[go: up one dir, main page]

WO2022111450A1 - 制砖系统、生产控制方法、装置、系统、生产设备及介质 - Google Patents

制砖系统、生产控制方法、装置、系统、生产设备及介质 Download PDF

Info

Publication number
WO2022111450A1
WO2022111450A1 PCT/CN2021/132336 CN2021132336W WO2022111450A1 WO 2022111450 A1 WO2022111450 A1 WO 2022111450A1 CN 2021132336 W CN2021132336 W CN 2021132336W WO 2022111450 A1 WO2022111450 A1 WO 2022111450A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
production
brick
brick making
fabric
Prior art date
Application number
PCT/CN2021/132336
Other languages
English (en)
French (fr)
Inventor
周雪蛟
李许
赵栓
许开国
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011346024.4A external-priority patent/CN114536514B/zh
Priority claimed from CN202110119488.XA external-priority patent/CN114815737A/zh
Priority claimed from CN202120545227.XU external-priority patent/CN213290757U/zh
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Priority to US17/999,821 priority Critical patent/US20230205186A1/en
Publication of WO2022111450A1 publication Critical patent/WO2022111450A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41835Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by programme execution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C9/00General arrangement or layout of plant
    • B28C9/04General arrangement or layout of plant the plant being mobile, e.g. mounted on a carriage or a set of carriages
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45086Brick laying, masonry robot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the application relates to the technical field of construction equipment, and in particular, to a brick making system, a production control method, a production control device, a production system, a production equipment, and a computer-readable storage medium.
  • the recycling and utilization of construction waste, tailings, slag, sludge, etc. are all processed in various ways according to the type and characteristics of solid waste.
  • the recycled products obtained after treatment can be further processed into concrete products according to their types, such as bricks to realize the secondary utilization of solid waste.
  • the production line of concrete products has a low degree of automation, and often requires manual participation in the transportation of raw materials and finished products, resulting in high transportation costs.
  • construction wastes are generally treated in a centralized manner, that is, firstly, construction wastes are classified and crushed into recycled aggregates for recycling and put into the building material market to be reused in concrete product production lines. .
  • this processing method various traction equipment and vehicles are required for auxiliary construction, and manual processing is required, and the economic benefit is low.
  • due to the small amount of construction waste and the long cycle span it is easy to cause idle equipment and manpower. And the need for frequent transfers has greatly increased the cost of recycling construction waste.
  • various equipments in a common brick-making production line for processing construction waste are usually arranged in one direction and connected in sequence, which not only occupies a large area, but also needs to configure multiple auxiliary equipments.
  • Once the brick production line is installed and fixed it is costly to relocate the installation site again, resulting in poor use flexibility of the brick production line.
  • the brick-making production line in which various equipments are arranged in one direction can only carry out single-side distribution, board feeding and board discharging, resulting in a long brick-making cycle and low production efficiency.
  • Chinese patent document CN211541646U discloses a mobile integrated machine for crushing and making bricks, which adopts crushing equipment and brick-making equipment respectively set in the carriage of a movable vehicle to realize continuous operation of crushing construction waste and making bricks.
  • the arrangement of crushing equipment, brick making equipment and other auxiliary equipment in the compartment results in a long vehicle length, which is not conducive to the vehicle turning.
  • a production control method applied to a production system wherein the production system includes at least two robots with different production functions, wherein the production control method includes: acquiring the initial positions of each robot and the target position in the production process; and plan the work path of each robot according to the initial position and the target position of each robot, and control the corresponding robot to work based on the work sequence and the work path of each robot.
  • a production control device applied to a production system, the production system comprising at least two robots with different production functions, wherein the production control device comprises: a position acquisition module for Obtain the initial position of each robot and the target position in the production process; and a path planning module for planning the work path of each robot according to the initial position and the target position of each robot, based on the work sequence and the work path of each robot Control the corresponding robot respectively to work.
  • a production apparatus wherein the production apparatus includes: one or more processors; and a storage device for storing one or more programs, wherein the one or more The processor is configured to execute the one or more programs to implement the production control method as described above.
  • a brick making system comprising: a brick making machine; The brick making machine feeds the bottom material; and a fabric distributing device connected to the other side of the brick making machine adjacent to the one side to feed the brick making machine along the second direction into the fabric.
  • a computer-readable storage medium stores a computer program thereon, and when the program is executed by a processor, implements the production control method described in the first aspect.
  • FIG. 1 is a flowchart of a production control method according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a production control method according to an embodiment of the present application.
  • 3A and 3B are schematic flowcharts of a production control method according to an embodiment of the present application.
  • FIG. 4 is a structural diagram of a production control device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a production system according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a production equipment according to an embodiment of the present application.
  • Fig. 7 is a front view of the brick making system according to the embodiment of the present application.
  • Fig. 8 is a side view of the brick making system according to the embodiment of the present application in Fig. 7;
  • Fig. 9 is a top view of the brick making system according to the embodiment of the present application in Fig. 7;
  • Fig. 10 is a front view of the first feeding device (longitudinal plate feeding car) in the brick making system according to the embodiment of the present application in Fig. 7;
  • Fig. 11 is a side view of the first feeding device (longitudinal plate feeding car) in the brick making system according to the embodiment of the present application in Fig. 10;
  • Fig. 12 is a top view of the first feeding device (longitudinal plate feeding car) in the brick making system according to the embodiment of the present application in Fig. 10;
  • Fig. 13 is a front view of the second feeding device/fabric arrangement device (transverse plate feeding/fabric distributing cart) in the brick making system according to the embodiment of the present application in Fig. 7;
  • Fig. 14 is a side view of the second feeding device/fabric arrangement device (transverse plate feeding/fabric distributing cart) in the brick making system according to the embodiment of the present application in Fig. 13;
  • Fig. 15 is a top view of the second feeding device/fabric arrangement device (transverse plate feeding/fabric distributing cart) in the brick making system according to the embodiment of the present application in Fig. 14;
  • Fig. 16 is a front view of the brick making machine in the brick making system according to the embodiment of the present application in Fig. 7;
  • Fig. 17 is a side view of the brick making machine in the brick making system according to the embodiment of the present application in Fig. 16;
  • Fig. 18 is a top view of the brick making machine in the brick making system according to the embodiment of the present application in Fig. 16;
  • Fig. 19 is a front view of the special tooling for molds in the brick making system according to the embodiment of the present application in Fig. 7;
  • FIG. 20 is a top view of the special tooling for the mold in the brick making system according to the embodiment of the present application in FIG. 19 .
  • FIG. 21 is a front view of an integrated brick crushing machine according to an embodiment of the present application.
  • Fig. 22 is another front view of the integrated brick crushing machine according to an embodiment of the present application, showing a state in which the feeding belt in Fig. 21 is folded upwards.
  • FIG. 23 is a top view of the integrated brick crushing machine shown in FIG. 21 according to an embodiment of the present application.
  • FIG. 24 is a top view of the block making machine area of FIG. 21 .
  • Embodiments of the production control method, production control device, production system and production equipment related to the production of bricks according to embodiments of the present application will be described in detail below with reference to FIGS. 1 to 6 .
  • FIG. 1 is a flowchart of a production control method according to an embodiment of the present application.
  • the method involved in this embodiment is suitable for collaborative production by robots with different functions, and the method can be executed by a production control device, and specifically includes the following steps:
  • S2120 Plan the working path of each robot according to the initial position and the target position of each robot, and control the corresponding robot to work based on the work sequence and the working path of each robot to complete the production task.
  • the overall work sequence of each robot with different production functions (hereinafter referred to as the work sequence) needs to be determined according to the sequence of the production process of the product, and the initial position and target position of each robot need to be determined. Plan the working path of each robot. Then, based on the work sequence and the work path of each robot, the corresponding robots are controlled to work.
  • controlling the corresponding robots to work based on the working sequence and the working path of each robot including: determining the starting working time of each of the robots based on the working sequence and the working time of each of the robots; The working time and the working path corresponding to the initial working time respectively control the corresponding robot to work.
  • the working sequence of each robot determines the sequence in which each robot starts to work.
  • the start time of each robot can be determined through the work sequence and the work time of each robot.
  • a total of 3 robots with different functions are used for production work, namely robot 1, robot 2 and robot 3, and their work sequence is that robot 1 starts to work first, and the working time is 1 hour, and then robot 2 starts to work, The working time is 30 minutes, and finally the robot 3 starts to work, and the working time is 20 minutes.
  • the starting working time of the robot 1 is the preset starting working time.
  • Robot 2 starts working after robot 1 works for 1 hour
  • robot 3 starts working after robot 2 works for 30 minutes.
  • each robot is controlled to work according to the starting working time and working path of each robot to complete the production task.
  • the corresponding robots may also be controlled to work based on the work sequence and the work path of each of the robots.
  • the control method includes: in response to receiving the work completion information of the current process robot, sending a working path to the next process robot to control the next process robot to start working.
  • the control method includes: sending each work path to the corresponding robot in advance, and in response to receiving the work completion information of the current process robot, sending a work start instruction to the next process robot.
  • each robot to perform production work it can also start the robot of the next process to start work according to the work completion information of the current working robot.
  • the working path in response to the robot A producing a green body, the working path is sent to the robot B in the next working sequence, and the robot B is controlled to start the work of transferring the green body according to the working route.
  • the planned working paths are respectively sent to the corresponding robots in advance.
  • the robot A produces a blank
  • the information that the production of a blank is completed is reported to the server, and the server receives the robot A.
  • an instruction to start work is sent to the robot B in the next process, and the robot B starts to move according to the working path to perform the embryo transfer work.
  • the production control method of this embodiment can be applied to a production system, wherein the production system includes at least two robots with different production functions.
  • the initial position of each robot and the target position in the production process are obtained; according to The initial position and the target position of each of the robots plan the working path of each of the robots, and the corresponding robots are controlled to work based on the work sequence and the working path of each of the robots to complete the production task and solve the automation of the production line.
  • the problem of low degree is realized, and the effect of reducing labor cost and improving production efficiency is realized.
  • FIG. 2 is a flowchart of a production control method according to an embodiment of the present application. This embodiment is based on the previous embodiment and further describes in detail the steps of acquiring the initial position of each robot and the target position in the production process. Specifically, obtaining the initial position of each robot and the target position in the production process may include: obtaining a production task, and determining a robot to perform the production task according to the production task; The production task determines the target position of each of the robots (here, each robot performing the production task) during the execution of the production task.
  • the production control method specifically includes the following steps:
  • S2210 Acquire a production task, and determine the robot that performs the production task according to the production task; acquire the determined initial positions of each robot, and determine the determined target position of each robot in the process of performing the production task according to the production task.
  • the robot required to complete the production task is determined according to the predetermined production task, and the initial position of the robot for completing the production task and the target position in the execution of the production task are determined.
  • the production task is to produce a preset number of embryos, and transfer the produced embryos to a preset position
  • the robot for completing the production task includes: a feeding robot for transporting raw materials to a production line robot ;
  • the production line robot is used to obtain graded aggregates and other raw materials conveyed by the feeding robot to produce the green body;
  • the transfer robot is used to transfer the green body from the production line robot to the preset position.
  • the initial positions of the production line robot, the feeding robot and the transfer robot are obtained, and the target positions in the production process are determined according to the respective production tasks of the production line robot, the feeding robot and the transfer robot.
  • the production line robot needs to obtain graded aggregate from the graded aggregate pile for producing the embryo body, so the target position of the production line robot is the position of the graded aggregate pile.
  • the production task of the feeding robot is to deliver other raw materials to the production line robot, so the target position of the feeding robot is the position where the production line robot receives the raw materials.
  • the transfer robot needs to transfer the embryo body produced by the production line robot to a preset position, so the target position of the transfer robot is the position where the production line robot produces the embryo body and the preset position where the transferred green body is placed.
  • the target position of the robot is at least one.
  • an operation corresponding to any target position is performed.
  • there are two target positions of the transfer robot which are the position where the production line robot produces the green body and the preset position where the transferred green body is placed.
  • the transfer robot reaches the position where the robot on the production line produces the embryo body, it obtains the embryo body, and then transports the embryo body to the preset position according to the planned working path, and then unloads the green body.
  • the production control method further includes determining the working mode of each robot according to the production task after determining the robot to perform the production task according to the production task.
  • the transfer robot can transfer the product to a first preset position or a second preset position, wherein transferring the product to the first preset position corresponds to the first working mode, and transferring the product to the second preset position corresponds to The second working mode. That is, if the production task is to transfer the product to the first preset position, the working mode of the transfer robot is determined to be the first working mode.
  • the robot can complete different production tasks.
  • S2220 Plan the working path of each robot according to the initial position and the target position of each robot, and control the corresponding robot to work based on the work sequence and the working path of each robot to complete the production task.
  • the robots include a production line robot and at least one loading robot.
  • the planning of the working path of each robot according to the initial position and the target position of each robot includes: planning the working path of the production line robot based on the initial position of the production line robot and the storage position of the production material;
  • the initial position of the feeding robot, the reclaiming position and the planned target position in the working path of the production line robot plan the working path of the feeding robot.
  • it includes at least a production line robot and at least one loading robot. Obtain the initial positions of the production line robot and at least one feeding robot, as well as the reclaiming positions of graded aggregate and each raw material.
  • the target position of the production line robot that is, the position where the production line robot obtains the graded aggregate
  • the initial position of at least one feeding robot, and the reclaiming position of each raw material plan the working path of at least one feeding robot, so that the feeding robot can Start from the initial position, move to the corresponding reclaiming position to obtain raw materials, and then transport the raw materials to the production line robot.
  • the production line robot includes at least one of a reclaiming device, a traveling device, a production device and a vehicle frame.
  • the production line robot further includes at least one of a feeding device, a raw material metering device, a raw material conveying device, a stirring device, a blank forming device, a blank conveying device, and a blank stacking device.
  • the above-mentioned device can be partially or fully installed on a fixed platform, or on a vehicle frame.
  • the frame and at least one of the above-mentioned devices can be driven to move together by the running device.
  • the running gear is mounted under the frame and has independently rotating wheels. At least one wheel has a brake.
  • the turning and in-situ reversal of the frame can be realized through differential speed control, and the driving device of the traveling device is an engine and/or a motor, or the traveling device is directly towed by a tractor.
  • the reclaimer is driven by a robotic arm that picks up graded aggregate and delivers it to the feeder.
  • the feeding device is used to receive the graded aggregate picked up by the reclaimer and can optionally transport the graded aggregate through the belt to the raw material metering device for weighing.
  • the raw materials transported by the feeding robot can also be weighed by the raw material measuring device, so that each raw material is proportioned according to the preset process formula.
  • the raw material conveying device conveys the metered graded aggregate and other kinds of raw materials to the corresponding stirring device.
  • the stirring device uniformly mixes and stirs different raw materials to meet the requirements of the subsequent molding steps.
  • the green body forming device will make one or more mixed materials after stirring, for example, through the principles of static pressing and vibration forming, into a finished green body.
  • the blank conveying device is a horizontal conveying mechanism, used for conveying each blank produced by the blank forming device to the subsequent blank stacking device, and at the same time reserving placement space for the blank formed next time.
  • the blank stacking device can be a frame-type lifting device, which is used to move the blanks conveyed in place by the blank conveying device to the stacking position as a whole, and stack them into a target stacking type layer by layer.
  • the blank forming device can be regarded as a production device, and the blank forming device as well as the feeding device, the raw material metering device, the raw material conveying device, the stirring device, the blank conveying device and the blank stacking device can also be regarded as At least one of them is considered a production device.
  • the production line robot further includes a dust collection device and/or a dust suppression device.
  • the dust collecting device may be a negative pressure dust collecting device, which utilizes the negative pressure formed by the fan to absorb the dust at the dust raising point with a certain degree of sealing in the device into the dust collecting bag.
  • the dust reduction device is a fluid atomization dust reduction device, which includes atomizing nozzles set at some open dust raising points and performing spraying with the action, so as to eliminate the dust by atomizing the dust reduction.
  • the docking positions between the belt and each device cannot be sealed, and these docking positions are open dust-raising points, so fluid atomization dust-reducing equipment is installed at these positions to eliminate dust.
  • the production line robot can be independently equipped with a remote control, so that when the operator leaves the console, he can handle various emergency situations around the equipment and manually control key actions, which expands the operator's range of activities in space.
  • the robot further includes at least one of a transfer robot, a palletizing robot, a packaging robot, a finished product transfer robot and a loading robot.
  • the planning of the working path of each robot according to the initial position and the target position of each robot includes: based on the transfer robot, the palletizing robot, the packaging robot, the finished product transfer robot, and the The initial position of at least one of the loading robots, the starting position and the ending position in the target position generate the transfer robot, the palletizing robot, the packaging robot, the finished product transfer robot, and the loading robot.
  • the working path of the at least one of the cart robots includes: based on the transfer robot, the palletizing robot, the packaging robot, the finished product transfer robot, and the The initial position of at least one of the loading robots, the starting position and the ending position in the target position generate the transfer robot, the palletizing robot, the packaging robot, the finished product transfer robot, and the loading robot.
  • the working path of the at least one of the cart robots includes: based on the transfer robot, the palletizing robot, the
  • the production task obtain the initial position of at least one of the transfer robot, the palletizing robot, the packaging robot, the finished product transfer robot and the loading robot, the starting position and the ending position in the target position, and plan the working path of the corresponding robot, In order to make each robot move according to the corresponding working path, so as to complete the production task.
  • At least one robot includes at least one of a control module, a positioning module, a detection module and a path correction module, wherein the control module is configured to receive the working path of the robot, and control the robot to perform the operation according to the working path.
  • the positioning module is used to obtain the initial position of the robot and the real-time position during the working process;
  • the detection module is used to detect whether there are obstacles in the working path during the working process of the robot;
  • the deviation correction module is used to control the robot to always move along the working path.
  • each robot includes a control module, a positioning module, a detection module and a path correction module.
  • the initial position of each robot and the real-time position in the working process are obtained through the positioning module, and the position information is sent to the main server through a wireless communication module such as wifi, so as to realize the sharing of the position and operation area of each robot , so that the total server can plan the working path of each robot.
  • the planned working path is received through the control module and the robot is controlled to move according to the working path.
  • the detection module detects whether there are obstacles in the working path. If there are obstacles, bypass the obstacles. If there are no obstacles, continue to move along the original working path.
  • the detection module detection includes at least one of an infrared detector, an ultrasonic detector and a laser detector. Control the robot to move along the working path through the path correction module to prevent the robot from deviating from the working path.
  • the production process of the concrete product according to the embodiment of the present application will be described in detail with reference to FIG. 3A and FIG. 3B .
  • the device is powered on, the initial position of each robot is positioned through the positioning module, and then the three-dimensional coordinates of the initial position are fed back to the server through a wireless communication device such as a WIFI module.
  • the server plans the coordinates of the target position (or, the position of the next working point) of each robot, and plans the work path of each robot according to the initial position and the target position.
  • the planned working path is sent to the control module of each robot through a wireless communication device such as a WIFI module.
  • a wireless communication device such as a WIFI module can transmit the position information of each robot in real time.
  • the control module of the production line robot controls the robot to move according to the working path, and detects whether there are obstacles in the path through the detection module, so that the production line robot can avoid the obstacles and reach the target position (that is, to obtain the appropriate reclaiming material for graded aggregates). location) to start work.
  • the graded aggregate is obtained through the reclaiming device and fed to the feeding device.
  • the feeding robot obtains raw materials from various raw materials to transport the raw materials to the production line robot.
  • each raw material After the production robot obtains each raw material, it is weighed by a measuring device, and the raw materials are proportioned according to a preset process formula, and the measured raw materials are stirred by a stirring device.
  • there is at least one stirring device and the number thereof is determined according to the type of the raw material.
  • the raw material 1 and the raw material 2 are stirred by one stirring device, and the raw material 3 and the raw material 4 are stirred by another stirring device.
  • the agitated mixed raw materials are formed into embryos by a forming device according to the principles of static pressure and vibration forming, and the formed embryos are placed in a tray (also referred to as a pallet).
  • the formed embryos and trays are transferred to the conservation area by the transfer robot, and the embryos become finished products after conservation.
  • the palletizing robot separates the embryos or finished products from the pallet, and then transports the embryos or finished products to the palletizing area for palletizing.
  • the finished product is packaged.
  • the finished product transfer robot moves to the palletizing area to transfer the packaged blanks to the finished product storage area.
  • the production line robot automatically returns all the devices to the initial operating state and resets them to the waiting area to wait for the arrival of the raw materials or the completion of the process. Ready to leave.
  • the feeding robot automatically returns to the initial operating state and resets to the waiting area to wait for the arrival of the raw material or to leave the field.
  • the transfer robot transfers the embryo or finished product for the last time, it returns to the initial operating state and resets to the waiting area to wait for the arrival of raw materials or prepare for departure.
  • the production control method can be applied to a production system including at least two robots with different production functions, wherein the above-mentioned production control method includes the following steps: obtaining production tasks; A robot for a production task; obtain the determined initial position of each robot and determine the target position of each robot in the process of performing the production task according to the production task; plan the work of each robot according to the initial position and the target position of each robot Path; based on the work sequence and the work path of each robot, and respectively control the corresponding robot to work to complete the production task.
  • the production control method and the production system using the production control method solve the problem of low automation of the production line, and achieve the effects of reducing labor costs and improving production efficiency.
  • FIG. 4 is a structural diagram of a production control device according to an embodiment of the present application, which can be applied to a production system according to an embodiment of the present application, wherein the production system includes at least two robots with different production functions, wherein the The production control device includes a position acquisition module 2310 and a path planning module 2320.
  • the position obtaining module 2310 obtains the initial position of each robot and the target position in the production process.
  • the path planning module 2320 plans the working path of each robot according to the initial position and the target position of each robot, and controls the corresponding robot to work based on the work sequence and the working path of each robot to complete the production task.
  • the path planning module 2320 may include: a starting working time determination unit, which determines the starting working time of each robot based on the working sequence and working time of each robot; a robot control unit, based on the starting working time and the corresponding The working paths respectively control the corresponding robots to work.
  • the path planning module 2320 further includes a work completion information receiving unit.
  • the path planning module 2320 in response to receiving the work completion information of the current process robot, sends the work path to the next process robot to control the next process robot to start working, or sends each work path to the corresponding robot, and responds Receive the work completion information of the current process robot, and send a start work instruction to the next process robot.
  • the position acquisition module 2310 includes: a production task acquisition unit for acquiring production tasks and determining a robot to perform the production task according to the production tasks; a target position determination unit for acquiring each determined robot The initial position of each robot is determined according to the production task, and the target position of each robot in the process of performing the production task is determined.
  • the position acquisition module 2310 further includes a work mode determination unit for determining the work mode of each robot according to the production task.
  • the target position of the robot is at least one, and the robot is configured to perform an operation corresponding to the target position when any target position is reached according to the working path.
  • the robot includes a production line robot and at least one feeding robot;
  • the path planning module 2320 further includes a working path planning unit, which is used to plan the working path of the production line robot based on the initial position of the production line robot and the storage position of the production raw materials; The initial position, the reclaiming position and the target position in the planned working path of the production line robot plan the working path of the feeding robot.
  • a working path planning unit which is used to plan the working path of the production line robot based on the initial position of the production line robot and the storage position of the production raw materials; The initial position, the reclaiming position and the target position in the planned working path of the production line robot plan the working path of the feeding robot.
  • the robot further includes at least one of a transfer robot, a palletizing robot, a packaging robot, a finished product transfer robot and a loading robot.
  • the working path planning unit is further configured to perform a task based on at least one of the transfer robot, the palletizing robot, the packaging robot, the finished product transfer robot and the loading robot.
  • the initial position, the starting position and the ending position in the target position generate the at least one of the transfer robot, the palletizing robot, the packaging robot, the finished product transfer robot and the loading robot. working path.
  • one or more robots include at least one of a control module, a positioning module, a detection module and a path correction module.
  • the control module is configured to receive the working path of the robot, and control the robot to work according to the working path.
  • the positioning module is used to obtain the initial position of the robot and the real-time position during the working process.
  • the detection module is used for detecting whether there is an obstacle in the working path during the working process of the robot.
  • the path correction module is used to control the robot to always move along the working path.
  • the production line robot includes at least one of a reclaiming device, a traveling device, a production device and a vehicle frame.
  • the production line robot further includes a dust collection device and/or a dust suppression device.
  • the production control device can be applied to a production system including at least two robots with different production functions, by acquiring the initial position of each robot and the target position in the production process; according to the initial position of each robot The position and the target position plan the working path of each robot, and control the corresponding robot to work based on the work sequence and the working path of each robot to complete the production task, which solves the problem of low automation of the production line, and reduces labor costs and The effect of improving production efficiency.
  • the production control device provided by the embodiment of the present application can execute the production control method provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 5 is a schematic structural diagram of a production equipment according to an embodiment of the present application.
  • the production system includes a server, a controller and at least two robots with different production functions.
  • the server is used to obtain the initial position of each robot and the target position in the production process, plan the working path of each robot according to the initial position and the target position of each robot, and calculate the working path of each robot. sent to the controller; the controller receives the working path, and respectively controls the corresponding robot to work according to the working sequence and the working path; the robot is used to perform production work to complete the production task.
  • the production equipment according to the embodiments of the present application can be applied to a robot production system including at least two different production functions, wherein by acquiring the initial position of each robot and the target position in the production process; according to the initial position and The target position plans the working path of each robot, and controls the corresponding robot to work based on the working sequence and the working path of each robot to complete the production task, which solves the problem of low automation of the production line, reduces labor costs and improves production. effect of efficiency.
  • FIG. 6 is a schematic structural diagram of a production equipment according to an embodiment of the present application.
  • the production equipment includes a processor 2410 , a memory 2420 , an input device 2430 and an output device 2440 .
  • a processor 2410
  • a memory 2420 2420
  • an input device 2430 2430
  • an output device 2440 the number of processors 2410 in the production facility may be greater.
  • the processor 2410, the memory 2420, the input device 2430, and the output device 2440 in the production facility are shown in FIG. 6 as being connected by a bus, these components may also be connected by other means.
  • the memory 2420 can be used to store software programs, computer-executable programs and modules, for example, to store program instructions/modules (for example, production control methods) corresponding to the production control methods in the embodiments of the present application. location acquisition module 2310 and path planning module 2320) in the device.
  • the processor 2410 executes various functional applications and data processing of the production equipment by running the software programs, instructions and modules stored in the memory 2420, ie, implements the above-mentioned production control method.
  • the memory 2420 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function, and the storage data area may store data created according to terminal usage and the like. Additionally, memory 2420 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device. In some examples, memory 2420 may further include memory located remotely from processor 2410, which may be connected to the production facility through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 2430 can be used to receive input numerical or character information, and generate key signal input related to user setting and function control of the production equipment.
  • the output device 2440 may include a display device such as a display screen.
  • the production line robot for producing concrete products may be installed on a fixed platform or a platform with mobile capability, such as a vehicle frame or a vehicle body.
  • the body can be a trailer, trailer, semi-trailer or flatbed.
  • a brick making system mounted to a fixed platform and a vehicle-mounted brick making system will be described in detail below with reference to FIGS. 7-20 and FIGS. 21-24 , respectively.
  • FIG. 7 to 20 illustrate a brick making system mounted to a fixed platform according to an embodiment of the present application.
  • the brick making system 1000 has a compact structure, small occupied space, and convenient construction.
  • Fig. 7 is a front view of the brick making system according to the embodiment of the application;
  • Fig. 8 is a side view of the brick making system according to the embodiment of the application in Fig. 7;
  • Fig. 9 is the brick making system according to the embodiment of the application in Fig. 7 A top view of the brick system.
  • a brick making system 1000 at least includes a fabric distribution device 300 , a brick making machine 400 and a base material distribution device 500 , wherein the base material distribution device 500 and one of the brick making machine 400
  • the side is connected to feed the base material to the brick making machine 400 in the first direction
  • the fabric distributing device 300 is connected to the other side of the brick making machine 400 adjacent to the one side to feed the brick making machine 400 in the second direction.
  • the brick machine 400 feeds the fabric.
  • the fabric distributing device 300 and the bottom fabric distributing device 400 are arranged on the side of the brick making machine 400 in different directions, which helps to reduce the length of the brick making system 1000 .
  • the first direction is perpendicular to the second direction, so that the fabric distributing device 300 and the bottom fabric distributing device 400 do not interfere with each other and can make the layout of each component of the brick making system 1000 compact.
  • the brick making system 1000 may further include at least one of the first feeding device 100 , the second feeding device 200 , and the brick output platform 600 .
  • the first feeding device 100 may be a first conveying device for conveying pallets, such as a longitudinal pallet feeding vehicle or the like.
  • the mold mechanism of the brick making machine 400 stacks the formed bricks on the brick pallet in turn.
  • the number of stacked layers is accumulated to the set value, the current batch of bricks can be transported through the conveying mechanism. Shipped, then the brick making system was replaced with another new brick pallet.
  • empty brick pallets are usually stacked and placed for backup.
  • the brick pallet at the bottom is extracted first when the brick pallet is taken.
  • the bricks of the current batch are conveyed to the brick output platform 600 by the conveying mechanism of the second feeding device 200 to be described below, and then transported away by the conveying mechanism provided on the brick output platform 600 .
  • the conveying mechanism of the brick output platform 600 extends into the brick making machine 400 , the bricks of the current batch together with the pallets are directly transported away by the conveying mechanism of the brick output platform 600 .
  • a separate conveying mechanism may be provided in the brick making machine 400 for conveying the pallets and the finished bricks to the brick output platform 600, an external conveying mechanism or an external platform.
  • the brick output platform 600 is connected to the brick making machine 400 and arranged to be opposite to each other with the fabric distributing device 300, and convey materials in the same direction. In other embodiments, the brick output platform 600 may be connected to the brick making machine 400 and arranged to be opposite to the primer distributing device 500 .
  • the second feeding device 200 is located downstream of the first feeding device 100 and the feeding direction of the second feeding device 200 and the feeding direction of the first feeding device 100 form a predetermined angle.
  • the second feeding device 200 is provided with a conveying mechanism, and the first conveying mechanism may be, for example, a sprocket and a chain structure.
  • the second feeding device 200 may be a second conveying device for conveying pallets, such as a transverse pallet truck or the like.
  • the feeding direction of the second feeding device 200 and the feeding direction of the first feeding device 100 form a predetermined angle, which is further conducive to reducing the occupied space of the brick making system 1000 and facilitating construction.
  • the predetermined angle is between 60 degrees and 120 degrees.
  • the predetermined angle is about 90 degrees, that is, the feeding direction of the second feeding device 200 and the feeding direction of the first feeding device 100 are perpendicular to each other.
  • the fabric distribution device 300 is disposed on the second feeding device 200, and the fabric distribution device 300 and the second feeding device 200 form an integrated structure.
  • the fabric distributing device 300 may be disposed on the top of the second feeding device 200, and the fabric distributing device 300 and the second feeding device 200 may form an integrated structure.
  • the fabric distribution device 300 may be a fabric distribution cart.
  • the fabric distributing device 300 and the second feeding device 200 are integrated into one
  • the structure can also realize the modularization of the brick making system 1000, with convenient transition and good flexibility.
  • the fabric distributing device 300 and the second feeding device 200 form an integrated structure, however, the present application is not limited to this, as required, for example, the bottom fabric distributing device 500 can also be designed to be integrated with the second feeding device 200 form an integrated structure.
  • the brick making machine 400 is disposed downstream of the second feeding device 200 , and the brick making machine 400 includes a mold frame 410 , a pressing head 420 disposed above the mold frame 410 , and a mold frame 410 .
  • Shaker table 430 below.
  • the bottom material distributing device 500 includes a double oil cylinder connecting rod structure, so that the bottom material distributing device 500 reciprocates the distribution into the brick making machine 400 .
  • the brick-discharging platform 600 is connected with the brick-making machine 400, and a second conveying mechanism is provided on the brick-discharging platform 600, and the finished bricks are suitable for conveying through the second conveying mechanism.
  • the second conveying mechanism may be, for example, a sprocket and chain structure or the like driven by a drive motor.
  • the present application is not limited thereto, for example, the second conveying mechanism may be at least one of a sprocket and a chain, a pulley and a belt, a crank link mechanism, and a manipulator.
  • the first feeding device 100 of the brick making system 1000 may further include an air cylinder, a hook, an equidistant intermittent plate feeding mechanism, an oil cylinder guide wheel structure, etc.
  • the air cylinder, hook, and equidistant intermittent feeding The plate mechanism and the oil cylinder guide wheel structure can adopt conventional structures, which will not be repeated here.
  • the specific action flow of the brick making system 1000 is as follows: a forklift places a stack of pallets 111 at the end position of the first feeding device 100 (for example, a longitudinal pallet feeding vehicle), Then push the pallet 111 forward a distance, and a stack of pallets is in place; the bottom pallet 111 is conveyed to the second feeding device 200 and the fabric distributing device through the equidistant intermittent plate feeding mechanism using the air cylinder and the hook.
  • the first feeding device 100 for example, a longitudinal pallet feeding vehicle
  • the pallet 111 is transported to the vibrating table 430 of the brick making machine 400 through the motor, sprocket and chain structure of the transverse pallet feeder/fabric distribution cart , so far the support plate 111 is in place.
  • the bottom material distributing device 500 (for example, the bottom material distributing vehicle) starts to distribute the bottom material back and forth into the brick making machine 400 through the double-cylinder link structure, and the vibrating table 430 in the brick making machine 400 is always working at this time,
  • the pressing head 410 in the brick making machine 400 is pressed down for the first time, the bottom material is formed, the pressing head 410 is raised, and then the horizontal pallet feeding car/fabric distributing car pushes the formed bottom material to the brick making machine 400 through the cylinder guide wheel structure,
  • the fabric distribution starts.
  • the pressing head 410 in the brick making machine 400 completes the second pressing, and the fabric is formed, that is, the brick making is completed.
  • the motor, sprocket and chain structure in the horizontal pallet feeding car/fabric distributing car work again, pushing the pallet 111 in the brick making machine 400 to the brick ejecting platform 600, and the motor and the The sprocket and chain structure are sent to the grabbing position, and the whole process of brick making ends.
  • the brick making system 1000 of the embodiment of the present application by setting the feeding direction of the second feeding device 200 and the feeding direction of the first feeding device 100 at a predetermined angle, it is convenient for construction and helps to reduce the cost of the brick making system 1000 take up space.
  • the fabric distribution device 300 and the second feeding device 200 an integral structure, the fabric fabric and the pallet conveying mechanism are integrated into one, so that the fabric and the plate feeding can be combined into one, and the structure is compact, so that the entire manufacturing
  • the brick system has a reduced space requirement compared to the prior art.
  • the first feeding device 100 is provided with a pallet pushing mechanism for pushing the pallet 111 .
  • a forklift is used to place a stack of pallets 111 at the end position of the first feeding device 100 (eg, a longitudinal pallet feeder), and a pallet pushing mechanism can be used to push the stack of pallets 111 forward The distance of one pallet 111.
  • the first feeding device (specifically, the longitudinal pallet feeding car) 100 according to the embodiment of the present application will be described in detail below with reference to FIGS. 10 to 12 .
  • FIG. 10 is a front view of the first feeding device (longitudinal plate feeding car) in the brick making system according to the embodiment of the present invention in Fig. 7;
  • Fig. 11 is the first feeding device in the brick making system according to the embodiment of the present invention in Fig. 10
  • FIG. 12 is a top view of the first feeding device (longitudinal plate feeding car) in the brick making system according to the embodiment of the present invention in FIG. 10 .
  • the first feeding device 100 includes a first supporting frame 110 , a foldable feeding frame 120 , a limiting structure 130 , a pallet alignment structure 140 , and a pallet conveying cylinder 150 and guide structure 160.
  • a plurality of pallets 111 are stacked on the first support frame 110 ; the foldable loading support 120 is hinged with the first support frame 110 ; the limiting structure 130 is used to limit the pallet 111 .
  • the limiting structure 130 includes a first limiting structure 131 and a second limiting structure 132 , and the first limiting structure 131 is disposed on the foldable loading support 120 .
  • the first limiting structure 131 may be, for example, a pallet feeding check claw, etc.
  • the second limiting structure 132 is provided on the first support frame 110
  • the second limiting structure 132 may be Pallet limit bracket, etc.
  • the pallet alignment structure 140 is used for arranging and aligning the pallet 111 .
  • the pallet alignment structure 140 of the longitudinal pallet feeder may be driven by a motor or a hydraulic cylinder.
  • the first support frame 110 may be provided with a fluent strip 112 , and the conveying of the pallet 111 is facilitated by the fluent strip 112 .
  • the fluent strip can also be called a slide rail.
  • the pallet conveying cylinder 150 is disposed at the bottom of the first support frame 110 for pushing the bottommost pallet 111 to the pallet alignment structure 140 . Therefore, the bottommost pallet 111 can be pushed out to the pallet alignment structure 140 by the pallet conveying cylinder 150 , and the position of the pallet 111 can be arranged by the pallet alignment structure 140 .
  • the guide structure 160 is disposed on the first support frame 110 for guiding the aligned pallets 111 , and the pallet conveying cylinder 150 conveys the aligned pallets to the second feeding device 200 .
  • the guide structure 160 may include a guide plate, and the guide plate may include a pair of guide plates, wherein the distance between the pair of guide plates is along the conveyance of the pallet The direction gradually decreases until it remains constant.
  • the guide structure 160 can be used to guide the aligned pallets 111 , and the pallet conveying cylinder 150 can convey the aligned pallets to the second feeding device 200 .
  • the pallet alignment structure 140 includes a frame body 141 , a pallet alignment cylinder 142 , an alignment connecting rod 143 and a pallet clamping rod 144 .
  • the pallet alignment structure 140 is driven by the pallet alignment cylinder 142 to organize and align the pallet 111 .
  • the alignment link 143 is hinged with the pallet alignment cylinder 142, and the alignment link 143 may include a first alignment link 1431 and a second alignment link 1432, and the first alignment link 1431 and the second alignment link.
  • the rods 1432 are respectively hinged with the pallet alignment cylinders 142 .
  • one end of the first alignment link 1431 is connected to one end of the second alignment link 1432, and the one end of the first alignment link 1431 and the one end of the second alignment link 1432 are both connected to the bracket
  • the plate alignment cylinder 142 is hinged.
  • the pallet clamping lever 144 is hinged with the frame body 141, and the pallet clamping lever 144 includes a first pallet clamping lever 1441 and a second pallet clamping lever 1442, wherein the first pallet clamping lever 1441 is connected to the frame
  • the body 141 is hinged
  • the second pallet clamping rod 1442 is hinged with the frame body 141 .
  • the other end of the first alignment link 1431 is hinged with the first pallet clamping lever 1441
  • the other end of the second alignment link 1432 is hinged with the second pallet clamping lever 1442 .
  • the other end of the first alignment link 1431 can be hinged with the middle position or the upper position of the first pallet clamping rod 1441, and the other end of the second alignment link 1432 can be hinged.
  • One end may be hinged with the middle position or the upper position of the second pallet clamping rod 1442, but the present application is not limited thereto.
  • the pallet 111 is pushed to the foldable feeding bracket 120 by a forklift.
  • the pallet 111 is prevented from being retracted, and then the pallet 111 is pushed to the second limiting structure 132 (eg, pallet limiting bracket) by an air cylinder or manual push, so that the pallet 111 is in place.
  • the pallet 111 at the bottom of the pallet 111 can be pushed out under the pallet alignment structure 140 by the pallet conveying cylinder 150, and the pallet alignment structure 140 can be driven by the pallet alignment cylinder 142 to organize and align the pallet 111.
  • the pallet conveying cylinder 150 is used to push the pallet 111 into the horizontal pallet feeder, and the vertical pallet feeder operation is completed.
  • the guide structure 160 guides.
  • the pallet alignment principle is: the pallet alignment cylinder 142 is stretched and retracted, and the alignment connecting rod 143 connects the pallet alignment cylinder 142 and the pallet clamping rod 144 through the rotating hinge point, so that the pallet clamping rods 144 on both sides are connected. Rotate around the rotation hinge point, so as to achieve the synchronous action of the pallet clamping lever 144, and complete the pallet alignment.
  • the brick making system 1000 of the embodiment of the present application by using the air cylinder and the connecting rod to perform pallet alignment on the pallet feeder, not only the pallet alignment mechanism has a simple structure, but also the space occupied by the pallet alignment mechanism can be saved.
  • a support member 170 is further provided between the foldable feeding bracket 120 and the first supporting frame 110 .
  • a support frame 110 is hinged and arranged obliquely between the foldable loading frame 120 and the first support frame 110 .
  • the support member 170 is beneficial to improve the structural strength of the first feeding device 100 .
  • the pivot pins at the pivot points of the pivot support at both ends of the support member 170 can be removed, the inclined support member 170 can be removed, and the pivotable support member 170 can be removed further.
  • the folding and feeding bracket 120 is folded upward by 90° to achieve the purpose of shortening the size of the first feeding device 100 (for example, a longitudinal pallet feeding vehicle).
  • the pallet pushing mechanism may be a hydraulic cylinder, an air cylinder or a single-axis manipulator.
  • the operation of pushing the pallet 111 may also be performed manually.
  • the three sides of the brick making machine 400 work with incoming materials.
  • the whole machine adopts The right-angle layout structure greatly reduces the space requirement, and the three sides of the brick making machine 400 can receive incoming materials or output brick blanks, thereby reducing the occupied space of the brick making system 1000 and improving the system efficiency.
  • the second feeding device 200 and the first feeding device 100 may be in a T-shaped layout, an L-shaped layout, or the like.
  • the brick making system 1000 of the embodiment of the present application by making the second feeding device 200 and the first feeding device 100 to be arranged at right angles, the problem of excessively long cycle caused by one-sided cloth and plate feeding and discharging can be solved, and the production cycle can be shortened It can solve the problems of excessive land occupation and construction inconvenience caused by the successive connection of various devices in the existing brick making system along one direction, thus, the brick making system 1000 according to the embodiment of the present application can not only save construction costs, but also save Time-saving and labor-saving, it can also realize double-sided fabric, and enter/exit the board on both sides, which simplifies the control of the equipment and/or mechanism of the system.
  • the second feeding device 200 and the first feeding device 100 may also form other angles between 60 and 120 degrees (for example, 60 degrees, 70 degrees, 80 degrees, 100 degrees, 110 degrees) or 120 degrees, etc.)
  • Fig. 13 is a front view of the second feeding device/fabric arranging device (specifically, the transverse plate feeding/fabric distributing cart) in the brick making system according to the embodiment of the present application in Fig. 7;
  • FIG. 15 is the second feeding device/fabric arrangement in the brick making system in FIG.
  • a top view of the fabric arrangement device horizontal feeder/fabric distribution cart
  • the second feeding device 200 includes a second supporting frame 220 , a driving mechanism 230 and a first conveying mechanism.
  • the driving mechanism 230 drives the first conveying mechanism to convey the pallet 111 to the vibration table 430 , wherein the driving mechanism 230 includes a driving motor 231 .
  • the first conveying mechanism is a sprocket and chain 232 in driving connection with the drive motor 231 .
  • the present application is not limited thereto, and the first conveying mechanism may be at least one of a sprocket and a chain, a pulley and a belt, a crank link mechanism, and a manipulator.
  • the board feeding process of the brick making system 1000 includes: after the vertical board feeding vehicle sends the pallet 111, the sprocket and the chain 232 are driven by the driving motor 231 to intermittently send the pallet into the brick making process.
  • the vibrating table 430 of the machine 400 is completed. At this point, the plate feeding is completed.
  • the material distribution device 300 includes a third support frame 310 , a material distribution cart 320 , a material hopper 330 , a hopper guide member 340 and a hopper driving hydraulic cylinder 350 (refer to FIG. 15 ).
  • the third support frame 310 is disposed above the second support frame 220 of the second feeding device 200 ; the fabric distribution cart 320 is disposed on the third support frame 310 , and the height of the fabric distribution cart 320 is adjustable.
  • the material hopper 330 has a support wheel 331, and the support wheel 331 can be a front support wheel of the hopper.
  • the hopper guide member 340 is used to guide the material hopper; wherein, the hopper guide member 340 may include a hopper push rod 341 , a hopper travel guide bar 342 and a hopper travel guide wheel 343 .
  • the hopper driving hydraulic cylinder 350 is connected with the material hopper 330 to drive the material hopper 330 to reciprocate.
  • the material distribution process of the brick making system 1000 includes: pushing and pulling the material hopper 330 by driving the hydraulic cylinder 350 through the hopper, while supporting the material hopper 330 by the front support wheel of the hopper and the movement of the material hopper 330 by the hopper guide member 340 Guide to complete the fabric cloth.
  • the fabric distribution device 300 further includes a height adjustment mechanism 360 for adjusting the height of the fabric distribution cart 320 .
  • the height adjustment mechanism 360 includes a vertical guide shaft 361 for the fabric cart and a support screw 362 for the fabric cart.
  • the vertical guide shaft 361 of the fabric cart is used to adjust the height of the fabric cart; the upper end of the fabric cart support screw 362 is connected to the fabric cart 320, and the lower end of the fabric cart support screw 362 is connected to the second support frame 220, The fabric cart supporting screw 362 is locked by a nut.
  • the fabric distribution device 300 may include a linear bearing.
  • the height adjustment process of the fabric distribution cart 320 after the mold is replaced may include: loosening the fastening nut on the support screw 362 of the fabric cart, and guided by the linear bearing and the vertical guide shaft 361 of the fabric cart, Vertically move the fabric distribution cart 320 to a desired height, and then lock the nut, and thus the height adjustment of the fabric distribution cart 320 is completed.
  • the fabric car and the pallet feeding car are combined into one, which greatly saves installation space and time, and the height of the fabric car can be adjusted through linear bearings and screws (for example, the fabric car support screw 362 ), simple and fast.
  • the structure of the brick making machine 400 may be a frame type.
  • the brick making machine 400 may further include a brick machine supporting guide shaft 440 , a brick machine upper support plate 450 , a pressing The head guide fixing seat 460 , the ram lifting hydraulic cylinder 470 , the lower support plate 480 of the brick machine, the mold frame guide fixing seat 490 , the mold frame lifting hydraulic cylinder 401 and the connecting rod 402 .
  • the upper supporting plate 450 of the brick machine is arranged on the top of the supporting guide shaft 440 of the brick machine;
  • the indenter 420 is detachably arranged on the indenter guide fixing seat 460 .
  • the indenter 420 may be provided on the indenter guide fixing seat 460 by means of screw connection.
  • the ram lifting hydraulic cylinder 470 is used to drive the ram 420 to ascend and descend.
  • the lower support plate 480 of the brick machine is arranged at the bottom of the support guide shaft 440 of the brick machine, and the vibrating table 430 is arranged on the lower support plate 480 of the brick machine.
  • the guide fixing seat 490 of the mold frame is connected with the supporting guide shaft 440 of the brick machine, and the guide fixing seat 490 of the mold frame can be located above the lower support plate 480 of the brick machine.
  • the mold frame 410 is detachably connected to the mold frame guide fixing base 490 , for example, the mold frame 410 can be connected to the mold frame guide fixing base 490 by means of screw connection.
  • the mould frame lifting hydraulic cylinder 401 is used to drive the mould frame 410 to lift and lower;
  • the linkage 402 may include two.
  • the brick making machine 400 adopts a four-beam and four-column structure, and the mold frame rises by means of double hydraulic drives to drive the connecting rods.
  • the brick making machine 400 further includes a special tool 403 for mold replacement.
  • the special tooling 403 for mold replacement has a handle 4031 , and the special tooling 403 for mold replacement is suitable to be placed on the vibration table 430 .
  • a plurality of universal balls 4032 are provided in the special tooling 403 for mold replacement, so as to be suitable for containing the pressing head 420 and the mold frame 410 .
  • the outer contour of the special tooling 403 for mold replacement may be substantially rectangular.
  • the mold replacement process of the brick making system 1000 includes: pushing the indenter guide fixing seat 460 downward through the indenter lifting hydraulic cylinder 470, so that the indenter 420 is placed on the mold frame 410, and releasing the indenter guide fixing seat 460 and the connecting screw of the indenter 420, the indenter lifting hydraulic cylinder 470 goes up; then, the mold frame guide fixing seat 490 is pushed upward by an appropriate distance through the mold frame lifting hydraulic cylinder 401, so that there is a gap between the mold frame 410 and the vibrating table 430.
  • a certain safety distance (which can be adapted according to actual needs), then place the special tooling 403 for mold replacement on the vibrating table 430, and then loosen the screws between the mold frame 410 and the mold frame guide fixing seat 490. , the mold frame 410 and the indenter 420) are all removed and placed on the special tooling 403 for mold replacement. Manually turn the special tooling 403 for mold replacement by 90°, so that the short side faces outwards, and then pull out the tooling, so far the disassembly of the mold is completed.
  • the process of installing the mold is the reverse of the process described above.
  • a brick making system in the form of a vehicle will be described below with reference to FIGS. 21 to 24 .
  • FIGS. 21 to 24 show a brick making system in the form of an integrated brick crushing machine according to the present embodiment.
  • FIG. 21 is a front view of an integrated brick crushing machine according to an embodiment of the present application.
  • Fig. 22 is another front view of the integrated brick crushing machine according to an embodiment of the present application, showing a state in which the feeding belt in Fig. 21 is folded upwards.
  • FIG. 23 is a top view of the integrated brick crushing machine shown in FIG. 21 according to an embodiment of the present application.
  • FIG. 24 is a top view of the block making machine area of FIG. 21 .
  • an integrated brick crushing machine includes a movable vehicle body 1 , and the center of the vehicle body 1 has a concave area 2 .
  • the bottom material stirring device 10, the fabric stirring device 14 and the brick making machine 17 are arranged in the concave area 2, which reduces the heights of the bottom material stirring device 10, the fabric stirring device 14 and the brick making machine 17, and reduces the overall production height. Vibration of the brick system, and facilitate workers to operate the brick system.
  • the bottom material mixing device 10 is arranged in the concave area 2 of the vehicle body 1, which not only reduces the height of the bottom material mixing device 10, but also adopts the upwardly inclined aggregate belt conveyor 6 to transport the material toward the bottom material mixing device 10. At this time, the length of the aggregate belt conveyor 6 can be reduced, thereby further reducing the length of the vehicle body 1 as a whole.
  • the rear end area of the vehicle body 1 is provided with a crushing device 4 , by which the construction waste can be crushed into aggregates.
  • a feeding belt conveyor 3 is also connected to the rear end of the vehicle body 1 , and the feeding belt conveyor 3 is used to transport the construction waste into the crushing equipment 4 .
  • the feeding belt conveyor 3 When the feeding belt conveyor 3 is in the unfolded state, the feeding belt conveyor 3 extends toward the rear of the vehicle body 1 .
  • the feeding belt conveyor 3 is set to be inclined upward at a certain angle to prevent the material from sliding down when conveyed on the feeding belt conveyor 3 .
  • the infeed belt conveyor 3 is arranged to be inclined upwardly by approximately 40°.
  • the feeding belt conveyor 3 may be set to be inclined upwardly by 40° ⁇ 5°.
  • the crushing device 4 conveys the material toward the bottom material mixing device 10 through the upwardly inclined aggregate belt conveyor 6 .
  • the construction waste is crushed by the crushing equipment 4 to form aggregates, and the aggregates are transported obliquely upward through the aggregate belt conveyor 6, and firstly the aggregates are transported to the intermediate bin 7, and the lower part of the intermediate bin 7 is provided with
  • the discharge port, opening the discharge port allows the aggregate to enter the bottom material stirring device 10 below, wherein the aggregate belt conveyor 6 can be set to be inclined at about 50°.
  • the aggregate belt conveyor 6 may be set to be inclined upwardly by 50° ⁇ 5°.
  • the intermediate bin 7 and the bottom material stirring device 10 can be communicated through a flexible connection, for example, an expansion joint can be used to communicate.
  • the aggregate belt conveyor 6 can be a chain belt conveyor or a flat belt conveyor.
  • a vibrating screen 5 is also provided below the outlet of the crushing device 4. Through the screening of the vibrating screen 5, materials larger than 10 mm are discharged from the discharge port of the vibrating screen 5, while materials smaller than 10mm of aggregate falls onto the aggregate belt conveyor 6 . By using the vibrating screen 5, the crushed materials can be used directly without manual sorting and screening.
  • the feeding belt conveyor 3 is a belt device that can be folded upwards.
  • the feeding belt conveyor 3 may include three sections, and the feeding belt conveyor 3 is folded upward and is erected above the vehicle body 1 in a roughly inverted U-shape.
  • the arrangement of the upwardly folded feeding belt conveyor 3 on the vehicle body 1 needs to make the height of the whole vehicle conform to the road transportation conditions.
  • Using a foldable belt conveyor can not only adjust the feeding angle, but also shorten the floor space of the belt conveyor.
  • the feeding belt conveyor 3 is omitted, in which case a bucket truck can be used for feeding.
  • the bottom material stirring device 10 conveys the material toward the brick making machine 17 through the upwardly inclined bottom material belt conveyor 11. Specifically, after the bottom material is fully stirred by the bottom material stirring device 10, the bottom material passes through the bottom material belt conveyor. 11 is inclined upward for conveying. First, the bottom material is transported to a bottom material truck (ie, a bottom material distribution vehicle) 16, and the bottom material truck 16 transports the bottom material into the brick making machine 17 by moving.
  • the inclination angle of the bottom material belt conveyor 11 may be set to about 50°. Specifically, the inclination angle of the bottom material belt conveyor 11 can be set to 50° ⁇ 5°.
  • the downward projection length of the bottom material belt conveyor 11 should be minimized.
  • the bottom material belt conveyor 11 may also adopt a chain belt conveyor or a flat belt conveyor.
  • the fabric stirring device 14 conveys the fabric toward the brick making machine 17 through the upwardly inclined fabric belt conveyor 15 . Specifically, after the fabric is fully stirred by the fabric stirring device 14 , the fabric is conveyed obliquely upward by the fabric belt conveyor 15 . First, the fabrics are conveyed to the fabric cart (ie, fabric distribution cart) 18, and the fabric cart 18 conveys the fabrics into the brick making machine 17 by moving.
  • the inclination angle of the fabric belt conveyor 15 may be set to about 50°. Specifically, the inclination angle of the fabric belt conveyor 15 may be set to 50° ⁇ 5°.
  • the fabric belt conveyor 15 can be a chain belt conveyor or a flat belt conveyor.
  • the fabric stirring device 14 and the bottom material stirring device 10 are arranged along the left and right sides of the length direction of the vehicle body 1 , and the brick making machine 17 is arranged at the same location as the fabric stirring device 14 .
  • the brick making machine 17 is fed through the bottom material car 16 and the fabric car 18 respectively.
  • the bottom material truck 16 is used for receiving the bottom material conveyed by the bottom material belt conveyor 11 , and then transporting the bottom material into the brick making machine 17 .
  • the fabric cart 18 is used for receiving the fabric conveyed by the fabric belt conveyor 15 , and then conveying the fabric into the brick making machine 17 .
  • the vehicle body 1 is provided with a cement silo 8 , and the cement silo 8 is arranged on the same side of the vehicle body 1 as the bottom material mixing device 10 .
  • the cement silo 8 is recessed downward on the vehicle body 1 , and material is conveyed between the cement silo 8 and the bottom material mixing device 10 by an upwardly inclined cement screw 9 .
  • the cement screw 9 is arranged to be inclined upwards by about 50° (specifically, 50° ⁇ 5°), and the cement silo 8 can be used for storing black cement.
  • the black cement is conveyed obliquely upward to the bottom material mixing equipment 10 through the cement screw 9, so that the black cement and the aggregate are mixed and stirred evenly to form the bottom material for making bricks.
  • the vehicle body 1 is provided with a material warehouse 12 , and the material warehouse 12 is arranged on the same side of the vehicle body 1 as the material mixing device 14 .
  • the material warehouse 12 is provided in a downward depression on the vehicle body 1 , and the material is conveyed between the material warehouse 12 and the material mixing device 14 by an upwardly inclined material screw 13 .
  • the fabric screw machine 13 is arranged to be inclined upward about 50° (specifically, 50° ⁇ 5°), and the fabric bin 12 is used for storing white cement and fine sand.
  • the white cement and fine sand are conveyed obliquely upward to the fabric mixing device 14 through the fabric screw machine 13, so that the white cement, the fine sand and the pigment are mixed and evenly stirred to form a brick fabric.
  • the feeding direction of the bottom material truck 16 for conveying the bottom material toward the brick making machine 17 is along the width direction of the
  • the feeding direction of the material cart 18 for conveying the material by the brick making machine 17 is along the length direction of the vehicle body 1 .
  • the feeding directions of the bottom material car 16 and the material car 18 are perpendicular to each other. With this layout, the length of the vehicle body 1 can be reduced, so that the vehicle body 1 can be more easily moved and turned around in a small area or on a narrow road.
  • the action of entering the bottom material into the mold is completed.
  • the fabric is conveyed to the fabric car 18 through the fabric belt conveyor 15, and after stirring evenly, the fabric is transported to the brick making machine 17 through the fabric car 18 to complete the moulding of the fabric and cover the compacted bottom.
  • the action of the upper surface of the material forms bricks after vibration, compaction and demoulding.
  • a board feeder 19 may also be provided below the material cart 18 , and the board feeder 19 is provided on one side of the brick making machine 17 for conveying the bricks with pallets to the palletizer 20 .
  • the stacker 20 is arranged at the front end of the vehicle body 1, and the stacker 20 is used to stack the formed bricks to corresponding areas, so as to complete the whole process from construction waste to formed block bricks.
  • the vehicle body 1 is provided with a hydraulic station 26 , an electric control cabinet 24 and an operation console 25 , and the hydraulic station 26 , the electric control cabinet 24 and the operation console 25 are used to control the vehicle body 1 equipment operation, including but not limited to feeding belt conveyor 3, crushing equipment 4, vibrating screen 5, aggregate belt, intermediate bin 7, cement screw machine 9, bottom material mixing equipment 10, bottom material belt conveyor 11, fabric screw Machine 13, fabric mixing equipment 14, fabric belt conveyor 15, bottom material car 16, fabric car 18, brick making machine 17, plate feeder 19, palletizer 20 and hydraulic outrigger 21.
  • the hydraulic outriggers 21 are arranged below the vehicle body 1, and the hydraulic power and control to drive the extension and retraction of the hydraulic outriggers 21 are provided through the hydraulic station 26, and the hydraulic outriggers 21 can be used for the front side of the vehicle chassis. and/or rear support. In one embodiment, a pair of the hydraulic outriggers 21 are respectively provided on both sides of the front end, the rear end and the middle of the vehicle body 1 . When working, the hydraulic outriggers 21 are used to support the ground, so that the tires of the vehicle are lifted off the ground, which can effectively improve the stability and safety of the whole machine.
  • the two sides of the vehicle body 1 are also provided with a folding ladder 22 and a folding pedal 23 respectively.
  • the folding ladder 22 and the folding pedal 23 are opened; in the transport state, the folding ladder 22 and the folding pedal 23 are folded to meet the maintenance requirements of the whole machine and meet the national road transportation conditions.
  • the brick making machine 17 and the crushing equipment 4 are integrated into the same vehicle, and have two functions of crushing construction waste and automatic brick making.
  • the crushing and brick making processes do not require manual sorting, Screening, handling and other links make the whole process of construction waste to forming bricks fully automated, realizing the recycling and reuse of construction waste, and the entire production process is green and environmentally friendly.
  • vehicles can be designed to meet national road transport size requirements and can be allowed to travel on roads.
  • each functional module is installed on the chassis of the vehicle independently, and has a high degree of interchangeability.
  • the integrated machine for crushing and making bricks provided by this embodiment has miniaturized equipment, and the size of the whole machine can meet the requirements of road transportation, and has the function of self-propelled movement, which can travel on the road, and the maneuverability is improved, and the transition is convenient, so there is no need for Other equipment assists with transitions.
  • the integrated brick crushing machine uses aggregates and black cement to form base materials and white cement, fine sand and pigments mixed with fabrics, and transports the base materials and fabrics to the brick making machine 17 respectively, thereby avoiding the need for The risk of the substrate and fabric sticking together increases the effectiveness of brick making.
  • the integrated brick crushing machine further includes a tractor 27 , and the tractor 27 is connected to the vehicle body 1 of the integrated brick crushing machine. Specifically, the tractor 27 is connected to one end of the vehicle body 1 close to the brick making machine 17 . The tractor 27 is used to haul the integrated brick crushing machine, so that the integrated brick crushing machine can be transferred in various areas in the community and at various construction sites, thereby avoiding the use of hoisting equipment for hoisting and saving equipment costs. .
  • the vehicle body 1 may have a compartment that can be enclosed. Similar to the fixedly installed brick making system 1000 described above, the vehicle-mounted brick making system may also be provided with the dust collection device and/or the dust suppression device described above.
  • the material in the bottom material mixing equipment and the material in the material mixing equipment are respectively transported into the brick making machine through the mutually perpendicular bottom material truck and the top material truck, so that the length of the vehicle body can be reduced.
  • arranging the bottom material mixing device and the fabric mixing device separately on the left and right sides of the car body and arranging the brick making machine at one end of the car body or close to the end of the car body can further reduce the length of the car body. With this layout, the vehicle body can be moved more easily in the cell.
  • the bottom material mixing equipment is arranged in the concave area of the vehicle body, thereby reducing the height of the bottom material mixing equipment.
  • the length of the aggregate belt conveyor can be reduced, thereby further reducing the length of the car body as a whole.
  • the inclination angle of the aggregate belt conveyor is set to 50° (specifically, 50° ⁇ 5°), which can not only prevent the aggregate from slipping on the belt conveyor, but also maximally reduce the aggregate belt conveyor. is set to the shortest length to minimize the length of the car body.
  • each module in the above embodiment may be a functional module or a program module, and may be implemented by software or hardware.
  • the above-mentioned modules may be located in the same processor; or the above-mentioned modules may also be located in different processors in any combination.
  • the embodiment of the present application also provides a computer device, and the production control method of the field according to the embodiment of the present application can be implemented by the computer device.
  • the computer equipment in the embodiments of the present application includes, but is not limited to, a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor implements the above embodiments when executing the computer program production control methods in .
  • Embodiments of the present application also provide a computer-readable storage medium.
  • Computer program instructions are stored on the computer-readable storage medium; when the computer program instructions are executed by the processor, any one of the production control methods in the foregoing embodiments is implemented.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed when an element is referred to as being “fixed to” or “disposed to” another element, it can be directly on the other element or intervening elements may also be present; when an element is referred to as being “connected” to another element, it may be It is directly connected to another element or may also have an intervening element.
  • connection used herein may include wired connection or wireless connection.
  • connection used herein may include wired connection or wireless connection.
  • connection includes any and all combinations of one or more of the associated listed items.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the above-mentioned computer-readable storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Factory Administration (AREA)

Abstract

本申请涉及一种制砖系统、一种生产控制方法、一种生产控制装置、一种生产系统、一种生产设备及一种计算机可读记录介质。所述制砖系统包括:制砖机;底料布料装置,与所述制砖机的一侧连接以沿着第一方向向所述制砖机送进底料;面料布料装置,与所述制砖机的与所述一侧相邻的另一侧连接,以沿着第二方向向所述制砖机送进面料。通过底料布料装置和面料布料装置分别布置在制砖机的相邻两侧,可以减小制砖系统的占用空间。

Description

制砖系统、生产控制方法、装置、系统、生产设备及介质
相关申请的交叉引用
本申请要求于2020年11月26日提交到中国专利局、申请号为202011346024.4且发明名称为“制砖设备”的中国专利申请的优先权、于2021年01月28日提交到中国专利局、申请号为202110119488.X且发明名称为“生产控制方法、装置、系统、生产设备及介质”的中国专利申请的优先权以及于2021年03月17日提交到中国专利局、申请号为202120545227.X且实用新型名称为“破碎制砖一体机及可移动式建筑废弃物破碎制砖作业车”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及建筑设备技术领域,尤其涉及一种制砖系统、一种生产控制方法、一种生产控制装置、一种生产系统、一种生产设备及一种计算机可读存储介质。
背景技术
目前建筑废弃物、尾矿、矿渣、淤泥等的资源化再生利用均是根据固体废物的种类和特性以多种方式处理的,处理后得到的再生产品根据其类别可以被深加工成混凝土制品,例如砖,以实现对固体废物的二次利用。混凝土制品生产线的自动化程度低,在原料及成品运输方面往往需要人工参与,导致运输成本高。
目前在房地产建设项目、建筑旧改或拆除项目中,建筑废弃物一般进行集中处理,即首先将建筑废弃物分类破碎成再生骨料进行回收并投放到建筑材料市场,以再次用于混凝土制品生产线。采用这种处理方法,需要各种牵引设备和车辆辅助施工,并需要人工参与处理,经济效益较低。尤其在房地产在建项目中,因建筑废弃物产生的数量少、周期跨度长、容易造成设备及人力的闲置。并且转场需求频繁,这大大增加了回收利用建筑废弃物的成本。
此外,常见的用于处理建筑废弃物的制砖生产线中的各种设备通常沿着一个方向布置并依次连接,不仅占地面积大,而且需要配置多个辅助设备。一旦制砖生产线被安装固定,再次转移其安装地点成本大,导致制砖生产线的使用灵活性差。而且,各种设备沿着一个方向布置的制砖生产线只能进行单侧布料、送板和出板,导致制砖的周期长、生产效率低。
中国专利文献CN211541646U公开了一种移动式破碎制砖一体机,其采用在可移动式车辆的车厢内分别设置破碎设备和制砖设备,以实现对建筑废弃物的破碎和制砖的连续作业。然而,破碎设备、制砖设备以及其他附属设备在车厢内的布局方式导致车辆的长度较长,不利于车辆转弯。
发明内容
根据本申请的第一方面,提供一种应用于生产系统的生产控制方法,所述生产系统包括至少两个具有不同生产功能的机器人,其中,所述生产控制方法包括:获取各个机器人的初始位置及生产过程中的目标位置;以及根据各个述机器人的所述初始位置及所述目标位置规划各个机器人的工作路径,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作。
根据本申请的第二方面,提供一种应用于生产系统的生产控制装置,所述生产系统包括至少两个具有不同生产功能的机器人,其中,所述生产控制装置包括:位置获取模块,用于获取各个机器人的初始位置及生产过程中的目标位置;以及路径规划模块,用于根据各个机器人的所述初始位置及所述目标位置规划各个机器人的工作路径,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作。
根据本申请的第三方面,提供一种生产设备,其中,所述生产设备包括:一个或多个处理器;以及存储装置,用于存储一个或多个程序,其中,所述一个或多个处理器被配置为执行所述一个或多个程序以实现如上所述的生产控制方法。
根据本申请的第五方面,提供一种制砖系统,包括:制砖机;底料布料装置,该底料布料装置与所述制砖机的一侧连接以沿着第一方向向所述制砖机送进底料;以及面料布料装置,该面料布料装置与所述制砖机的与所述一侧相邻的另一侧连接,以沿着第二方向向所述制砖机送进面料。
根据本申请的第六方面,一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述第一方面所述的生产控制方法。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的生产控制方法的流程图;
图2是根据本申请实施例的生产控制方法的流程图;
图3A和图3B是根据本申请实施例的生产控制方法的流程示意图;
图4是根据本申请实施例的生产控制装置的结构图;
图5是根据本申请实施例的生产系统的结构示意图
图6是根据本申请实施例的生产设备的结构示意图。
图7是根据本申请实施例的制砖系统的一个主视图;
图8是图7中根据本申请实施例的制砖系统的一个侧视图;
图9是图7中根据本申请实施例的制砖系统的一个俯视图;
图10是图7中根据本申请实施例的制砖系统中第一送料装置(纵向送板车)的一个主视图;
图11是图10中根据本申请实施例的制砖系统中第一送料装置(纵向送板车)的一个侧视图;
图12是图10中根据本申请实施例的制砖系统中第一送料装置(纵向送板车)的一个俯视图;
图13是图7中根据本申请实施例的制砖系统中第二送料装置/面料布置装置(横向送板/面料布料车)的一个主视图;
图14是图13中根据本申请实施例的制砖系统中第二送料装置/面料布置装置(横向送板/面料布料车)的一个侧视图;
图15是图14中根据本申请实施例的制砖系统中第二送料装置/面料布置装置(横向送板/面料布料车)的一个俯视图;
图16是图7中根据本申请实施例的制砖系统中制砖机的一个主视图;
图17是图16中根据本申请实施例的制砖系统中制砖机的一个侧视图;
图18是图16中根据本申请实施例的制砖系统中制砖机的一个俯视图;
图19是图7中根据本申请实施例的制砖系统中模具专用工装的一个主视图;
图20是图19中根据本申请实施例的制砖系统中模具专用工装的一个俯视图。
图21是根据本申请实施例的破碎制砖一体机的主视图。
图22是根据本申请实施例的破碎制砖一体机的另一主视图,示出了图21中的上料皮带向上翻折后的状态。
图23为图21中所示的根据本申请实施例的破碎制砖一体机的俯视图。
图24为图21中的制砖机区域的俯视图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了清楚和便于描述,附图可能仅示出了与本申请相关的部分而非全部结构。
下面将参照图1至图6详细描述根据本申请实施例的与制砖生产相关的生产控制方法、 生产控制装置、生产系统和生产设备的实施例。
图1为根据本申请实施例的一种生产控制方法的流程图。本实施例涉及的方法适用于通过具有不同功能的机器人进行协同生产的情况,并且该方法可以由生产控制装置来执行,具体包括如下步骤:
S2110、获取各个机器人的初始位置及生产过程中的目标位置。
具体地,在生产如混凝土制品等需多种工艺或工序才可制成的产品时,如需提高生产效率,需多个具有不同生产功能的机器人进行协作,以减少人工参与和提升生产线的自动化程度。在控制具有不同生产功能的多个机器人进行生产协作时,需获取各个机器人的初始位置及其在生产过程中的目标位置,以通过各个机器人的初始位置及目标位置规划各个机器人的工作路径,从而控制各个机器人根据对应的工作路径进行移动,从而进行生产工作。
S2120、根据各个机器人的初始位置及目标位置规划各个机器人的工作路径,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作,以完成生产任务。
为了实现通过各个机器人进行协作完成生产任务,需要根据产品的生产工艺的时序确定具有不同生产功能的各个机器人的总体工作时序(以下简称为工作时序),并且需要根据各个机器人的初始位置及目标位置规划各个机器人的工作路径。然后,基于工作时序和各个机器人的工作路径分别控制对应的机器人进行工作。
可选的,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作,包括:基于工作时序和各个所述机器人的工作时长,确定各个所述机器人的起始工作时间;基于所述起始工作时间和与该起始工作时间对应的工作路径分别控制对应机器人进行工作。各个机器人的工作时序决定了各个机器人开始进行工作的先后顺序。通过工作时序和各个机器人的工作时长,可以确定各个机器人的开始工作时间。
例如,共有3个具有不同功能的机器人用于生产工作,分别为机器人1、机器人2和机器人3,并且它们的工作时序为机器人1首先开始工作,工作时长为1小时,然后机器人2开始工作,工作时长为30分钟,最后机器人3开始工作,工作时长为20分钟。在该示例中,机器人1的起始工作时间为预设开始工作时间。机器人2在机器人1工作1小时后开始工作,机器人3在机器人2工作30分钟后开始工作。总体上,根据各个机器人的起始工作时间和工作路径分别控制各个机器人进行工作,以完成生产任务。
可选地,还可以基于工作时序和各个所述机器人的工作路径分别控制对应机器人进行工作。该控制方法包括:响应于接收当前工序机器人的工作完成信息,给下一工序机器人发送工作路径,以控制该下一工序机器人开始工作。或者,该控制方法包括:将各个工作路径预先分别发送至对应的机器人,响应于接收到当前工序机器人的工作完成信息,给下一工序机器人发送开始工作指令。在控制各个机器人进行生产工作时,还可以根据当前工作机器人的 工作完成信息启动下一工序的机器人开始工作。在一个示例性实施例中,响应于机器人A生产出一个胚体,将工作路径发送至下一工作时序的机器人B,并控制机器人B根据工作路径开始进行坯体转运的工作。在另一个示例性实施例中,将规划好的工作路径预先分别发送至对应机器人,当机器人A生产出一个坯体时,向服务器上报产出一个坯体完成的信息,而服务器接收到机器人A发送的产出一个胚体完成的信息时,向下一工序的机器人B发送开始工作的指令,机器人B则根据工作路径开始进行移动以进行胚体转运工作。
本实施例的生产控制方法可以被应用于生产系统,其中,生产系统包括至少两个具有不同生产功能的机器人,在该方法中,通过获取各个机器人的初始位置及生产过程中的目标位置;根据各个所述机器人的所述初始位置及所述目标位置规划各个所述机器人的工作路径,基于工作时序和各个所述机器人的工作路径分别控制对应机器人进行工作,以完成生产任务,解决了生产线自动化程度低的问题,实现了降低人工成本和提高生产效率的效果。
图2为根据本申请实施例的一种生产控制方法的流程图。本实施例是在上一实施例的基础上的进一步详细描述获取各个机器人的初始位置及生产过程中的目标位置的步骤。具体地,获取各个机器人的初始位置及生产过程中的目标位置可以包括:获取生产任务,根据所述生产任务确定执行所述生产任务的机器人;获取确定的各个机器人的初始位置,并根据所述生产任务确定各个所述机器人(这里指执行所述生产任务的各个机器人)在执行生产任务过程中的目标位置。确定用于完成生产任务的机器人并有针对性或选择性地获取确定的各个机器人的初始位置及执行生产任务过程中的目标位置,而无需获取其他不参与当前生产任务的机器人的位置信息,有助于提高信息获取效率,进而提高路径规划效率和生产效率。
如图2所示,生产控制方法具体包括如下步骤:
S2210、获取生产任务,根据生产任务确定执行生产任务的机器人;获取确定的各个机器人的初始位置,并根据生产任务确定所述确定的各个机器人在执行生产任务过程中的目标位置。
根据预先确定的生产任务确定完成生产任务所需的机器人,确定完成生产任务的机器人的初始位置及在执行生产任务中的目标位置。在一个实施例中,生产任务为生产预设数量的胚体,并将生产出的胚体转运至预设位置,完成该生产任务的机器人包括:上料机器人,用于将原料输送至生产线机器人;生产线机器人,用于获取级配骨料及上料机器人输送的其他原料以生产胚体;转运机器人,用于将坯体从生产线机器人处转运至预设位置。据此,获取生产线机器人、上料机器人和转运机器人的初始位置并根据生产线机器人、上料机器人和转运机器人各自的生产任务确定执行生产过程中的目标位置。示例性地,生产线机器人需从级配骨料堆处获取级配骨料用于生产胚体,故生产线机器人的目标位置为级配骨料堆的位置。上料机器人的生产任务为向生产线机器人输送其他原料,故上料机器人的目标位置为生产线 机器人接收原料的位置。转运机器人需将生产线机器人生产的胚体转运至预设位置,故转运机器人的目标位置为生产线机器人生产胚体的位置和放置转运的坯体的预设位置。
可选地,机器人的目标位置为至少一个。在这种情况下,所述机器人根据所述工作路径达到任一目标位置时执行与该任一目标位置对应的操作。示例性地,转运机器人的目标位置有两个,分别为生产线机器人生产胚体的位置和放置转运后坯体的预设位置。转运机器人到达生产线机器人生产胚体的位置时,获取胚体,然后将胚体按照规划的工作路径运输至预设位置后,将坯体卸载。
可选地,所述生产控制方法还包括根据所述生产任务确定执行所述生产任务的机器人之后,根据所述生产任务确定各个机器人的工作模式。例如,转运机器人可将产品转运至第一预设位置或第二预设位置,其中,将产品转运至第一预设位置对应于第一工作模式,将产品转运至第二预设位置对应于第二工作模式。即,若生产任务为将产品转运至第一预设位置,则确定转运机器人的工作模式为第一工作模式。通过设定多种工作模式,机器人能够完成不同的生产任务。
S2220、根据各个机器人的初始位置及目标位置规划各个机器人的工作路径,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作,以完成生产任务。
例如,在生产如混凝土制品时,机器人包括生产线机器人和至少一个上料机器人。相应地,所述根据各个机器人的所述初始位置及所述目标位置规划各个机器人的工作路径包括:基于所述生产线机器人的初始位置及生产原料储存位置规划所述生产线机器人的工作路径;基于所述上料机器人的初始位置、取料位置及规划的所述生产线机器人的工作路径中的目标位置规划所述上料机器人的工作路径。在生产混凝土制品时,至少包括生产线机器人和至少一个上料机器人。获取生产线机器人和至少一个上料机器人的初始位置以及级配骨料及各原料的取料位置。根据级配骨料的取料位置(即生产线机器人的目标位置)和生产线机器人的初始位置规划生产线机器人的工作路径,并控制生产线机器人由初始位置向目标位置移动,以获取级配骨料用于生产混凝土制品。根据生产线机器人的目标位置(即生产线机器人获取级配骨料的位置)、至少一个上料机器人的初始位置和各原料的取料位置,规划至少一个上料机器人的工作路径,以使上料机器人从初始位置出发、运动至对应的取料位置处获取原料,然后将原料输送至生产线机器人。
可选地,生产线机器人包括取料装置、行走装置、生产装置和车架中的至少一种。可选地,生产线机器人还包括喂料装置、原料计量装置、原料输送装置、搅拌装置、坯体成型装置、坯体输送装置和坯体码垛装置中的至少一者。上述装置可部分或全部安装于固定的平台上,或者车架上。可通过行走装置带动车架和上述装置中的至少一者一起进行移动。行走装置安装在车架下方,具有独立转动的车轮。至少一个车轮带有制动装置。此外可以通过差速 控制实现车架的转弯及原地换向,而行走装置的驱动装置为发动机和/或电机,或者行走装置直接由牵引车牵引。取料装置由机械臂驱动,用于拾取级配骨料并将其输送到喂料装置内。喂料装置用于接收取料装置拾取的级配骨料并可选择性地通过皮带将级配骨料传输至原料计量装置进行称量。另外,上料机器人运输的原料也可以通过原料计量装置进行称量,以使每种原料均按照预设的工艺配方进行配比。原料输送装置将计量后的级配骨料及其它种类的原料输送到对应的搅拌装置中。所述搅拌装置将不同的原料进行均匀的混合搅拌,以达到后续成型步骤的要求。所述坯体成型装置将搅拌后的一种或多种混合料,例如通过静压和震动成型的原理,制成成品的坯体。坯体输送装置是一种水平的输送机构,用于将坯体成型装置产出的每个坯体输送到后续的坯体码垛装置,同时为下次成型的坯体预留放置空间。坯体码垛装置可以是一个框架式提升装置,用于将由坯体输送装置输送到位的坯体整体移到码垛位,并一层一层的码成目标垛型。在该实施例中,可以将坯体成型装置视为生产装置,也可以将坯体成型装置以及喂料装置、原料计量装置、原料输送装置、搅拌装置、坯体输送装置和坯体码垛装置中的至少一者视为生产装置。
可选地,生产线机器人还包括收尘装置和/或降尘装置。收尘装置可以为负压收尘设备,其利用风机形成的负压将设备中具有一定密封程度的扬尘点处的尘土吸到集尘袋中。如对于密封了的皮带,可以通过负压收尘设备将其中的尘土收集到集尘袋中。降尘装置为流体雾化降尘设备,该流体雾化降尘设备包括在一些开放式扬尘点设置的随动作而执行喷雾的雾化喷头,以通过雾化降尘来消除扬尘。在皮带与各装置之间的对接位置无法进行密封,这些对接位置属于开放性的扬尘点,故在这些位置设置流体雾化降尘设备消除扬尘。
可选地,生产线机器人可独立配置遥控器,便于操作人员离开操作台时在设备周边可处理各种紧急状况并能手动操控关键动作,这从空间上扩大了操作人员的活动范围。
可选地,机器人还包括转运机器人、码垛机器人、包装机器人、成品转运机器人和装车机器人中的至少一项。相应地,所述根据各个机器人的所述初始位置及所述目标位置规划各个机器人的工作路径包括:基于所述转运机器人、所述码垛机器人、所述包装机器人、所述成品转运机器人和所述装车机器人中的至少一项的初始位置、所述目标位置中的起点位置和终点位置产生所述转运机器人、所述码垛机器人、所述包装机器人、所述成品转运机器人和所述装车机器人的中的所述至少一项的工作路径。即,根据生产任务,获取转运机器人、码垛机器人、包装机器人、成品转运机器人和装车机器人中至少一项的初始位置,目标位置中的起点位置和终点位置,规划相应的机器人的工作路径,以使各个机器人根据对应的工作路径进行移动,从而完成生产任务。
可选的,至少一个机器人包括控制模块、定位模块,探测模块和路径纠偏模块中的至少一者,其中,所述控制模块用于接收机器人的工作路径,根据所述工作路径控制所述机器人 进行工作;所述定位模块用于获取所述机器人的初始位置及工作过程中的实时位置;所述探测模块用于在所述机器人工作过程中探测所述工作路径中是否有障碍物;所述路径纠偏模块用于控制所述机器人始终沿所述工作路径移动。在一个实施例中,每个机器人中都包含控制模块、定位模块,探测模块和路径纠偏模块。在该实施例中,通过定位模块获取每个机器人的初始位置和在工作过程中的实时位置,通过如wifi等无线通信模块将位置信息发送至总服务器,实现各个机器人的位置及作业区域的共享,以使总服务器对各个机器人的工作路径进行规划。通过控制模块接收规划好的工作路径并控制机器人根据工作路径移动。在移动过程中通过探测模块探测工作路径中是否有障碍物,若有,将障碍物绕过,若无沿原工作路径继续移动。可选地,探测模块探测包括红外探测器、超声波探测器和激光探测器中的至少一者。通过路径纠偏模块控制机器人沿工作路径移动,防止机器人偏离工作路径。
可选地,在上述实施例的基础上,参照图3A和图3B对根据本申请的实施例的混凝土制品的生产过程进行详细描述。首先,设备电源启动,通过定位模块定位各个机器人的初始位置,然后通过WIFI模块等无线通信设备将初始位置的三维坐标反馈至服务器。服务器规划各个机器人的目标位置(或,下个工作点位置)的坐标,并根据初始位置和目标位置规划各个机器人的工作路径。通过例如WIFI模块的无线通信装置将规划的工作路径发送至各个机器人的控制模块。在该实施例中,为了防止机器人偏离工作路径,例如WIFI模块的无线通信装置可以实时传输所述各个机器人的位置信息。生产线机器人启动之后,生产线机器人的控制模块根据工作路径控制机器人移动,通过探测模块探测路径中有无障碍物,使生产线机器人能够避过障碍物到达目标位置(即获取级配骨料合适的取料位置)以开始工作。生产线机器人到达目标位置后通过取料装置获取级配骨料并上料至喂料装置。而上料机器人则从各原料处获取原料,以将原料运输至生产线机器人。生产机器人获取各原料后通过计量装置称量,将各原料按照预设的工艺配方进行配比,将计量后的原料通过搅拌装置进行搅拌。其中,搅拌装置为至少一个,其数量根据原料的种类决定。在一个示例性实施例中,原料1与原料2通过一个搅拌装置进行搅拌,原料3与原料4通过另一个搅拌装置进行搅拌。搅拌后的混合原料通过成型装置根据静压和震动成型的原理进行胚体成型,成型的胚体被放置于托盘(也可被称为托板)中。成型的胚体及托盘通过转运机器人被转运至养护区,胚体经养护后变为成品。码垛机器人将胚体或成品与托盘分离,然后将胚体或成品运输至码垛区进行码垛,包装机器人移动至码垛区与码垛机器人进行协作,以对码垛好的胚体或成品进行包装。成品转运机器人移动至码垛区将包装好的坯体转运至成品存放区。当有运输车辆进入到指定区域时,对车辆进行扫描,根据车辆信息定位其载货斗的位置,装车机器人移动至成品堆放区获取成品并将成品装车。
各个机器人的生产任务完成后,控制所有装置回归初始运行状态并复位至待工作区等待 原料的到达或做好离场准备。示例性地,当混合原料消耗完毕且转运机器人已将生产线机器人产出的坯体全部运出时,生产线机器人自动地使所有装置回归初始运行状态并复位至待工作区等待原料的到达或做好离场准备。示例性地,当上料机器人对应的原料消耗完毕且完成了最后一次将原料装载运输至生产线机器人时,上料机器人自动回归初始运行状态并复位至待工作区等待原料的到达或做好离场准备。转运机器人最后一次转运胚体或成品后,回归初始运行状态并复位至待工作区等待原料的到达或做好离场准备。
根据本申请上述实施例的生产控制方法可以被应用于包括至少两个具有不同生产功能的机器人的生产系统,其中,上述生产控制方法包括如下步骤:通过获取生产任务;根据生产任务确定执行所述生产任务的机器人;获取确定的各个机器人的初始位置并根据生产任务确定各个机器人在执行生产任务过程中的目标位置;根据各个机器人的所述初始位置及所述目标位置规划各个所述机器人的工作路径;基于工作时序和各个机器人的工作路径和分别控制对应机器人进行工作,以完成生产任务。这种生产控制方法以及采用这种生产控制方法的生产系统解决了生产线自动化程度低的问题,实现了降低人工成本并提高生产效率的效果。
图4为本申请实施例的一种生产控制装置的结构图,可以被应用于根据本申请实施例的生产系统,其中,所述生产系统包括至少两个具有不同生产功能的机器人,其中,该生产控制装置包括位置获取模块2310和路径规划模块2320。
位置获取模块2310获取各个机器人的初始位置及生产过程中的目标位置。路径规划模块2320根据各个机器人的所述初始位置及所述目标位置规划各个机器人的工作路径,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作,以完成生产任务。
具体地,路径规划模块2320可以包括:起始工作时间确定单元,基于各个机器人的工作时序以及工作时长,确定各个机器人的起始工作时间;机器人控制单元,基于所述起始工作时间和对应的工作路径分别控制对应机器人进行工作。
在上述实施例中,路径规划模块2320,还包括工作完成信息接收单元。路径规划模块2320响应于接收到接收当前工序机器人的工作完成信息,给下一工序机器人发送工作路径,以控制下一工序机器人开始工作,或者将各个工作路径分别发送至对应的机器人,并响应于接收到当前工序机器人的工作完成信息,给下一工序机器人发送开始工作指令。
在上述实施例中,位置获取模块2310,包括:生产任务获取单元,用于获取生产任务并根据所述生产任务确定执行所述生产任务的机器人;目标位置确定单元,用于获取确定的各个机器人的初始位置,并根据所述生产任务确定各个机器人在执行生产任务过程中的目标位置。
在上述实施例中,位置获取模块2310还包括用于根据所述生产任务确定各个机器人的工作模式的工作模式确定单元。
可选地,机器人的目标位置为至少一个,所述机器人用于根据所述工作路径达到任一目标位置时执行与所述目标位置对应的操作。
可选地,机器人包括生产线机器人和至少一个上料机器人;
相应地,在上述实施例中,路径规划模块2320还包括工作路径规划单元,该用于基于所述生产线机器人的初始位置及生产原料储存位置规划所述生产线机器人的工作路径;基于上料机器人的初始位置、取料位置及所述生产线机器人的规划的工作路径中的目标位置规划所述上料机器人的工作路径。
可选地,机器人还包括转运机器人、码垛机器人、包装机器人、成品转运机器人和装车机器人中的至少一项。
相应地,在上述实施例中,工作路径规划单元还用于基于所述转运机器人、所述码垛机器人、所述包装机器人、所述成品转运机器人和所述装车机器人中的至少一项的初始位置、所述目标位置中的起点位置和终点位置产生所述转运机器人、所述码垛机器人、所述包装机器人、所述成品转运机器人和所述装车机器人中的所述至少一项的工作路径。
可选地,一个或更多个机器人包括控制模块、定位模块,探测模块和路径纠偏模块中的至少一者。所述控制模块用于接收机器人的工作路径,根据所述工作路径控制所述机器人进行工作。所述定位模块用于获取该机器人的初始位置及工作过程中的实时位置。所述探测模块用于在所述机器人工作过程中探测所述工作路径中是否有障碍物。所述路径纠偏模块用于控制所述机器人始终沿所述工作路径移动。
可选地,生产线机器人包括取料装置、行走装置、生产装置和车架中的至少一种。
可选地,生产线机器人还包括收尘装置和/或降尘装置。
在根据本实施例的生产控制装置可被应用于包括至少两个具有不同生产功能的机器人的生产系统中,通过获取各个机器人的初始位置及生产过程中的目标位置;根据各个机器人的所述初始位置及所述目标位置规划各个机器人的工作路径,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作,以完成生产任务,这解决了生产线自动化程度低的问题,实现了降低人工成本和提高生产效率的效果。
本申请实施例所提供的生产控制装置可执行本申请任意实施例所提供的生产控制方法,具备执行方法相应的功能模块和有益效果。
图5为根据本申请实施例的一种生产设备的结构示意图。如图5所示,生产系统包括服务器、控制器和至少两个具有不同生产功能的机器人。
在该实施例中,服务器用于获取各个机器人的初始位置及生产过程中的目标位置,根据各个机器人的所述初始位置及所述目标位置规划各个机器人的工作路径,并将各个机器人的工作路径发送至控制器;所述控制器接收所述工作路径,并根据工作时序和所述工作路径分 别控制对应机器人进行工作;所述机器人用于进行生产工作,以完成生产任务。
根据本申请实施例的生产设备可被应用于包括至少两个不同生产功能的机器人生产系统,其中,通过获取各个机器人的初始位置及生产过程中的目标位置;根据各个机器人的所述初始位置及所述目标位置规划各个机器人的工作路径,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作,以完成生产任务,这解决了生产线自动化程度低的问题,实现了降低人工成本和提高生产效率的效果。
图6为根据本申请实施例的一种生产设备的结构示意图。如图6所示,该生产设备包括处理器2410、存储器2420、输入装置2430和输出装置2440。虽然图6中仅示出了一个处理器,但是生产设备中处理器2410的数量可以是更多个。虽然图6中示出了生产设备中的处理器2410、存储器2420、输入装置2430和输出装置2440通过总线连接,但是这些组件也可以通过其他方式进行连接。
存储器2420作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,例如,用于存储如本申请实施例中的生产控制方法对应的程序指令/模块(例如,生产控制装置中的位置获取模块2310和路径规划模块2320)。处理器2410通过运行存储在存储器2420中的软件程序、指令以及模块,从而执行生产设备的各种功能应用以及数据处理,即实现上述的生产控制方法。
存储器2420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序,而存储数据区可存储根据终端的使用所创建的数据等。此外,存储器2420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器2420可进一步包括相对于处理器2410远程设置的存储器,这些远程存储器可以通过网络连接至生产设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置2430可用于接收输入的数字或字符信息,以及产生与生产设备的用户设置以及功能控制有关的键信号输入。输出装置2440可包括显示屏等显示设备。
在上面的描述中已经提到了根据本申请的实施例的用于生产混凝土制品的生产线机器人可以被安装在固定平台上,也可以被安装在具有移动能力平台上,例如车架或车体上。车体可以是拖车、挂车、半挂车或平板车。
下面将分别参照图7-20和图21-24详细描述一种安装到固定平台的制砖系统以及一种车载制砖系统。
图7至图20示出了根据本申请实施例的一种安装到固定平台的制砖系统。
下面结合附图描述根据本申请实施例的根据本申请实施例的制砖系统1000,所述制砖系统1000的结构紧凑、占用空间小,且施工方便。
图7是根据本申请实施例的制砖系统的一个主视图;图8是图7中根据本申请实施例的制砖系统的一个侧视图;图9是图7中根据本申请实施例的制砖系统的一个俯视图。
参照图7至图9,根据本申请实施例的制砖系统1000至少包括面料布料装置300、制砖机400和底料布料装置500,其中,底料布料装置500,与制砖机400的一侧连接以沿着第一方向向制砖机400送进底料,而面料布料装置300与制砖机400的与所述一侧相邻的另一侧连接,以沿着第二方向向制砖机400送进面料。面料布料装置300和底料布料装置400沿着不同的方向布置在制砖机400的侧部,有助于减小了制砖系统1000的长度。在一个实施例中,第一方向与第二方向垂直,由此面料布料装置300和底料布料装置400彼此互不干涉同时又能够使制砖系统1000的各个组成部分的布局紧凑。
此外,为了实现更高程度的生产系统集成,根据本申请实施例的制砖系统1000还可以包括第一送料装置100、第二送料装置200、以及出砖平台600中的至少一种。
具体而言,在本申请的一些实施例中,第一送料装置100可以是用于传送托板的第一传送装置,例如纵向送板车等。制砖系统1000工作时,制砖机上400的模具机构将成型的砖块依次叠加垒放至砖块托板上,垒放层数累积至设置值时,当前批次砖块可以通过输送机构被运走,然后制砖系统换用另一块新的砖块托板。为增加制砖系统1000的工作效率,通常将空的砖块托板堆叠放置备用,制砖系统工作时,取用砖块托板时先抽取位于最底部的砖块托板。在一些实施例中,所述当前批次的砖通过下面将要描述的第二送料装置200的输送机构被输送至出砖平台600,然后通过设置在出砖平台600上的输送机构被运走。在另一些实施例中,如果出砖平台600的输送机构延伸至制砖机400内,则当前批次的砖连同托板直接由出砖平台600的输送机构运走。在另外一些实施例中,制砖机400中可以设置有单独的输送机构,用于将托板和制成的砖输送到出砖平台600、外部运送机构或外部平台。在上面的实施例中,出砖平台600与制砖机400连接并被布置为与面料布料装置300彼此相对,并沿着相同的方向输送物料。在其它实施例中,出砖平台600可以与制砖机400连接并被布置为与底料布料装置500彼此相对。
第二送料装置200位于第一送料装置100的下游且第二送料装置200的送料方向与第一送料装置100的送料方向形成预定角度。第二送料装置200上设有输送机构,该第一输送机构可以为例如链轮和链条结构等。例如,第二送料装置200可以是用于传送托板的第二传送装置,例如横向送板车等。,第二送料装置200的送料方向与第一送料装置100的送料方向形成预定角度的夹角设置,进一步有利于减小制砖系统1000的占用空间,便于施工。在一个实施例中,预定角度在60度至120度之间。在进一步的实施例中,预定角度为大约90度,即,第二送料装置200的送料方向与第一送料装置100的送料方向互相垂直。
在一个实施例中,面料布料装置300设置在第二送料装置200上,且面料布料装置300 与第二送料装置200形成为一体式结构。例如,在本申请的一些实施例中,面料布料装置300可以设置在第二送料装置200的顶部,并且面料布料装置300与第二送料装置200可以形成为一体式结构。在本申请的一些实施例中,面料布料装置300可以为面料布料车,通过使横向送板车与面料布料车为一体,使得面料布料和横向托板传送机构合二为一,从而可以实现布料、送板二合一,使得整个制砖系统与现有技术相比空间需求减小另外,根据本申请实施例的制砖系统1000,通过使面料布料装置300与第二送料装置200为一体式结构,还可以实现制砖系统1000的模块化,转场方便且灵活性好。在上面的实施例中,面料布料装置300与第二送料装置200形成一体化结构,然而本申请不限于此,根据需要,例如,底料布料装置500也可以被设计为与第二送料装置200形成一体化结构。在制砖系统1000的送料的方向上,制砖机400设置于第二送料装置200的下游,制砖机400包括模框410、设在模框410上方的压头420以及设在模框410下方的振动台430。
在一个实施例中,底料布料装置500包括双油缸连杆结构以使底料布料装置500向制砖机400内往复布料。
出砖平台600与制砖机400相连,出砖平台600上设有第二输送机构,成品砖适于通过所述第二输送机构进行输送。在一些实施中,所述第二输送机构可以为例如由驱动电机驱动的链轮和链条结构等。然而,本申请不限于此,例如,第二输送机构可以是链轮和链条、皮带轮和皮带、曲柄连杆机构、机械手中的至少一种。
根据本申请实施例的制砖系统1000的第一送料装置100还可以包括气缸、勾爪、等距间歇性送板机构以及油缸导向轮结构等,这里的气缸、勾爪、等距间歇性送板机构以及油缸导向轮结构等可以采用常规的结构,在此不再赘述。
在本申请的一个实施例中,根据本申请实施例的制砖系统1000的具体动作流程如下:叉车将一叠托板111放置在第一送料装置100(例如纵向送板车)的末端位置,然后往前推一个托板111的距离,至此一叠托板到位;使用气缸与勾爪并通过等距间歇性送板机构将最底层的托板111输送至第二送料装置200和面料布料装置300(也可被称为横向送板车/面料布料车)内;通过横向送板车/面料布料车的电机和链轮和链条结构将托板111输送至制砖机400的振动台430上,至此托板111到位。与此同时,底料布料装置500(例如,底料布料车)通过双油缸连杆结构开始来回向制砖机400内进行底料布料,此时制砖机400内的振动台430一直工作,制砖机400内的压头410第一次下压,底料成型,压头410回升,然后横向送板车/面料布料车通过油缸导向轮结构将成型的底料推送至制砖机400,开始进行面料布料,布料完成后,制砖机400内的压头410完成第二次下压,面料成型,即,制砖完成。此时,横向送板车/面料布料车内的电机和链轮和链条结构再次工作,将制砖机400内的托板111推至出砖平台600上,通过出砖平台600上的电机和链轮和链条结构,送至抓取位,至此制砖全 流程结束。
根据本申请实施例的制砖系统1000,通过使第二送料装置200的送料方向与第一送料装置100的送料方向呈预定角度的夹角设置,便于施工且有利于减小制砖系统1000的占用空间。通过使面料布料装置300与第二送料装置200为一体式结构,由此,使得面料布料和托板传送机构合二为一,从而可以实现布料、送板二合一,结构紧凑,使得整个制砖系统与现有技术相比空间需求减小。
根据本申请的一些实施例,第一送料装置100上设有用于推动托板111的托板推动机构。
在本申请的一些实施例中,使用叉车将一叠托板111放置在第一送料装置100(例如纵向送板车)的末端位置,可以通过托板推动机构将一叠托板111往前推动一个托板111的距离。
下面将参照图10至图12详细描述根据本申请的实施例的第一送料装置(具体地,纵向送板车)100。
图10是图7中根据本发明实施例的制砖系统中第一送料装置(纵向送板车)的一个主视图;图11是图10中根据本发明实施例的制砖系统中第一送料装置(纵向送板车)的一个侧视图;图12是图10中根据本发明实施例的制砖系统中第一送料装置(纵向送板车)的一个俯视图。
参照图10至图12,根据本申请的一些实施例,第一送料装置100包括第一支撑架110、可折叠上料支架120、限位结构130、托板对位结构140、托板输送气缸150以及导向结构160。
具体而言,参照图10,第一支撑架110上叠置有多个托板111;可折叠上料支架120与第一支撑架110铰接;限位结构130用于对托板111进行限位。限位结构130包括第一限位结构131和第二限位结构132,第一限位结构131设置在可折叠上料支架120上。在本申请的一些实施例中,第一限位结构131可以为例如托板上料止回爪等;第二限位结构132设在第一支撑架110上,第二限位结构132可以为托板限位支架等。
托板对位结构140用于对托板111进行整理和对位。在本申请的一些实施例中,纵向送板车托板对位结构140可以由电机或液压缸驱动。
第一支撑架110上可以设有流利条112,通过所述流利条112便于托板111的输送。其中,流利条也可被称为滑轨。
在本申请的一些实施例中,托板输送气缸150设置于第一支撑架110的底部,用于将最底层的托板111推出至托板对位结构140处。由此,通过托板输送气缸150可以将最底层的托板111推出至托板对位结构140处,通过托板对位结构140可以实现对托板111位置的整理。
导向结构160设置于第一支撑架110上用于对对位后的托板111进行导向,托板输送气缸150将对位后的托板输送至第二送料装置200。例如,参照图12,在本申请的一些实施例中,导向结构160可以包括导向板,所述导向板可以包括一对导向板,其中,一对导向板之间的距离沿着托板的输送方向逐渐减小直至保持恒定。导向结构160可以用于对对位后的托板111进行导向,托板输送气缸150可以将对位后的托板输送至第二送料装置200。
进一步地,参照图11,托板对位结构140包括框体141、托板对位气缸142、对位连杆143以及托板夹紧杆144。
具体而言,通过托板对位气缸142带动托板对位结构140以对托板111进行整理和对位。
对位连杆143与托板对位气缸142铰接,对位连杆143可以包括第一对位连杆1431和第二对位连杆1432,第一对位连杆1431和第二对位连杆1432分别与托板对位气缸142铰接。具体地,第一对位连杆1431的一端与第二对位连接杆1432的一端相连且第一对位连杆1431的所述一端与第二对位连接杆1432的所述一端均与托板对位气缸142铰接。
托板夹紧杆144与框体141铰接,并且托板夹紧杆144包括第一托板夹紧杆1441和第二托板夹紧杆1442,其中,第一托板夹紧杆1441与框体141铰接,第二托板夹紧杆1442与框体141铰接。具体地,第一对位连杆1431的另一端与第一托板夹紧杆1441铰接,第二对位连杆1432的另一端与第二托板夹紧杆1442铰接。
例如,在本申请的一些进一步的实施例中,第一对位连杆1431的另一端可以与第一托板夹紧杆1441的中部位置或上部位置铰接,第二对位连杆1432的另一端可以与第二托板夹紧杆1442的中部位置或上部位置铰接,但本申请不限于此。
根据本申请实施例的制砖系统1000,利用叉车将托板111推至可折叠上料支架120处,在此过程中,通过第一限位结构131(例如托板上料止回爪)可防止托板111退回,接着再通过气缸或者人工推将托板111推至第二限位结构132(例如托板限位支架)处,至此托板111到位。然后通过托板输送气缸150可以将托板111最底层的托板111推出至托板对位结构140下面,通过托板对位气缸142带动托板对位结构140对托板111进行整理和对位,再利用托板输送气缸150将托板111被推至横向送板车内,至此纵向送板车动作结束,其中,托板111在被推向横向送板车的过程中被例如导向板的导向结构160引导。
托板对位原理为:通过托板对位气缸142伸缩,对位连杆143通过旋转铰接点连接托板对位气缸142和托板夹紧杆144,使两侧的托板夹紧杆144绕旋转铰接点旋转,从而达到托板夹紧杆144同步动作,完成托板对位。
根据本申请实施例的制砖系统1000,通过使用气缸与连杆在送板机上进行托板对位,不仅托板对位机构的结构简单,而且能够节省托板对位机构占用的空间。
根据本申请的一些实施例,如图10所示,可折叠上料支架120与第一支撑架110之间还 设有支撑件170,折叠支架斜撑170分别与可折叠上料支架120与第一支撑架110铰接,倾斜地布置于可折叠上料支架120与第一支撑架110之间。一方面,通过支撑件170有利于提高第一送料装置100的结构强度。另一方面,在运输过程中,如遇到空间不够的情况下,可以将支撑件170两端的旋转支撑铰点处的旋转销移除,并将倾斜的支撑件170拆下,并进一步将可折叠上料支架120向上折叠90°,达到缩短第一送料装置100(例如纵向送板车)尺寸的目的。
根据本申请的一些实施例,所述托板推动机构可以为液压缸、气缸或单轴机械手,当然,在本申请的一些实施例中推动托板111的操作也可以采用人工推动的方式进行。
制砖机400的三面来料工作在本申请的一些具体实施例中,通过使第二送料装置200的送料方向与第一送料装置100的送料方向呈90度的夹角设置,使得整机采用直角布局结构,空间需求大大减小,且可以做到制砖机400的三个侧面均可以接收来料或输出砖坯,从而有利于减小制砖系统1000的占用空间,并且提高了系统效率。
在本申请的一些实施例中,第二送料装置200与第一送料装置100可以呈T字型布局、L形布局等。
根据本申请实施例的制砖系统1000,通过使第二送料装置200与第一送料装置100呈直角布局,可以解决单侧布料、送板出板而导致的周期过长的问题,缩短生产周期;可以解决现有制砖系统中的各种设备沿着一个方向依次连接造成的占地过大和施工不便等问题,由此,根据本申请实施例的制砖系统1000不仅可以节省施工成本,省时省力,还可以实现双面布料,两侧进/出板,简化了系统的设备和/机构的动作控制。
当然,在本申请的一些实施例中,第二送料装置200与第一送料装置100也可以呈60至120度之间的其他角度(例如60度、70度、80度、100度、110度或120度等)的夹角设置。
下面将参照图13至图15详细描述根据本申请实施例的制砖系统中的一体化的第二送料装置/面料布置装置。
图13是图7中根据本申请实施例的制砖系统中第二送料装置/面料布置装置(具体地,横向送板/面料布料车)的一个主视图;图14是图13中根据本申请实施例的制砖系统中第二送料装置/面料布置装置(横向送板/面料布料车)的一个侧视图;图15是图14中根据本申请实施例的制砖系统中第二送料装置/面料布置装置(横向送板/面料布料车)的一个俯视图;
参照图13至图15,根据本申请的一些实施例,第二送料装置200包括第二支撑架220、驱动机构230和第一输送机构。
具体而言,如图13和图14所示,驱动机构230驱动第一输送机构将托板111输送至振动台430,其中,驱动机构230包括驱动电机231。在一些实施例中,第一输送机构是与驱动电机231传动连接的链轮和链条232。然而,本申请不限于此,第一输送机构可以是链轮和链 条、皮带轮和皮带、曲柄连杆机构、机械手中的至少一种。
根据本申请实施例的制砖系统1000的送板过程包括:当纵向送板车将托板111送入后,通过驱动电机231带动链轮和链条232,将托板间歇性地送入制砖机400的振动台430,至此,送板结束。
进一步地,参照图13和图15,面料布料装置300包括第三支撑架310、面料布料车320、面料料斗330、料斗导向部件340以及料斗驱动液压缸350(参照图15)。
具体而言,第三支撑架310设置于第二送料装置200的第二支撑架220的上方;面料布料车320设在第三支撑架310上,并且面料布料车320的高度可调节。
面料料斗330具有支撑轮331,所述支撑轮331可以为料斗前支撑轮。料斗导向部件340用于对面料料斗进行导向;其中,料斗导向部件340可以包括料斗推杆341、料斗行走导向条342以及料斗行走导向轮343。料斗驱动液压缸350与面料料斗330相连,以驱动面料料斗330往复运动。
根据本申请实施例的制砖系统1000的面料布料过程包括:通过料斗驱动液压缸350推拉面料料斗330,同时料斗前支撑轮对面料料斗330进行支撑且料斗导向部件340对对面料料斗330的运动进行导向,完成面料布料。
进一步地,参照图13,面料布料装置300还包括用于调节面料布料车320的高度的高度调节机构360。高度调节机构360包括面料车竖直导向轴361以及面料车支撑螺杆362。
具体而言,面料车竖直导向轴361用于调节面料布料车的高度;面料车支撑螺杆362的上端与面料布料车320相连,并且面料车支撑螺杆362的下端与第二支撑架220相连,面料车支撑螺杆362通过螺母锁紧。
面料布料装置300可以包括直线轴承,更换模具后面料布料车320的高度调节过程可以包括:松开面料车支撑螺杆362上的紧固螺母,通过直线轴承与面料车竖直导向轴361的导向,竖直移动面料布料车320至所需高度,再将螺母锁紧,至此完成面料布料车320的高度调节。
根据本申请实施例的制砖系统1000,将面料车与送板车二合一,大大的节省了安装空间与时间,且面料车的高度调节,通过直线轴承与螺杆(例如面料车支撑螺杆362),简单快捷。
在本申请的一些实施例中,制砖机400的结构可为框架式。
参照图16至图18,根据本申请的一些实施例,除了压头420、振动台430和模框410以外,制砖机400还可以包括砖机支撑导向轴440、砖机上支撑板450、压头导向固定座460、压头升降液压缸470、砖机下支撑板480、模框导向固定座490、模框升降液压缸401以及连杆402。
具体而言,砖机上支撑板450设在砖机支撑导向轴440的顶部;压头导向固定座460与 砖机支撑导向轴440相连,并且压头导向固定座460可以位于砖机上支撑板450的下方;压头420可拆卸地设在压头导向固定座460上。例如,压头420可以通过螺纹连接的方式设在压头导向固定座460上。压头升降液压缸470用于驱动压头420升降。
砖机下支撑板480设置于砖机支撑导向轴440的底部,振动台430设置在砖机下支撑板480上。模框导向固定座490与砖机支撑导向轴440相连,并且模框导向固定座490可以位于砖机下支撑板480的上方。模框410可拆卸地与模框导向固定座490相连,例如,模框410可以通过螺纹连接的方式与模框导向固定座490相连。模框升降液压缸401用于驱动模框410升降;连杆402设在砖机下支撑板480与模框导向固定座490之间。在一些实施例中,连杆402可以包括两个。
根据本申请实施例的制砖系统1000,制砖机400采用四梁四柱结构,模框上升采用双液压驱动带动连杆的方式,其中,液压缸需保持同步,进而保证振动台430保持水平。
进一步地,参照图19和图20,制砖机400还包括模具更换专用工装403。模具更换专用工装403具有拉手4031,并且模具更换专用工装403适于放置在振动台430上。模具更换专用工装403内设有多个万向球4032,以适合于盛放压头420和模框410。例如,在本申请的一些实施例中,模具更换专用工装403的外轮廓可以大致呈长方形。
根据本申请实施例的制砖系统1000的模具更换过程包括:通过压头升降液压缸470推动压头导向固定座460下行,使压头420放置在模框410上,松开压头导向固定座460与压头420的连接螺丝,压头升降液压缸470上行;然后,通过模框升降液压缸401推动模框导向固定座490上行适当的距离,以使模框410与振动台430之间有一定的安全距离(可根据实际需要适应性设置),再将模具更换专用工装403放置在振动台430上,接着松掉模框410与模框导向固定座490之间的螺丝,至此模具(即,模框410和压头420)全部拆下且搁置在模具更换专用工装403上。手动将模具更换专用工装403转动90°,使短边朝外,再将工装拉出,至此模具拆卸完毕。安装模具的过程与上述过程相反。
根据本申请实施例的制砖系统1000的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
下面将参照图21至24描述一种车载形式的制砖系统。
具体地,图21至图24示出了根据本实施例的一种破碎制砖一体机形式的制砖系统。图21是根据本申请实施例的破碎制砖一体机的主视图。图22是根据本申请实施例的破碎制砖一体机的另一主视图,示出了图21中的上料皮带向上翻折后的状态。图23为图21中所示的根据本申请实施例的破碎制砖一体机的俯视图。图24为图21中的制砖机区域的俯视图。
如图21所示,根据本实施例的一种破碎制砖一体机包括可移动的车体1,该车体1的中部具有下凹区域2。在该下凹区域2中设置有底料搅拌设备10、面料搅拌设备14和制砖机 17,这降低了底料搅拌设备10、面料搅拌设备14和制砖机17的高度,减小整个制砖系统的震动,并便于工人操作上述该制砖系统。另外,底料搅拌设备10被设置在车体1的下凹区域2内,这不仅降低了底料搅拌设备10的高度,而且采用向上倾斜的骨料皮带机6朝向底料搅拌设备10输送物料时,可减小骨料皮带机6的长度,从而在整体上进一步减小车体了1的长度。
在车体1上的后端区域设置有破碎设备4,通过该破碎设备4能够将建筑废弃物进行破碎成骨料。在车体1的后端还连接有上料皮带机3,通过该上料皮带机3用于将建筑废弃物输送至破碎设备4内。所述上料皮带机3处于展开状态时,上料皮带机3朝向车体1的后方延伸。考虑到物料的安息角,上料皮带机3被设置为向上倾斜一定角度,以避免物料在上料皮带机3上输送时向下滑落。在一些实施例中,上料皮带机3被设置为向上倾斜大约40°。具体地,上料皮带机3可以被设置为向上倾斜40°±5°。
破碎设备4通过向上倾斜的骨料皮带机6朝向所述底料搅拌设备10输送物料。具体地,建筑废弃物经过破碎设备4的破碎后形成骨料,该骨料通过骨料皮带机6倾斜向上进行输送,首先将骨料输送至中间仓7,所述中间仓7的下方设有出料口,打开出料口可使骨料进入到下方的底料搅拌设备10内,其中,所述骨料皮带机6可以被设置为倾斜大约50°。具体地,骨料皮带机6可以被设置为向上倾斜50°±5°。在保证骨料在骨料皮带机6上输送时不会向下滑落的前提下,可以尽可能减小骨料皮带机6的向下投影的长度。所述中间仓7和所述底料搅拌设备10之间可以通过软连接连通,例如,可采用膨胀节连通。另外,所述骨料皮带机6可以采用链条式皮带输送机或平皮带输送机。
另外,作为一种优选实施方式,在所述破碎设备4的出口下方还设置有振动筛5,通过该振动筛5的筛选,将大于10mm的物料从振动筛5的排料口排出,而小于10mm的骨料落入到骨料皮带机6上。通过使用振动筛5,破碎后的物料无需人工分类和筛选可直接使用。
如图22所示,所述上料皮带机3为能够向上翻折的皮带装置。具体地,上料皮带机3可包括三段,上料皮带机3向上翻折后成大致的倒U形架设在车体1的上方。向上翻折后的上料皮带机3在车体1上的布置需要使整车的高度符合道路运输条件。采取可折叠的皮带机既可调整上料角度,又能够缩短皮带机的占地空间。另外,作为一种可替换实施方式,所述上料皮带机3被省略,在这种情况下可以使用斗车进行上料。
所述底料搅拌设备10通过向上倾斜的底料皮带机11朝向所述制砖机17输送物料,具体地,底料经过底料搅拌设备10的充分搅拌后,该底料通过底料皮带机11倾斜向上进行输送。首先将底料输送至底料车(即,底料布料车)16上,所述底料车16通过移动将底料输送至制砖机17内。其中,所述底料皮带机11的倾角可以被设置为大约50°。具体地,所述底料皮带机11的倾角可以被设置50°±5°。在保证底料在皮带机上输送的过程中不会向下滑落的 前提下,应当尽量减小底料皮带机11向下投影的长度。另外,所述底料皮带机11还可以采用链条式皮带输送机或平皮带输送机。
所述面料搅拌设备14通过向上倾斜的面料皮带机15朝向所述制砖机17输送面料。具体地,面料经过面料搅拌设备14的充分搅拌后,通过面料皮带机15倾斜向上进行输送。首先将面料输送至面料车(即,面料布料车)18上,所述面料车18通过移动将面料输送至制砖机17内。其中,所述面料皮带机15的倾角可以被设置为大约50°。具体地,所述面料皮带机15的倾角可以被设置为50°±5°。在保证面料在皮带机上输送的过程中不会向下滑落的前提下,应当尽量减小面料皮带机15向下投影的长度。另外,所述面料皮带机15可以采用链条式皮带输送机或平皮带输送机。
如图23所示,所述面料搅拌设备14和所述底料搅拌设备10沿所述车体1长度方向的左右两侧设置,所述制砖机17设置在与所述面料搅拌设备14相同的所述车体1的一端。所述制砖机17分别通过底料车16和面料车18进行加料。所述底料车16用于接收所述底料皮带机11输送的底料,然后将该底料输送至制砖机17内。所述面料车18用于接收所述面料皮带机15输送的面料,然后将该面料输送至所述制砖机17内。
如图21至23所示,所述车体1上设置有水泥料仓8,所述水泥料仓8设置在所述车体1的与所述底料搅拌设备10相同的一侧。所述水泥料仓8在所述车体1上向下凹陷设置,所述水泥料仓8和所述底料搅拌设备10之间通过向上倾斜的水泥螺旋机9进行物料输送。具体地,所述水泥螺旋机9被布置为向上倾斜大约50°(具体地,50°±5°),所述水泥料仓8内可以用于存储黑水泥。黑水泥通过水泥螺旋机9倾斜向上输送至底料搅拌设备10内,从而使黑水泥和骨料混合、搅拌均匀后形成制砖底料。
所述车体1上设置有面料仓12,所述面料仓12设置在所述车体1的与所述面料搅拌设备14相同的一侧。所述面料仓12在所述车体1上向下凹陷设置,所述面料仓12和所述面料搅拌设备14之间通过向上倾斜的面料螺旋机13进行物料输送。具体地,所述面料螺旋机13被布置为向上倾斜大约50°(具体地,50°±5°),所述面料仓12内用于存储白水泥和细沙。白水泥和细沙通过面料螺旋机13倾斜向上输送至面料搅拌设备14内,从而使白水泥和细沙和颜料混合、搅拌均匀后形成制砖面料。
如图24所示,在车体1上,用于朝向所述制砖机17输送底料的所述底料车16的送料方向为沿所述车体1的宽度方向进行送料,用于朝向所述制砖机17输送面料的所述面料车18的送料方向为沿所述车体1的长度方向进行送料。所述底料车16和所述面料车18的送料方向互相垂直。采用这种布局,可有助于减小车体1的长度,使得车体1在小区内或狭窄道路上能够更加便于移动和周转。制砖底料通过底料皮带机11输送到底料车16后,经过搅拌均匀后,通过底料车16输送到制砖机17内。在制砖机17内,对底料进行震动、压实后,完成 对底料的入模具动作。与此同时,面料通过面料皮带机15输送到面料车18后,经过搅拌均匀后,通过面料车18将面料输送到制砖机17内,以完成对面料的入模具以及覆盖被压实的底料的上表面的动作,在经过振动、压实和脱模形成砖块。
在所述面料车18的下方还可以设置有送板机19,所述送板机19设置在制砖机17的一侧,用于将带托板的砖块输送到码垛机20。所述码垛机20设置在车体1的前端,所述码垛机20用于把成型的砖块码垛到对应区域,以完成整个建筑废弃物到成型砌块砖的全过程。
如图23所示,所述车体1上设置有液压站26、电控柜24和操作台25,通过所述液压站26、电控柜24和操作台25,用于控制车体1上的设备运行,设备包括但不限于上料皮带机3、破碎设备4、振动筛5、骨料皮带、中间仓7、水泥螺旋机9、底料搅拌设备10、底料皮带机11、面料螺旋机13、面料搅拌设备14、面料皮带机15、底料车16、面料车18、制砖机17、送板机19、码垛机20和液压支腿21。
液压支腿21被设置在所述车体1的下方,通过所述液压站26提供驱动所述液压支腿21的伸缩的液压动力和控制,所述液压支腿21可以对车辆底盘的前侧和/或后侧进行支撑。在一个实施例中,所述液压支腿21在车体1的前端、后端及中间的两侧各设置有一对。工作时,通过液压支腿21撑地,使车辆的轮胎离地,能够有效提高整机的稳定性和安全性。
所述车体1的两侧还分别设置有折叠爬梯22和折叠踏板23。在工作状态下,折叠爬梯22和折叠踏板23打开;运输状态时,折叠爬梯22和折叠踏板23被折叠,以满足整机维修要求,并符合国家道路运输条件。
本实施例提供的破碎制砖一体机,制砖机17和破碎设备4集成到同一台车上,同时具有破碎建筑废弃物和自动制砖两大功能,破碎和制砖过程均无需人工分类、筛选、搬运等环节,使建筑废弃物到成型砌砖实现全程自动化,实现了建筑垃圾回收再利用,整个生产过程绿色环保。此外,车辆可以被设计为满足国家道路运输尺寸要求,可以被允许在道路上行驶。
本实施例提供的破碎制砖一体机,各功能模块单独安装在车底盘上,具有高度的互换性。
本实施例提供的破碎制砖一体机,设备小型化,可以实现整机尺寸满足道路运输要求,且具有自行走移动功能,能够在道路上行驶,并且机动性能被提高,转场便捷,因而无需其他设备协助转场。
本实施例提供的破碎制砖一体机,利用骨料与黑水泥混合形成底料以及白水泥与细沙、颜料混合的面料,并将底料和面料分别输送至制砖机17,从而避免了底料和面料粘在一起的风险,提高了制砖的效果。
如图21至23所示,根据本申请实施例的破碎制砖一体机还包括牵引车27,所述牵引车27与所述破碎制砖一体机的车体1连接。具体地,牵引车27与车体1的靠近制砖机17的一端连接。通过牵引车27用于对破碎制砖一体机进行牵引,从而在使破碎制砖一体机能够在小 区内各个区域以及在各个施工现场进行转场,从而避免使用吊装设备进行吊运,节省设备成本。
在一些实施例中,车体1可具有能够被封闭的车厢。与上面描述的固定安装的制砖系统1000类似,车载的制砖系统也可以设置有前面描述的收尘装置和/或降尘装置。
根据本申请的一些实施例,通过相互垂直的底料车和面料车分别将底料搅拌设备和面料搅拌设备内的物料输送至制砖机内,可减小车体的长度。而将底料搅拌设备和面料搅拌设备在车体上左右分开设置并将制砖机设置在车体的一端或靠近车体的一端,可进一步减小车体的长度。采用这种布局,使得车体在小区内能够更加便于移动周转。
根据本申请的一些实施例,底料搅拌设备被设置在车体的下凹区域内,从而降低了底料搅拌设备的高度,采用向上倾斜的骨料皮带机朝向底料搅拌设备输送物料时,可减小骨料皮带机的长度,从而在整体上进一步减小了车体的长度。
根据本申请的一些实施例,骨料皮带机的倾角被设置为50°(具体地,50°±5°),不仅可防止骨料在皮带机上滑落,并可最大可能地将骨料皮带机的长度设置为最短,从而最大化地减小车体的长度。
需要说明的是,上述实施例中的各个模块可以是功能模块也可以是程序模块,既可以通过软件来实现,也可以通过硬件来实现。对于通过硬件来实现的模块而言,上述各个模块可以位于同一处理器中;或者上述各个模块还可以按照任意组合的形式分别位于不同的处理器中。
本申请的实施例还提供了一种计算机设备,根据本申请实施例场的生产控制方法可以由计算机设备来实现。本申请实施例中的计算机设备包括但不限于存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,处理器执行所述计算机程序时实现上述实施例中的生产控制方法。
本申请的实施例还提供了一种计算机可读存储介质。该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种生产控制方法。
可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
需要说明的是,在本申请的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。还需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为 了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,在本申请的描述中,除非另有说明,“多个”、“多”的含义是指至少两个。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。例如,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者可能同时存在居中元件;当一个元件被称为“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。此外,涉及通信领域时,这里使用的“连接”可以包括有线连接,也可以包括无线连接。此外,本申请中使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为:表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的计算机可读存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。例如,上面所描述的本申请的不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。

Claims (36)

  1. 一种生产控制方法,应用于生产系统,所述生产系统包括至少两个具有不同生产功能的机器人,其中,所述生产控制方法包括:
    获取各个机器人的初始位置及生产过程中的目标位置;
    根据各个述机器人的所述初始位置及所述目标位置规划各个机器人的工作路径,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作。
  2. 根据权利要求1所述的生产控制方法,其特征在于,所述基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作包括:
    基于各个机器人的工作时序以及工作时长,确定各个机器人的起始工作时间;
    基于各个机器人的起始工作时间和与所述起始工作时间对应的工作路径分别控制对应机器人进行工作。
  3. 根据权利要求1所述的生产控制方法,其特征在于,所述基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作,包括:
    响应于接收处于当前工序的机器人的工作完成信息,给处于下一工序的机器人发送工作路径,以控制所述处于下一工序的机器人开始工作;
    或者,将各个工作路径分别发送至对应的机器人,以及响应于接收到处于当前工序的机器人的工作完成信息,给处于下一工序的机器人发送开始工作指令。
  4. 根据权利要求1所述的生产控制方法,其特征在于,所述获取各个机器人的初始位置及生产过程中的目标位置,包括:
    获取生产任务,根据所述生产任务确定执行所述生产任务的机器人;
    获取确定的各个机器人的初始位置,并根据所述生产任务确定所述确定的各个机器人在执行生产任务过程中的目标位置。
  5. 根据权利要求4所述的生产控制方法,其特征在于,在根据所述生产任务确定执行所述生产任务的机器人之后,根据所述生产任务确定各个机器人的工作模式。
  6. 根据权利要求1所述的生产控制方法,其特征在于,所述机器人的目标位置为至少一个,其中,所述机器人被配置为根据所述工作路径达到任一目标位置时执行与所述目标位置对应的操作。
  7. 根据权利要求1所述的生产控制方法,其特征在于,所述机器人包括生产线机器人和至少一个上料机器人,其中,
    基于所述生产线机器人的初始位置及生产原料储存位置规划所述生产线机器人的工作路径;
    基于所述上料机器人的初始位置、取料位置及规划的所述生产线机器人的工作路径中的目标位置规划所述上料机器人的工作路径。
  8. 据权利要求1所述的生产控制方法,其特征在于,所述机器人还包括转运机器人、码垛机器人、包装机器人、成品转运机器人和装车机器人中的至少一项,其中,
    基于所述转运机器人、所述码垛机器人、所述包装机器人、所述成品转运机器人和所述装车机器人中的至少一项的初始位置、所述目标位置的起点位置和终点位置产生所述转运机器人、所述码垛机器人、所述包装机器人、所述成品转运机器人和所述装车机器人中的所述至少一项的工作路径。
  9. 根据权利要求1所述的生产控制方法,其特征在于,所述机器人包括控制模块、定位模块,探测模块和路径纠偏模块中的至少一者,其中,
    所述控制模块用于接收所述机器人的工作路径,根据所述工作路径控制所述机器人进行工作;
    所述定位模块用于获取所述机器人的初始位置及工作过程中的实时位置;
    所述探测模块用于在所述机器人工作过程中探测所述工作路径中是否有障碍物;
    所述路径纠偏模块用于控制所述机器人始终沿所述工作路径移动。
  10. 根据权利要求7所述的生产控制方法,其特征在于,所述生产线机器人包括取料装置、行走装置、生产装置和车架中的至少一种。
  11. 根据权利要求7所述的生产控制方法,其特征在于,所述生产线机器人还包括收尘装置和/或降尘装置。
  12. 一种生产控制装置,应用于生产系统,所述生产系统包括至少两个具有不同生产功能的机器人,其特征在于,所述生产控制装置包括:
    位置获取模块,用于获取各个机器人的初始位置及生产过程中的目标位置;
    路径规划模块,用于根据各个机器人的所述初始位置及所述目标位置规划各个机器人的工作路径,基于工作时序和各个机器人的工作路径分别控制对应机器人进行工作。
  13. 一种生产系统,其特征在于,包括:服务器,控制器和至少两个具有不同生产功能的机器人;
    其中,所述服务器被配置为接收各个机器人的初始位置及生产过程中的目标位置,根据 各个机器人的所述初始位置及所述目标位置规划各个机器人的工作路径,并将各个机器人的工作路径发送至控制器;
    所述控制器被配置为接收所述工作路径并根据所述工作路径和工作时序分别控制对应机器人进行工作;
    所述机器人被配置为用于进行生产工作。
  14. 一种生产设备,其特征在于,所述生产设备包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序,其中,
    所述一个或多个处理器被配置为执行所述一个或多个程序以实现如权利要求1-11中任一所述的生产控制方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1-11中任一项所述的生产控制方法。
  16. 一种制砖系统,包括:
    制砖机;
    底料布料装置,与所述制砖机的一侧连接以沿着第一方向向所述制砖机送进底料;
    面料布料装置,与所述制砖机的与所述一侧相邻的另一侧连接,以沿着第二方向向所述制砖机送进面料。
  17. 如权利要求16所述的制砖系统,其特征在于,所述制砖系统还包括:
    用于传送托板的第一传送装置;
    用于传送托板的第二传送装置,所述第二传送装置位于所述第一传送装置的下游且第二传送装置的传送方向与所述第一传送装置的传送方向形成预定角度,所述预定角度在60度至120度的范围内;
    其中,所述面料布料装置或所述底料布料装置设置在所述第二传送装置上并且与所述第二传送装置形成一体式结构;
    其中,所述制砖机设置于所述第二传送装置的下游。
  18. 根据权利要求16所述的制砖系统,其特征在于,所述制砖系统还包括出砖平台,所述出砖平台与所述制砖机连接并被布置为与所述底料布料装置或面料布料装置中的一个相对。
  19. 根据权利要求17所述的制砖系统,其特征在于,所述第一传送装置上设置有用于 推动托板的托板推动机构,所述第一传送装置包括:
    第一支撑架,用于支撑叠置的多个托板;
    可折叠上料支架,与所述第一支撑架铰接;
    限位结构,用于对托板进行限位并包括第一限位结构和第二限位结构,所述第一限位结构设置在所述可折叠上料支架上,所述第二限位结构设置在所述第一支撑架上;
    托板对位结构,用于对托板进行整理和对位;
    托板输送气缸,设置于所述第一支撑架的底部,用于将最底层的托板推出至所述托板对位结构处;
    导向结构,设于所述第一支撑架上用于对对位后的托板进行引导,所述托板输送气缸将对位后的托板输送至所述第二传送装置。
  20. 根据权利要求18所述的制砖系统,其特征在于,所述托板对位结构包括:
    框体;
    托板对位气缸,驱动所述托板对位结构以对托板进行整理对位;
    对位连杆,与所述托板对位气缸铰接并包括第一对位连杆和第二对位连杆,所述第一对位连杆的一端与所述第二对位连接杆的一端相连且所述第一对位连杆的所述一端与所述第二对位连接杆的所述一端分别与所述托板对位气缸铰接;
    托板夹紧杆,与所述框体铰接且包括第一托板夹紧杆和第二托板夹紧杆,所述第一对位连杆的另一端与所述第一托板夹紧杆铰接,所述第二对位连杆的另一端与所述第二托板夹紧杆铰接。
  21. 根据权利要求17所述的制砖系统,其特征在于,第二传送装置的传送方向与所述第一传送装置的传送方向基本上互相垂直,且所述第二传送装置包括:
    第一输送机构;
    第二支撑架;
    驱动机构,包括驱动电机,驱动电机与第一输送机构传动连接以驱动第一输送机构将托板输送至所述制砖机的振动台上。
  22. 根据权利要求21所述的制砖系统,其特征在于,所述面料布料装置包括:
    第三支撑架,被架设于所述第二支撑架的上方;
    面料布料车,设置在所述第三支撑架上且具有可调节的高度;
    面料料斗,具有支撑轮;
    料斗导向部件,用于对所述面料料斗进行导向;
    料斗驱动液压缸,与所述面料料斗相连,以驱动所述面料料斗往复运动。
  23. 根据权利要求22所述的制砖系统,其特征在于,所述面料布料装置还包括高度调节机构,所述高度调节机构用于调节所述面料布料车的高度且包括:
    面料车竖直导向轴,用于调节所述面料布料车的高度;
    面料车支撑螺杆,具有与所述面料布料车连接的上端和与所述第二支撑架连接的下端并在两端由螺母锁紧。
  24. 根据权利要求16所述的制砖系统,其特征在于,所述制砖机包括模框、设置在所述模框上方的压头以及设置在所述模框下方的振动台,和/或所述底料布料装置包括双油缸连杆结构以使所述底料布料装置向所述制砖机内往复布料。
  25. 根据权利要求16所述的制砖系统,其特征在于,所述制砖机包括:
    砖机支撑导向轴;
    砖机上支撑板,设置在所述砖机支撑导向轴的顶部;
    压头导向固定座,与所述砖机支撑导向轴相连且位于所述砖机上支撑板的下方;
    压头,可拆卸地设置在所述压头导向固定座上;
    压头升降液压缸,用于驱动所述压头升降;
    砖机下支撑板,设置于所述砖机支撑导向轴的底部;
    振动台,设置在所述砖机下支撑板上;
    模框导向固定座,与所述砖机支撑导向轴相连且位于所述砖机下支撑板的上方;
    模框,可拆卸地与所述模框导向固定座相连;
    模框升降液压缸,用于驱动所述模框升降;以及
    连杆,设置在所述砖机下支撑板与所述模框导向固定座之间。
  26. 根据权利要求16所述的制砖系统,其特征在于,所述制砖系统还包括固定的或可移动的安装平台,所述制砖机布置在所述安装平台的一端,其中,所述可移动的平台是拖车、挂车、半挂车或平板车。
  27. 根据权利要求16所述的制砖系统,其特征在于,所述第一方向和所述第二方向相对于所述制砖机基本上互相垂直。
  28. 根据权利要求16所述的制砖系统,其特征在于,所述制砖系统还包括:
    可移动的车体,其上布置有破碎设备、底料搅拌设备、面料搅拌设备、所述底料布料装 置、所述面料布料装置和所述制砖机和/或出砖平台,其中,
    所述破碎设备和所述底料搅拌设备之间通过骨料皮带机进行物料输送,所述底料搅拌设备和所述制砖机之间通过底料皮带机进行物料输送,所述面料搅拌设备和所述制砖机之间通过面料皮带机进行物料输送;
    其中,所述面料搅拌设备和所述底料搅拌设备沿所述车体长度方向布置在车体的两侧,所述底料布料装置接收所述底料皮带机输送的底料,所述面料布料装置接收所述面料皮带机输送的面料。
  29. 根据权利要求28所述的制砖系统,其特征在于,所述车体上具有下凹区域;
    所述底料搅拌设备设置在所述车体的下凹区域中,和/或所述面料搅拌设备设置在所述车体的下凹区域中,和/或所述制砖机设置在所述车体的下凹区域中。
  30. 根据权利要求28所述的制砖系统,其特征在于,所述骨料皮带机的倾角为50°±5°。
  31. 根据权利要求28所述的制砖系统,其特征在于,所述车体上设置有水泥料仓,所述水泥料仓在所述车体上向下凹陷地设置,所述水泥料仓和所述底料搅拌设备之间通过向上倾斜的水泥螺旋机进行物料输送。
  32. 根据权利要求31所述的制砖系统,其特征在于,所述水泥料仓设置与所述底料搅拌设备设置在车体同一侧。
  33. 根据权利要求28所述的制砖系统,其特征在于,所述车体上设置有面料仓,所述面料仓在所述车体上向下凹陷设置,所述面料仓和所述面料搅拌设备之间通过向上倾斜的面料螺旋机进行物料输送。
  34. 根据权利要求33所述的制砖系统,其特征在于,所述面料仓与所述面料搅拌设备设置在车体的同一侧。
  35. 根据权利要求28所述制砖系统,其特征在于,所述车体上设置有用于向所述破碎设备输送物料的供料皮带机,所述供料皮带机被配置为能够向上翻折以架设在所述车体的上方以及展开后朝向所述车体的后方延伸。
  36. 根据权利要求28所述的制砖系统,其特征在于,所述制砖系统还包括布置在车体的前端的码垛机和/或布置在所述面料车之下用于朝向车体的前端输送砖块和托板的送板机。
PCT/CN2021/132336 2020-11-26 2021-11-23 制砖系统、生产控制方法、装置、系统、生产设备及介质 WO2022111450A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/999,821 US20230205186A1 (en) 2020-11-26 2021-11-23 Brick making system, production control method, device, system, production equipment, and medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202011346024.4A CN114536514B (zh) 2020-11-26 2020-11-26 制砖设备
CN202011346024.4 2020-11-26
CN202110119488.XA CN114815737A (zh) 2021-01-28 2021-01-28 生产控制方法、装置、系统、生产设备及介质
CN202110119488.X 2021-01-28
CN202120545227.X 2021-03-17
CN202120545227.XU CN213290757U (zh) 2021-03-17 2021-03-17 破碎制砖一体机及可移动式建筑废弃物破碎制砖作业车

Publications (1)

Publication Number Publication Date
WO2022111450A1 true WO2022111450A1 (zh) 2022-06-02

Family

ID=81755348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132336 WO2022111450A1 (zh) 2020-11-26 2021-11-23 制砖系统、生产控制方法、装置、系统、生产设备及介质

Country Status (2)

Country Link
US (1) US20230205186A1 (zh)
WO (1) WO2022111450A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118596297A (zh) * 2024-08-09 2024-09-06 江苏晟通固废环保处置有限公司 一种制砖机压制成型智能控制系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116674073B (zh) * 2023-07-31 2023-12-15 泉州市兴鑫机械制造有限公司 一种可生产彩色面砖的双向静压机及其生产工艺
CN117445171A (zh) * 2023-11-28 2024-01-26 瑞泰马钢新材料科技有限公司 一种钢包下水口耐火砖的数字化加工成型装置及管控系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07271415A (ja) * 1994-03-30 1995-10-20 Nec Corp 協調ロボット制御方法
CN103399543A (zh) * 2013-07-23 2013-11-20 清华大学 输片协作的多个机器人设备的调度方法及系统
CN107553145A (zh) * 2017-10-16 2018-01-09 李刚 一种多工序机器人自动化生产线及自动化生产方法
CN108214496A (zh) * 2018-03-29 2018-06-29 北京中航科电测控技术股份有限公司 新能源汽车控制器自动装配系统
CN109676278A (zh) * 2019-02-02 2019-04-26 宁波吉利汽车研究开发有限公司 多台机器人配合焊接生产的方法、装置和工作站plc
CN109789555A (zh) * 2016-10-06 2019-05-21 川崎重工业株式会社 机器人系统及其运转方法
CN109884996A (zh) * 2019-02-02 2019-06-14 宁波吉利汽车研究开发有限公司 生产控制系统、方法及生产管理系统
CN109991977A (zh) * 2019-03-04 2019-07-09 斯坦德机器人(深圳)有限公司 机器人的路径规划方法及装置
CN110076778A (zh) * 2019-05-07 2019-08-02 杭州迦智科技有限公司 机器人控制方法、装置、存储介质和处理器
CN110471379A (zh) * 2019-08-13 2019-11-19 清华大学 一种装配生产系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07271415A (ja) * 1994-03-30 1995-10-20 Nec Corp 協調ロボット制御方法
CN103399543A (zh) * 2013-07-23 2013-11-20 清华大学 输片协作的多个机器人设备的调度方法及系统
CN109789555A (zh) * 2016-10-06 2019-05-21 川崎重工业株式会社 机器人系统及其运转方法
CN107553145A (zh) * 2017-10-16 2018-01-09 李刚 一种多工序机器人自动化生产线及自动化生产方法
CN108214496A (zh) * 2018-03-29 2018-06-29 北京中航科电测控技术股份有限公司 新能源汽车控制器自动装配系统
CN109676278A (zh) * 2019-02-02 2019-04-26 宁波吉利汽车研究开发有限公司 多台机器人配合焊接生产的方法、装置和工作站plc
CN109884996A (zh) * 2019-02-02 2019-06-14 宁波吉利汽车研究开发有限公司 生产控制系统、方法及生产管理系统
CN109991977A (zh) * 2019-03-04 2019-07-09 斯坦德机器人(深圳)有限公司 机器人的路径规划方法及装置
CN110076778A (zh) * 2019-05-07 2019-08-02 杭州迦智科技有限公司 机器人控制方法、装置、存储介质和处理器
CN110471379A (zh) * 2019-08-13 2019-11-19 清华大学 一种装配生产系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118596297A (zh) * 2024-08-09 2024-09-06 江苏晟通固废环保处置有限公司 一种制砖机压制成型智能控制系统

Also Published As

Publication number Publication date
US20230205186A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
WO2022111450A1 (zh) 制砖系统、生产控制方法、装置、系统、生产设备及介质
CN103737713B (zh) 自动化砌块生产线
CN108995017A (zh) 一种免托板静压砌块成型机
CN212707349U (zh) Crtsⅰ型双块式轨枕自动化智能无人生产线
CN212948498U (zh) 一体化折叠式车载移动搅拌站及其主支撑框架和输送装置
CN108927490B (zh) 应用于3d打印机的供砂混砂系统
CN203650696U (zh) 一种移动湿拌砂浆搅拌站
CN113335882B (zh) 一种场地散装物料装车系统和方法
CN104369266B (zh) 一种漏粪板自动化生产线及其生产工艺
CN100532045C (zh) 全自动砌块生产线
CN116834143A (zh) 一种智能高效化生产水泥基钢筋桁架楼承板的生产线
CN110587823A (zh) 再生混凝土制品生产设备
CN103770210B (zh) 半自动砌砖养护线
JPH0752141A (ja) 移動式生コン製造システムとこれに使用する設備搭載車両
CN203579862U (zh) 自动化砌块生产线
CN203579861U (zh) 半自动砌砖养护线
CN211440590U (zh) 一种进出料口前置的行走式混凝土搅拌布料机
CN219902760U (zh) 一种小型移动式现场砂浆搅拌车
CN118239290A (zh) 一种可重复使用的智能布料系统
CN213290757U (zh) 破碎制砖一体机及可移动式建筑废弃物破碎制砖作业车
CN111792401A (zh) 一种用于砂石输送的装车装置
CN104552605A (zh) 湿拌砂浆搅拌泵车
CN210705285U (zh) 一种利用施工泥浆制作建筑产品的装置
CN221604714U (zh) 一种钢筋桁架混凝土薄壁叠合板智能化生产线
CN115008591A (zh) 一种高冰镍回转窑用耐火浇注料的生产设备及其生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.10.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21896951

Country of ref document: EP

Kind code of ref document: A1