記光路長Lλである。
Here, the optical path length means a value obtained by multiplying the physical thickness of a substance through which light passes by the refractive index. Taking the
本発明の光検出素子は、赤外域の波長の光を検出するものとして好ましく用いられる。すなわち、本発明の光検出素子は、赤外光検出素子であることが好ましい。また、上述した光検出素子で検出する目的の光は、赤外域の波長の光であることが好ましい。また、赤外域の波長の光は、波長700nmを超える波長の光であることが好ましく、波長800nm以上の光であることがより好ましく、波長900nm以上の光であることが更に好ましく、波長1000nm以上の光であることがより一層好ましい。また、赤外域の波長の光は、波長2000nm以下の光であることが好ましく、波長1800nm以下の光であることがより好ましく、波長1600nm以下の光であることが更に好ましい。 The photodetector of the present invention is preferably used for detecting light with wavelengths in the infrared region. That is, the photodetector of the present invention is preferably an infrared photodetector. Moreover, it is preferable that the light to be detected by the above-described photodetector is light having a wavelength in the infrared region. In addition, the light with a wavelength in the infrared region is preferably light with a wavelength exceeding 700 nm, more preferably light with a wavelength of 800 nm or longer, still more preferably light with a wavelength of 900 nm or longer, and a wavelength of 1000 nm or longer. is more preferable. Further, the light with a wavelength in the infrared region is preferably light with a wavelength of 2000 nm or less, more preferably light with a wavelength of 1800 nm or less, and even more preferably light with a wavelength of 1600 nm or less.
また、本発明の光検出素子は、赤外域の波長の光と、可視域の波長の光(好ましくは波長400~700nmの範囲の光)とを同時に検出するものであってもよい。 In addition, the photodetector of the present invention may simultaneously detect light with a wavelength in the infrared region and light with a wavelength in the visible region (preferably light with a wavelength in the range of 400 to 700 nm).
<イメージセンサ>
本発明のイメージセンサは、上述した本発明の光検出素子を含む。本発明の光検出素子は、赤外域の波長の光に対して優れた感度を有しているので、赤外線イメージセンサとして特に好ましく用いることができる。また、本発明のイメージセンサは、波長900~2000nmの光をセンシングするものとして好ましく用いることができ、波長900~1600nmの光をセンシングするものとしてより好ましく用いることができる。
<Image sensor>
An image sensor of the present invention includes the photodetector of the present invention described above. Since the photodetector of the present invention has excellent sensitivity to light with wavelengths in the infrared region, it can be particularly preferably used as an infrared image sensor. Further, the image sensor of the present invention can be preferably used for sensing light with a wavelength of 900 to 2000 nm, and more preferably for sensing light with a wavelength of 900 to 1600 nm.
イメージセンサの構成としては、本発明の光検出素子を備え、イメージセンサとして機能する構成であれば特に限定はない。 The configuration of the image sensor is not particularly limited as long as it includes the photodetector of the present invention and functions as an image sensor.
イメージセンサは、赤外線透過フィルタ層を含んでいてもよい。赤外線透過フィルタ層としては、可視域の波長帯域の光の透過性が低いものであることが好ましく、波長400~650nmの範囲の光の平均透過率が10%以下であることがより好ましく、7.5%以下であることが更に好ましく、5%以下であることが特に好ましい。 The image sensor may include an infrared transmission filter layer. The infrared transmission filter layer preferably has low transmittance for light in the visible wavelength band, and more preferably has an average transmittance of 10% or less for light in the wavelength range of 400 to 650 nm. 0.5% or less is more preferable, and 5% or less is particularly preferable.
赤外線透過フィルタ層としては、色材を含む樹脂膜で構成されたものなどが挙げられる。色材としては、赤色色材、緑色色材、青色色材、黄色色材、紫色色材、オレンジ色色材などの有彩色色材、黒色色材が挙げられる。赤外線透過フィルタ層に含まれる色材は、2種以上の有彩色色材の組み合わせで黒色を形成しているか、黒色色材を含むものであることが好ましい。2種以上の有彩色色材の組み合わせで黒色を形成する場合の、有彩色色材の組み合わせとしては、例えば、以下の(C1)~(C7)の態様が挙げられる。
(C1)赤色色材と青色色材とを含有する態様。
(C2)赤色色材と青色色材と黄色色材とを含有する態様。
(C3)赤色色材と青色色材と黄色色材と紫色色材とを含有する態様。
(C4)赤色色材と青色色材と黄色色材と紫色色材と緑色色材とを含有する態様。
(C5)赤色色材と青色色材と黄色色材と緑色色材とを含有する態様。
(C6)赤色色材と青色色材と緑色色材とを含有する態様。
(C7)黄色色材と紫色色材とを含有する態様。
Examples of the infrared transmission filter layer include those composed of a resin film containing a coloring material. Colorants include chromatic colorants such as red colorants, green colorants, blue colorants, yellow colorants, purple colorants, and orange colorants, and black colorants. The colorant contained in the infrared transmission filter layer preferably forms a black color by combining two or more chromatic colorants or contains a black colorant. When two or more chromatic colorants are combined to form a black color, the combination of chromatic colorants includes, for example, the following modes (C1) to (C7).
(C1) A mode containing a red colorant and a blue colorant.
(C2) A mode containing a red colorant, a blue colorant, and a yellow colorant.
(C3) A mode containing a red colorant, a blue colorant, a yellow colorant, and a purple colorant.
(C4) A mode containing a red colorant, a blue colorant, a yellow colorant, a purple colorant, and a green colorant.
(C5) A mode containing a red colorant, a blue colorant, a yellow colorant, and a green colorant.
(C6) A mode containing a red colorant, a blue colorant, and a green colorant.
(C7) An embodiment containing a yellow colorant and a purple colorant.
上記有彩色色材は、顔料であってもよく、染料であってもよい。顔料と染料とを含んでいてもよい。黒色色材は、有機黒色色材であることが好ましい。例えば、有機黒色色材としては、ビスベンゾフラノン化合物、アゾメチン化合物、ペリレン化合物、アゾ化合物などが挙げられる。 The chromatic colorant may be a pigment or a dye. It may contain pigments and dyes. The black colorant is preferably an organic black colorant. Examples of organic black colorants include bisbenzofuranone compounds, azomethine compounds, perylene compounds, and azo compounds.
赤外線透過フィルタ層は、更に赤外線吸収剤を含有していてもよい。赤外線透過フィルタ層に赤外線吸収剤を含有させることで透過させる光の波長をより長波長側にシフトさせることができる。赤外線吸収剤としては、ピロロピロール化合物、シアニン化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、クアテリレン化合物、メロシアニン化合物、クロコニウム化合物、オキソノール化合物、イミニウム化合物、ジチオール化合物、トリアリールメタン化合物、ピロメテン化合物、アゾメチン化合物、アントラキノン化合物、ジベンゾフラノン化合物、ジチオレン金属錯体、金属酸化物、金属ホウ化物等が挙げられる。 The infrared transmission filter layer may further contain an infrared absorber. By including an infrared absorbing agent in the infrared transmission filter layer, the wavelength of light to be transmitted can be shifted to a longer wavelength side. Examples of infrared absorbers include pyrrolopyrrole compounds, cyanine compounds, squarylium compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterrylene compounds, merocyanine compounds, croconium compounds, oxonol compounds, iminium compounds, dithiol compounds, triarylmethane compounds, pyrromethene compounds, and azomethine. compounds, anthraquinone compounds, dibenzofuranone compounds, dithiolene metal complexes, metal oxides, metal borides, and the like.
赤外線透過フィルタ層の分光特性については、イメージセンサの用途に応じて適宜選択することができる。例えば、以下の(1)~(5)のいずれかの分光特性を満たしているフィルタ層などが挙げられる。
(1):膜の厚み方向における光の透過率の、波長400~750nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、膜の厚み方向における光の透過率の、波長900~1500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
(2):膜の厚み方向における光の透過率の、波長400~830nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、膜の厚み方向における光の透過率の、波長1000~1500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
(3):膜の厚み方向における光の透過率の、波長400~950nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、膜の厚み方向における光の透過率の、波長1100~1500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
(4):膜の厚み方向における光の透過率の、波長400~1100nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、波長1400~1500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
(5):膜の厚み方向における光の透過率の、波長400~1300nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)で、波長1600~2000nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)であるフィルタ層。
The spectral characteristics of the infrared transmission filter layer can be appropriately selected according to the application of the image sensor. For example, a filter layer that satisfies any one of the following spectral characteristics (1) to (5) may be used.
(1): The maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 750 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the light in the thickness direction of the film. of 70% or more (preferably 75% or more, more preferably 80% or more) in the wavelength range of 900 to 1500 nm.
(2): The maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 830 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the light in the thickness direction of the film. of 70% or more (preferably 75% or more, more preferably 80% or more) in the wavelength range of 1000 to 1500 nm.
(3): The maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the light in the film thickness direction of 70% or more (preferably 75% or more, more preferably 80% or more) in the wavelength range of 1100 to 1500 nm.
(4): The maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 1100 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the wavelength range is 1400 to 1500 nm. is 70% or more (preferably 75% or more, more preferably 80% or more).
(5): The maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 1300 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the wavelength range is 1600 to 2000 nm. is 70% or more (preferably 75% or more, more preferably 80% or more).
また、赤外線透過フィルタには、特開2013-077009号公報、特開2014-130173号公報、特開2014-130338号公報、国際公開第2015/166779号、国際公開第2016/178346号、国際公開第2016/190162号、国際公開第2018/016232号、特開2016-177079号公報、特開2014-130332号公報、国際公開第2016/027798号に記載の膜を用いることができる。また、赤外線透過フィルタは2つ以上のフィルタを組み合わせて用いてもよく、1つのフィルタで特定の2つ以上の波長領域を透過するデュアルバンドパスフィルタを用いてもよい。 In addition, the infrared transmission filter, JP 2013-077009, JP 2014-130173, JP 2014-130338, International Publication No. 2015/166779, International Publication No. 2016/178346, International Publication The films described in WO 2016/190162, WO 2018/016232, JP 2016-177079, 2014-130332, and WO 2016/027798 can be used. Moreover, the infrared transmission filter may be used in combination of two or more filters, or a dual bandpass filter that transmits two or more specific wavelength regions with one filter may be used.
イメージセンサは、ノイズ低減などの各種性能を向上させる目的で赤外線遮蔽フィルタを含んでいてもよい。赤外線遮蔽フィルタの具体例としては、例えば、国際公開第2016/186050号、国際公開第2016/035695号、特許第6248945号公報、国際公開第2019/021767号、特開2017-067963号公報、特許第6506529号公報に記載されたフィルタなどが挙げられる。 The image sensor may include an infrared shielding filter for the purpose of improving various performances such as noise reduction. Specific examples of the infrared shielding filter include, for example, International Publication No. 2016/186050, International Publication No. 2016/035695, Patent No. 6248945, International Publication No. 2019/021767, JP 2017-067963, Patent A filter described in Japanese Patent No. 6506529 and the like are included.
イメージセンサは誘電体多層膜を含んでいてもよい。誘電体多層膜としては、高屈折率の誘電体薄膜(高屈折率材料層)と低屈折率の誘電体薄膜(低屈折率材料層)とを交互に複数層積層したものが挙げられる。誘電体多層膜における誘電体薄膜の積層数は、特に限定はないが、2~100層が好ましく、4~60層がより好ましく、6~40層が更に好ましい。高屈折率材料層の形成に用いられる材料としては、屈折率が1.7~2.5の材料が好ましい。具体例としては、Sb2O3、Sb2S3、Bi2O3、CeO2、CeF3、HfO2、La2O3、Nd2O3、Pr6O11、Sc2O3、SiO、Ta2O5、TiO2、TlCl、Y2O3、ZnSe、ZnS、ZrO2などが挙げられる。低屈折率材料層の形成に用いられる材料としては、屈折率が1.2~1.6の材料が好ましい。具体例としては、Al2O3、BiF3、CaF2、LaF3、PbCl2、PbF2、LiF、MgF2、MgO、NdF3、SiO2、Si2O3、NaF、ThO2、ThF4、Na3AlF6などが挙げられる。誘電体多層膜の形成方法としては、特に制限はないが、例えば、イオンプレーティング、イオンビーム等の真空蒸着法、スパッタリング等の物理的気相成長法(PVD法)、化学的気相成長法(CVD法)などが挙げられる。高屈折率材料層および低屈折率材料層の各層の厚みは、遮断しようとする光の波長がλ(nm)であるとき、0.1λ~0.5λの厚みであることが好ましい。誘電体多層膜の具体例としては、例えば、特開2014-130344号公報、特開2018-010296号公報に記載の誘電体多層膜が挙げられる。 The image sensor may include a dielectric multilayer film. Examples of the dielectric multilayer film include those obtained by alternately laminating dielectric thin films with a high refractive index (high refractive index material layers) and dielectric thin films with a low refractive index (low refractive index material layers). The number of laminated dielectric thin films in the dielectric multilayer film is not particularly limited, but is preferably 2 to 100 layers, more preferably 4 to 60 layers, and even more preferably 6 to 40 layers. A material having a refractive index of 1.7 to 2.5 is preferable as the material used for forming the high refractive index material layer. Specific examples include Sb2O3 , Sb2S3 , Bi2O3 , CeO2 , CeF3 , HfO2 , La2O3 , Nd2O3 , Pr6O11 , Sc2O3 , SiO , Ta 2 O 5 , TiO 2 , TlCl, Y 2 O 3 , ZnSe, ZnS, ZrO 2 and the like. A material having a refractive index of 1.2 to 1.6 is preferable as the material used for forming the low refractive index material layer. Specific examples include Al2O3 , BiF3 , CaF2 , LaF3 , PbCl2 , PbF2 , LiF, MgF2 , MgO, NdF3 , SiO2 , Si2O3 , NaF, ThO2 , ThF4 , Na 3 AlF 6 and the like. The method for forming the dielectric multilayer film is not particularly limited, but examples include vacuum deposition methods such as ion plating and ion beam, physical vapor deposition methods (PVD methods) such as sputtering, and chemical vapor deposition methods. (CVD method) and the like. The thickness of each of the high refractive index material layer and the low refractive index material layer is preferably 0.1λ to 0.5λ when the wavelength of light to be blocked is λ (nm). Specific examples of dielectric multilayer films include dielectric multilayer films described in JP-A-2014-130344 and JP-A-2018-010296.
誘電体多層膜は、赤外域(好ましくは波長700nmを超える波長領域、より好ましくは波長800nmを超える波長領域、更に好ましくは波長900nmを超える波長領域)に透過波長帯域が存在することが好ましい。透過波長帯域における最大透過率は70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。また、遮光波長帯域における最大透過率は20%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましい。また、透過波長帯域における平均透過率は60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましい。また、透過波長帯域の波長範囲は、最大透過率を示す波長を中心波長λt1とした場合、中心波長λt1±100nmであることが好ましく、中心波長λt1±75nmであることがより好ましく、中心波長λt1±50nmであることが更に好ましい。 The dielectric multilayer film preferably has a transmission wavelength band in the infrared region (preferably a wavelength region exceeding 700 nm, more preferably a wavelength region exceeding 800 nm, still more preferably a wavelength region exceeding 900 nm). The maximum transmittance in the transmission wavelength band is preferably 70% or more, more preferably 80% or more, even more preferably 90% or more. Also, the maximum transmittance in the light shielding wavelength band is preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less. Also, the average transmittance in the transmission wavelength band is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more. Further, the wavelength range of the transmission wavelength band is preferably center wavelength λ t1 ±100 nm, more preferably center wavelength λ t1 ±75 nm, where λ t1 is the wavelength showing the maximum transmittance. More preferably, the center wavelength λ t1 ±50 nm.
誘電体多層膜は、透過波長帯域(好ましくは、最大透過率が90%以上の透過波長帯域)を1つのみ有していてもよく、複数有していてもよい。 The dielectric multilayer film may have only one transmission wavelength band (preferably a transmission wavelength band with a maximum transmittance of 90% or more), or may have a plurality of transmission wavelength bands.
イメージセンサは、色分離フィルタ層を含んでいてもよい。色分離フィルタ層としては着色画素を含むフィルタ層が挙げられる。着色画素の種類としては、赤色画素、緑色画素、青色画素、黄色画素、シアン色画素およびマゼンタ色画素などが挙げられる。色分離フィルタ層は2色以上の着色画素を含んでいてもよく、1色のみであってもよい。用途や目的に応じて適宜選択することができる。色分離フィルタ層としては、例えば、国際公開第2019/039172号に記載のフィルタを用いることができる。 The image sensor may include a color separation filter layer. The color separation filter layer includes a filter layer containing colored pixels. Types of colored pixels include red pixels, green pixels, blue pixels, yellow pixels, cyan pixels, and magenta pixels. The color separation filter layer may contain colored pixels of two or more colors, or may contain only one color. It can be appropriately selected according to the application and purpose. As the color separation filter layer, for example, a filter described in International Publication No. 2019/039172 can be used.
また、色分離層が2色以上の着色画素を含む場合、各色の着色画素同士は隣接していてもよく、各着色画素間に隔壁が設けられていてもよい。隔壁の材質としては、特に限定はない。例えば、シロキサン樹脂、フッ素樹脂などの有機材料や、シリカ粒子などの無機粒子が挙げられる。また、隔壁は、タングステン、アルミニウムなどの金属で構成されていてもよい。 In addition, when the color separation layer includes colored pixels of two or more colors, the colored pixels of each color may be adjacent to each other, and partition walls may be provided between the colored pixels. The material of the partition is not particularly limited. Examples include organic materials such as siloxane resins and fluorine resins, and inorganic particles such as silica particles. Moreover, the partition may be made of a metal such as tungsten or aluminum.
イメージセンサが赤外線透過フィルタ層と色分離層とを含む場合は、色分離層は赤外線透過フィルタ層とは別の光路上に設けられていることが好ましい。また、赤外線透過フィルタ層と色分離層は二次元配置されていることも好ましい。なお、赤外線透過フィルタ層と色分離層とが二次元配置されているとは、両者の少なくとも一部が同一平面上に存在していることを意味する。 When the image sensor includes an infrared transmission filter layer and a color separation layer, the color separation layer is preferably provided on a separate optical path from the infrared transmission filter layer. It is also preferable that the infrared transmission filter layer and the color separation layer are two-dimensionally arranged. In addition, the two-dimensional arrangement of the infrared transmission filter layer and the color separation layer means that at least a part of both of them are present on the same plane.
イメージセンサは、平坦化層、下地層、密着層などの中間層、反射防止膜、レンズを含んでいてもよい。反射防止膜としては、例えば、国際公開第2019/017280号に記載の組成物から作製した膜を用いることができる。レンズとしては、例えば、国際公開第2018/092600号に記載の構造体を用いることができる。 The image sensor may include an intermediate layer such as a flattening layer, a base layer, an adhesion layer, an antireflection film, and a lens. As the antireflection film, for example, a film produced from the composition described in International Publication No. 2019/017280 can be used. As the lens, for example, the structure described in International Publication No. 2018/092600 can be used.
以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically below with reference to examples. The materials, usage amounts, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Accordingly, the scope of the present invention is not limited to the specific examples shown below.
[量子ドット分散液の製造]
製造例1-1(AgBiS2量子ドット分散液(量子ドット分散液1)の製造)
フラスコ中に30mlのオレイン酸と、0.8mmolの酢酸銀と、1mmolの酢酸ビスマスを測りとり、真空下100℃で3時間加熱して前駆体溶液を得た。系を窒素フロー状態にしたのち、1mmolのヘキサメチルジシラチアンを5mLのオクタデセンと共に注入した。注入後すぐにフラスコを自然冷却し、40℃になった段階でトルエン20mLを加え、溶液を回収した。溶液に過剰量のアセトンを加え、10000rpmで10分間遠心分離を行い、沈殿物をトルエンに分散させて、濃度約30mg/mLのAgBiS2量子ドット分散液(量子ドット分散液1)を得た。得られた量子ドット分散液1を用いて量子ドット薄膜を作製し、量子ドット薄膜の吸収測定から間接遷移半導体のtauc plotを作成した。tauc plotから見積もったバンドギャップはおよそ1.1eVであった。
[Production of quantum dot dispersion]
Production Example 1-1 (Production of AgBiS2 quantum dot dispersion (quantum dot dispersion 1))
30 ml of oleic acid, 0.8 mmol of silver acetate, and 1 mmol of bismuth acetate were weighed into a flask and heated at 100° C. for 3 hours under vacuum to obtain a precursor solution. After the system was under nitrogen flow, 1 mmol of hexamethyldisilathiane was injected along with 5 mL of octadecene. Immediately after the injection, the flask was naturally cooled, and when the temperature reached 40° C., 20 mL of toluene was added and the solution was recovered. An excess amount of acetone was added to the solution, centrifugation was performed at 10000 rpm for 10 minutes, and the precipitate was dispersed in toluene to obtain an AgBiS 2 quantum dot dispersion (quantum dot dispersion 1) with a concentration of about 30 mg/mL. A quantum dot thin film was prepared using the obtained quantum
製造例1-2(AgBiSTe量子ドット分散液(量子ドット分散液2)の製造)
フラスコ中に5.4mlのオレイン酸と、0.8mmolの酢酸銀と、1mmolの酢酸ビスマスと、30mLのオクタデセンを測りとり、真空下100℃で3時間加熱して前駆体溶液を得た。系を窒素フロー状態にしたのち、オレイルアミン5mLを前駆体溶液に加えた。その後すぐに、0.9mmolのヘキサメチルジシラチアン及び0.1mmolのビス(トリメチルシリル)テルリドを5mLのオクタデセンと共に注入した。注入後すぐにフラスコを自然冷却し、40℃になった段階でトリオクチルホスフィン5mLと、トルエン10mLを加え、溶液を回収した。溶液に過剰量のアセトンを加え、5000rpmで10分間遠心分離を行い、沈殿物をトルエンに分散させて、濃度約30mg/mLのAgBiSTe量子ドット分散液(量子ドット分散液2)を得た。得られた量子ドット分散液2を用いて量子ドット薄膜を作製し、量子ドット薄膜の吸収測定から間接遷移半導体のtauc plotを作成した。tauc plotから見積もったバンドギャップはおよそ0.85eVであった。
Production Example 1-2 (Production of AgBiSTe quantum dot dispersion (quantum dot dispersion 2))
5.4 ml of oleic acid, 0.8 mmol of silver acetate, 1 mmol of bismuth acetate and 30 mL of octadecene were weighed into a flask and heated at 100° C. for 3 hours under vacuum to obtain a precursor solution. After the system was under nitrogen flow, 5 mL of oleylamine was added to the precursor solution. Immediately thereafter, 0.9 mmol of hexamethyldisilathiane and 0.1 mmol of bis(trimethylsilyl)telluride were injected along with 5 mL of octadecene. Immediately after the injection, the flask was naturally cooled, and when the temperature reached 40° C., 5 mL of trioctylphosphine and 10 mL of toluene were added, and the solution was recovered. An excess amount of acetone was added to the solution, centrifugation was performed at 5000 rpm for 10 minutes, and the precipitate was dispersed in toluene to obtain an AgBiSTe quantum dot dispersion (quantum dot dispersion 2) with a concentration of about 30 mg/mL. A quantum dot thin film was prepared using the obtained quantum dot dispersion liquid 2, and a tauc plot of an indirect transition semiconductor was prepared from absorption measurement of the quantum dot thin film. The bandgap estimated from tauc plot was approximately 0.85 eV.
[酸化亜鉛粒子分散液の製造]
製造例2-1(ノンドープ酸化亜鉛粒子分散液の製造)
フラスコ中に1.5mmolの酢酸亜鉛二水和物と、15mlのジエチルスルホキシド(DMSO)を測りとり、撹拌して酢酸亜鉛溶液1を得た。
4mmolの塩化テトラメチルアンモニウム(TMACl)を4mlのメタノールに溶解させたTMACl溶液と、4mmolの水酸化カリウム(KOH)を4mlのメタノールに溶解させたKOH溶液を作製した。TMACl溶液を激しく撹拌しながらKOH溶液をゆっくり添加し、30分撹拌後、孔径0.45μmのフィルタを通して不溶成分を除去して、水酸化テトラメチルアンモニウム(TMAH)溶液を得た。
フラスコに入った酢酸亜鉛溶液1中に、TMAH溶液6mlを6ml/minの滴下速度で投入した。1時間保持した後、反応液を回収した。反応液に過剰量のアセトンを加え、10000rpmで10min遠心分離した後、上澄みを除去し、沈殿物をメタノールに分散させた後、アセトンで再度沈殿させ5mlのエタノール、80μlのアミノエタノールを加え、超音波分散させることでノンドープ酸化亜鉛粒子分散液(濃度約30mg/mL、ノンドープ酸化亜鉛粒子の平均粒径8nm)を得た。
[Production of zinc oxide particle dispersion]
Production Example 2-1 (Production of non-doped zinc oxide particle dispersion)
1.5 mmol of zinc acetate dihydrate and 15 ml of diethyl sulfoxide (DMSO) were weighed into a flask and stirred to obtain
A TMACl solution of 4 mmol of tetramethylammonium chloride (TMACl) dissolved in 4 ml of methanol and a KOH solution of 4 mmol of potassium hydroxide (KOH) dissolved in 4 ml of methanol were prepared. While vigorously stirring the TMACl solution, the KOH solution was slowly added, and after stirring for 30 minutes, insoluble components were removed through a filter with a pore size of 0.45 μm to obtain a tetramethylammonium hydroxide (TMAH) solution.
6 ml of the TMAH solution was dropped into the
製造例2-2(Liドープ酸化亜鉛粒子分散液)
フラスコ中に15mlのDMSOと、0.075mmolの塩化リチウム(LiCl)を測りとり、超音波処理でLiClを溶解した後、1.425mmolの酢酸亜鉛を加えて酢酸亜鉛を溶解させて、酢酸亜鉛溶液2を得た。酢酸亜鉛溶液1の代わりに、酢酸亜鉛溶液2を用いた以外は、製造例2-1と同様の手法でLiドープ酸化亜鉛粒子分散液(濃度30mg/mL、Liドープ酸化亜鉛粒子の平均粒径8nm)を得た。
Production Example 2-2 (Li-doped zinc oxide particle dispersion)
Measure 15 ml of DMSO and 0.075 mmol of lithium chloride (LiCl) into a flask, dissolve the LiCl by ultrasonic treatment, and then add 1.425 mmol of zinc acetate to dissolve the zinc acetate to form a zinc acetate solution. got 2. Li-doped zinc oxide particle dispersion (concentration 30 mg/mL, average particle size of Li-doped zinc oxide particles) was prepared in the same manner as in Production Example 2-1, except that zinc acetate solution 2 was used instead of
製造例2-3(Alドープ酸化亜鉛粒子分散液)
フラスコ中に15mlのDMSOと、0.15mmolの塩化アルミニウム六水和物を測りとり、超音波処理で塩化アルミニウム六水和物を溶解した後、1.35mmolの酢酸亜鉛を加えて酢酸亜鉛を溶解させて、酢酸亜鉛溶液3を得た。酢酸亜鉛溶液1の代わりに、酢酸亜鉛溶液3を用いた以外は、製造例2-1と同様の手法でAlドープ酸化亜鉛粒子分散液(濃度30mg/mL、Alドープ酸化亜鉛粒子の平均粒径8nm)を得た。
Production Example 2-3 (Al-doped zinc oxide particle dispersion)
Measure 15 ml of DMSO and 0.15 mmol of aluminum chloride hexahydrate in a flask, dissolve the aluminum chloride hexahydrate by ultrasonic treatment, and then add 1.35 mmol of zinc acetate to dissolve the zinc acetate. to obtain a zinc acetate solution 3. Al-doped zinc oxide particle dispersion (concentration 30 mg/mL, average particle size of Al-doped zinc oxide particles 8 nm).
製造例2-4(Gaドープ酸化亜鉛粒子分散液)
フラスコ中に15mlのDMSOと、0.12mmolの硝酸ガリウム水和物を測りとり、超音波処理で硝酸ガリウム水和物を溶解した後、1.38mmolの酢酸亜鉛を加えて酢酸亜鉛を溶解させて、酢酸亜鉛溶液4を得た。酢酸亜鉛溶液1の代わりに、酢酸亜鉛溶液4を用いた以外は、製造例2-1と同様の手法でGaドープZ酸化亜鉛粒子分散液(濃度30mg/mL、Gaドープ酸化亜鉛粒子の平均粒径8nm)を得た。
Production Example 2-4 (Ga-doped zinc oxide particle dispersion)
Measure 15 ml of DMSO and 0.12 mmol of gallium nitrate hydrate in a flask, dissolve the gallium nitrate hydrate by ultrasonic treatment, and then add 1.38 mmol of zinc acetate to dissolve the zinc acetate. , a zinc acetate solution 4 was obtained. Ga-doped Z zinc oxide particle dispersion (concentration 30 mg/mL, average grain size of Ga-doped zinc oxide particles) was prepared in the same manner as in Production Example 2-1, except that zinc acetate solution 4 was used instead of
製造例2-5(Mgドープ酸化亜鉛粒子分散液)
フラスコ中に0.075mmolの酢酸マグネシウム四水和物と1.425mmolの酢酸亜鉛二水和物と15mlのDMSOを測りとり、撹拌して酢酸亜鉛溶液5を得た。酢酸亜鉛溶液1の代わりに、酢酸亜鉛溶液5を用いた以外は、製造例2-1と同様の手法でMgドープ酸化亜鉛粒子分散液(濃度30mg/mL、Mgドープ酸化亜鉛粒子の平均粒径8nm)を得た。
Production Example 2-5 (Mg-doped zinc oxide particle dispersion)
0.075 mmol of magnesium acetate tetrahydrate, 1.425 mmol of zinc acetate dihydrate and 15 ml of DMSO were weighed into a flask and stirred to obtain zinc acetate solution 5 . Mg-doped zinc oxide particle dispersion (concentration 30 mg/mL, average particle size of Mg-doped zinc oxide particles) was prepared in the same manner as in Production Example 2-1, except that zinc acetate solution 5 was used instead of
[光検出素子の製造]
(実施例1~9、比較例1)
石英ガラス上にスパッタリング法にて厚さ約100nmのITO(Indium Tin Oxide)膜(第1の電極層)を製膜した。
[Manufacture of photodetector]
(Examples 1 to 9, Comparative Example 1)
An ITO (Indium Tin Oxide) film (first electrode layer) having a thickness of about 100 nm was formed on quartz glass by a sputtering method.
次いで、ITO膜上に、下記表に記載の分散液を滴下し、2500rpmでスピンコートし、70℃で30分加熱する工程を2回行い、厚さ約50nmの電子輸送層を製膜した。
なお、製造例2-1のノンドープ酸化亜鉛粒子分散液を用いて形成される電子輸送層は、ノンドープ酸化亜鉛膜であり、この膜中の金属原子の含有量を、高周波誘導結合プラズマ(ICP)法にて測定したところ、Zn以外の金属原子の含有量は検出限界値未満であった。
また、製造例2-2のLiドープ酸化亜鉛粒子分散液を用いて形成される電子輸送層は、Liドープ酸化亜鉛膜であり、この膜中の金属原子の含有量を、高周波誘導結合プラズマ(ICP)法にて測定したところ、Zn以外の金属原子としてLiが確認された。また、上記膜中におけるZnとLi原子との合計に対する、Liの割合は5原子%であった。
また、製造例2-3のAlドープ酸化亜鉛粒子分散液を用いて形成される電子輸送層は、Alドープ酸化亜鉛膜であり、この膜中の金属原子の含有量を、高周波誘導結合プラズマ(ICP)法にて測定したところ、Zn以外の金属原子としてAlが確認された。また、上記膜中におけるZnとAl原子との合計に対する、Alの割合は10原子%であった。
また、製造例2-4のGaドープ酸化亜鉛粒子分散液を用いて形成される電子輸送層は、Gaドープ酸化亜鉛膜であり、この膜中の金属原子の含有量を、高周波誘導結合プラズマ(ICP)法にて測定したところ、Zn以外の金属原子としてGaが確認された。また、上記膜中におけるZnとGa原子との合計に対する、Gaの割合は8原子%であった。
また、製造例2-5のMgドープ酸化亜鉛粒子分散液を用いて形成される電子輸送層は、Mgドープ酸化亜鉛膜であり、この膜中の金属原子の含有量を、高周波誘導結合プラズマ(ICP)法にて測定したところ、Zn以外の金属原子としてMgが確認された。また、上記膜中におけるZnとMg原子との合計に対する、Mgの割合は5原子%であった。
Then, the dispersion described in the table below was dropped onto the ITO film, spin-coated at 2500 rpm, and heated at 70° C. for 30 minutes twice to form an electron transport layer having a thickness of about 50 nm.
The electron transport layer formed using the non-doped zinc oxide particle dispersion of Production Example 2-1 is a non-doped zinc oxide film, and the content of metal atoms in this film is measured by high frequency inductively coupled plasma (ICP). According to the method, the content of metal atoms other than Zn was below the detection limit.
The electron transport layer formed using the Li-doped zinc oxide particle dispersion of Production Example 2-2 is a Li-doped zinc oxide film. When measured by the ICP) method, Li was confirmed as a metal atom other than Zn. Also, the ratio of Li to the total of Zn and Li atoms in the film was 5 atomic %.
Further, the electron transport layer formed using the Al-doped zinc oxide particle dispersion liquid of Production Example 2-3 is an Al-doped zinc oxide film, and the content of metal atoms in this film is measured by high-frequency inductively coupled plasma ( When measured by the ICP) method, Al was confirmed as a metal atom other than Zn. Also, the ratio of Al to the total of Zn and Al atoms in the film was 10 atomic %.
Further, the electron transport layer formed using the Ga-doped zinc oxide particle dispersion of Production Example 2-4 is a Ga-doped zinc oxide film, and the content of metal atoms in this film is determined by high-frequency inductively coupled plasma ( When measured by the ICP) method, Ga was confirmed as a metal atom other than Zn. The ratio of Ga to the total of Zn and Ga atoms in the film was 8 atomic %.
Further, the electron transport layer formed using the Mg-doped zinc oxide particle dispersion of Production Example 2-5 is a Mg-doped zinc oxide film, and the content of metal atoms in this film is measured by high-frequency inductively coupled plasma ( When measured by the ICP) method, Mg was confirmed as a metal atom other than Zn. Also, the ratio of Mg to the total of Zn and Mg atoms in the film was 5 atomic %.
次いで、上記製膜した電子輸送層上に、下記表に記載の量子ドット分散液を滴下した後、2000rpmでスピンコートし、量子ドット集合体膜を得た(工程1)。
次いで、量子ドット集合体膜の上に、配位子溶液として、配位子溶液1(テトラメチルアンモニウムヨージド(TMAI)のメタノール溶液(濃度1mg/mL))、または、配位子溶液2(1,2-エタンジチオール(EDT)のアセトニトリル溶液(濃度0.02vol%))を滴下した後、30秒待機し、その後、2000rpmで20秒間スピンドライした。次いで、リンス液としてメタノールまたはアセトニトリルを量子ドット集合体膜上に滴下し、2000rpmで20秒間スピンドライした。次いで、トルエンを量子ドット集合体膜上に滴下し、2000rpmで20秒間スピンドライした(工程2)。
工程1と工程2とを1サイクルとする操作を4サイクル繰り返して、AgBiS2量子ドットまたはAgBiSTe量子ドットに配位子としてテトラメチルアンモニウムヨージド(TMAI)または1,2-エタンジチオール(EDT)が配位した光電変換層を60nmの厚さで形成した。
Then, the quantum dot dispersion liquid described in the following table was dropped onto the electron transport layer thus formed, followed by spin coating at 2000 rpm to obtain a quantum dot assembly film (step 1).
Next, on the quantum dot assembly film, as a ligand solution, ligand solution 1 (tetramethylammonium iodide (TMAI) methanol solution (
The operation of
次いで、光電変換層を窒素雰囲気下で100℃で10分間乾燥した後、窒素雰囲気、遮光条件下のもと、室温で10時間乾燥した。 Next, the photoelectric conversion layer was dried at 100°C for 10 minutes in a nitrogen atmosphere, and then dried at room temperature for 10 hours in a nitrogen atmosphere under light-shielding conditions.
次に、光電変換層上に、PTB7(ポリ{4,8-ビス[(2-エチルヘキシル)オキシ]ベンゾ[1,2-b:4,5-b’]ジチオフェン-2,6-ジイル-lt-alt-3-フルオロ-2-[(2-エチルへキシル)カルボニル]チエノ[3,4-b]チオフェン-4,6-ジイル})を1,2-ジクロロベンゼンに5mg/mLの濃度で溶解した溶液を滴下し、2000rpmで60秒間スピンコートして、厚さ約10nmの正孔輸送層を形成した。 Next, on the photoelectric conversion layer, PTB7 (poly{4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-lt -alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl}) in 1,2-dichlorobenzene at a concentration of 5 mg/mL The dissolved solution was dropped and spin-coated at 2000 rpm for 60 seconds to form a hole transport layer with a thickness of about 10 nm.
次いで、上記正孔輸送層上にメタルマスクを介した真空蒸着法にて、厚さ15nmのMoO3膜を製膜した後、厚さ100nmのAu膜(第2の電極層)を製膜してフォトダイオード型の光検出素子を製造した。 Next, a 15 nm-thick MoO3 film was formed on the hole transport layer by a vacuum evaporation method through a metal mask, and then a 100 nm-thick Au film (second electrode layer) was formed. A photodiode-type photodetector was manufactured using the above method.
<評価>
製造した光検出素子について半導体パラメータアナライザー(C4156、Agilent製)を用いて、暗電流および外部量子効率(EQE)の評価を行った。
まず、光を照射しない状態において0Vから-2Vまで電圧を掃引しながら電流-電圧特性(I-V特性)を測定し、暗電流の評価を行った。ここで、-0.5Vでの電流値を暗電流の値とした。続いて、900nmのモノクロ光を照射した状態で、0Vから-1Vまで電圧を掃引しながらI-V特性を測定した。-0.5Vを印加した状態での電流値から上記暗電流の値を差し引いたものを光電流値とし、その値から外部量子効率(EQE)を算出した。
<Evaluation>
Dark current and external quantum efficiency (EQE) of the manufactured photodetector were evaluated using a semiconductor parameter analyzer (C4156, manufactured by Agilent).
First, the dark current was evaluated by measuring the current-voltage characteristics (IV characteristics) while sweeping the voltage from 0 V to -2 V in a state where light was not irradiated. Here, the current value at -0.5 V was taken as the dark current value. Subsequently, the IV characteristics were measured while sweeping the voltage from 0 V to -1 V under irradiation with 900 nm monochrome light. A photocurrent value was obtained by subtracting the above dark current value from the current value when −0.5 V was applied, and the external quantum efficiency (EQE) was calculated from this value.
上記表に示すように、実施例の光検出素子の暗電流が低く、外部量子効率(EQE)が高いことが確認された。 As shown in the table above, it was confirmed that the photodetector elements of Examples had a low dark current and a high external quantum efficiency (EQE).
上記実施例で得られた光検出素子を用い、国際公開第2016/186050号および国際公開第2016/190162号に記載の方法に従い作製した光学フィルタと共に公知の方法にてイメージセンサを作製し、固体撮像素子に組み込むことで、良好な可視能-赤外撮像性能を有するイメージセンサを得ることができる。 Using the photodetector obtained in the above example, an image sensor is produced by a known method together with an optical filter produced according to the method described in WO 2016/186050 and WO 2016/190162. By incorporating it into an imaging element, it is possible to obtain an image sensor having good visible/infrared imaging performance.
<参考例>
実施例1および比較例1において、光電変換層を、以下のPbS量子ドット分散液を用いて形成した以外は実施例1および比較例1と同様にして、それぞれ参考例1、2の光検出素子を製造した。得られた光検出素子について上記と同様の方法で外部量子効率(EQE)および暗電流を測定したところ、参考例1と参考例2との間で差異は特にみられなかった。このことから、電子輸送層として、Zn以外の金属原子がドープされた酸化亜鉛を用いることにより奏される上記効果は、光電変換層として、Ag元素とBi元素とを含む化合物半導体の量子ドットを用いた場合により奏される特有の効果であることがわかった。
<Reference example>
In Example 1 and Comparative Example 1, the photodetector elements of Reference Examples 1 and 2 were prepared in the same manner as in Example 1 and Comparative Example 1, except that the photoelectric conversion layer was formed using the following PbS quantum dot dispersion. manufactured. When the external quantum efficiency (EQE) and dark current of the resulting photodetector were measured in the same manner as described above, no particular difference was observed between Reference Example 1 and Reference Example 2. From this fact, the above-mentioned effect achieved by using zinc oxide doped with metal atoms other than Zn as the electron transport layer is due to the use of quantum dots of a compound semiconductor containing Ag element and Bi element as the photoelectric conversion layer. It was found that this is a unique effect that is exhibited depending on the use.
(PbS量子ドット分散液)
フラスコ中に5.8mlのオレイン酸と、7.8mmolの酸化鉛と、0.4mLのオレイルアミンと、27mLのオクタデセンを測りとり、真空下110℃で300分加熱して前駆体溶液を得た。その後、系を窒素フロー状態にした。次いで、フラスコ内の溶液中に1mmolのヘキサメチルジシラチアンを9.6mLのオクタデセンと共に注入した。注入後すぐにフラスコ内の溶液を自然冷却し、溶液の温度が60℃になった段階で、0.3mmol/Lの塩化鉛溶液(溶媒オレイルアミン)を1mL加えた。フラスコ内の溶液を30℃に冷却した後、トルエン10mLを加え、溶液を回収した。溶液に過剰量のエタノールを加え、10000rpmで10分間遠心分離を行い、沈殿物をオクタンに分散させ、PbS量子ドット分散液(濃度40mg/mL)を得た。得られたPbS量子ドット分散液について、紫外可視近赤外分光光度計(日本分光(株)製、V-670)を用いた可視~赤外領域の光吸収測定から見積もったPbS量子ドットのバンドギャップはおよそ1.2eVであった。
(PbS quantum dot dispersion)
5.8 ml of oleic acid, 7.8 mmol of lead oxide, 0.4 ml of oleylamine, and 27 ml of octadecene were measured in a flask and heated at 110° C. for 300 minutes under vacuum to obtain a precursor solution. The system was then put into nitrogen flow. 1 mmol of hexamethyldisilathiane was then injected into the solution in the flask along with 9.6 mL of octadecene. Immediately after the injection, the solution in the flask was naturally cooled, and when the temperature of the solution reached 60°C, 1 mL of 0.3 mmol/L lead chloride solution (solvent oleylamine) was added. After cooling the solution in the flask to 30° C., 10 mL of toluene was added and the solution was recovered. An excess amount of ethanol was added to the solution, centrifugation was performed at 10,000 rpm for 10 minutes, and the precipitate was dispersed in octane to obtain a PbS quantum dot dispersion (concentration: 40 mg/mL). Band of PbS quantum dots estimated from light absorption measurement in the visible to infrared region using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, V-670) for the obtained PbS quantum dot dispersion. The gap was approximately 1.2 eV.
1:光検出素子
11:第1の電極層
12:第2の電極層
13:光電変換層
21:電子輸送層
22:正孔輸送層
1: Photodetector 11: First electrode layer 12: Second electrode layer 13: Photoelectric conversion layer 21: Electron transport layer 22: Hole transport layer
Claims (8)
第2の電極層と、
前記第1の電極層と前記第2の電極層との間に設けられた光電変換層と、
前記第1の電極層と前記光電変換層との間に設けられた電子輸送層と、
前記光電変換層と前記第2の電極層との間に設けられた正孔輸送層と、を有し、
前記光電変換層は、Ag元素とBi元素とを含む化合物半導体の量子ドットを含み、
前記電子輸送層は、Zn以外の金属原子がドープされた酸化亜鉛を含む、光検出素子。 a first electrode layer;
a second electrode layer;
a photoelectric conversion layer provided between the first electrode layer and the second electrode layer;
an electron transport layer provided between the first electrode layer and the photoelectric conversion layer;
a hole transport layer provided between the photoelectric conversion layer and the second electrode layer;
The photoelectric conversion layer includes quantum dots of a compound semiconductor containing Ag element and Bi element,
The photodetector, wherein the electron transport layer contains zinc oxide doped with a metal atom other than Zn.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023529797A JPWO2022264872A1 (en) | 2021-06-14 | 2022-06-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-098409 | 2021-06-14 | ||
JP2021098409 | 2021-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022264872A1 true WO2022264872A1 (en) | 2022-12-22 |
Family
ID=84527357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/022892 WO2022264872A1 (en) | 2021-06-14 | 2022-06-07 | Photodetection element and image sensor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022264872A1 (en) |
TW (1) | TW202303998A (en) |
WO (1) | WO2022264872A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014093327A (en) * | 2012-10-31 | 2014-05-19 | Fujifilm Corp | Semiconductor film, semiconductor film manufacturing method, solar cell, light-emitting diode, thin film transistor and electronic device |
EP2975652A1 (en) * | 2014-07-15 | 2016-01-20 | Fundació Institut de Ciències Fotòniques | Optoelectronic apparatus and fabrication method of the same |
JP2019535112A (en) * | 2016-10-14 | 2019-12-05 | イヌル ゲーエムベーハー | Inductively doped mixed layer for optoelectronic components and method of manufacturing the same |
WO2020050265A1 (en) * | 2018-09-06 | 2020-03-12 | 富士フイルム株式会社 | Structure, optical sensor, and image display device |
US20200181157A1 (en) * | 2018-12-05 | 2020-06-11 | Lg Display Co., Ltd. | Organic compound, light emitting diode and light emitting device having the compound |
CN111554820A (en) * | 2020-05-13 | 2020-08-18 | 京东方科技集团股份有限公司 | Quantum dot pattern structure, quantum dot patterning method and display device |
-
2022
- 2022-06-07 WO PCT/JP2022/022892 patent/WO2022264872A1/en active Application Filing
- 2022-06-07 JP JP2023529797A patent/JPWO2022264872A1/ja active Pending
- 2022-06-09 TW TW111121491A patent/TW202303998A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014093327A (en) * | 2012-10-31 | 2014-05-19 | Fujifilm Corp | Semiconductor film, semiconductor film manufacturing method, solar cell, light-emitting diode, thin film transistor and electronic device |
EP2975652A1 (en) * | 2014-07-15 | 2016-01-20 | Fundació Institut de Ciències Fotòniques | Optoelectronic apparatus and fabrication method of the same |
JP2019535112A (en) * | 2016-10-14 | 2019-12-05 | イヌル ゲーエムベーハー | Inductively doped mixed layer for optoelectronic components and method of manufacturing the same |
WO2020050265A1 (en) * | 2018-09-06 | 2020-03-12 | 富士フイルム株式会社 | Structure, optical sensor, and image display device |
US20200181157A1 (en) * | 2018-12-05 | 2020-06-11 | Lg Display Co., Ltd. | Organic compound, light emitting diode and light emitting device having the compound |
CN111554820A (en) * | 2020-05-13 | 2020-08-18 | 京东方科技集团股份有限公司 | Quantum dot pattern structure, quantum dot patterning method and display device |
Non-Patent Citations (1)
Title |
---|
BURGUÉS-CEBALLOS IGNASI, WANG YONGJIE, AKGUL M. ZAFER, KONSTANTATOS GERASIMOS: "Colloidal AgBiS2 nanocrystals with reduced recombination yield 6.4% power conversion efficiency in solution-processed solar cells", NANO ENERGY, ELSEVIER, NL, vol. 75, 1 September 2020 (2020-09-01), NL , pages 104961, XP093014947, ISSN: 2211-2855, DOI: 10.1016/j.nanoen.2020.104961 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022264872A1 (en) | 2022-12-22 |
TW202303998A (en) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7495496B2 (en) | Semiconductor film, method for manufacturing semiconductor film, photodetector, and image sensor | |
JP7269343B2 (en) | Photodetector, method for manufacturing photodetector, image sensor, dispersion liquid and semiconductor film | |
JP7372452B2 (en) | Photoelectric conversion film, dispersion liquid, photodetection element, and image sensor | |
JP7618739B2 (en) | Photodetector, image sensor and semiconductor film | |
JP7472258B2 (en) | Photodetection elements and image sensors | |
US20240409810A1 (en) | Semiconductor film, photodetection element, image sensor, and manufacturing method for semiconductor quantum dot | |
WO2022264872A1 (en) | Photodetection element and image sensor | |
JP7454688B2 (en) | Photodetector and image sensor | |
WO2023008353A1 (en) | Photodetector element and image sensor | |
WO2022158403A1 (en) | Semiconductor film, method for manufacturing semiconductor film, light detection element, and image sensor | |
US20240409811A1 (en) | Semiconductor film, photodetection element, image sensor, dispersion liquid, and manufacturing method for semiconductor film | |
US20240392187A1 (en) | Dispersion liquid, manufacturing method for quantum dot film, manufacturing method for photodetection element, and manufacturing method for image sensor | |
WO2023085180A1 (en) | Semiconductor film, method for manufacturing semiconductor film, light detection element, and image sensor | |
WO2024219263A1 (en) | Light detecting element, method for manufacturing light detecting element, and image sensor | |
WO2025047466A1 (en) | Semiconductor film, light detection element, and image sensor | |
KR20250114052A (en) | Dispersion, photoelectric conversion film, method for manufacturing photoelectric conversion film, photodetector and image sensor | |
WO2025063060A1 (en) | Semiconductor film, light detection element, and image sensor | |
TW202503019A (en) | Dispersion liquid, method for producing quantum dot film, method for producing light detection element, method for producing image sensor | |
WO2024176881A1 (en) | Semiconductor film, photodetection element, image sensor, dispersion liquid, and method for producing semiconductor film | |
WO2024219264A1 (en) | Photodetection element, method for manufacturing photodetection element, and image sensor | |
WO2024171842A1 (en) | PbS QUANTUM DOT LIQUID DISPERSION, METHOD FOR PRODUCING SEMICONDUCTOR FILM, METHOD FOR PRODUCING LIGHT DETECTION ELEMENT, METHOD FOR PRODUCING IMAGE SENSOR, AND METHOD FOR PRODUCING PbS QUANTUM DOT LIQUID DISPERSION | |
WO2025047467A1 (en) | Method for producing quantum dot | |
WO2024166697A1 (en) | Dispersion liquid, photoelectric conversion film, method for producing photoelectric conversion film, photodetection element and image sensor | |
WO2025105185A1 (en) | Semiconductor quantum dot, dispersion liquid, semiconductor film, light detection element, image sensor, and method for manufacturing semiconductor quantum dot | |
CN115066757A (en) | Semiconductor film, photodetector, image sensor, and method for manufacturing semiconductor film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22824864 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023529797 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22824864 Country of ref document: EP Kind code of ref document: A1 |