[go: up one dir, main page]

WO2022145433A1 - Method, program, and device for evaluating state of motor function - Google Patents

Method, program, and device for evaluating state of motor function Download PDF

Info

Publication number
WO2022145433A1
WO2022145433A1 PCT/JP2021/048662 JP2021048662W WO2022145433A1 WO 2022145433 A1 WO2022145433 A1 WO 2022145433A1 JP 2021048662 W JP2021048662 W JP 2021048662W WO 2022145433 A1 WO2022145433 A1 WO 2022145433A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
motor function
index value
physiological index
region
Prior art date
Application number
PCT/JP2021/048662
Other languages
French (fr)
Japanese (ja)
Inventor
真人 川堀
キンキン タ
Original Assignee
株式会社Rainbow
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Rainbow filed Critical 株式会社Rainbow
Priority to JP2022573090A priority Critical patent/JPWO2022145433A1/ja
Publication of WO2022145433A1 publication Critical patent/WO2022145433A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present disclosure relates to a method of assessing the state of motor function of a patient with or suspected of having a brain injury, as well as programs, image analyzers and MRI devices that can be used in the practice of such methods.
  • the present disclosure relates to a method for predicting motor function recovery after regenerative treatment in a patient with local brain injury.
  • the present disclosure relates to a method of utilizing a physiological index value with the white matter region on the injured hemisphere side of the brain as a region of interest, and a program, an image analysis device, and an MRI apparatus that can be used in carrying out the method.
  • Non-Patent Document 1 In cell therapy, the recovery condition of patients who actually received cells varies, so it is important to determine which patient is suitable for cell therapy before starting treatment.
  • the present disclosure provides a means for assessing the state of motor function of a patient with or suspected to have brain injury such as local brain injury.
  • the present disclosure specifically provides a means for determining whether such a patient is suitable for regenerative therapy, that is, whether the patient is expected to respond to the regenerative therapy prior to the start of treatment.
  • the present disclosure relates to a method of utilizing a physiological index value with the white matter region on the traumatic hemisphere side of the brain as a region of interest.
  • the present inventors have found that in a patient with a local brain injury, the state of motor function correlates with a parameter obtained from a diffusion-weighted image in which the white matter region on the damaged hemisphere side of the patient's brain is the region of interest.
  • the present disclosure provides: (Item 1) A step of obtaining one or more physiological index values with the white matter region on the hemispherical side of the brain injury of a patient having or suspected to have brain injury as the region of interest.
  • a method for evaluating the state of motor function of a patient which comprises a step of comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating the state of motor function of the patient.
  • the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method.
  • DTI diffusion tensor imaging
  • DIKI diffusion sharpness imaging
  • the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
  • the region of interest is set in the internal capsule hind leg of the brain.
  • the state of motor function is the state of motor function after regenerative treatment.
  • the control physiological index value is obtained by using the white matter region on the uninjured hemisphere side of the patient's brain as a region of interest.
  • the step of performing the calculation calculates a value represented by the physiological index value / the control physiological index value.
  • the calculated value indicating the state of the patient's motor function is substituted into a prepared regression line in which the value indicating the state of the patient's motor function and the degree of recovery of the motor function are variables.
  • the method according to any one of the above items which evaluates the state of motor function of the patient. (Item 9) By comparing the calculated value indicating the state of the patient's motor function with the reference value prepared in advance, the step of performing the calculation is expected to reach the desired degree of recovery of the motor function of the patient after the regenerative treatment.
  • a computer program that causes a computer to perform a process of assessing the state of motor function of the brain of a patient with or suspected of having a brain injury, wherein the method is the following step: A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
  • a program comprising a step of causing the computer to perform an operation for comparing the physiological index value with a control physiological index value and calculating a value indicating a state of motor function of the patient.
  • a computer program product that causes a computer to perform a process of assessing the state of motor function of the brain of a patient with or suspected of having a brain injury, wherein the method is the following step: A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
  • a program product comprising a step of causing the computer to perform an operation for comparing the physiological index value with a control physiological index value and calculating a value indicating a state of motor function of the patient.
  • (Item 10-2) The program or program product according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method.
  • DTI diffusion tensor imaging
  • DKI diffusion sharpness imaging
  • the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
  • (Item 10-4) The program or program product according to any one of the above items, wherein the region of interest is set in the internal capsule hind leg of the brain.
  • the state of motor function is the state of motor function after regenerative treatment.
  • control physiological index value is obtained in the white matter region on the uninjured hemisphere side of the patient's brain as a region of interest.
  • step for performing the calculation calculates a value represented by the physiological index value / the control physiological index value.
  • step for performing the calculation is to convert the calculated value indicating the state of the patient's motor function into a regression line prepared in advance with the value indicating the state of the patient's motor function and the degree of recovery of the motor function as variables.
  • the program or program product according to any one of the above items which evaluates the state of motor function of the patient by substitution.
  • the step of performing the calculation is expected to reach the desired degree of recovery of the motor function of the patient after the regenerative treatment.
  • the program or program product described in any one of the above items for calculating the height of. (Item 10B)
  • the recording medium according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method.
  • the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
  • the region of interest is set on the hind leg of the internal capsule of the brain.
  • the state of motor function is the state of motor function after regenerative treatment.
  • the step of performing the calculation calculates a value represented by the physiological index value / the control physiological index value.
  • the step for performing the calculation is to convert the calculated value indicating the state of the patient's motor function into a regression line prepared in advance with the value indicating the state of the patient's motor function and the degree of recovery of the motor function as variables.
  • the recording medium according to any one of the above items for calculating the height of the above item (Item 11A) The recording medium according to item 11, further comprising the features described in any one or more of items 1-9.
  • Item 12 A system that assesses the state of motor function in the brain of patients with or suspected of having brain injury. A means for obtaining a physiological index value with the white matter region on the traumatic hemisphere side of the patient's brain as the region of interest.
  • a system comprising a means for comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating a state of motor function of the patient.
  • the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method.
  • DTI diffusion tensor imaging
  • DIKI diffusion sharpness imaging
  • the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
  • the region of interest is set in the internal capsule hind leg of the brain.
  • (Item 12-5) The system according to any one of the above items, wherein the state of motor function is the state of motor function after regenerative treatment.
  • (Item 12-6) The system according to any one of the above items, wherein the control physiological index value is obtained in the white matter region on the uninjured hemisphere side of the patient's brain as a region of interest.
  • (Item 12-7) The system according to any one of the above items, wherein the means for performing the calculation calculates a value represented by the physiological index value / the control physiological index value.
  • the means for performing the calculation substitutes the calculated value indicating the state of the patient's motor function into a prepared regression line having the value indicating the state of the patient's motor function and the degree of recovery of the motor function as variables.
  • the system according to any one of the above items which evaluates the state of motor function of the patient.
  • the means for performing the calculation is expected to reach the desired degree of recovery of the motor function after the regenerative treatment.
  • the system according to any one of the above items for calculating high and low. (Item 12A) The system according to item 12, further comprising the features described in any one or more of items 1-9.
  • the image is characterized by comprising an arithmetic unit for performing an operation for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of the motor function of the patient.
  • Analytical device (Item 13-2) The image analysis apparatus according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor image (DTI) method or a diffusion sharpness image (DKI) method. (Item 13-3) The image analysis apparatus according to any one of the above items, wherein the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
  • MD mean diffusivity
  • AD axial diffusivity
  • (Item 13-4) The image analysis apparatus according to any one of the above items, wherein the region of interest is set on the hind leg of the internal capsule of the brain.
  • (Item 13-5) The image analysis apparatus according to any one of the above items, wherein the state of motor function is the state of motor function after regenerative treatment.
  • (Item 13-7) The image analysis apparatus according to any one of the above items, wherein the calculation unit calculates a value represented by the damaged hemisphere side physiological index value / the non-damaged hemisphere side physiological index value.
  • the calculation unit substitutes the calculated value indicating the state of the patient's motor function into a regression line prepared in advance in which the value indicating the state of the patient's motor function and the degree of recovery of the motor function are variables.
  • the image analysis apparatus according to any one of the above items, which evaluates the state of motor function of the patient.
  • the calculation unit determines whether the patient is likely to reach the desired degree of recovery of the motor function after the regenerative treatment.
  • the image analysis device according to any one of the above items to be calculated.
  • the image analysis apparatus according to item 13A The image analysis apparatus according to item 13, further comprising the features described in any one or more of items 1-9.
  • a nuclear magnetic resonance imaging unit that images the brain of a patient with or suspected of having a brain injury
  • An image generation unit that generates a diffusion-weighted image from the echo data acquired by the nuclear magnetic resonance imaging unit, In the diffusion-weighted image, a region of interest setting unit that sets the white matter region on the damaged hemisphere side as the first region of interest and the white matter region on the non-damaged hemisphere side as the second region of interest.
  • a physiological index value calculation unit that calculates a damaged hemispherical side physiological index value and an uninjured hemispherical side physiological index value in each of the first region of interest and the second region of interest.
  • the MRI is characterized by comprising a calculation unit for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of motor function of the patient.
  • Device (Item 14-2) The MRI apparatus according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method. (Item 14-3) The MRI apparatus according to any one of the above items, wherein the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
  • MD mean diffusivity
  • AD axial diffusivity
  • the MRI apparatus according to any one of the above items wherein the region of interest is set on the hind leg of the internal capsule of the brain.
  • the state of motor function is the state of motor function after regenerative treatment.
  • the calculation unit calculates a value represented by the damaged hemisphere side physiological index value / the non-damaged hemisphere side physiological index value.
  • the calculation unit substitutes the calculated value indicating the state of the patient's motor function into a regression line prepared in advance in which the value indicating the state of the patient's motor function and the degree of recovery of the motor function are variables.
  • the MRI apparatus according to any one of the above items, which evaluates the state of motor function of the patient.
  • the calculation unit determines whether the patient is likely to reach the desired degree of recovery of the motor function after the regenerative treatment.
  • the MRI apparatus according to any one of the above items to be calculated.
  • the MRI apparatus according to item 14A The MRI apparatus according to item 14, further comprising the features described in any one or more of items 1-9.
  • the present disclosure it is possible to evaluate the state of motor function of a patient who has or is suspected to have brain damage such as local brain damage, and thereby predicts the recovery of motor function of the patient after regenerative treatment. In addition, it can be determined whether the patient is suitable for regenerative treatment before the start of treatment.
  • FIG. 1 is a block diagram showing an overall configuration of an MRI apparatus according to one embodiment of the present disclosure.
  • FIG. 2 is a functional block diagram showing the configurations of a storage unit, a calculation unit, an input unit, and an output unit in the MRI apparatus according to one embodiment of the present disclosure.
  • FIG. 3 is a flowchart showing each step in the prediction method according to one embodiment of the present disclosure.
  • FIG. 4 is a flowchart showing the details of the calculation steps in the prediction method according to one embodiment of the present disclosure.
  • FIG. 5 is a flowchart showing the details of the calculation steps in the prediction method according to one embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a procedure of image processing by DKI in one embodiment of the present disclosure.
  • FIG. 7 is a graph showing the correlation between the AD ratio (lesion / healthy) of the inner capsule hind leg on the lesion side and the healthy side and the change in BI by DKI in one embodiment of the present disclosure.
  • FIG. 8 is a graph showing the correlation between the MD ratio (lesion / healthy) of the internal capsule hind leg on the lesion side and the healthy side and the change in BI by DKI in one embodiment of the present disclosure.
  • FIG. 9A is a photograph showing a case of cerebral infarction in the left cerebral hemisphere with a poor degree of functional recovery. It can be seen that the AD and MD of the hind leg of the left internal capsule are lower than those of the right side.
  • FIG. 9B is a photograph showing a case of cerebral infarction in the left cerebral hemisphere with a large degree of functional recovery. It can be seen that the laterality between AD and MD of the hind legs of the internal capsule is small.
  • the "white matter region” refers to a region in which nerve fibers are mainly accumulated and running in the central nervous system consisting of the brain and spinal cord. It is deep in the cerebrum and cerebellum and occupies the superficial layer in the spinal cord.
  • the white matter region includes an internal capsule anterior leg, an internal capsule posterior leg, an internal capsule knee, a brain bridge, a centrum semiovale, an anterior spinal cord, a lateral spinal cord, a posterior spinal cord, and the like.
  • the term "internal capsule hind leg” refers to the site of the internal capsule, which is an aggregate of nerve fibers, through which the fibers connecting the pyramidal tract, temporal lobe, parietal lobe, and occipital lobe run. It exists in the space between the thalamus and the lenticular nucleus.
  • the hind leg of the internal capsule consists of a group of fibers running in a nearly vertical direction. There is a corticospinal fiber in front of it, and the corticospinal tract runs outside the corticospinal fiber.
  • the "physiological index value” refers to an index value obtained by diffusion-weighted images of the brain such as a diffusion tensor image (DTI) and a diffusion-weighted image (DKI), and refers to MK (mean kurtosis), AK (mean kurtosis), and AK (mean kurtosis).
  • DTI diffusion tensor image
  • DKI diffusion-weighted image
  • MK mean kurtosis
  • AK mean kurtosis
  • AK mean kurtosis
  • AK mean kurtosis
  • AK mean kurtosis
  • AK mean kurtosis
  • axial kurtosis axial kurtosis
  • RK radial kurtosis
  • FA fractional anisotropy
  • KFA kurtosis fractional anisotropy
  • MD mean diffusivity
  • AD axial diffusivity
  • RD radial diffusivity
  • the MD value is a value obtained by averaging three eigenvalues ( ⁇ 1 to ⁇ 3 ) for expressing ADC, which is an index indicating the magnitude of diffusion itself, and the AD value is the eigenvalue of the eigenvalue. Refers to the value of ⁇ 1 of them.
  • the "state of motor function” refers to the state of motor function comprehensively controlled by the function of the brain
  • the “evaluation of the state of motor function” refers to the current state of the brain of the subject. Or, after treatment, it includes evaluating or predicting whether motor function is normal or partially or completely paralyzed. For example, “evaluation of the state of motor function” includes prediction of recovery of brain function that controls movement by regenerative therapy or the like.
  • a method of assessing the state of motor function of the patient including a step of comparing with the value and performing an operation to calculate a value indicating the state of motor function of the patient.
  • the physiological index value can be obtained from an image of the patient's brain obtained by the diffusion tensor imaging (DTI) method or the diffusion kurtosis imaging (DKI) method.
  • DTI diffusion tensor imaging
  • DKI diffusion kurtosis imaging
  • a region of interest (ROI) created by tracing an anatomical structure is set, and physiological index values such as FA and MD values in the region of interest are measured to measure the corticospinal cord. You can track the road.
  • the DKI method can be used as a quantitative image index without depending on the measurer.
  • the DTI method assumes that the diffusion of water molecules is a normal distribution, it is known that the diffusion of water molecules in a living body does not show a normal distribution. Therefore, a diffusion image method that does not assume a normal distribution, such as the DKI method, can more accurately reflect the diffusion of water molecules in a living body. Therefore, in one embodiment of the present disclosure, according to the DKI method, it is possible to obtain a diffused image index that can predict the cell administration therapeutic effect in a cerebral infarction patient with high accuracy and without depending on the experience of the measurer. ..
  • the physiologic index value obtained from the diffusion-weighted image of the patient's brain obtained by the diffusion tensor imaging (DTI) method or diffusion sharpness imaging (DKI) method as described above is the diffusion of water molecules in the tissue.
  • the index is not particularly limited as long as it is an index obtained by a diffusion-weighted image that images the direction and speed as parameters, and for example, MK (mean kurtosis), AK (axial kurtosis), RK (radial kurtosis), FA ( Diffusion indices such as fractional anisotropy), KFA (kurtosis fractional anisotropy), MD (mean diffusivity), AD (axial diffusivity), and RD (radial diffusivity) can be used.
  • these diffusion indices may be used alone or in combination of two or more.
  • the ROI in DTI or DKI may be set anywhere in the white matter region of the brain, and is not particularly limited.
  • the ROI is preferably set on the hind limb of the internal capsule.
  • the state of motor function can be evaluated or the prognosis after treatment can be predicted by the value obtained by placing the ROI on the hind limb of the internal capsule by the method of the present disclosure. Is a remarkable effect of this disclosure.
  • the state of motor function of the subject is based on the physiological index values obtained from the image of the patient's brain obtained by the diffusion tensor imaging (DTI) method or the diffusion metric imaging (DKI) method as described above.
  • This motor function may be current or post-treatment, and the recovery state of motor function after regenerative treatment can also be predicted.
  • the physiological index value obtained when the ROI is placed on the injured hemisphere side of the brain and the ROI obtained when the ROI is placed on the uninjured hemisphere side of the brain can be performed by comparing with a physiological index value (referred to as a control physiological index value), and preferably by calculating a value represented by a physiological index value / a control physiological index value.
  • a physiological index value referred to as a control physiological index value
  • the evaluation of the state of motor function is a regression in which the value represented by the physiological index value / control physiological index value is a value indicating the state of motor function of a patient and the degree of recovery of motor function as variables. It can also be done by substituting into a straight line. In another embodiment, the possibility is shown by comparing the value represented by the physiological index value / control physiological index value with the reference value indicating the probability that the patient will reach the desired degree of motor function recovery after regenerative treatment. You can also.
  • the method of the present disclosure it is possible to evaluate the motor function state of the subject, and it is possible to evaluate the motor function state after the regenerative treatment, that is, whether or not the motor function is restored by the regenerative treatment. Since it can be predicted, it becomes possible to determine which patient is suitable for cell therapy before the start of treatment, and it is also possible to select a patient having a high therapeutic effect.
  • the present disclosure also provides a computer program for causing a computer to execute the above method, a recording medium for storing the program, and a system for executing the above method.
  • it is a computer program that causes a computer to execute a process of a method of evaluating the state of motor function of the brain of a patient having or suspected to have brain damage, wherein the method is the following step: A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
  • a program is provided that includes a step of causing the computer to perform an operation for comparing the physiological index value with a control physiological index value and calculating a value indicating the state of motor function of the patient.
  • a recording medium containing a computer program that causes a computer to perform a process of assessing the state of motor function of the brain of a patient with or suspected of having brain damage, said method.
  • the computer is provided with a recording medium comprising a step of comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating a state of motor function of the patient.
  • a system for assessing the state of motor function of the brain of a patient with or suspected of having brain injury in another aspect of the present disclosure A means for obtaining a physiological index value with the white matter region on the traumatic hemisphere side of the patient's brain as the region of interest.
  • a system is provided that includes a means of comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating a state of motor function of the patient.
  • an image analysis device and an MRI device that can be used in carrying out a method for evaluating the state of motor function of a patient having or suspected to have such a brain injury. ..
  • the white matter region on the injured hemisphere side is the first region of interest and the white matter region on the non-injured hemisphere side is the first.
  • the area of interest setting unit to be set as the area of interest
  • a physiological index value calculation unit that calculates a damaged hemispherical side physiological index value and an uninjured hemispherical side physiological index value in each of the first region of interest and the second region of interest.
  • the image is characterized by comprising an arithmetic unit for performing an operation for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of the motor function of the patient.
  • An analyzer is provided.
  • a nuclear magnetic resonance imaging unit that images the brain of a patient who has or is suspected of having a brain injury.
  • An image generation unit that generates a diffusion-weighted image from the echo data acquired by the nuclear magnetic resonance imaging unit, In the diffusion-weighted image, a region of interest setting unit that sets the white matter region on the damaged hemisphere side as the first region of interest and the white matter region on the non-damaged hemisphere side as the second region of interest.
  • a physiological index value calculation unit that calculates a damaged hemispherical side physiological index value and an uninjured hemispherical side physiological index value in each of the first region of interest and the second region of interest.
  • the MRI is characterized by comprising a calculation unit for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of motor function of the patient.
  • Equipment is provided.
  • the same configuration as the image analysis device and the MRI device described in detail in other parts of the present specification can be provided.
  • aspects of the disclosure relate to methods of predicting motor function recovery after regenerative treatment in patients with local brain injury, as well as programs, image analyzers and MRI devices that can be used in the practice of such methods.
  • FIGS. 1 to 5 An exemplary embodiment of a method for predicting motor function recovery after regenerative treatment in a patient with local brain injury and an MRI apparatus that can be used in carrying out the method will be described with reference to FIGS. 1 to 5.
  • FIG. 1 shows a block diagram showing an overall configuration of an MRI apparatus according to an embodiment of the present disclosure.
  • the MRI apparatus 1 has a nuclear magnetic resonance imaging unit 10 and a computer 20.
  • the nuclear magnetic resonance imaging unit 10 is an imaging unit used in any known MRI apparatus capable of acquiring echo data necessary for diffusion-weighted images such as DTI and DKI.
  • the nuclear magnetic resonance imaging unit 10 has a sleeper unit; a magnet mount unit including a static magnetic field magnet, a gradient magnetic field coil, and an RF coil; and a sequence control unit.
  • the bed portion on which the patient is placed is inserted into the opening portion of the magnet mount portion.
  • the static magnetic field magnet of the magnet mount generates a static magnetic field, and the gradient magnetic field coil also applies a gradient magnetic field.
  • the transmitting RF coil then generates a high frequency magnetic field, which causes the receiving RF coil to receive the echo signal emitted by the patient.
  • the received echo signal is digitized and transmitted as echo data to the sequence control unit.
  • the sequence control unit controls imaging based on the sequence information transmitted from the computer 20, and also transfers the received echo data to the computer 20.
  • the computer 20 is a device that controls the nuclear magnetic resonance imaging unit 10, collects data, reconstructs an image, and analyzes an image.
  • the computer 20 includes an interface unit 21, an input unit 22, a storage unit 23, a calculation unit 24, and an output unit. It has 25 and a control unit 26.
  • the interface unit 21 controls the input / output of various data such as echo data exchanged with the sequence control unit of the nuclear magnetic resonance imaging unit 10.
  • the interface unit 21 transmits sequence information for controlling the nuclear magnetic resonance imaging unit 10 to the sequence control unit.
  • the interface unit 21 also receives echo data from the sequence control unit and stores it in the storage unit 23.
  • the input unit 22 is a device such as a keyboard, mouse, button, switch, etc., and inputs a signal corresponding to the operation of the operator for these devices.
  • the storage unit 23 includes a storage medium such as a hard disk, a flash memory, RAM, and a ROM, and a reading device for reading the information stored in the storage medium.
  • the storage unit 23 includes echo data transmitted from the sequence control unit, various MRI image data generated from the echo data, reference information for evaluating the state of motor function of the patient, a program for image generation and analysis, and a program for image generation and analysis. It stores a program for controlling each functional unit of the MRI apparatus 1 executed by the control unit 26, various setting information, and the like.
  • the arithmetic unit 24 is composed of hardware such as a CPU.
  • the calculation unit 24 reads the program stored in the storage unit 23, reconstructs an image from the echo data stored in the storage unit 23, and generates an image such as DTI or DKI from the reconstructed image.
  • the calculation unit 24 also analyzes images such as DTI and DKI of the patient's brain stored in the storage unit 23, and performs calculations for evaluating the state of the patient's motor function.
  • the output unit 25 connects various information such as an MRI image generated by the calculation unit 24 and a value for evaluating the state of the motor function obtained by performing the calculation to the outside of the computer 20, typically the output unit 25. Output to the displayed display.
  • the control unit 26 is connected to each functional unit constituting the MRI device 1, reads a program stored in the storage unit 23, and controls these operations. For example, the control unit 26 generates sequence information from the imaging conditions set by the operator and transmits the sequence information to the sequence control unit to control the imaging of the nuclear magnetic resonance imaging unit 10.
  • the imaging conditions are set values of various imaging parameters such as b value, TR, TE, NEX, voxel size, number of slices, diffusion gradient direction, and those skilled in the art are suitable for acquiring images such as DTI and DKI. These values can be set as appropriate.
  • FIG. 2 is a functional block diagram showing the configurations of a storage unit, a calculation unit, an input unit, and an output unit in one embodiment of the present disclosure.
  • the storage unit 23 includes an echo data storage unit 231, a reconstructed image storage unit 232, a DTI / DKI image storage unit 233, and a reference information storage unit 234. Further, the calculation unit 24 has an image generation unit 241 and an image analysis unit 242.
  • the image generation unit 241 has an image reconstruction unit 241a and a DTI / DKI image generation unit 241b
  • the image analysis unit 242 includes a region of interest setting unit 242a, a physiological index value calculation unit 242b, and a physiological index value comparison unit 242c. It has a motor function state evaluation calculation unit 242d.
  • the function of the image generation unit 241 that generates images such as DTI and DKI from echo data will be described.
  • the echo data storage unit 231 stores echo data transmitted from the sequence control unit for each patient.
  • the image reconstruction unit 241a generates a reconstruction image such as a diffusion-weighted image (DWI image) by performing a reconstruction process such as a Fourier transform on the echo data stored by the echo data storage unit 231.
  • the reconstructed image storage unit 232 stores the generated reconstructed image.
  • the DTI / DKI image generation unit 241b analyzes the generated reconstructed image such as DTI and DKI, and generates a DTI / DKI image.
  • the diffusion coefficients D xx , D xy , D xz , D yy , D yz , and D zz which are the components of the diffusion tensor D represented by the 3 ⁇ 3 symmetric matrix of Equation 1, are obtained.
  • the eigenvalues ( ⁇ 1 , ⁇ 2 , ⁇ 3 ) shown in Equation 2 are calculated.
  • D xx , D yy and D zz are mass diffusivity when a gradient magnetic field is applied in the x-axis direction, y-axis direction and z-axis direction of the MRI apparatus coordinate system, respectively.
  • ADC apparent diffusion coefficient, apparent diffusion coefficient
  • FA fractional anisotropy, anisotropy
  • the DTI / DKI image generation unit 241b By mapping these parameters, the DTI / DKI image generation unit 241b generates images such as DTI and DKI such as ⁇ 1 map, ⁇ 2 map, ⁇ 3 map, ADC map or FA map.
  • the DTI / DKI image storage unit 233 stores the generated images such as DTI and DKI.
  • FIG. 3 is a flowchart showing each step in the prediction method according to the embodiment of the present disclosure carried out by using each of the functional units
  • FIGS. 4 and 5 are flowcharts showing the details of the calculation steps in the prediction method. Is.
  • the region of interest setting unit 242a sets the first region of interest (ROI-1) at a position corresponding to the white matter region on the damaged hemisphere side, for example, on the DTI image stored in the DTI / DKI image storage unit 233, for example, the FA map.
  • a second region of interest (ROI-2) is set at a position corresponding to the white matter region on the undamaged hemisphere side (step S10).
  • the ROI may be set manually based on the anatomical position, superimposed on other medical images, or automatically based on the functionality of known image analysis software. good. When setting the ROI manually, the operation of setting the ROI by the operator is accepted via the input unit 22.
  • the physiological index value calculation unit 242b calculates the damaged hemispherical side physiological index value and the non-damaged hemispherical side physiological index value, which are the physiological index values of ROI-1 and ROI-2, respectively (step S11).
  • the injured hemisphere side physiological index value and the uninjured hemisphere side physiological index value are the average values of the physiological index values of all voxels contained in each of ROI-1 and ROI-2.
  • the physiological index value comparison unit 242c calculates a value represented by an injured hemisphere side physiological index value / an uninjured hemispherical side physiological index value (step S12).
  • the motor function state evaluation calculation unit 242d performs a calculation for predicting the recovery of the motor function of the patient after regenerative treatment, for example, based on the value calculated by the physiological index value comparison unit 242c (step S13), and the calculation result. Is output to the output unit 25 (step S14).
  • the calculation for evaluating the motor function state is performed based on the reference information stored in the reference information storage unit 234 in addition to the calculated value.
  • the reference information is a pre-prepared value represented by the injured hemispherical / uninjured hemispherical physiologic value of a patient who has or is suspected of having brain damage prior to regenerative therapy. It is a regression line with the variable of the degree of recovery of motor function of the same patient after treatment.
  • the degree of motor function recovery is the recovery of motor function by treatment, which is evaluated using a known evaluation method capable of evaluating motor function, for example, Bathel Index (BI) or Fugl-Meyer Assessment (FMA). It can be expressed as the difference between the pre-treatment score and the post-treatment score in the same patient.
  • the reference information is a reference value prepared in advance.
  • Reference values are for patients with or suspected of having or suspected to have the desired degree of motor recovery after regenerative treatment and with or with brain damage expected to not achieve the desired degree of motor recovery. It is a cut-off value for distinguishing from a suspected patient.
  • the degree of motor function recovery after regenerative treatment is the injured hemisphere side physiological index value / non-injured hemisphere side physiological index value before treatment. We have found that it correlates with the value represented by. Therefore, by referring to the values calculated from the DTI and DKI images of the pre-treatment brain of the patients who have already received the regenerative treatment and the degree of recovery of motor function after the treatment, the treatment of the patients who are going to receive the regenerative treatment from now on. Later recovery of motor function can be predicted, and whether the patient is expected to be adaptable to regenerative therapy, that is, whether regenerative therapy is expected to be successful.
  • a regression line in which the value calculated from the DTI and DKI images of the pretreatment brain of a patient who has already undergone regenerative treatment and the degree of motor function recovery after the treatment are used as variables is prepared in advance and regenerated.
  • the predicted value of the degree of motor function recovery after regenerative treatment of the test patient is calculated. Can be done (steps S130a, S130b).
  • Pre-treatment injured hemisphere-side physiological index value / non-injured hemispherical-side physiological index value corresponding to the desired degree of recovery of motor function is determined in advance as a reference value, and the test patient who is going to receive regenerative treatment from now on.
  • the reference value can be appropriately set according to the target degree of recovery of motor function.
  • the reference information such as the regression line and the reference value is obtained from a patient having the same kind of disease as the patient who is the prediction target of the recovery of motor function after the regenerative treatment.
  • the reference information includes the value calculated from the pretreatment brain DTI and DKI images of the cerebral infarction patient who received the regenerative treatment and the degree of motor function recovery after the treatment. It is preferable that it is prepared by using.
  • the reference information is also preferably obtained from a patient who has received the same type of treatment as the treatment to be indicated.
  • the treatment is administration of bone marrow mesenchymal stem cells (BMSC)
  • the reference information is the value calculated from the pretreatment brain DTI and DKI images of the patient who received the BMSC and the recovery of motor function after the treatment. It is preferable that it is prepared by using the degree.
  • the above is a description of a method for evaluating the state of motor function of a patient having or suspected of having a brain injury and an exemplary embodiment of an MRI apparatus that can be used in the practice of the method.
  • An exemplary embodiment of the image analysis apparatus according to the present disclosure that can be used in the implementation of the above method is an apparatus having an image analysis unit 242 of the MRI apparatus 1, the details thereof are as described in the above description. ..
  • the program according to the present disclosure that can be used in the implementation of the method is a program for causing a computer to execute each step of the method, and the details thereof are as described in the above description.
  • the computer-readable storage medium that stores the program can be any storage medium such as a hard disk, flash memory, CD, or DVD.
  • the present disclosure it is possible to evaluate the state of motor function of a patient, and thereby, for example, it is possible to predict the recovery of motor function after treatment of a patient who is going to receive regenerative treatment. Also, according to the present disclosure, it is possible to evaluate whether a patient is expected to be adaptable to regenerative therapy, that is, whether the regenerative therapy is expected to be successful. Accordingly, the methods and programs according to the present disclosure can also be expressed as methods and programs for assessing a patient's adaptability to regenerative therapy, and methods and programs that assist in assessing a patient's adaptability to regenerative therapy. The same applies to other aspects of the present disclosure.
  • brain injury means that some kind of damage occurs in the brain, and includes damage to blood vessels in the brain.
  • the cause of the injury is not particularly limited, and for example, "brain injury” includes traumatic brain injury, stroke, cerebral infarction, oxygen-deficient brain injury, brain tumor encephalitis, etc., and can also include local brain injury.
  • local brain damage refers to a state in which local damage to the brain occurs
  • patient with local brain damage refers to a patient having local damage to the brain.
  • local brain injury include cerebral infarction, head trauma and cerebral hemorrhage.
  • the patient having a local brain injury is not limited as long as the patient has a local brain injury and the motor function is impaired, and the patient has an acute phase, a subacute phase, and a chronic phase. It may be a patient at any time.
  • regenerative treatment for a patient with local brain injury refers to the patient's injured nervous system cells using cells of the patient (autologous) or others (allogeneic) or their secretions. It means treatment to regenerate and recover various dysfunctions associated with injury.
  • the cells that can be used for regenerative treatment of patients with brain injury or local brain injury may be cells capable of differentiating into neural cells, and examples thereof include mesenchymal stem cells and neural stem cells.
  • Pluripotent stem cells such as pluripotent stem cells, artificial pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), embryonic tumor cells (EC cells) and embryonic reproductive stem cells (EG cells).
  • iPS cells artificial pluripotent stem cells
  • ES cells embryonic stem cells
  • EC cells embryonic tumor cells
  • EG cells embryonic reproductive stem cells
  • cells preferably used for treatment are mesenchymal stem cells, particularly bone marrow mesenchymal stem cells (BMSC, also referred to as bone marrow stem cells).
  • BMSC bone marrow mesenchymal stem cells
  • the cells exemplified above are the patient's own nerves due to transdifferentiation of the transplanted cells themselves into nervous system cells and due to cytokines, nutritional factors, exosomes, etc. contained in the secretions from the transplanted cells. It is thought to bring about a therapeutic effect by activating stem cells and promoting nerve repair (nursing effect).
  • cell secretions exemplified above such as cell-derived exosomes, cell culture supernatants, etc., can also be used for the treatment in the present disclosure.
  • the above cells and their secretions can be prepared by a known method using a biological sample isolated from the patient himself or others.
  • the pluripotent stem cell may be obtained by inducing differentiation of the pluripotent stem cell.
  • the doses and routes of administration of the cells and their secretions are appropriately set by those skilled in the art with reference to known dosing regimens relating thereto.
  • 10 4 to 10 9 cells preferably 10 5 to 10 8 cells per 1 kg of patient body weight by systemic administration such as intravenous administration or intraarterial administration, are locally administered such as direct intracerebral administration or intrathecal administration.
  • 10 2 to 10 9 cells preferably 10 4 to 10 6 cells per kg of patient body weight may be administered to the patient in one or multiple doses.
  • Example 1 Evaluation of the state of motor function by DTI
  • Target patients Patients in the acute stage of cerebral infarction (early onset) who are 20 years old or older and under 80 years old at the time of consent acquisition; within 14 days after the onset of cerebral infarction at the time of consent acquisition; Cerebral infarction occurring in the perforated area of the carotid artery; mRS before the onset of cerebral infarction is 0 or 1.
  • NIHSS “5. Exercise of upper limbs" and "6.
  • the scores of each motor function index such as BI in the subacute phase (10 to 50 days after the onset of cerebral infarction, hereinafter referred to as the subacute phase) when the acute phase treatment is almost completed are given.
  • Patients who did not reach 12 months were 6 months, and ⁇ BI, ⁇ mRS, ⁇ NIHSS, and ⁇ FIM, which were subtracted from the scores of the same type of motor function index (hereinafter referred to as chronic phase), were defined as the degree of motor function recovery.
  • DTI / DKI imaging For each patient, DTI / DKI images of the brain were taken at the time corresponding to the subacute phase and the chronic phase.
  • DTI / DKI images of the brain were taken at the time corresponding to the subacute phase and the chronic phase.
  • Table 1 shows the results of evaluating the correlation between BI, mRS, NIHSS, or FIM and motor function by DTI. From this result, a correlation was found between the ADC value and the improvement of motor function when the ROI was placed only on the hind leg of the internal capsule (the ADC value of the ROI of the hind leg of the internal capsule 14 days after the onset and the degree of improvement in BI).
  • Example 2 Evaluation of the state of motor function by DKI
  • the diffuse kurtosis (DKI) method was used to obtain a highly accurate and predictable index of diffuse images without depending on the experience of the measurer, etc., for the effect of cell administration therapy in patients with cerebral infarction.
  • a map of the main exponents by the diffusion kurtosis image (DKI) method was created, converted into a standard brain, and then the values of the internal capsule hind legs on both sides were measured.
  • Image analysis was performed in the same manner as in "(5) Image analysis" above.
  • Table 2 shows the correlation between the diffusion image data before cell administration by DKI and the degree of functional recovery.
  • a positive correlation was shown (FIGS. 7 and 8 respectively).
  • the degree of decrease in AD or MD associated with cerebral infarction seems to reflect functional recovery. From FIGS. 7 and 8, it was found that the AD and MD ratios of the internal capsule hind legs on the lesion side and the healthy side should be 0.83 or 1.01 or more, respectively, in order to obtain a change in BI of 30% or more.
  • the left-right differences between AD and MD in cases with different degrees of functional recovery are shown in FIGS. 9A and 9B.
  • Example 3 Example of program product
  • a program product a product capable of photographing and analyzing (4) and (5) of Example 1 is prepared.
  • the program of the present disclosure can be provided as a program product that stores a command code that can be read by a device, using the program described in the first or second embodiment as a memory.
  • the image processing of the present disclosure and its application are carried out.
  • a storage medium hard disk, optical disk, magnetic optical disk, memory card, memory stick, etc.
  • a DTI / DKI image of the brain is taken for a patient who has or is suspected of having brain damage, and diffused image data of the patient is calculated.
  • the ratio of the DTI / DKI index (lesion / healthy) on the lesion side and the healthy side is calculated, and the change in the numerical value indicating the degree of functional recovery is calculated.
  • This disclosure is useful in industries such as treatment and diagnosis of central nervous system diseases.
  • the present disclosure can be used in fields such as regenerative medicine and development of cell medicine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

The present disclosure provides a means for evaluating a state of a motor function of a patient who has or is suspected of having brain damage such as local brain damage. The present disclosure relates to: a method for evaluating a state of a motor function of a patient who has or is suspected of having brain damage by using parameters obtained from a diffusion weighted image of the patient's brain; a program for executing the method in a computer; and an image processing device and an MRI device which can be used in practicing the method. According to the present disclosure, the motor function state of a patient who has or is suspected of having brain damage can be evaluated, and it is also possible to predict the recovery of the motor function after regeneration treatment. Accordingly, whether the patient is suitable for the regeneration treatment can be determined before the start of the treatment.

Description

運動機能の状態を評価するための方法、プログラム及び装置Methods, programs and devices for assessing the state of motor function
 本開示は、脳損傷を有するまたは有すると疑われる患者の運動機能の状態を評価する方法、並びに当該方法の実施において用いることができるプログラム、画像解析装置及びMRI装置に関する。特に本開示は脳局所損傷を有する患者の再生治療後の運動機能回復を予測する方法に関する。詳細には、本開示は、脳の損傷半球側の白質領域を関心領域とした生理指標値を利用する方法、並びに当該方法の実施において用いることができるプログラム、画像解析装置及びMRI装置に関する。 The present disclosure relates to a method of assessing the state of motor function of a patient with or suspected of having a brain injury, as well as programs, image analyzers and MRI devices that can be used in the practice of such methods. In particular, the present disclosure relates to a method for predicting motor function recovery after regenerative treatment in a patient with local brain injury. In particular, the present disclosure relates to a method of utilizing a physiological index value with the white matter region on the injured hemisphere side of the brain as a region of interest, and a program, an image analysis device, and an MRI apparatus that can be used in carrying out the method.
 近年、中枢神経疾患(脳梗塞、脳出血、頭部外傷、パーキンソン病等)に対する新たな治療法として再生医療が注目されており、複数の細胞医薬の開発が進められている。特に、脳内に細胞を直接送り込む直接移植による治療は、脳血液関門によるブロックを避けることができるため、より多くの細胞を脳内に送り込むことができると考えられる。 In recent years, regenerative medicine has been attracting attention as a new treatment method for central nervous system diseases (cerebral infarction, cerebral hemorrhage, head injury, Parkinson's disease, etc.), and development of multiple cell medicines is underway. In particular, treatment by direct transplantation, which directly sends cells into the brain, can avoid blocking by the blood-brain barrier, and thus it is considered that more cells can be sent into the brain.
 細胞治療においては、実際に細胞を投与した患者の回復具合は様々であるため、どの患者が細胞治療に適しているかを治療開始前に判定することは重要である(非特許文献1)。 In cell therapy, the recovery condition of patients who actually received cells varies, so it is important to determine which patient is suitable for cell therapy before starting treatment (Non-Patent Document 1).
 本開示は、脳局所損傷などの脳損傷を有するまたは有すると疑われる患者の運動機能の状態を評価する手段を提供する。本開示は特に、そのような患者が再生治療に適しているか、すなわち当該患者は再生治療の奏功が期待できるかを治療開始前に判定するための手段を提供する。詳細には、本開示は、脳の損傷半球側の白質領域を関心領域とした生理指標値を利用する方法に関する。 The present disclosure provides a means for assessing the state of motor function of a patient with or suspected to have brain injury such as local brain injury. The present disclosure specifically provides a means for determining whether such a patient is suitable for regenerative therapy, that is, whether the patient is expected to respond to the regenerative therapy prior to the start of treatment. In particular, the present disclosure relates to a method of utilizing a physiological index value with the white matter region on the traumatic hemisphere side of the brain as a region of interest.
 本発明者らは、脳局所損傷を有する患者において、運動機能の状態が、患者の脳の損傷半球側の白質領域を関心領域とした拡散強調画像から得られるパラメータと相関することを見出した。 The present inventors have found that in a patient with a local brain injury, the state of motor function correlates with a parameter obtained from a diffusion-weighted image in which the white matter region on the damaged hemisphere side of the patient's brain is the region of interest.
 したがって、本開示は以下を提供する。
(項目1)
 脳損傷を有するまたは有すると疑われる患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を1または複数得るステップと、
 前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行うステップと
を含む、前記患者の運動機能の状態を評価する方法。
(項目2)
 前記生理指標値が、拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる前記患者の脳の拡散強調画像から得られる、上記項目に記載の方法。
(項目3)
 前記生理指標値が、MD(mean diffusivity)値およびAD(axial diffusivity)値を含む、上記項目のいずれか一項に記載の方法。
(項目4)
 前記関心領域が脳の内包後脚に設定される、上記項目のいずれか一項に記載の方法。
(項目5)
 前記運動機能の状態が、再生治療後の運動機能の状態である、上記項目のいずれか一項に記載の方法。
(項目6)
 前記対照生理指標値が、前記患者の脳の非損傷半球側の白質領域を関心領域として得られる、上記項目のいずれか一項に記載の方法。
(項目7)
 前記演算を行うステップが、前記生理指標値/前記対照生理指標値で表される値を算出する、上記項目のいずれか一項に記載の方法。
(項目8)
 前記演算を行うステップが、算出された前記患者の運動機能の状態を示す値を、予め用意された、患者の運動機能の状態を示す値と運動機能回復度とを変数とする回帰直線に代入することで、前記患者の運動機能の状態を評価する、上記項目のいずれか一項に記載の方法。
(項目9)
 前記演算を行うステップが、算出された前記患者の運動機能の状態を示す値を、予め用意された基準値と比較することで、前記患者が再生治療後に所望の運動機能回復度に達する見込みの高低を算出する、上記項目のいずれか一項に記載の方法。
(項目10)
 脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価する方法の処理をコンピュータに実行させるコンピュータプログラムであって、前記方法は以下の工程:
 前記コンピュータに、前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得させるステップと、
 前記コンピュータに、前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行わせるステップと
を含む、プログラム。
(項目10A)
 脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価する方法の処理をコンピュータに実行させるコンピュータプログラム製品であって、前記方法は以下の工程:
 前記コンピュータに、前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得させるステップと、
 前記コンピュータに、前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行わせるステップと
を含む、プログラム製品。
(項目10-2)
 前記生理指標値が、拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる前記患者の脳の拡散強調画像から得られる、上記項目に記載のプログラムまたはプログラム製品。
(項目10-3)
 前記生理指標値が、MD(mean diffusivity)値およびAD(axial diffusivity)値を含む、上記項目のいずれか一項に記載のプログラムまたはプログラム製品。
(項目10-4)
 前記関心領域が脳の内包後脚に設定される、上記項目のいずれか一項に記載のプログラムまたはプログラム製品。
(項目10-5)
 前記運動機能の状態が、再生治療後の運動機能の状態である、上記項目のいずれか一項に記載のプログラムまたはプログラム製品。
(項目10-6)
 前記対照生理指標値が、前記患者の脳の非損傷半球側の白質領域を関心領域として得られる、上記項目のいずれか一項に記載のプログラムまたはプログラム製品。
(項目10-7)
 前記演算を行わせるステップが、前記生理指標値/前記対照生理指標値で表される値を算出する、上記項目のいずれか一項に記載のプログラムまたはプログラム製品。
(項目10-8)
 前記演算を行わせるステップが、算出された前記患者の運動機能の状態を示す値を、予め用意された、患者の運動機能の状態を示す値と運動機能回復度とを変数とする回帰直線に代入することで、前記患者の運動機能の状態を評価する、上記項目のいずれか一項に記載のプログラムまたはプログラム製品。
(項目10-9)
 前記演算を行わせるステップが、算出された前記患者の運動機能の状態を示す値を、予め用意された基準値と比較することで、前記患者が再生治療後に所望の運動機能回復度に達する見込みの高低を算出する、上記項目のいずれか一項に記載のプログラムまたはプログラム製品。
(項目10B)項目1~9のいずれかまたは複数に記載される特徴をさらに含む、項目10に記載のプログラムまたは項目10Aに記載のプログラム製品。
(項目11)
 脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価する方法の処理をコンピュータに実行させるコンピュータプログラムを格納する記録媒体であって、前記方法は以下の工程:
 前記コンピュータに、前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得させるステップと、
 前記コンピュータに、前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行わせるステップと
を含む、記録媒体。
(項目11-2)
 前記生理指標値が、拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる前記患者の脳の拡散強調画像から得られる、上記項目に記載の記録媒体。
(項目11-3)
 前記生理指標値が、MD(mean diffusivity)値およびAD(axial diffusivity)値を含む、上記項目のいずれか一項に記載の記録媒体。
(項目11-4)
 前記関心領域が脳の内包後脚に設定される、上記項目のいずれか一項に記載の記録媒体。
(項目11-5)
 前記運動機能の状態が、再生治療後の運動機能の状態である、上記項目のいずれか一項に記載の記録媒体。
(項目11-6)
 前記対照生理指標値が、前記患者の脳の非損傷半球側の白質領域を関心領域として得られる、上記項目のいずれか一項に記載の記録媒体。
(項目11-7)
 前記演算を行わせるステップが、前記生理指標値/前記対照生理指標値で表される値を算出する、上記項目のいずれか一項に記載の記録媒体。
(項目11-8)
 前記演算を行わせるステップが、算出された前記患者の運動機能の状態を示す値を、予め用意された、患者の運動機能の状態を示す値と運動機能回復度とを変数とする回帰直線に代入することで、前記患者の運動機能の状態を評価する、上記項目のいずれか一項に記載の記録媒体。
(項目11-9)
 前記演算を行わせるステップが、算出された前記患者の運動機能の状態を示す値を、予め用意された基準値と比較することで、前記患者が再生治療後に所望の運動機能回復度に達する見込みの高低を算出する、上記項目のいずれか一項に記載の記録媒体。
(項目11A)項目1~9のいずれかまたは複数に記載される特徴をさらに含む、項目11に記載の記録媒体。
(項目12)
 脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価するシステムであって、
 前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得る手段と、
 前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行う手段と
を含む、システム。
(項目12-2)
 前記生理指標値が、拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる前記患者の脳の拡散強調画像から得られる、上記項目に記載のシステム。
(項目12-3)
 前記生理指標値が、MD(mean diffusivity)値およびAD(axial diffusivity)値を含む、上記項目のいずれか一項に記載のシステム。
(項目12-4)
 前記関心領域が脳の内包後脚に設定される、上記項目のいずれか一項に記載のシステム。
(項目12-5)
 前記運動機能の状態が、再生治療後の運動機能の状態である、上記項目のいずれか一項に記載のシステム。
(項目12-6)
 前記対照生理指標値が、前記患者の脳の非損傷半球側の白質領域を関心領域として得られる、上記項目のいずれか一項に記載のシステム。
(項目12-7)
 前記演算を行う手段が、前記生理指標値/前記対照生理指標値で表される値を算出する、上記項目のいずれか一項に記載のシステム。
(項目12-8)
 前記演算を行う手段が、算出された前記患者の運動機能の状態を示す値を、予め用意された、患者の運動機能の状態を示す値と運動機能回復度とを変数とする回帰直線に代入することで、前記患者の運動機能の状態を評価する、上記項目のいずれか一項に記載のシステム。
(項目12-9)
 前記演算を行う手段が、算出された前記患者の運動機能の状態を示す値を、予め用意された基準値と比較することで、前記患者が再生治療後に所望の運動機能回復度に達する見込みの高低を算出する、上記項目のいずれか一項に記載のシステム。
(項目12A)項目1~9のいずれかまたは複数に記載される特徴をさらに含む、項目12に記載のシステム。
(項目13)
 脳損傷を有するまたは有すると疑われる患者の脳の拡散強調画像において、損傷半球側の白質領域を第1関心領域として、及び非損傷半球側の白質領域を第2関心領域として設定する関心領域設定部と、
 第1関心領域及び第2関心領域のそれぞれにおける損傷半球側生理指標値及び非損傷半球側生理指標値を算出する生理指標値算出部と、
 損傷半球側生理指標値と非損傷半球側生理指標値とを比較して、当該患者の運動機能の状態を示す値を算出するための演算を行う演算部と
を備えることを特徴とする、画像解析装置。
(項目13-2)
 前記生理指標値が、拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる前記患者の脳の拡散強調画像から得られる、上記項目に記載の画像解析装置。
(項目13-3)
 前記生理指標値が、MD(mean diffusivity)値およびAD(axial diffusivity)値を含む、上記項目のいずれか一項に記載の画像解析装置。
(項目13-4)
 前記関心領域が脳の内包後脚に設定される、上記項目のいずれか一項に記載の画像解析装置。
(項目13-5)
 前記運動機能の状態が、再生治療後の運動機能の状態である、上記項目のいずれか一項に記載の画像解析装置。
(項目13-7)
 前記演算部が、前記損傷半球側生理指標値/前記非損傷半球側生理指標値で表される値を算出する、上記項目のいずれか一項に記載の画像解析装置。
(項目13-8)
 前記演算部が、算出された前記患者の運動機能の状態を示す値を、予め用意された、患者の運動機能の状態を示す値と運動機能回復度とを変数とする回帰直線に代入することで、前記患者の運動機能の状態を評価する、上記項目のいずれか一項に記載の画像解析装置。
(項目13-9)
 前記演算部が、算出された前記患者の運動機能の状態を示す値を、予め用意された基準値と比較することで、前記患者が再生治療後に所望の運動機能回復度に達する見込みの高低を算出する、上記項目のいずれか一項に記載の画像解析装置。
(項目13A)項目1~9のいずれかまたは複数に記載される特徴をさらに含む、項目13に記載の画像解析装置。
(項目14)
 脳損傷を有するまたは有すると疑われる患者の脳を撮像する核磁気共鳴撮像部と、
 核磁気共鳴撮像部が取得したエコーデータから拡散強調画像を生成する画像生成部と、
 拡散強調画像において、損傷半球側の白質領域を第1関心領域として、及び非損傷半球側の白質領域を第2関心領域として設定する関心領域設定部と、
 第1関心領域及び第2関心領域のそれぞれにおける損傷半球側生理指標値及び非損傷半球側生理指標値を算出する生理指標値算出部と、
 損傷半球側生理指標値と非損傷半球側生理指標値とを比較して、当該患者の運動機能の状態を示す値を算出するための演算を行う演算部と
を備えることを特徴とする、MRI装置。
(項目14-2)
 前記生理指標値が、拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる前記患者の脳の拡散強調画像から得られる、上記項目に記載のMRI装置。
(項目14-3)
 前記生理指標値が、MD(mean diffusivity)値およびAD(axial diffusivity)値を含む、上記項目のいずれか一項に記載のMRI装置。
(項目14-4)
 前記関心領域が脳の内包後脚に設定される、上記項目のいずれか一項に記載のMRI装置。
(項目14-5)
 前記運動機能の状態が、再生治療後の運動機能の状態である、上記項目のいずれか一項に記載のMRI装置。
(項目14-7)
 前記演算部が、前記損傷半球側生理指標値/前記非損傷半球側生理指標値で表される値を算出する、上記項目のいずれか一項に記載のMRI装置。
(項目14-8)
 前記演算部が、算出された前記患者の運動機能の状態を示す値を、予め用意された、患者の運動機能の状態を示す値と運動機能回復度とを変数とする回帰直線に代入することで、前記患者の運動機能の状態を評価する、上記項目のいずれか一項に記載のMRI装置。
(項目14-9)
 前記演算部が、算出された前記患者の運動機能の状態を示す値を、予め用意された基準値と比較することで、前記患者が再生治療後に所望の運動機能回復度に達する見込みの高低を算出する、上記項目のいずれか一項に記載のMRI装置。
(項目14A)項目1~9のいずれかまたは複数に記載される特徴をさらに含む、項目14に記載のMRI装置。
Accordingly, the present disclosure provides:
(Item 1)
A step of obtaining one or more physiological index values with the white matter region on the hemispherical side of the brain injury of a patient having or suspected to have brain injury as the region of interest.
A method for evaluating the state of motor function of a patient, which comprises a step of comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating the state of motor function of the patient.
(Item 2)
The method according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method.
(Item 3)
The method according to any one of the above items, wherein the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
(Item 4)
The method according to any one of the above items, wherein the region of interest is set in the internal capsule hind leg of the brain.
(Item 5)
The method according to any one of the above items, wherein the state of motor function is the state of motor function after regenerative treatment.
(Item 6)
The method according to any one of the above items, wherein the control physiological index value is obtained by using the white matter region on the uninjured hemisphere side of the patient's brain as a region of interest.
(Item 7)
The method according to any one of the above items, wherein the step of performing the calculation calculates a value represented by the physiological index value / the control physiological index value.
(Item 8)
In the step of performing the calculation, the calculated value indicating the state of the patient's motor function is substituted into a prepared regression line in which the value indicating the state of the patient's motor function and the degree of recovery of the motor function are variables. The method according to any one of the above items, which evaluates the state of motor function of the patient.
(Item 9)
By comparing the calculated value indicating the state of the patient's motor function with the reference value prepared in advance, the step of performing the calculation is expected to reach the desired degree of recovery of the motor function of the patient after the regenerative treatment. The method according to any one of the above items for calculating high and low.
(Item 10)
A computer program that causes a computer to perform a process of assessing the state of motor function of the brain of a patient with or suspected of having a brain injury, wherein the method is the following step:
A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
A program comprising a step of causing the computer to perform an operation for comparing the physiological index value with a control physiological index value and calculating a value indicating a state of motor function of the patient.
(Item 10A)
A computer program product that causes a computer to perform a process of assessing the state of motor function of the brain of a patient with or suspected of having a brain injury, wherein the method is the following step:
A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
A program product comprising a step of causing the computer to perform an operation for comparing the physiological index value with a control physiological index value and calculating a value indicating a state of motor function of the patient.
(Item 10-2)
The program or program product according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method.
(Item 10-3)
The program or program product according to any one of the above items, wherein the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
(Item 10-4)
The program or program product according to any one of the above items, wherein the region of interest is set in the internal capsule hind leg of the brain.
(Item 10-5)
The program or program product according to any one of the above items, wherein the state of motor function is the state of motor function after regenerative treatment.
(Item 10-6)
The program or program product according to any one of the above items, wherein the control physiological index value is obtained in the white matter region on the uninjured hemisphere side of the patient's brain as a region of interest.
(Item 10-7)
The program or program product according to any one of the above items, wherein the step for performing the calculation calculates a value represented by the physiological index value / the control physiological index value.
(Item 10-8)
The step for performing the calculation is to convert the calculated value indicating the state of the patient's motor function into a regression line prepared in advance with the value indicating the state of the patient's motor function and the degree of recovery of the motor function as variables. The program or program product according to any one of the above items, which evaluates the state of motor function of the patient by substitution.
(Item 10-9)
By comparing the calculated value indicating the state of the motor function of the patient with the reference value prepared in advance, the step of performing the calculation is expected to reach the desired degree of recovery of the motor function of the patient after the regenerative treatment. The program or program product described in any one of the above items for calculating the height of.
(Item 10B) The program according to item 10 or the program product according to item 10A, further comprising the features described in any one or more of items 1-9.
(Item 11)
A recording medium containing a computer program that causes a computer to perform a process of assessing the state of motor function of the brain of a patient with or suspected of having a brain injury, wherein the method comprises the following steps:
A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
A recording medium comprising a step of causing the computer to perform an operation for comparing the physiological index value with a control physiological index value and calculating a value indicating a state of motor function of the patient.
(Item 11-2)
The recording medium according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method.
(Item 11-3)
The recording medium according to any one of the above items, wherein the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
(Item 11-4)
The recording medium according to any one of the above items, wherein the region of interest is set on the hind leg of the internal capsule of the brain.
(Item 11-5)
The recording medium according to any one of the above items, wherein the state of motor function is the state of motor function after regenerative treatment.
(Item 11-6)
The recording medium according to any one of the above items, wherein the control physiological index value is obtained by using the white matter region on the uninjured hemisphere side of the patient's brain as a region of interest.
(Item 11-7)
The recording medium according to any one of the above items, wherein the step of performing the calculation calculates a value represented by the physiological index value / the control physiological index value.
(Item 11-8)
The step for performing the calculation is to convert the calculated value indicating the state of the patient's motor function into a regression line prepared in advance with the value indicating the state of the patient's motor function and the degree of recovery of the motor function as variables. The recording medium according to any one of the above items, which evaluates the state of motor function of the patient by substituting.
(Item 11-9)
By comparing the calculated value indicating the state of the patient's motor function with the reference value prepared in advance, the step of performing the calculation is expected to reach the desired degree of recovery of the motor function of the patient after the regenerative treatment. The recording medium according to any one of the above items for calculating the height of the above item.
(Item 11A) The recording medium according to item 11, further comprising the features described in any one or more of items 1-9.
(Item 12)
A system that assesses the state of motor function in the brain of patients with or suspected of having brain injury.
A means for obtaining a physiological index value with the white matter region on the traumatic hemisphere side of the patient's brain as the region of interest.
A system comprising a means for comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating a state of motor function of the patient.
(Item 12-2)
The system according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method.
(Item 12-3)
The system according to any one of the above items, wherein the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
(Item 12-4)
The system according to any one of the above items, wherein the region of interest is set in the internal capsule hind leg of the brain.
(Item 12-5)
The system according to any one of the above items, wherein the state of motor function is the state of motor function after regenerative treatment.
(Item 12-6)
The system according to any one of the above items, wherein the control physiological index value is obtained in the white matter region on the uninjured hemisphere side of the patient's brain as a region of interest.
(Item 12-7)
The system according to any one of the above items, wherein the means for performing the calculation calculates a value represented by the physiological index value / the control physiological index value.
(Item 12-8)
The means for performing the calculation substitutes the calculated value indicating the state of the patient's motor function into a prepared regression line having the value indicating the state of the patient's motor function and the degree of recovery of the motor function as variables. The system according to any one of the above items, which evaluates the state of motor function of the patient.
(Item 12-9)
By comparing the calculated value indicating the state of the motor function of the patient with the reference value prepared in advance, the means for performing the calculation is expected to reach the desired degree of recovery of the motor function after the regenerative treatment. The system according to any one of the above items for calculating high and low.
(Item 12A) The system according to item 12, further comprising the features described in any one or more of items 1-9.
(Item 13)
In a diffusion-weighted image of the brain of a patient with or suspected of having a brain injury, a region of interest setting where the white matter region on the injured hemisphere side is set as the first region of interest and the white matter region on the non-injured hemisphere side is set as the second region of interest. Department and
A physiological index value calculation unit that calculates a damaged hemispherical side physiological index value and an uninjured hemispherical side physiological index value in each of the first region of interest and the second region of interest.
The image is characterized by comprising an arithmetic unit for performing an operation for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of the motor function of the patient. Analytical device.
(Item 13-2)
The image analysis apparatus according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor image (DTI) method or a diffusion sharpness image (DKI) method.
(Item 13-3)
The image analysis apparatus according to any one of the above items, wherein the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
(Item 13-4)
The image analysis apparatus according to any one of the above items, wherein the region of interest is set on the hind leg of the internal capsule of the brain.
(Item 13-5)
The image analysis apparatus according to any one of the above items, wherein the state of motor function is the state of motor function after regenerative treatment.
(Item 13-7)
The image analysis apparatus according to any one of the above items, wherein the calculation unit calculates a value represented by the damaged hemisphere side physiological index value / the non-damaged hemisphere side physiological index value.
(Item 13-8)
The calculation unit substitutes the calculated value indicating the state of the patient's motor function into a regression line prepared in advance in which the value indicating the state of the patient's motor function and the degree of recovery of the motor function are variables. The image analysis apparatus according to any one of the above items, which evaluates the state of motor function of the patient.
(Item 13-9)
By comparing the calculated value indicating the state of the motor function of the patient with the reference value prepared in advance, the calculation unit determines whether the patient is likely to reach the desired degree of recovery of the motor function after the regenerative treatment. The image analysis device according to any one of the above items to be calculated.
(Item 13A) The image analysis apparatus according to item 13, further comprising the features described in any one or more of items 1-9.
(Item 14)
A nuclear magnetic resonance imaging unit that images the brain of a patient with or suspected of having a brain injury,
An image generation unit that generates a diffusion-weighted image from the echo data acquired by the nuclear magnetic resonance imaging unit,
In the diffusion-weighted image, a region of interest setting unit that sets the white matter region on the damaged hemisphere side as the first region of interest and the white matter region on the non-damaged hemisphere side as the second region of interest.
A physiological index value calculation unit that calculates a damaged hemispherical side physiological index value and an uninjured hemispherical side physiological index value in each of the first region of interest and the second region of interest.
The MRI is characterized by comprising a calculation unit for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of motor function of the patient. Device.
(Item 14-2)
The MRI apparatus according to the above item, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor imaging (DTI) method or a diffusion sharpness imaging (DKI) method.
(Item 14-3)
The MRI apparatus according to any one of the above items, wherein the physiological index value includes an MD (mean diffusivity) value and an AD (axial diffusivity) value.
(Item 14-4)
The MRI apparatus according to any one of the above items, wherein the region of interest is set on the hind leg of the internal capsule of the brain.
(Item 14-5)
The MRI apparatus according to any one of the above items, wherein the state of motor function is the state of motor function after regenerative treatment.
(Item 14-7)
The MRI apparatus according to any one of the above items, wherein the calculation unit calculates a value represented by the damaged hemisphere side physiological index value / the non-damaged hemisphere side physiological index value.
(Item 14-8)
The calculation unit substitutes the calculated value indicating the state of the patient's motor function into a regression line prepared in advance in which the value indicating the state of the patient's motor function and the degree of recovery of the motor function are variables. The MRI apparatus according to any one of the above items, which evaluates the state of motor function of the patient.
(Item 14-9)
By comparing the calculated value indicating the state of the patient's motor function with the reference value prepared in advance, the calculation unit determines whether the patient is likely to reach the desired degree of recovery of the motor function after the regenerative treatment. The MRI apparatus according to any one of the above items to be calculated.
(Item 14A) The MRI apparatus according to item 14, further comprising the features described in any one or more of items 1-9.
 本開示において、上記の1つまたは複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。本開示のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。 In the present disclosure, it is intended that the above one or more features may be provided in additional combinations in addition to the specified combinations. Further embodiments and advantages of the present disclosure will be appreciated by those of skill in the art upon reading and understanding the following detailed description as appropriate.
 なお、上記した以外の本開示の特徴及び顕著な作用・効果は、以下の発明の実施形態の項及び図面を参照することで、当業者にとって明確となる。 The features and remarkable actions / effects of the present disclosure other than those described above will be clarified to those skilled in the art by referring to the sections and drawings of the embodiments of the present invention below.
 本開示によれば、脳局所損傷などの脳損傷を有するまたは有すると疑われる患者の運動機能の状態を評価するができ、これにより当該患者の再生治療後の運動機能回復を予測することができ、また当該患者が再生治療に適しているかを治療開始前に判定することができる。 According to the present disclosure, it is possible to evaluate the state of motor function of a patient who has or is suspected to have brain damage such as local brain damage, and thereby predicts the recovery of motor function of the patient after regenerative treatment. In addition, it can be determined whether the patient is suitable for regenerative treatment before the start of treatment.
図1は、本開示の1つの実施形態であるMRI装置の全体構成を示すブロック図である。FIG. 1 is a block diagram showing an overall configuration of an MRI apparatus according to one embodiment of the present disclosure. 図2は、本開示の1つの実施形態であるMRI装置における記憶部、演算部、入力部及び出力部の構成を示す機能ブロック図である。FIG. 2 is a functional block diagram showing the configurations of a storage unit, a calculation unit, an input unit, and an output unit in the MRI apparatus according to one embodiment of the present disclosure. 図3は、本開示の1つの実施形態である予測方法における各ステップを示すフローチャートである。FIG. 3 is a flowchart showing each step in the prediction method according to one embodiment of the present disclosure. 図4は、本開示の1つの実施形態である予測方法における演算ステップの詳細を示すフローチャートである。FIG. 4 is a flowchart showing the details of the calculation steps in the prediction method according to one embodiment of the present disclosure. 図5は、本開示の1つの実施形態である予測方法における演算ステップの詳細を示すフローチャートである。FIG. 5 is a flowchart showing the details of the calculation steps in the prediction method according to one embodiment of the present disclosure. 図6は、本開示の一実施形態におけるDKIによる画像処理の手順を示す模式図である。FIG. 6 is a schematic diagram showing a procedure of image processing by DKI in one embodiment of the present disclosure. 図7は、本開示の一実施形態におけるDKIによる病変側と健常側の中内包後脚のADの比(病変/健常)とBIの変化との相関を示すグラフである。FIG. 7 is a graph showing the correlation between the AD ratio (lesion / healthy) of the inner capsule hind leg on the lesion side and the healthy side and the change in BI by DKI in one embodiment of the present disclosure. 図8は、本開示の一実施形態におけるDKIによる病変側と健常側の中内包後脚のMDの比(病変/健常)とBIの変化との相関を示すグラフである。FIG. 8 is a graph showing the correlation between the MD ratio (lesion / healthy) of the internal capsule hind leg on the lesion side and the healthy side and the change in BI by DKI in one embodiment of the present disclosure. 図9Aは、機能回復の程度が乏しかった左大脳半球の脳梗塞の症例を示す写真である。左内包後脚のAD及びMDが右側より低いことがわかる。FIG. 9A is a photograph showing a case of cerebral infarction in the left cerebral hemisphere with a poor degree of functional recovery. It can be seen that the AD and MD of the hind leg of the left internal capsule are lower than those of the right side. 図9Bは、機能回復の程度が大きかった左大脳半球の脳梗塞の症例を示す写真である。内包後脚のAD及びMDの左右差は小さいことがわかる。FIG. 9B is a photograph showing a case of cerebral infarction in the left cerebral hemisphere with a large degree of functional recovery. It can be seen that the laterality between AD and MD of the hind legs of the internal capsule is small.
 以下、本開示を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, this disclosure will be described while showing the best form. Throughout the specification, it should be understood that the singular representation also includes its plural concept, unless otherwise noted. Therefore, it should be understood that singular articles (eg, "a", "an", "the", etc. in English) also include the plural concept, unless otherwise noted. It should also be understood that the terms used herein are used in the sense commonly used in the art unless otherwise noted. Accordingly, unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In case of conflict, this specification (including definitions) takes precedence.
 以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。 The definitions of terms and / or basic technical contents particularly used in the present specification will be described below as appropriate.
 本明細書において、「約」とは、後に続く数値の±10%を意味する。 In the present specification, "about" means ± 10% of the value that follows.
 本明細書において、「白質領域」とは、脳と脊髄からなる中枢神経組織の中で、主に神経線維が集積し走行している領域をいう。大脳や小脳では深層に存在し、脊髄では表層を占める。例えば、白質領域には、内包前脚、内包後脚、内包膝、脳梁、半卵円中心、脊髄前索、脊髄側索、脊髄後索などが含まれる。 In the present specification, the "white matter region" refers to a region in which nerve fibers are mainly accumulated and running in the central nervous system consisting of the brain and spinal cord. It is deep in the cerebrum and cerebellum and occupies the superficial layer in the spinal cord. For example, the white matter region includes an internal capsule anterior leg, an internal capsule posterior leg, an internal capsule knee, a brain bridge, a centrum semiovale, an anterior spinal cord, a lateral spinal cord, a posterior spinal cord, and the like.
 本明細書において、「内包後脚」とは、神経線維の集合体である内包のうち、錐体路や側頭葉・頭頂葉・後頭葉と脳幹を結ぶ線維が走行する部位をいい、主に視床とレンズ核の間の空間に存在する。内包後脚はほぼ垂直の方向に走る線維群からなる。その前部に皮質脊髄線維があり、皮質脊髄線維の外側を皮質赤核路が走る。 As used herein, the term "internal capsule hind leg" refers to the site of the internal capsule, which is an aggregate of nerve fibers, through which the fibers connecting the pyramidal tract, temporal lobe, parietal lobe, and occipital lobe run. It exists in the space between the thalamus and the lenticular nucleus. The hind leg of the internal capsule consists of a group of fibers running in a nearly vertical direction. There is a corticospinal fiber in front of it, and the corticospinal tract runs outside the corticospinal fiber.
 本明細書において、「生理指標値」とは、拡散テンソル画像(DTI)や拡散尖度画像(DKI)などの脳の拡散強調画像によって得られる指標値を指し、MK(mean kurtosis)、AK(axial kurtosis)、RK(radial kurtosis)、FA(fractional anisotropy)、KFA(kurtosis fractional anisotropy)、MD(mean diffusivity)、AD(axial diffusivity)、及びRD(radial diffusivity)を含む。このうち、MD値とは、拡散の大きさそのものを表す指標であるADCを表すための3つの固有値(λ~λ)の平均をとった値であり、AD値とは、その固有値のうちのλの値を指す。 In the present specification, the "physiological index value" refers to an index value obtained by diffusion-weighted images of the brain such as a diffusion tensor image (DTI) and a diffusion-weighted image (DKI), and refers to MK (mean kurtosis), AK (mean kurtosis), and AK (mean kurtosis). Includes axial kurtosis), RK (radial kurtosis), FA (fractional anisotropy), KFA (kurtosis fractional anisotropy), MD (mean diffusivity), AD (axial diffusivity), and RD (radial diffusivity). Of these, the MD value is a value obtained by averaging three eigenvalues (λ 1 to λ 3 ) for expressing ADC, which is an index indicating the magnitude of diffusion itself, and the AD value is the eigenvalue of the eigenvalue. Refers to the value of λ 1 of them.
 本明細書において、「運動機能の状態」とは、脳の機能によって総合的にコントロールされる運動機能の状態を指し、「運動機能の状態の評価」とは、被験者の脳の状態から、現在または治療後において、運動機能が正常であるかまたは一部もしくは完全に麻痺しているかなどについて評価し、または予測することを含む。例えば、「運動機能の状態の評価」には、再生治療などによって、運動を制御する脳の機能の回復の予測などが含まれる。 In the present specification, the "state of motor function" refers to the state of motor function comprehensively controlled by the function of the brain, and the "evaluation of the state of motor function" refers to the current state of the brain of the subject. Or, after treatment, it includes evaluating or predicting whether motor function is normal or partially or completely paralyzed. For example, "evaluation of the state of motor function" includes prediction of recovery of brain function that controls movement by regenerative therapy or the like.
 (好ましい実施形態)
 以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでない。したがって、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができる。
(Preferable embodiment)
Hereinafter, preferred embodiments of the present disclosure will be described. The embodiments provided below are provided for a better understanding of the present disclosure, and the scope of the present disclosure should not be limited to the following description. Therefore, it is clear that a person skilled in the art can make appropriate modifications within the scope of the present disclosure in consideration of the description in the present specification. In addition, the following embodiments of the present disclosure may be used alone or in combination thereof.
 本開示の一局面において、脳損傷を有するまたは有すると疑われる患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を1または複数得るステップと、前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行うステップとを含む、前記患者の運動機能の状態を評価する方法が提供される。 In one aspect of the present disclosure, a step of obtaining one or more physiological index values with the white matter region on the injured hemisphere side of the brain of a patient having or suspected to have brain damage as a region of interest, and the physiological index value as a control physiological index. Provided is a method of assessing the state of motor function of the patient, including a step of comparing with the value and performing an operation to calculate a value indicating the state of motor function of the patient.
 一実施形態において、生理指標値は、拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる患者の脳の画像から得ることができる。拡散テンソル画像(DTI)法では、解剖学的構造をトレースして作成した関心領域(ROI)を設定して、関心領域内のFA値やMD値などの生理指標値を計測することで皮質脊髄路を追跡することができる。 In one embodiment, the physiological index value can be obtained from an image of the patient's brain obtained by the diffusion tensor imaging (DTI) method or the diffusion kurtosis imaging (DKI) method. In the diffusion tensor imaging (DTI) method, a region of interest (ROI) created by tracing an anatomical structure is set, and physiological index values such as FA and MD values in the region of interest are measured to measure the corticospinal cord. You can track the road.
 拡散テンソル画像(DTI)法におけるROI設定は一般的に手動で行われるが、この手法による皮質脊髄路追跡は測定者の経験に依存する。よって、一実施形態において、測定者に依存せず、かつ定量的な画像指数としてDKI法を用いることができる。また、DTI法は水分子の拡散を正規分布と仮定しているが、生体内の水分子の拡散は正規分布を示さないことが知られている。そのため、DKI法のように、正規分布を仮定しない拡散画像法であれば、生体内の水分子の拡散をより正確に反映できる。そのため、本開示の一実施形態において、DKI法によれば、脳梗塞患者における細胞投与治療効果を、高精度かつ測定者の経験等に依存せずに予測可能な拡散画像指数を得ることができる。 ROI setting in the diffusion tensor imaging (DTI) method is generally performed manually, but corticospinal tract tracking by this method depends on the experience of the measurer. Therefore, in one embodiment, the DKI method can be used as a quantitative image index without depending on the measurer. Further, although the DTI method assumes that the diffusion of water molecules is a normal distribution, it is known that the diffusion of water molecules in a living body does not show a normal distribution. Therefore, a diffusion image method that does not assume a normal distribution, such as the DKI method, can more accurately reflect the diffusion of water molecules in a living body. Therefore, in one embodiment of the present disclosure, according to the DKI method, it is possible to obtain a diffused image index that can predict the cell administration therapeutic effect in a cerebral infarction patient with high accuracy and without depending on the experience of the measurer. ..
 一実施形態において、上記のような拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる患者の脳の拡散強調画像から得られる生理指標値は、組織内の水分子の拡散の方向と速さをパラメータとして画像化する拡散強調画像によって得られる指数であれば特に限られるものではなく、例えば、MK(mean kurtosis)、AK(axial kurtosis)、RK(radial kurtosis)、FA(fractional anisotropy)、KFA(kurtosis fractional anisotropy)、MD(mean diffusivity)、AD(axial diffusivity)、及びRD(radial diffusivity)などの拡散指数を用いることができる。また一実施形態において、これらの拡散指数を単独でまたは2以上を組み合わせて使用することもできる。 In one embodiment, the physiologic index value obtained from the diffusion-weighted image of the patient's brain obtained by the diffusion tensor imaging (DTI) method or diffusion sharpness imaging (DKI) method as described above is the diffusion of water molecules in the tissue. The index is not particularly limited as long as it is an index obtained by a diffusion-weighted image that images the direction and speed as parameters, and for example, MK (mean kurtosis), AK (axial kurtosis), RK (radial kurtosis), FA ( Diffusion indices such as fractional anisotropy), KFA (kurtosis fractional anisotropy), MD (mean diffusivity), AD (axial diffusivity), and RD (radial diffusivity) can be used. Also, in one embodiment, these diffusion indices may be used alone or in combination of two or more.
 本開示の一実施形態において、DTIやDKIにおけるROIは脳の白質領域であればどこに設定してもよく、特に限定されるものではない。一実施形態において、ROIは内包後脚に好ましく設定される。特に内包後脚には神経細胞がほとんどないため、本開示の方法によって内包後脚にROIを置いて得た値によって、運動機能の状態を評価することができ、または治療後の予後を予測できることは本開示による顕著な効果である。 In one embodiment of the present disclosure, the ROI in DTI or DKI may be set anywhere in the white matter region of the brain, and is not particularly limited. In one embodiment, the ROI is preferably set on the hind limb of the internal capsule. In particular, since there are few nerve cells in the hind limb of the internal capsule, the state of motor function can be evaluated or the prognosis after treatment can be predicted by the value obtained by placing the ROI on the hind limb of the internal capsule by the method of the present disclosure. Is a remarkable effect of this disclosure.
 本開示の一実施形態において、上記のような拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる患者の脳の画像から得られる生理指標値から、被験者の運動機能の状態を評価することができ、この運動機能は現在または治療後のものであってもよく、再生治療後の運動機能の回復状態を予測することもできる。 In one embodiment of the present disclosure, the state of motor function of the subject is based on the physiological index values obtained from the image of the patient's brain obtained by the diffusion tensor imaging (DTI) method or the diffusion metric imaging (DKI) method as described above. This motor function may be current or post-treatment, and the recovery state of motor function after regenerative treatment can also be predicted.
 本開示の一実施形態において、運動機能の状態を評価するには、ROIを脳の損傷半球側においた場合に得られる生理指標値と、ROIを脳の非損傷半球側においた場合に得られる生理指標値(対照生理指標値という)とを比較することによって行うことができ、好ましくは生理指標値/対照生理指標値で表される値を算出することで行うことができる。 In one embodiment of the present disclosure, in order to evaluate the state of motor function, the physiological index value obtained when the ROI is placed on the injured hemisphere side of the brain and the ROI obtained when the ROI is placed on the uninjured hemisphere side of the brain. It can be performed by comparing with a physiological index value (referred to as a control physiological index value), and preferably by calculating a value represented by a physiological index value / a control physiological index value.
 本開示の一実施形態において、運動機能の状態の評価は、生理指標値/対照生理指標値で表される値を患者の運動機能の状態を示す値と運動機能回復度とを変数とする回帰直線に代入することで行うこともできる。他の実施形態において、生理指標値/対照生理指標値で表される値を患者が再生治療後に所望の運動機能回復度に達する見込みを示す基準値と比較することで、その可能性を示すこともできる。 In one embodiment of the present disclosure, the evaluation of the state of motor function is a regression in which the value represented by the physiological index value / control physiological index value is a value indicating the state of motor function of a patient and the degree of recovery of motor function as variables. It can also be done by substituting into a straight line. In another embodiment, the possibility is shown by comparing the value represented by the physiological index value / control physiological index value with the reference value indicating the probability that the patient will reach the desired degree of motor function recovery after regenerative treatment. You can also.
 以上のように、本開示の方法によれば、被験者の運動機能の状態を評価することができ、また再生治療後の運動機能の状態の評価、つまり再生治療によって運動機能が回復するかどうかを予測することができるため、どの患者が細胞治療に適しているかを治療開始前に判定することが可能になり、治療効果の高い患者を選定することも可能になる。また本開示は、以上のような方法をコンピュータに実行させるためのコンピュータプログラム、そのプログラムを格納する記録媒体、および以上のような方法を実行するシステムを提供する。 As described above, according to the method of the present disclosure, it is possible to evaluate the motor function state of the subject, and it is possible to evaluate the motor function state after the regenerative treatment, that is, whether or not the motor function is restored by the regenerative treatment. Since it can be predicted, it becomes possible to determine which patient is suitable for cell therapy before the start of treatment, and it is also possible to select a patient having a high therapeutic effect. The present disclosure also provides a computer program for causing a computer to execute the above method, a recording medium for storing the program, and a system for executing the above method.
 すなわち、本開示の一局面において、脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価する方法の処理をコンピュータに実行させるコンピュータプログラムであって、前記方法は以下の工程:
 前記コンピュータに、前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得させるステップと、
 前記コンピュータに、前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行わせるステップと
を含む、プログラムが提供される。
That is, in one aspect of the present disclosure, it is a computer program that causes a computer to execute a process of a method of evaluating the state of motor function of the brain of a patient having or suspected to have brain damage, wherein the method is the following step:
A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
A program is provided that includes a step of causing the computer to perform an operation for comparing the physiological index value with a control physiological index value and calculating a value indicating the state of motor function of the patient.
 本開示の他の局面において、脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価する方法の処理をコンピュータに実行させるコンピュータプログラムを格納する記録媒体であって、前記方法は以下の工程:
 前記コンピュータに、前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得させるステップと、
 前記コンピュータに、前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行わせるステップと
を含む、記録媒体が提供される。
In another aspect of the present disclosure, a recording medium containing a computer program that causes a computer to perform a process of assessing the state of motor function of the brain of a patient with or suspected of having brain damage, said method. The following steps:
A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
The computer is provided with a recording medium comprising a step of comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating a state of motor function of the patient.
 本開示の他の局面において、脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価するシステムであって、
 前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得る手段と、
 前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行う手段と
を含む、システムが提供される。
A system for assessing the state of motor function of the brain of a patient with or suspected of having brain injury in another aspect of the present disclosure.
A means for obtaining a physiological index value with the white matter region on the traumatic hemisphere side of the patient's brain as the region of interest.
A system is provided that includes a means of comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating a state of motor function of the patient.
 また本開示の一局面において、以上のような脳損傷を有するまたは有すると疑われる患者の運動機能の状態を評価する方法の実施において用いることができる画像解析装置およびMRI装置を提供することができる。 Further, in one aspect of the present disclosure, it is possible to provide an image analysis device and an MRI device that can be used in carrying out a method for evaluating the state of motor function of a patient having or suspected to have such a brain injury. ..
 すなわち、本開示の一局面において、脳損傷を有するまたは有すると疑われる患者の脳の拡散強調画像において、損傷半球側の白質領域を第1関心領域として、及び非損傷半球側の白質領域を第2関心領域として設定する関心領域設定部と、
 第1関心領域及び第2関心領域のそれぞれにおける損傷半球側生理指標値及び非損傷半球側生理指標値を算出する生理指標値算出部と、
 損傷半球側生理指標値と非損傷半球側生理指標値とを比較して、当該患者の運動機能の状態を示す値を算出するための演算を行う演算部と
を備えることを特徴とする、画像解析装置が提供される。
That is, in one aspect of the present disclosure, in a diffusion-weighted image of the brain of a patient with or suspected of having a brain injury, the white matter region on the injured hemisphere side is the first region of interest and the white matter region on the non-injured hemisphere side is the first. 2 The area of interest setting unit to be set as the area of interest, and
A physiological index value calculation unit that calculates a damaged hemispherical side physiological index value and an uninjured hemispherical side physiological index value in each of the first region of interest and the second region of interest.
The image is characterized by comprising an arithmetic unit for performing an operation for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of the motor function of the patient. An analyzer is provided.
 本開示の他の局面において、脳損傷を有するまたは有すると疑われる患者の脳を撮像する核磁気共鳴撮像部と、
 核磁気共鳴撮像部が取得したエコーデータから拡散強調画像を生成する画像生成部と、
 拡散強調画像において、損傷半球側の白質領域を第1関心領域として、及び非損傷半球側の白質領域を第2関心領域として設定する関心領域設定部と、
 第1関心領域及び第2関心領域のそれぞれにおける損傷半球側生理指標値及び非損傷半球側生理指標値を算出する生理指標値算出部と、
 損傷半球側生理指標値と非損傷半球側生理指標値とを比較して、当該患者の運動機能の状態を示す値を算出するための演算を行う演算部と
を備えることを特徴とする、MRI装置が提供される。
In another aspect of the present disclosure, a nuclear magnetic resonance imaging unit that images the brain of a patient who has or is suspected of having a brain injury.
An image generation unit that generates a diffusion-weighted image from the echo data acquired by the nuclear magnetic resonance imaging unit,
In the diffusion-weighted image, a region of interest setting unit that sets the white matter region on the damaged hemisphere side as the first region of interest and the white matter region on the non-damaged hemisphere side as the second region of interest.
A physiological index value calculation unit that calculates a damaged hemispherical side physiological index value and an uninjured hemispherical side physiological index value in each of the first region of interest and the second region of interest.
The MRI is characterized by comprising a calculation unit for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of motor function of the patient. Equipment is provided.
 本開示の画像解析装置およびMRI装置の詳細な構成についは本明細書の他の箇所に詳細に説明される画像解析装置およびMRI装置と同様の構成を備えることができる。 Regarding the detailed configuration of the image analysis device and the MRI device of the present disclosure, the same configuration as the image analysis device and the MRI device described in detail in other parts of the present specification can be provided.
 本開示の他の局面は、脳局所損傷を有する患者の再生治療後の運動機能回復を予測する方法、並びに当該方法の実施において用いることができるプログラム、画像解析装置及びMRI装置に関する。 Other aspects of the disclosure relate to methods of predicting motor function recovery after regenerative treatment in patients with local brain injury, as well as programs, image analyzers and MRI devices that can be used in the practice of such methods.
 脳局所損傷を有する患者の再生治療後の運動機能回復を予測する方法及び当該方法の実施において用いることができるMRI装置の例示的実施形態を、図1~5を参照しながら説明する。 An exemplary embodiment of a method for predicting motor function recovery after regenerative treatment in a patient with local brain injury and an MRI apparatus that can be used in carrying out the method will be described with reference to FIGS. 1 to 5.
 図1に、本開示の一実施形態であるMRI装置の全体構成を示すブロック図を示す。MRI装置1は、核磁気共鳴撮像部10とコンピュータ20とを有する。 FIG. 1 shows a block diagram showing an overall configuration of an MRI apparatus according to an embodiment of the present disclosure. The MRI apparatus 1 has a nuclear magnetic resonance imaging unit 10 and a computer 20.
 核磁気共鳴撮像部10は、DTIやDKIなどの拡散強調画像に必要なエコーデータを取得することができる、任意の公知のMRI装置において使用される撮像部である。一例において、核磁気共鳴撮像部10は、寝台部と;静磁場磁石、傾斜磁場コイル及びRFコイルを備えた磁石架台部と;シーケンス制御部とを有する。核磁気共鳴撮像部10において、患者を乗せた寝台部は、磁石架台部の開口部分に挿入される。磁石架台部の静磁場磁石は静磁場を発生させ、合わせて傾斜磁場コイルは傾斜磁場を印加する。次いで、送信用RFコイルが高周波磁場を発生させて、これにより患者から発せられるエコー信号を受信用RFコイルが受信する。受信されたエコー信号はデジタル化され、エコーデータとしてシーケンス制御部に送信される。シーケンス制御部は、コンピュータ20から送信されるシーケンス情報に基づいて撮像を制御し、また受信したエコーデータをコンピュータ20に転送する。 The nuclear magnetic resonance imaging unit 10 is an imaging unit used in any known MRI apparatus capable of acquiring echo data necessary for diffusion-weighted images such as DTI and DKI. In one example, the nuclear magnetic resonance imaging unit 10 has a sleeper unit; a magnet mount unit including a static magnetic field magnet, a gradient magnetic field coil, and an RF coil; and a sequence control unit. In the nuclear magnetic resonance imaging unit 10, the bed portion on which the patient is placed is inserted into the opening portion of the magnet mount portion. The static magnetic field magnet of the magnet mount generates a static magnetic field, and the gradient magnetic field coil also applies a gradient magnetic field. The transmitting RF coil then generates a high frequency magnetic field, which causes the receiving RF coil to receive the echo signal emitted by the patient. The received echo signal is digitized and transmitted as echo data to the sequence control unit. The sequence control unit controls imaging based on the sequence information transmitted from the computer 20, and also transfers the received echo data to the computer 20.
 コンピュータ20は、核磁気共鳴撮像部10の制御、データ収集、画像再構成及び画像解析を行う装置であり、インターフェース部21と、入力部22と、記憶部23と、演算部24と、出力部25と、制御部26とを有する。 The computer 20 is a device that controls the nuclear magnetic resonance imaging unit 10, collects data, reconstructs an image, and analyzes an image. The computer 20 includes an interface unit 21, an input unit 22, a storage unit 23, a calculation unit 24, and an output unit. It has 25 and a control unit 26.
 インターフェース部21は、核磁気共鳴撮像部10のシーケンス制御部との間でやり取りされるエコーデータ等の各種データの入出力を制御する。インターフェース部21は、核磁気共鳴撮像部10を制御するためのシーケンス情報をシーケンス制御部に送信する。インターフェース部21はまた、シーケンス制御部からエコーデータを受信し、これを記憶部23に記憶する。 The interface unit 21 controls the input / output of various data such as echo data exchanged with the sequence control unit of the nuclear magnetic resonance imaging unit 10. The interface unit 21 transmits sequence information for controlling the nuclear magnetic resonance imaging unit 10 to the sequence control unit. The interface unit 21 also receives echo data from the sequence control unit and stores it in the storage unit 23.
 入力部22は、キーボード、マウス、ボタン、スイッチ等のデバイスであり、これらに対する操作者の操作に応じた信号を入力する。 The input unit 22 is a device such as a keyboard, mouse, button, switch, etc., and inputs a signal corresponding to the operation of the operator for these devices.
 記憶部23は、ハードディスク、フラッシュメモリ、RAM、ROM等の記憶媒体と、当該記憶媒体に記憶された情報を読み取る読み取り装置とをその構成に含む。記憶部23は、シーケンス制御部から送信されたエコーデータ、当該エコーデータから生成された各種MRI画像データ、患者の運動機能の状態を評価するための参照情報、画像生成及び解析のためのプログラム、制御部26により実行されるMRI装置1の各機能部を制御するためのプログラム、並びに各種設定情報等を記憶する。 The storage unit 23 includes a storage medium such as a hard disk, a flash memory, RAM, and a ROM, and a reading device for reading the information stored in the storage medium. The storage unit 23 includes echo data transmitted from the sequence control unit, various MRI image data generated from the echo data, reference information for evaluating the state of motor function of the patient, a program for image generation and analysis, and a program for image generation and analysis. It stores a program for controlling each functional unit of the MRI apparatus 1 executed by the control unit 26, various setting information, and the like.
 演算部24は、CPU等のハードウェアによって構成される。演算部24は、記憶部23に記憶されたプログラムを読み込んで、記憶部23に記憶されたエコーデータから画像を再構成し、再構成画像からDTIやDKIなどの画像を生成する。演算部24はまた、記憶部23に記憶された患者脳のDTIやDKIなどの画像を解析し、患者の運動機能の状態を評価するための演算を行う。 The arithmetic unit 24 is composed of hardware such as a CPU. The calculation unit 24 reads the program stored in the storage unit 23, reconstructs an image from the echo data stored in the storage unit 23, and generates an image such as DTI or DKI from the reconstructed image. The calculation unit 24 also analyzes images such as DTI and DKI of the patient's brain stored in the storage unit 23, and performs calculations for evaluating the state of the patient's motor function.
 出力部25は、演算部24が生成したMRI画像や演算を行って得た運動機能の状態を評価するための値等の各種情報を、コンピュータ20の外部、典型的には出力部25に接続されたディスプレイに出力する。 The output unit 25 connects various information such as an MRI image generated by the calculation unit 24 and a value for evaluating the state of the motor function obtained by performing the calculation to the outside of the computer 20, typically the output unit 25. Output to the displayed display.
 制御部26は、MRI装置1を構成する各機能部と接続され、記憶部23に記憶されたプログラムを読み込んでこれらの動作を制御する。制御部26は、例えば、操作者によって設定された撮像条件からシーケンス情報を生成し、これをシーケンス制御部に送信して核磁気共鳴撮像部10の撮像を制御する。ここで撮像条件とは、b値、TR、TE、NEX、ボクセルサイズ、スライス数、拡散勾配方向等の各種撮像パラメータの設定値であり、当業者はDTIやDKIなどの画像の取得に適するようにこれらの値を適宜設定することができる。 The control unit 26 is connected to each functional unit constituting the MRI device 1, reads a program stored in the storage unit 23, and controls these operations. For example, the control unit 26 generates sequence information from the imaging conditions set by the operator and transmits the sequence information to the sequence control unit to control the imaging of the nuclear magnetic resonance imaging unit 10. Here, the imaging conditions are set values of various imaging parameters such as b value, TR, TE, NEX, voxel size, number of slices, diffusion gradient direction, and those skilled in the art are suitable for acquiring images such as DTI and DKI. These values can be set as appropriate.
 次に、演算部24の機能について、入力部22、記憶部23及び出力部25との関係も含めて、図2を参照しながら説明する。図2は、本開示の一実施形態における記憶部、演算部、入力部及び出力部の構成を示す機能ブロック図である。記憶部23は、エコーデータ記憶部231と、再構成画像記憶部232と、DTI/DKI画像記憶部233と、参照情報記憶部234とを有する。また、演算部24は、画像生成部241と画像解析部242とを有する。さらに、画像生成部241は画像再構成部241aとDTI/DKI画像生成部241bとを有し、画像解析部242は関心領域設定部242aと生理指標値算出部242bと生理指標値比較部242cと運動機能状態評価演算部242dとを有する。 Next, the functions of the calculation unit 24, including the relationship with the input unit 22, the storage unit 23, and the output unit 25, will be described with reference to FIG. FIG. 2 is a functional block diagram showing the configurations of a storage unit, a calculation unit, an input unit, and an output unit in one embodiment of the present disclosure. The storage unit 23 includes an echo data storage unit 231, a reconstructed image storage unit 232, a DTI / DKI image storage unit 233, and a reference information storage unit 234. Further, the calculation unit 24 has an image generation unit 241 and an image analysis unit 242. Further, the image generation unit 241 has an image reconstruction unit 241a and a DTI / DKI image generation unit 241b, and the image analysis unit 242 includes a region of interest setting unit 242a, a physiological index value calculation unit 242b, and a physiological index value comparison unit 242c. It has a motor function state evaluation calculation unit 242d.
 エコーデータからDTIやDKIなどの画像を生成する画像生成部241の機能について説明する。エコーデータ記憶部231は、シーケンス制御部から送信されたエコーデータを患者毎に記憶する。画像再構成部241aは、エコーデータ記憶部231によって記憶されたエコーデータに対してフーリエ変換等の再構成処理を実施することで拡散強調画像(DWI画像)等の再構成画像を生成する。再構成画像記憶部232は、生成された再構成画像を記憶する。 The function of the image generation unit 241 that generates images such as DTI and DKI from echo data will be described. The echo data storage unit 231 stores echo data transmitted from the sequence control unit for each patient. The image reconstruction unit 241a generates a reconstruction image such as a diffusion-weighted image (DWI image) by performing a reconstruction process such as a Fourier transform on the echo data stored by the echo data storage unit 231. The reconstructed image storage unit 232 stores the generated reconstructed image.
 DTI/DKI画像生成部241bは、生成された再構成画像に対してDTIやDKIなどの解析を行い、DTI/DKI画像を生成する。例えばDTI解析においては、ボクセル毎に、式1の3×3の対称行列で表される拡散テンソルDの成分である拡散係数Dxx、Dxy、Dxz、Dyy、Dyz、Dzzを算出し、式1の行列を対角化することで、式2に示される固有値(λ1, λ2, λ3)が算出される。ここで、Dxx、Dyy及びDzzは、傾斜磁場をMRI装置座標系のそれぞれx軸方
向、y軸方向及びz軸方向に印加したときの拡散係数である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
The DTI / DKI image generation unit 241b analyzes the generated reconstructed image such as DTI and DKI, and generates a DTI / DKI image. For example, in the DTI analysis, for each boxel, the diffusion coefficients D xx , D xy , D xz , D yy , D yz , and D zz , which are the components of the diffusion tensor D represented by the 3 × 3 symmetric matrix of Equation 1, are obtained. By calculating and diagonalizing the matrix of Equation 1, the eigenvalues (λ 1 , λ 2 , λ 3 ) shown in Equation 2 are calculated. Here, D xx , D yy and D zz are mass diffusivity when a gradient magnetic field is applied in the x-axis direction, y-axis direction and z-axis direction of the MRI apparatus coordinate system, respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 算出された固有値(λ1, λ2, λ3)から、拡散テンソルのパラメータであるADC(apparent diffusion coefficient、みかけの拡散係数)及びFA(fractional anisotropy、異方性比率)が算出される(式3及び4)。なお、ADCとMDは同じ値となる。
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004
From the calculated eigenvalues (λ 1 , λ 2 , λ 3 ), ADC (apparent diffusion coefficient, apparent diffusion coefficient) and FA (fractional anisotropy, anisotropy), which are the parameters of the diffusion tensor, are calculated (formula). 3 and 4). The ADC and MD have the same value.
Figure JPOXMLDOC01-appb-M000003

Figure JPOXMLDOC01-appb-M000004
 DTI/DKI画像生成部241bは、これらのパラメータをマッピングすることで、λ1マップ、λ2マップ、λ3マップ、ADCマップ又はFAマップといったDTIやDKIなどの画像を生成する。DTI/DKI画像記憶部233は、生成されたDTIやDKIなどの画像を記憶する。 By mapping these parameters, the DTI / DKI image generation unit 241b generates images such as DTI and DKI such as λ 1 map, λ 2 map, λ 3 map, ADC map or FA map. The DTI / DKI image storage unit 233 stores the generated images such as DTI and DKI.
 続いて、DTIやDKIなどの画像を解析して運動機能状態の評価の演算を行う画像解析部242の機能を、本開示の一実施形態である脳局所損傷を有する患者の再生治療後の運動機能回復を予測する方法と合わせて、図2~5を参照しながら説明する。図3は、前記各機能部を用いて実施される本開示の一実施形態である予測方法における各ステップを示すフローチャートであり、図4及び5は、前記予測方法における演算ステップの詳細を示すフローチャートである。 Subsequently, the function of the image analysis unit 242 that analyzes images such as DTI and DKI and calculates the evaluation of the motor function state is the function of the image analysis unit 242 after regenerative treatment of a patient having local brain injury, which is one embodiment of the present disclosure. It will be described with reference to FIGS. 2 to 5 together with a method for predicting functional recovery. FIG. 3 is a flowchart showing each step in the prediction method according to the embodiment of the present disclosure carried out by using each of the functional units, and FIGS. 4 and 5 are flowcharts showing the details of the calculation steps in the prediction method. Is.
 関心領域設定部242aは、例えばDTI/DKI画像記憶部233に記憶されたDTI画像、例えばFAマップ上で、損傷半球側の白質領域に相当する位置に第1関心領域(ROI-1)を、非損傷半球側の白質領域に相当する位置に第2関心領域(ROI-2)を設定する(ステップS10)。ROIは、解剖学的位置に基づいて手動で設定してもよく、他の医療用画像と重ね合わせて設定してもよく、又は公知の画像解析ソフトウェアの機能に基づいて自動で設定してもよい。ROIを手動で設定する場合、入力部22を介して、操作者によるROIを設定する操作を受け付ける。 The region of interest setting unit 242a sets the first region of interest (ROI-1) at a position corresponding to the white matter region on the damaged hemisphere side, for example, on the DTI image stored in the DTI / DKI image storage unit 233, for example, the FA map. A second region of interest (ROI-2) is set at a position corresponding to the white matter region on the undamaged hemisphere side (step S10). The ROI may be set manually based on the anatomical position, superimposed on other medical images, or automatically based on the functionality of known image analysis software. good. When setting the ROI manually, the operation of setting the ROI by the operator is accepted via the input unit 22.
 生理指標値算出部242bは、ROI-1及びROI-2それぞれの生理指標値である損傷半球側生理指標値及び非損傷半球側生理指標値を算出する(ステップS11)。損傷半球側生理指標値及び非損傷半球側生理指標値は、ROI-1及びROI-2それぞれの中に含まれる全ボクセルの生理指標値の平均値である。 The physiological index value calculation unit 242b calculates the damaged hemispherical side physiological index value and the non-damaged hemispherical side physiological index value, which are the physiological index values of ROI-1 and ROI-2, respectively (step S11). The injured hemisphere side physiological index value and the uninjured hemisphere side physiological index value are the average values of the physiological index values of all voxels contained in each of ROI-1 and ROI-2.
 生理指標値比較部242cは、損傷半球側生理指標値/非損傷半球側生理指標値で表される値を算出する(ステップS12)。 The physiological index value comparison unit 242c calculates a value represented by an injured hemisphere side physiological index value / an uninjured hemispherical side physiological index value (step S12).
 運動機能状態評価演算部242dは、生理指標値比較部242cによって算出された値に基づいて、例えば再生治療後の当該患者の運動機能回復を予測するための演算を行い(ステップS13)、演算結果を出力部25に出力する(ステップS14)。運動機能状態を評価するための演算は、算出された値に加えて、参照情報記憶部234に記憶された参照情報に基づいて行
われる。
The motor function state evaluation calculation unit 242d performs a calculation for predicting the recovery of the motor function of the patient after regenerative treatment, for example, based on the value calculated by the physiological index value comparison unit 242c (step S13), and the calculation result. Is output to the output unit 25 (step S14). The calculation for evaluating the motor function state is performed based on the reference information stored in the reference information storage unit 234 in addition to the calculated value.
 ある実施形態において、参照情報は、予め用意された、再生治療を行う前の脳損傷を有するまたは有すると疑われる患者の損傷半球側生理指標値/非損傷半球側生理指標値で表される値と、治療を行った後の同患者の運動機能回復度とを変数とする回帰直線である。ここで運動機能回復度とは、運動機能を評価することができる公知の評価方法、例えばBathel Index(BI)やFugl-Meyer Assessment(FMA)等を用いて評価された、治療による運動機能の回復の程度であり、同一患者における治療前の評点と治療後の評点の差として表すことができる。 In certain embodiments, the reference information is a pre-prepared value represented by the injured hemispherical / uninjured hemispherical physiologic value of a patient who has or is suspected of having brain damage prior to regenerative therapy. It is a regression line with the variable of the degree of recovery of motor function of the same patient after treatment. Here, the degree of motor function recovery is the recovery of motor function by treatment, which is evaluated using a known evaluation method capable of evaluating motor function, for example, Bathel Index (BI) or Fugl-Meyer Assessment (FMA). It can be expressed as the difference between the pre-treatment score and the post-treatment score in the same patient.
 別の実施形態において、参照情報は、予め用意された基準値である。基準値は、再生治療後に所望の運動機能回復度が得られると見込まれる脳損傷を有するまたは有すると疑われる患者と、所望の運動機能回復度が得られないと見込まれる脳損傷を有するまたは有すると疑われる患者とを判別するためのカットオフ値である。 In another embodiment, the reference information is a reference value prepared in advance. Reference values are for patients with or suspected of having or suspected to have the desired degree of motor recovery after regenerative treatment and with or with brain damage expected to not achieve the desired degree of motor recovery. It is a cut-off value for distinguishing from a suspected patient.
 後の実施例において示すように、本発明者らは、脳局所損傷を有する患者において、再生治療後の運動機能回復度が、治療前の損傷半球側生理指標値/非損傷半球側生理指標値で表される値と相関することを見出している。したがって、既に再生治療を受けた患者の治療前の脳のDTIやDKI画像から算出された値と治療後の運動機能回復度とを参照することによって、これから再生治療を受けようとする患者の治療後の運動機能回復を予測することができ、またこの患者は再生治療への適応性があると見込まれるか、すなわち再生治療の奏功が期待できるかを評価することができる。 As shown in a later example, in patients with local brain injury, the degree of motor function recovery after regenerative treatment is the injured hemisphere side physiological index value / non-injured hemisphere side physiological index value before treatment. We have found that it correlates with the value represented by. Therefore, by referring to the values calculated from the DTI and DKI images of the pre-treatment brain of the patients who have already received the regenerative treatment and the degree of recovery of motor function after the treatment, the treatment of the patients who are going to receive the regenerative treatment from now on. Later recovery of motor function can be predicted, and whether the patient is expected to be adaptable to regenerative therapy, that is, whether regenerative therapy is expected to be successful.
 具体的には、例えば、既に再生治療を受けた患者の治療前の脳のDTIやDKI画像から算出された値と治療後の運動機能回復度とを変数とする回帰直線を予め用意し、再生治療をこれから受けようとする被験患者の脳のDTIやDKI画像から算出される値をこの回帰直線に代入することで、当該被験患者の再生治療後の運動機能回復度の予測値を算出することができる(ステップS130a、S130b)。 Specifically, for example, a regression line in which the value calculated from the DTI and DKI images of the pretreatment brain of a patient who has already undergone regenerative treatment and the degree of motor function recovery after the treatment are used as variables is prepared in advance and regenerated. By substituting the value calculated from the DTI and DKI images of the brain of the test patient who is about to receive treatment into this regression line, the predicted value of the degree of motor function recovery after regenerative treatment of the test patient is calculated. Can be done (steps S130a, S130b).
 また同様に、例えば、既に再生治療を受けた患者の治療前の脳のDTIやDKI画像から算出された値と治療後の運動機能回復度とを変数とする散布図又は回帰直線に基づいて、所望の運動機能回復度に相当する治療前の損傷半球側生理指標値/非損傷半球側生理指標値で表される値を基準値として予め決定し、再生治療をこれから受けようとする被験患者の脳のDTIやDKI画像から算出される値が基準値を上回るか否かを決定することで、当該被験患者が再生治療後に前記所望の運動機能回復度に達する見込みの高低を算出することができる(ステップS130b~S133b)。基準値は、目標とする運動機能回復度に応じて適宜設定することができる。 Similarly, for example, based on a scatter diagram or a regression line with the values calculated from the DTI and DKI images of the pretreatment brain of a patient who has already undergone regenerative treatment and the degree of recovery of motor function after the treatment as variables. Pre-treatment injured hemisphere-side physiological index value / non-injured hemispherical-side physiological index value corresponding to the desired degree of recovery of motor function is determined in advance as a reference value, and the test patient who is going to receive regenerative treatment from now on. By determining whether or not the value calculated from the DTI or DKI image of the brain exceeds the reference value, it is possible to calculate the high or low probability that the test patient will reach the desired degree of recovery of motor function after regenerative treatment. (Steps S130b to S133b). The reference value can be appropriately set according to the target degree of recovery of motor function.
 回帰直線及び基準値等の参照情報は、再生治療後の運動機能回復の予測対象である患者と同種の疾患を有する患者から得られたものであることが好ましい。例えば、予測対象の患者が脳梗塞患者である場合、参照情報は、再生治療を受けた脳梗塞患者の治療前の脳のDTIやDKI画像から算出された値と治療後の運動機能回復度とを用いて用意されたものであることが好ましい。 It is preferable that the reference information such as the regression line and the reference value is obtained from a patient having the same kind of disease as the patient who is the prediction target of the recovery of motor function after the regenerative treatment. For example, when the predicted patient is a cerebral infarction patient, the reference information includes the value calculated from the pretreatment brain DTI and DKI images of the cerebral infarction patient who received the regenerative treatment and the degree of motor function recovery after the treatment. It is preferable that it is prepared by using.
 参照情報はまた、適応しようとする治療と同種の治療を受けた患者から得られたものであることが好ましい。例えば、治療が骨髄間葉系幹細胞(BMSC)の投与である場合、参照情報は、BMSC投与を受けた患者の治療前の脳のDTIやDKI画像から算出された値と治療後の運動機能回復度とを用いて用意されたものであることが好ましい。 The reference information is also preferably obtained from a patient who has received the same type of treatment as the treatment to be indicated. For example, if the treatment is administration of bone marrow mesenchymal stem cells (BMSC), the reference information is the value calculated from the pretreatment brain DTI and DKI images of the patient who received the BMSC and the recovery of motor function after the treatment. It is preferable that it is prepared by using the degree.
 以上は、脳損傷を有するまたは有すると疑われる患者の運動機能の状態を評価する方法及び当該方法の実施において用いることができるMRI装置の例示的実施形態についての説明である。前記方法の実施において用いることができる、本開示に係る画像解析装置の例示的実施形態は、MRI装置1の画像解析部242を有する装置であり、その詳細は上記説明において記載されたとおりである。 The above is a description of a method for evaluating the state of motor function of a patient having or suspected of having a brain injury and an exemplary embodiment of an MRI apparatus that can be used in the practice of the method. An exemplary embodiment of the image analysis apparatus according to the present disclosure that can be used in the implementation of the above method is an apparatus having an image analysis unit 242 of the MRI apparatus 1, the details thereof are as described in the above description. ..
 また、前記方法の実施において用いることができる本開示に係るプログラムは、コンピュータに前記方法の各ステップを実行させるためのプログラムであり、その詳細は上記説明において記載されたとおりである。また、前記プログラムを記憶したコンピュータ読み取り可能な記憶媒体は、ハードディスク、フラッシュメモリ、CD、DVD等の任意の記憶媒体であることができる。 Further, the program according to the present disclosure that can be used in the implementation of the method is a program for causing a computer to execute each step of the method, and the details thereof are as described in the above description. The computer-readable storage medium that stores the program can be any storage medium such as a hard disk, flash memory, CD, or DVD.
 本開示によると、患者の運動機能の状態を評価することができ、これにより、例えば、再生治療を受けようとする患者の治療後の運動機能回復を予測することができる。また本開示によれば、ある患者が、再生治療への適応性があると見込まれるか、すなわち再生治療の奏功が期待できるかどうかを評価することができる。したがって、本開示による方法及びプログラムは、患者の再生治療への適応性を評価するための方法及びプログラム、患者の再生治療への適応性の評価を補助する方法及びプログラムと表すこともできる。本開示の他の態様についても同様である。 According to the present disclosure, it is possible to evaluate the state of motor function of a patient, and thereby, for example, it is possible to predict the recovery of motor function after treatment of a patient who is going to receive regenerative treatment. Also, according to the present disclosure, it is possible to evaluate whether a patient is expected to be adaptable to regenerative therapy, that is, whether the regenerative therapy is expected to be successful. Accordingly, the methods and programs according to the present disclosure can also be expressed as methods and programs for assessing a patient's adaptability to regenerative therapy, and methods and programs that assist in assessing a patient's adaptability to regenerative therapy. The same applies to other aspects of the present disclosure.
 本明細書において、「脳損傷」とは、脳に何らかの損傷が生じることをいい、脳の血管に損傷が生じることを含む。損傷の原因は特に限られるものではなく、例えば、「脳損傷」には外傷性脳損傷、脳卒中、脳梗塞、酸素欠乏脳損傷、脳腫瘍脳炎などが含まれ、脳局所損傷も含むことができる。 In the present specification, "brain injury" means that some kind of damage occurs in the brain, and includes damage to blood vessels in the brain. The cause of the injury is not particularly limited, and for example, "brain injury" includes traumatic brain injury, stroke, cerebral infarction, oxygen-deficient brain injury, brain tumor encephalitis, etc., and can also include local brain injury.
 本明細書において、「脳局所損傷」とは脳の局所に損傷を生じている状態をいい、「脳局所損傷を有する患者」とは脳の局所に損傷を生じている患者をいう。脳局所損傷の例としては、脳梗塞、頭部外傷及び脳出血を挙げることができる。また、本開示においては、脳局所損傷を有する患者は、脳の局所に損傷を生じていて、運動機能が障害されている患者であるかぎり制限はなく、急性期、亜急性期、慢性期のいずれの時期の患者であってもよい。 In the present specification, "local brain damage" refers to a state in which local damage to the brain occurs, and "patient with local brain damage" refers to a patient having local damage to the brain. Examples of local brain injury include cerebral infarction, head trauma and cerebral hemorrhage. Further, in the present disclosure, the patient having a local brain injury is not limited as long as the patient has a local brain injury and the motor function is impaired, and the patient has an acute phase, a subacute phase, and a chronic phase. It may be a patient at any time.
 本明細書において、「脳局所損傷を有する患者の再生治療」とは、患者自身(自家)又は他者(同種他家)の細胞やその分泌物を用いた、患者の損傷した神経系細胞を再生させ、損傷に伴って生じる様々な機能障害を回復させるための治療を意味する。 As used herein, the term "regenerative treatment for a patient with local brain injury" refers to the patient's injured nervous system cells using cells of the patient (autologous) or others (allogeneic) or their secretions. It means treatment to regenerate and recover various dysfunctions associated with injury.
 脳損傷または脳局所損傷を有する患者の再生治療のために使用することができる細胞は、神経系細胞への分化能を有する細胞であればよく、例としては、間葉系幹細胞及び神経幹細胞等の多分化能を有する幹細胞、人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)、胚性腫瘍細胞(EC細胞)及び胚性生殖幹細胞(EG細胞)等の多能性幹細胞を挙げることができる。本開示において、治療のために好ましく用いられる細胞は、間葉系幹細胞、特に骨髄間葉系幹細胞(BMSC、骨髄幹細胞ともいう)である。 The cells that can be used for regenerative treatment of patients with brain injury or local brain injury may be cells capable of differentiating into neural cells, and examples thereof include mesenchymal stem cells and neural stem cells. Pluripotent stem cells such as pluripotent stem cells, artificial pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), embryonic tumor cells (EC cells) and embryonic reproductive stem cells (EG cells). Can be mentioned. In the present disclosure, cells preferably used for treatment are mesenchymal stem cells, particularly bone marrow mesenchymal stem cells (BMSC, also referred to as bone marrow stem cells).
 上で例示された細胞は、移植された細胞自身の神経系細胞への分化(transdifferentiation)によって、及び移植された細胞からの分泌物中に含まれるサイトカイン、栄養因子、エクソソーム等による患者自身の神経幹細胞の賦活化や神経修復促進(nursing effect)によって、治療効果をもたらすものと考えられている。したがって、上で例示された細胞の分泌物、例えば当該細胞由来のエクソソームや細胞培養上清等もまた、本開示における治療のために用いることができる。 The cells exemplified above are the patient's own nerves due to transdifferentiation of the transplanted cells themselves into nervous system cells and due to cytokines, nutritional factors, exosomes, etc. contained in the secretions from the transplanted cells. It is thought to bring about a therapeutic effect by activating stem cells and promoting nerve repair (nursing effect). Thus, cell secretions exemplified above, such as cell-derived exosomes, cell culture supernatants, etc., can also be used for the treatment in the present disclosure.
 上記の細胞及びその分泌物は、患者自身又は他者から分離された生体試料を用いて、公知の方法によって調製することができる。多分化能を有する幹細胞は、多能性幹細胞を分化誘導して得たものであってもよい。 The above cells and their secretions can be prepared by a known method using a biological sample isolated from the patient himself or others. The pluripotent stem cell may be obtained by inducing differentiation of the pluripotent stem cell.
 また、上記の細胞及びその分泌物の投与量や投与経路は、これらに関する公知の投薬レジメンを参照して、当業者により適宜設定される。例えば、細胞は、静脈内投与や動脈内投与等の全身投与によって患者体重1kgあたり104~109個、好ましくは105~108個が、脳内直接投与や髄腔内投与等の局所投与によって患者体重1kgあたり102~109個、好ましくは104~106個が、1回又は複数回に分けて患者に投与され得る。 In addition, the doses and routes of administration of the cells and their secretions are appropriately set by those skilled in the art with reference to known dosing regimens relating thereto. For example, 10 4 to 10 9 cells, preferably 10 5 to 10 8 cells per 1 kg of patient body weight by systemic administration such as intravenous administration or intraarterial administration, are locally administered such as direct intracerebral administration or intrathecal administration. Depending on the administration, 10 2 to 10 9 cells, preferably 10 4 to 10 6 cells per kg of patient body weight may be administered to the patient in one or multiple doses.
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値」の「範囲内」と明記した場合、その範囲には2つの値自体も含む。 In this specification, "or" is used when "at least one" of the matters listed in the text can be adopted. The same applies to "or". When "within a range" of "two values" is specified in the present specification, the range also includes the two values themselves.
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 References such as scientific literature, patents, and patent applications cited herein are incorporated herein by reference in their entirety to the same extent as they are specifically described.
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したのではない。従って、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。 The present disclosure has been described above by showing preferred embodiments for ease of understanding. Hereinafter, the present disclosure will be described based on examples, but the above description and the following examples are provided for purposes of illustration only and not for the purpose of limiting the present disclosure. Therefore, the scope of the present disclosure is not limited to the embodiments and examples specifically described in the present specification, and is limited only by the scope of claims.
(実施例1:DTIによる運動機能の状態の評価)
 北海道大学病院治験審査委員会の承認を受け、以下の研究を実施した。
(1)対象患者
 脳梗塞急性期(発症早期)の患者であって、同意取得時における年齢が20歳以上、80歳未満である;同意取得時において脳梗塞発症後14日以内である;内頚動脈灌流域に生じた脳梗塞である;脳梗塞発症前のmRSが0又は1である;脳梗塞による中等~重度の神経症状(NIHSS(National Institutes of Health Stroke Scale):≧6)を有する(ただしNIHSSの「5.上肢の運動」と「6.下肢の運動」項目において総計6点以上であること)という5つの基準を満たし、所定の除外基準に抵触せず、かつ本研究に同意が得られた患者6名を対象とした。患者6名中5名は、出血性梗塞、すなわち脳出血を伴った脳梗塞の患者であった。
(Example 1: Evaluation of the state of motor function by DTI)
The following studies were conducted with the approval of the Hokkaido University Hospital Clinical Trial Review Committee.
(1) Target patients Patients in the acute stage of cerebral infarction (early onset) who are 20 years old or older and under 80 years old at the time of consent acquisition; within 14 days after the onset of cerebral infarction at the time of consent acquisition; Cerebral infarction occurring in the perforated area of the carotid artery; mRS before the onset of cerebral infarction is 0 or 1. However, it meets the five criteria of NIHSS "5. Exercise of upper limbs" and "6. Exercise of lower limbs" with a total of 6 points or more), does not violate the prescribed exclusion criteria, and agrees to this study. The 6 patients obtained were included. Five of the six patients were patients with hemorrhagic infarction, that is, cerebral infarction with cerebral hemorrhage.
(2)骨髄幹細胞の調製及び投与
 症例登録後、速やかに患者の骨髄を採取し、北海道大学病院臨床研究開発センター細胞プロセッシング室において細胞培養および骨髄幹細胞の調製を施行した。調製した骨髄幹細胞(2000万個又は5000万個/患者)を、骨髄採取の3~5週後に患者の脳内に直接投与した。
(2) Preparation and administration of bone marrow stem cells After registering the case, the bone marrow of the patient was immediately collected, and cell culture and preparation of bone marrow stem cells were performed in the cell processing room of the Clinical Research and Development Center, Hokkaido University Hospital. Prepared bone marrow stem cells (20 million or 50 million / patient) were administered directly into the patient's brain 3-5 weeks after bone marrow collection.
(3)運動機能評価
 患者の運動機能は、Bathel Index(BI)、modified Rankin Scale (mRS)、National Institute of Health Stroke Scale (NIHSS)、およびfunctional independence measure (FIM)を用いて評価した。これらの指標は日本脳卒中学会の出している脳卒中治療ガイドライン2015の脳卒中リハビリテーション評価の項で用いる様に勧められているものである。運動機能評価は、運動機能評価は、症例登録時(脳梗塞後14日目)、細胞投与7日前(脳梗塞後平均50日)、細胞投与後1年の時点で行った。急性期治療がほぼ終了した亜急性期(脳梗塞発症から10日~50日、以下亜急性期)のBIなどのそれぞれの運動機能指数の評点を、細胞投与後12ヶ月(本申請の時点で12ヶ月に至っていない患者は6ヶ月、以下慢性期)の同種の運動機能指数の評点から減算したΔBI、ΔmRS、ΔNIHSS、ΔFIMを運動機能回復度とした。
(3) Motor function evaluation The motor function of patients was evaluated using the Bathel Index (BI), modified Rankin Scale (mRS), National Institute of Health Stroke Scale (NIHSS), and functional independence measure (FIM). These indicators are recommended to be used in the stroke rehabilitation evaluation section of the Stroke Treatment Guidelines 2015 issued by the Japan Stroke Society. Motor function evaluation was performed at the time of case enrollment (14 days after cerebral infarction), 7 days before cell administration (50 days after cerebral infarction on average), and 1 year after cell administration. 12 months after cell administration (at the time of this application), the scores of each motor function index such as BI in the subacute phase (10 to 50 days after the onset of cerebral infarction, hereinafter referred to as the subacute phase) when the acute phase treatment is almost completed are given. Patients who did not reach 12 months were 6 months, and ΔBI, ΔmRS, ΔNIHSS, and ΔFIM, which were subtracted from the scores of the same type of motor function index (hereinafter referred to as chronic phase), were defined as the degree of motor function recovery.
(4)DTI/DKI撮影
 それぞれの患者について、亜急性期及び慢性期に相当する時期に、脳のDTI/DKI画像を撮影した。撮影はMRI装置(3T Achieva TX(Philips Medical Systems))をデフォルトの設定(b= 0, 1000,2000 s mm-2, TR/TE = 5032/ 85 msec, NEX = 1, voxel size =3 x 3 x 3 mm3, no. of slices = 43, 32 diffusion gradient directions)で用いて行った。
(4) DTI / DKI imaging For each patient, DTI / DKI images of the brain were taken at the time corresponding to the subacute phase and the chronic phase. For imaging, use the MRI device (3T Achieva TX (Philips Medical Systems)) as the default setting (b = 0, 1000,2000 s mm -2 , TR / TE = 5032/85 msec, NEX = 1, voxel size = 3 x 3 x 3 mm 3 , no. Of slices = 43, 32 diffusion gradient directions).
(5)画像解析
 3TMRI装置(Achieva TX, Philips Medical Systems, Best, the Netherlands)より取得した拡散画像データ(TR/TE= 5032/ 85 msec, voxel size = 3 x 3 x 3 mm3, plane = axial, no. of slices = 43, interslice gap = 0 mm, b=0, 1000, 2000 sec mm-2, NSA =1, MPG directions = 32)から、主なDTI/DKI指数であるmean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), fractional anisotropy (FA), kurtosis fractional anisotropy (KFA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) をボクセル毎に算出した (DKE2.6, MUSC Center for Biomedical Imaging, South Carolina, USA)。次に、SPM12 (Wellcome Centre for Human Neuroimaging, London, UK) を用いて標準脳に変換した。各患者の解剖画像(本検討では3D-SSFP画像)を用いたセグメンテーションにて脳実質以外の領域を取り除いた。IBASPMアトラス(http://www.thomaskoenig.ch/Lester/ibaspm.htm)及びJHU white-matter tractographyアトラス(http://cmrm.med.jhmi.edu/) による、左右内包後脚にROIを用いて、これら部位の主なDTI/DKI指数を測定した。細胞投与前の時点(脳梗塞発症後10-47日、平均=19.0±13.8日)の病変側と健常側のDTI/DKI指数の比(病変/健常)を計算し、機能回復の程度を示すBarthel index (BI)、modified Rankin Scale (mRS)、National Institute of Health Stroke Scale (NIHSS), functional independence measure (FIM)の変化(細胞投与1年後-細胞投与前)との相関を評価した(図6)。脳梗塞発症からMRI撮像までの日数を抑制変数とした。
(5) Image analysis Diffuse image data (TR / TE = 5032/85 msec, voxel size = 3 x 3 x 3 mm 3 , plane = axial) acquired from 3T MRI equipment (Achieva TX, Philips Medical Systems, Best, the Netherlands) , no. of slices = 43, interslice gap = 0 mm, b = 0, 1000, 2000 sec mm -2 , NSA = 1, MPG directions = 32), which is the main DTI / DKI index mean kurtosis (MK) , Axial kurtosis (AK), radial kurtosis (RK), fractional anisotropy (FA), kurtosis fractional anisotropy (KFA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) were calculated for each voxel ( DKE2.6, MUSC Center for Biomedical Imaging, South Carolina, USA). Next, it was converted into a standard brain using SPM12 (Wellcome Center for Human Neuroimaging, London, UK). Regions other than the brain parenchyma were removed by segmentation using anatomical images of each patient (3D-SSFP images in this study). ROIs used for left and right internal capsule hind legs by IBASPM Atlas (http://www.thomaskoenig.ch/Lester/ibaspm.htm) and JHU white-matter tractography Atlas (http://cmrm.med.jhmi.edu/) The main DTI / DKI indices of these sites were measured. Calculate the ratio (lesion / healthy) of the DTI / DKI index on the lesion side and the healthy side at the time before cell administration (10-47 days after the onset of cerebral infarction, average = 19.0 ± 13.8 days), and indicate the degree of functional recovery. Correlation with changes in Barthel index (BI), modified Rankin Scale (mRS), National Institute of Health Stroke Scale (NIHSS), and functional independence measure (FIM) (1 year after cell administration-before cell administration) was evaluated (Fig.). 6). The number of days from the onset of cerebral infarction to MRI imaging was used as the inhibitory variable.
(6)DTI結果
 DTIによってBI、mRS、NIHSS、またはFIMと運動機能との相関を評価した結果を表1に示した。この結果から、内包後脚にのみROIを置いた場合のADC値と運動機能改善には相関が認められた(発症14日後の内包後脚ROIのADC値とBIの改善度)。
Figure JPOXMLDOC01-appb-T000005
(6) DTI results Table 1 shows the results of evaluating the correlation between BI, mRS, NIHSS, or FIM and motor function by DTI. From this result, a correlation was found between the ADC value and the improvement of motor function when the ROI was placed only on the hind leg of the internal capsule (the ADC value of the ROI of the hind leg of the internal capsule 14 days after the onset and the degree of improvement in BI).
Figure JPOXMLDOC01-appb-T000005
(実施例2:DKIによる運動機能の状態の評価)
 脳梗塞患者における細胞投与治療効果を、高精度かつ測定者の経験等に依存せずに予測可能な拡散画像の指数を得るために拡散尖度画像(DKI)法を用いた。本実施例では、拡散尖度画像(DKI)法による主な指数のマップを作成し、標準脳に変換した後、両側の内包後脚の値を測定した。画像解析については上記「(5)画像解析」と同様にして行った。
(Example 2: Evaluation of the state of motor function by DKI)
The diffuse kurtosis (DKI) method was used to obtain a highly accurate and predictable index of diffuse images without depending on the experience of the measurer, etc., for the effect of cell administration therapy in patients with cerebral infarction. In this example, a map of the main exponents by the diffusion kurtosis image (DKI) method was created, converted into a standard brain, and then the values of the internal capsule hind legs on both sides were measured. Image analysis was performed in the same manner as in "(5) Image analysis" above.
 DKIによる細胞投与前の拡散画像データと機能回復程度との相関を表2に示す。
Figure JPOXMLDOC01-appb-T000006
Table 2 shows the correlation between the diffusion image data before cell administration by DKI and the degree of functional recovery.
Figure JPOXMLDOC01-appb-T000006
 細胞投与前の拡散画像データから得られた病変側と健常側の内包後脚のAD (r=0.90, P=0.04)とMD (r=0.93, P=0.02)の比はBIの変化と有意な正の相関を示した(それぞれ図7および図8)。脳梗塞に伴ったADまたはMDの低下の度合が機能回復を反映していると思われる。図7および8から、30%以上のBIの変化が得られるためには病変側と健常側の内包後脚のADとMD比はそれぞれ0.83または1.01以上になる必要があることがわかった。機能回復の程度の異なる症例のADおよびMDの左右差を図9Aと図9Bに示した。 The ratio of AD (r = 0.90, P = 0.04) and MD (r = 0.93, P = 0.02) of the internal capsule hind legs on the lesion side and the healthy side obtained from the diffusion image data before cell administration was significant with the change in BI. A positive correlation was shown (FIGS. 7 and 8 respectively). The degree of decrease in AD or MD associated with cerebral infarction seems to reflect functional recovery. From FIGS. 7 and 8, it was found that the AD and MD ratios of the internal capsule hind legs on the lesion side and the healthy side should be 0.83 or 1.01 or more, respectively, in order to obtain a change in BI of 30% or more. The left-right differences between AD and MD in cases with different degrees of functional recovery are shown in FIGS. 9A and 9B.
 以上の結果、細胞投与前のDKI指数の病変側と健常側の比は機能回復の程度と強い相関を示すことがわかった。 As a result of the above, it was found that the ratio of the lesion side and the healthy side of the DKI index before cell administration showed a strong correlation with the degree of functional recovery.
(実施例3:プログラム製品の例)
 本実施例では、プログラム製品の例を説明する。プログラム製品としては、実施例1の(4)や(5)の撮影や解析を行うことができるものを準備する。
 本開示のプログラムについては、実施例1または2に記載されるプログラムをメモリとして、機器読み取り可能なコマンドコードを記憶しているプログラム製品として提供されることができる。このプログラム製品では、コマンドコードが機器を介して読み取られると、本開示の画像処理およびその応用が実施される。
 本開示において、実施例1または2に記載されるプログラムを機器読み取り可能なコマンドコードを記憶しているプログラム製品を受け入れるための記憶媒体(ハードディスク、光ディスク、磁気光ディスク、メモリカード、メモリスティックなど)も本開示に適用することができる。
 このプログラム製品を用いてコンピュータに処理を実行させることで、脳損傷を有するまたは有すると疑われる患者を対象として、脳のDTI/DKI画像を撮影し、当該患者の拡散画像データを算出する。
 またこのプログラム製品を用いてコンピュータに処理を実行させることで、病変側と健常側のDTI/DKI指数の比(病変/健常)を計算し、機能回復の程度を示す数値の変化を算出する。
(Example 3: Example of program product)
In this embodiment, an example of a program product will be described. As a program product, a product capable of photographing and analyzing (4) and (5) of Example 1 is prepared.
The program of the present disclosure can be provided as a program product that stores a command code that can be read by a device, using the program described in the first or second embodiment as a memory. In this program product, when the command code is read through the device, the image processing of the present disclosure and its application are carried out.
In the present disclosure, a storage medium (hard disk, optical disk, magnetic optical disk, memory card, memory stick, etc.) for accepting a program product that stores a command code that can read the program described in the first or second embodiment is also used. It can be applied to this disclosure.
By having a computer perform processing using this program product, a DTI / DKI image of the brain is taken for a patient who has or is suspected of having brain damage, and diffused image data of the patient is calculated.
In addition, by having a computer execute the process using this program product, the ratio of the DTI / DKI index (lesion / healthy) on the lesion side and the healthy side is calculated, and the change in the numerical value indicating the degree of functional recovery is calculated.
 (注記)
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願及び他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本願は、日本国特許庁に2020年12月28日に出願された特願2020-219126に対して優先権主張をするものであり、その内容はその全体があたかも本願の内容を構成するのと同様に参考として援用される。
(Note)
As described above, the present disclosure has been exemplified by using the preferred embodiments of the present disclosure, but it is understood that the scope of the present disclosure should be interpreted only by the scope of claims. Patents, patent applications and other documents cited herein are to be incorporated by reference in their content as they are specifically described herein. Is understood. This application claims priority to Japanese Patent Application No. 2020-219126 filed with the Japan Patent Office on December 28, 2020, and the content thereof constitutes the content of the present application as a whole. It is also used as a reference.
 本開示は、中枢神経疾患の治療や診断等の産業において有用である。本開示は、再生医療や細胞医薬の開発等の分野において利用可能である。 This disclosure is useful in industries such as treatment and diagnosis of central nervous system diseases. The present disclosure can be used in fields such as regenerative medicine and development of cell medicine.
1    MRI装置
10   核磁気共鳴撮像部
20   コンピュータ
21   インターフェース部
22   入力部
23   記憶部
231  エコーデータ記憶部
232  再構成画像記憶部
233  DTI/DKI画像記憶部
234  参照情報記憶部
24   演算部
241  画像生成部
241a 画像再構成部
241b DTI/DKI画像生成部
242  画像解析部
242a 関心領域設定部
242b生理指標値算出部
242c生理指標値比較部
242d運動機能状態評価演算部
25   出力部
26   制御部
1 MRI device
10 Nuclear magnetic resonance imaging unit
20 computers
21 Interface section
22 Input section
23 Memory
231 Echo data storage
232 Reconstructed image storage unit
233 DTI / DKI image storage
234 Reference information storage
24 Arithmetic unit
241 Image generator
241a Image reconstruction section
241b DTI / DKI image generator
242 Image Analysis Department
242a Area of interest setting section
242b Physiological index value calculation unit
242c Physiological index value comparison unit
242d Motor function state evaluation calculation unit
25 Output section
26 Control unit

Claims (14)

  1.  脳損傷を有するまたは有すると疑われる患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を1または複数得るステップと、
     前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行うステップと
    を含む、前記患者の運動機能の状態を評価する方法。
    A step of obtaining one or more physiological index values with the white matter region on the hemispherical side of the brain injury of a patient having or suspected to have brain injury as the region of interest.
    A method for evaluating the state of motor function of a patient, which comprises a step of comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating the state of motor function of the patient.
  2.  前記生理指標値が、拡散テンソル画像(DTI)法または拡散尖度画像(DKI)法によって得られる前記患者の脳の拡散強調画像から得られる、請求項1に記載の方法。 The method according to claim 1, wherein the physiological index value is obtained from a diffusion-weighted image of the patient's brain obtained by a diffusion tensor image (DTI) method or a diffusion sharpness image (DKI) method.
  3.  前記生理指標値が、MD(mean diffusivity)値およびAD(axial diffusivity)値を含む、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the physiological index value includes an MD (mean diffusivity) value and an AD (axial mass diffusivity) value.
  4.  前記関心領域が脳の内包後脚に設定される、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the region of interest is set on the hind leg of the internal capsule of the brain.
  5.  前記運動機能の状態が、再生治療後の運動機能の状態である、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the state of motor function is the state of motor function after regenerative treatment.
  6.  前記対照生理指標値が、前記患者の脳の非損傷半球側の白質領域を関心領域として得られる、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the control physiological index value is obtained by using the white matter region on the uninjured hemisphere side of the patient's brain as a region of interest.
  7.  前記演算を行うステップが、前記生理指標値/前記対照生理指標値で表される値を算出する、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the step of performing the calculation calculates a value represented by the physiological index value / the control physiological index value.
  8.  前記演算を行うステップが、算出された前記患者の運動機能の状態を示す値を、予め用意された、患者の運動機能の状態を示す値と運動機能回復度とを変数とする回帰直線に代入することで、前記患者の運動機能の状態を評価する、請求項1~7のいずれか一項に記載の方法。 In the step of performing the calculation, the calculated value indicating the state of the patient's motor function is substituted into a prepared regression line in which the value indicating the state of the patient's motor function and the degree of recovery of the motor function are variables. The method according to any one of claims 1 to 7, wherein the state of motor function of the patient is evaluated.
  9.  前記演算を行うステップが、算出された前記患者の運動機能の状態を示す値を、予め用意された基準値と比較することで、前記患者が再生治療後に所望の運動機能回復度に達する見込みの高低を算出する、請求項1~8のいずれか一項に記載の方法。 By comparing the calculated value indicating the state of the motor function of the patient with the reference value prepared in advance, the step of performing the calculation is expected to reach the desired degree of recovery of the motor function of the patient after the regenerative treatment. The method according to any one of claims 1 to 8, wherein the height is calculated.
  10.  脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価する方法の処理をコンピュータに実行させるコンピュータプログラムであって、前記方法は以下の工程:
     前記コンピュータに、前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得させるステップと、
     前記コンピュータに、前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行わせるステップと
    を含む、プログラム。
    A computer program that causes a computer to perform a process of assessing the state of motor function of the brain of a patient with or suspected of having a brain injury, wherein the method is the following step:
    A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
    A program comprising a step of causing the computer to perform an operation for comparing the physiological index value with a control physiological index value and calculating a value indicating a state of motor function of the patient.
  11.  脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価する方法の処理をコンピュータに実行させるコンピュータプログラムを格納する記録媒体であって、前記方法は以下の工程:
     前記コンピュータに、前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得させるステップと、
     前記コンピュータに、前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行わせるステップと
    を含む、記録媒体。
    A recording medium containing a computer program that causes a computer to perform a process of assessing the state of motor function of the brain of a patient with or suspected of having a brain injury, wherein the method comprises the following steps:
    A step of causing the computer to obtain a physiological index value with the white matter region on the injured hemisphere side of the patient's brain as the region of interest.
    A recording medium comprising a step of causing the computer to perform an operation for comparing the physiological index value with a control physiological index value and calculating a value indicating a state of motor function of the patient.
  12.  脳損傷を有するまたは有すると疑われる患者の脳の運動機能の状態を評価するシステムであって、
     前記患者の脳の損傷半球側の白質領域を関心領域とした生理指標値を得る手段と、
     前記生理指標値を対照生理指標値と比較し、前記患者の運動機能の状態を示す値を算出するための演算を行う手段と
    を含む、システム。
    A system that assesses the state of motor function in the brain of patients with or suspected of having brain injury.
    A means for obtaining a physiological index value with the white matter region on the traumatic hemisphere side of the patient's brain as the region of interest.
    A system comprising a means for comparing the physiological index value with a control physiological index value and performing an operation for calculating a value indicating a state of motor function of the patient.
  13.  脳損傷を有するまたは有すると疑われる患者の脳の拡散強調画像において、損傷半球側の白質領域を第1関心領域として、及び非損傷半球側の白質領域を第2関心領域として設定する関心領域設定部と、
     第1関心領域及び第2関心領域のそれぞれにおける損傷半球側生理指標値及び非損傷半球側生理指標値を算出する生理指標値算出部と、
     損傷半球側生理指標値と非損傷半球側生理指標値とを比較して、当該患者の運動機能の状態を示す値を算出するための演算を行う演算部と
    を備えることを特徴とする、画像解析装置。
    In a diffusion-weighted image of the brain of a patient with or suspected of having a brain injury, a region of interest setting where the white matter region on the injured hemisphere side is set as the first region of interest and the white matter region on the non-injured hemisphere side is set as the second region of interest. Department and
    A physiological index value calculation unit that calculates a damaged hemispherical side physiological index value and an uninjured hemispherical side physiological index value in each of the first region of interest and the second region of interest.
    The image is characterized by comprising an arithmetic unit for performing an operation for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of the motor function of the patient. Analytical device.
  14.  脳損傷を有するまたは有すると疑われる患者の脳を撮像する核磁気共鳴撮像部と、
     核磁気共鳴撮像部が取得したエコーデータから拡散強調画像を生成する画像生成部と、
     拡散強調画像において、損傷半球側の白質領域を第1関心領域として、及び非損傷半球側の白質領域を第2関心領域として設定する関心領域設定部と、
     第1関心領域及び第2関心領域のそれぞれにおける損傷半球側生理指標値及び非損傷半球側生理指標値を算出する生理指標値算出部と、
     損傷半球側生理指標値と非損傷半球側生理指標値とを比較して、当該患者の運動機能の状態を示す値を算出するための演算を行う演算部と
    を備えることを特徴とする、MRI装置。
    A nuclear magnetic resonance imaging unit that images the brain of a patient with or suspected of having a brain injury,
    An image generation unit that generates a diffusion-weighted image from the echo data acquired by the nuclear magnetic resonance imaging unit,
    In the diffusion-weighted image, a region of interest setting unit that sets the white matter region on the damaged hemisphere side as the first region of interest and the white matter region on the non-damaged hemisphere side as the second region of interest.
    A physiological index value calculation unit that calculates a damaged hemispherical side physiological index value and an uninjured hemispherical side physiological index value in each of the first region of interest and the second region of interest.
    The MRI is characterized by comprising a calculation unit for comparing the injured hemisphere side physiological index value and the non-injured hemisphere side physiological index value and calculating a value indicating the state of motor function of the patient. Device.
PCT/JP2021/048662 2020-12-28 2021-12-27 Method, program, and device for evaluating state of motor function WO2022145433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022573090A JPWO2022145433A1 (en) 2020-12-28 2021-12-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-219126 2020-12-28
JP2020219126 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145433A1 true WO2022145433A1 (en) 2022-07-07

Family

ID=82260710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048662 WO2022145433A1 (en) 2020-12-28 2021-12-27 Method, program, and device for evaluating state of motor function

Country Status (2)

Country Link
JP (1) JPWO2022145433A1 (en)
WO (1) WO2022145433A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510560A (en) * 2004-08-25 2008-04-10 モトリカ リミテッド Exercise training by brain plasticity
JP2008132032A (en) * 2006-11-27 2008-06-12 Hitachi Ltd Nerve fiber bundle measuring system and image processing system
US20080205733A1 (en) * 2006-10-19 2008-08-28 Brown Universisty Quantitative tract-of-interest metrics for white matter integrity based on diffusion tensor MRI data
JP2011139799A (en) * 2010-01-07 2011-07-21 Toshiba Corp Image processor and magnetic resonance imaging apparatus
JP2015534844A (en) * 2012-10-17 2015-12-07 アシスタンス ピュブリク−オピトー ドゥ パリAssistance Publique − Hopitaux De Paris Method for quantifying brain damage
US20180168499A1 (en) * 2015-06-04 2018-06-21 Peter John BERGOLD Diagnosis of mild traumatic brain injury

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510560A (en) * 2004-08-25 2008-04-10 モトリカ リミテッド Exercise training by brain plasticity
US20080205733A1 (en) * 2006-10-19 2008-08-28 Brown Universisty Quantitative tract-of-interest metrics for white matter integrity based on diffusion tensor MRI data
JP2008132032A (en) * 2006-11-27 2008-06-12 Hitachi Ltd Nerve fiber bundle measuring system and image processing system
JP2011139799A (en) * 2010-01-07 2011-07-21 Toshiba Corp Image processor and magnetic resonance imaging apparatus
JP2015534844A (en) * 2012-10-17 2015-12-07 アシスタンス ピュブリク−オピトー ドゥ パリAssistance Publique − Hopitaux De Paris Method for quantifying brain damage
US20180168499A1 (en) * 2015-06-04 2018-06-21 Peter John BERGOLD Diagnosis of mild traumatic brain injury

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MELHEM ELIAS R., SUSUMU MORI, GOVIND MUKUNDAN , MICHAEL A. KRAUT, MARTIN G. POMPER , PETER C. M. VAN ZIJL: "Diffusion Tensor MR Imaging of the Brain and White Matter Tractography", AMERICAN JOURNAL OF ROENTGENOLOGY, AMERICAN ROENTGEN RAY SOCIETY, US, vol. 178, 1 January 2002 (2002-01-01), US , pages 3 - 16, XP055948367, ISSN: 0361-803X, DOI: 10.2214/ajr.178.1.1780003 *

Also Published As

Publication number Publication date
JPWO2022145433A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
Kersbergen et al. Microstructural brain development between 30 and 40 weeks corrected age in a longitudinal cohort of extremely preterm infants
JP5641531B1 (en) Brain activity training apparatus and brain activity training system
Rajasekaran et al. Diffusion tensor imaging of the spinal cord and its clinical applications
Wheeler-Kingshott et al. The current state-of-the-art of spinal cord imaging: applications
Budde et al. Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis
Heemskerk et al. Skeletal muscle degeneration and regeneration after femoral artery ligation in mice: monitoring with diffusion MR imaging
JP2018118144A (en) Brain activity analysis device, brain activity analysis method, and biomarker device
Gur et al. Effects of memory processing on regional brain activation: cerebral blood flow in normal subjects
CN111867464B (en) Brain activity training device, brain activity training method, and brain activity training program
Zhang et al. Diffusion tensor imaging depicting damage to the arcuate fasciculus in patients with conduction aphasia: a study of the Wernicke–Geschwind model
Wang et al. White matter abnormalities in medication-naïve adult patients with major depressive disorder: Tract-based spatial statistical analysis
Yao et al. Gait characteristics and brain activity in Parkinson’s disease with concomitant postural abnormalities
WO2022145433A1 (en) Method, program, and device for evaluating state of motor function
Kim et al. Postmortem delay does not change regional diffusion anisotropy characteristics in mouse spinal cord white matter
JP6966828B2 (en) Methods, programs and devices for assessing the state of motor function
Badihian et al. Clinical and neuroimaging characteristics of primary lateral sclerosis with overlapping features of progressive supranuclear palsy
Sun et al. Evaluation of hyperbaric oxygen treatment in acute traumatic spinal cord injury in rats using diffusion tensor imaging
Jang et al. Cerebellar Peduncle Injuries in Patients with Mild Traumatic Brain Injury
Park et al. Quantitative Analysis in Cervical Spinal Cord Injury Patients Using Diffusion Tensor Imaging and Tractography
Chen Intermittent theta burst stimulation enhances upper limb motor function in patients with chronic stroke: a randomized controlled trial
Hense Structural and functional magnetic resonance imaging as a diagnostic tool for evaluating neuroplastic changes in patients with brain tumors
US20190365229A1 (en) System and method for assessment of neuro-inflammation using magnetic resonance imaging (mri)
Joni et al. Investigating the role of susceptibility weighted imaging for assessment of ischemic penumbra with respect to Venus blood flow in ischemic stroke patients
Derashri et al. Neuroimaging: Mapping and Diagnosis of Neurodegenerative Diseases
Hotiu Diffusion tensor imaging in mild traumatic brain injuries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915291

Country of ref document: EP

Kind code of ref document: A1