WO2022062572A1 - 基于多维度的换挡控制方法、装置、车辆及介质 - Google Patents
基于多维度的换挡控制方法、装置、车辆及介质 Download PDFInfo
- Publication number
- WO2022062572A1 WO2022062572A1 PCT/CN2021/105143 CN2021105143W WO2022062572A1 WO 2022062572 A1 WO2022062572 A1 WO 2022062572A1 CN 2021105143 W CN2021105143 W CN 2021105143W WO 2022062572 A1 WO2022062572 A1 WO 2022062572A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- target
- state
- torque
- shift
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000005540 biological transmission Effects 0.000 claims description 13
- 230000001133 acceleration Effects 0.000 claims description 11
- 230000007613 environmental effect Effects 0.000 claims description 3
- 230000006399 behavior Effects 0.000 description 38
- 230000008569 process Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 101100236764 Caenorhabditis elegans mcu-1 gene Proteins 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/30—Control strategies involving selection of transmission gear ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/04—Traffic conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
- B60W40/064—Degree of grip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/105—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/107—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/1005—Transmission ratio engaged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2530/00—Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
- B60W2530/10—Weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
- B60W2552/40—Coefficient of friction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/406—Traffic density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
- B60W2555/60—Traffic rules, e.g. speed limits or right of way
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/1005—Transmission ratio engaged
Definitions
- Embodiments of the present application relate to vehicle technology, for example, to a multi-dimensional-based shift control method, device, vehicle, and medium.
- the parameters affecting the shift can be determined based on the running state of the vehicle, and then the shift table is designed and called.
- the related art does not take into account the influence of the external influence factors on the gear shift during the driving of the vehicle, and cannot perform automatic shift adjustment according to the external influence factors.
- the present application provides a multi-dimensional-based shift control method, device, vehicle and medium to realize automatic shift adjustment according to external influence factors.
- an embodiment of the present application provides a multi-dimensional-based shift control method, which includes:
- the vehicle is shifted to realize the shift control of the vehicle.
- an embodiment of the present application further provides a multi-dimensional-based shift control device, the device includes: a judgment module, a determination module, and a shift module, wherein,
- a judging module configured to judge the shift demand of the vehicle according to the obtained vehicle driving state, driving behavior state and road condition environment state when the vehicle is running;
- a determining module configured to determine the target gear information of the vehicle according to the driving state of the vehicle, the driving behavior state and the road condition environment state if the vehicle needs to shift gears;
- the shift module is configured to shift the vehicle according to the target gear information, so as to realize the shift control of the vehicle.
- an embodiment of the present application also provides a vehicle, the vehicle comprising:
- a storage device configured to store the program
- a sensor device configured to collect vehicle driving state, driving behavior state and road condition environment state
- the processor When the program is executed by the processor, the processor implements the multi-dimension-based shift control method as described in the first aspect.
- an embodiment of the present application further provides a storage medium, comprising computer-executable instructions, when executed by a computer processor, the computer-executable instructions are used to perform the multi-dimensional transformation based on the first aspect. block control method.
- FIG. 1 is a structural diagram of a dual-motor hybrid vehicle power system provided by the application.
- FIG. 2 is a structural diagram of a shift control system of a dual-motor hybrid vehicle provided by the application;
- FIG. 3 is a flowchart of a multi-dimensional-based shift control method provided in Embodiment 1 of the present application;
- FIG. 4 is a diagram of an intelligent network connection information collection system provided in Embodiment 1 of the present application.
- FIG. 5 is a flowchart of a multi-dimensional-based shift control method provided in Embodiment 2 of the present application.
- FIG. 6 is an implementation flowchart of a multi-dimensional-based shift control method provided in Embodiment 2 of the present application.
- FIG. 7 is a structural diagram of a multi-dimensional-based shift control device provided in Embodiment 3 of the present application.
- FIG. 8 is a schematic structural diagram of a vehicle according to Embodiment 4 of the present application.
- the present application can be used to solve the shifting of hybrid electric vehicles under different driving conditions and to predict up-shifting based on road conditions, and actively control the shifting of the vehicle according to the internal and external multi-dimensional parameter states, so as to improve the shifting quality and avoid power interruption, Provide drivers with better driving feeling, comfort and energy saving effect.
- FIG. 1 is a structural diagram of a dual-motor hybrid vehicle power system provided by the application.
- the dual-motor power system of a hybrid vehicle may include an engine, a first motor, a second motor, a power battery, a clutch, an integrated inverter Inverter and gearbox, etc., the engine is connected to the gearbox through the clutch, the first motor is connected to the engine, the second motor is connected to the gearbox, and the power battery supplies power to the first motor and the second motor through the integrated inverter.
- FIG. 2 is a structural diagram of a shift control system of a dual-motor hybrid vehicle provided by the application.
- the intelligent network-connected control system can monitor the driving state of the vehicle, the driving behavior state, and the road condition and environment state, and perform data analysis on the data. process, and send the status information to the hybrid vehicle controller (Hybrid Control Unit, HCU) controller, the HCU can be based on the status information, engine parameter information, first motor parameter information, gearbox parameters provided by the intelligent network control system Information and battery parameter information to proactively identify shifting timing and predict shifting.
- HCU Hybrid Control Unit
- the engine parameter information may include rotational speed, torque, and throttle opening, etc.
- the first motor parameter may include rotational speed, torque, current, and voltage, etc.
- the transmission parameter information may include output shaft rotational speed and torque, etc.
- the battery parameter information may include State of charge, current and voltage, etc.
- the shift control system may include an HCU, an engine controller (Engine Management System, EMS), a first motor controller (MotorControl Unit, MCU1), a second motor controller MCU2, a battery management system (Battery Management System, BMS) and a transmission Box controller (Transmission Control Unit, TCU), etc.
- Each controller can communicate through CAN network.
- the collection of relevant vehicle parameters can be achieved through devices such as sensors. Sensors and controllers can also communicate via the CAN network.
- the powertrain architecture of the hybrid vehicle may include the P3 architecture.
- the second motor of the P3 architecture can be located at the output end of the gearbox, and its motor assist and kinetic energy recovery efficiency is high, and the effect of rapid acceleration is very direct.
- the power transmission path of the P3 architecture does not pass through the gearbox, and the efficiency of motor assist and braking energy recovery is higher, and the working time of the gearbox is also reduced, which helps to prolong its service life.
- FIG. 3 is a flowchart of a multi-dimensional-based shift control method provided in Embodiment 1 of the application. This embodiment can be applied to the situation where the related art does not consider the influence of external factors during vehicle driving on shifting. , the method can be executed by the vehicle system, and can include the following steps:
- Step 310 When the vehicle is running, according to the obtained vehicle driving state, driving behavior state and road condition environment state, determine the gear shifting requirement of the vehicle.
- the external influencing factors in the driving process of the vehicle may include the driving state of the vehicle, the driving behavior state and the road condition environment state, and the external influencing factors may affect the shifting of the vehicle. Therefore, it can be determined whether the vehicle needs to shift gears according to the driving state of the vehicle, the driving behavior state and the road condition environment state.
- the driving state of the vehicle may be determined according to the vehicle speed information, acceleration information, gear information and weight information during the driving process of the vehicle.
- the driving behavior state may include: driving mode and driving type.
- the driving mode may include the vehicle operation mode manually selected by the driver through the buttons.
- the driving mode may include economy mode, sports mode, and snow mode, etc.;
- the big data collected by the network, based on the data indicators of the driver's driving performance, is used to determine the driving behavior by storing the big data in the background.
- the driving type can include aggressive, normal, and mild, etc.
- Data indicators may include the accelerator, the frequency of the brake pedal being pressed, the degree of the brake pedal being pressed, vehicle speed and acceleration, etc.
- the road condition environment may include ground adhesion coefficient, steering driving, traffic light distribution and distance, and congestion ahead.
- FIG. 4 is a diagram of an intelligent networked information collection system provided in Embodiment 1 of the present application. As shown in FIG. 4 , the vehicle driving state, driving behavior state and road condition environment state can all be detected by sensors, and the intelligent networked control system can The vehicle driving state, driving behavior state and road condition environment state are collected and monitored through sensors.
- Step 320 If the vehicle needs to shift gears, determine the target gear information of the vehicle according to the vehicle driving state, the driving behavior state and the road condition environment state.
- the vehicle After at least one of the vehicle driving state, the driving behavior state, and the road condition environment state meets the shifting requirement, the vehicle can shift gears. According to the current vehicle driving state, the current driving behavior state and the current road condition environment state, the target gear position information can be searched in the preset shift regularity table.
- the preset shift information table may include multiple shift information tables, and the preset shift information table may be stored in an internal module of the vehicle control unit.
- the target gear position information can also be searched in the preset shift regularity table according to the state of the engine and the first motor.
- the target gear information can also be searched in the preset shift regularity table according to the driving state of the vehicle, the driving behavior state, the road condition environment state, and the state of the engine and the first motor.
- Step 330 Shift the vehicle according to the target gear information to realize the shift control of the vehicle.
- the current gear position is adjusted to the target gear position according to the difference between the current gear position and the target gear position, so as to realize the shift control of the vehicle.
- the target gear information may include a first rotational speed and a first torque of the engine and a second rotational speed and a second torque of the first electric machine. According to the first rotational speed and the second rotational speed, the output rotational speed of the gearbox can be determined; according to the first torque and the second torque, the output torque of the gearbox can be determined. According to the output speed of the gearbox and the output torque of the gearbox, the shifting control of the vehicle can be realized.
- the output torque of the gearbox can also be torque compensated by the second motor between the shifting of the vehicle.
- the occurrence of power interruption during gear shifting is reduced, the drivability, comfort and fuel economy of hybrid electric vehicles are improved, and the shifting quality is improved.
- the vehicle's gear shifting requirement is determined;
- the target gear information of the vehicle is determined;
- FIG. 5 is a flowchart of a multi-dimension-based shift control method provided in Embodiment 2 of the present application. This embodiment is modified on the basis of the above-mentioned embodiment.
- the method may include:
- Step 510 When the vehicle is running, according to the obtained vehicle driving state, driving behavior state and road condition environment state, determine the gear shifting requirement of the vehicle.
- step 510 may include:
- the speed information, acceleration information, gear position information and weight information of the vehicle it is determined whether the vehicle needs to be shifted.
- the senor can obtain the speed information, acceleration information, gear information and weight information of the vehicle, and transmit the information data to the intelligent networked control system, and the intelligent networked control system can process and judge the information data. . If the data range in which the information data is located changes, it is determined that the vehicle needs to be shifted. That is, the speed range of the vehicle is changed, the acceleration range is changed, the gear position is changed, or the weight is changed.
- multiple data ranges can be preset according to actual vehicles.
- whether the vehicle needs to shift gears can also be determined by setting multiple data thresholds. For example, when the speed is greater than the first speed or less than the second threshold, the vehicle needs to shift gears, and it is also possible to judge whether the vehicle needs to shift gears by using other data information, which will not be repeated here.
- Whether the vehicle needs to be shifted is determined according to whether the driving mode and/or the driving type is changed.
- the classification of the driving mode and the driving type has been explained in the first embodiment, and the classification here can be consistent with the classification in the first embodiment.
- the sensor detects that the driving mode or driving type of the vehicle changes, it is determined that the vehicle needs to be shifted.
- the driving type can be determined according to the driver, and the HCU can store the driving type of the common driver of the vehicle. After the sensor detects the data information included in the driving type and uploads it to the HCU, the HCU can determine the driver based on the data information, and further determine the driving type. make a judgment. When the driver is an unfamiliar driver, the HCU can determine the driving type according to the big data stored in the database.
- radar and camera are used, based on GPS (Global Positioning System, GPS) navigation data, to know in advance the road condition environment state in front of the vehicle, shift gears according to the road condition environment state, and send the predicted up-down shift information to the vehicle.
- GPS Global Positioning System, GPS
- the intelligent network-connected control system can remind the driver through the instrument or entertainment system, and the reminder information can include the reminder of upshift during acceleration and driving, the reminder of downshift during braking and deceleration, the reminder of neutral when coasting at high speed, and the reminder of neutral when parking. reminder etc.
- the HCU can obtain information such as the driving status information of its own vehicle, the driving status information of the vehicle ahead, and the time of traffic lights at the intersection in real time. For example, when it is detected that there is a traffic light intersection ahead or the distance between the own vehicle and the vehicle in front is less than the preset distance and the speed difference between the two is less than the preset speed, downshift control can be performed; when the car is at a traffic light intersection, GPS navigation data can be used. Calculating the waiting time for parking, and judging that the distance from the vehicle in front is greater than the preset distance or the speed difference exceeds the preset difference, the upshift control can be performed.
- Step 520 Determine the target gear information of the vehicle according to the driving state of the vehicle, the driving behavior state and the road condition environment state.
- step 520 may include:
- a preset shift schedule table is called.
- the preset shift schedule table stored in the HCU is called.
- the shift schedule table may determine the corresponding target gear position information according to the aforementioned vehicle driving state, driving behavior state and road condition environment state or the state information of the engine and the motor.
- the shift schedule table may include MAP1-MAPn.
- the corresponding target gear position information is searched in the shift regularity table.
- the corresponding target gear information may be determined according to the data range in which the information data of the vehicle driving state, the driving behavior state and the road condition environment state are located.
- Step 530 Shift the vehicle according to the target gear information to realize the shift control of the vehicle.
- step 530 before shifting the vehicle in step 530, it may further include:
- the torque offset value is determined based on the input driver demand torque, the detected engine current torque, and the detected transmission current input torque.
- the calculation of the torque compensation value may be implemented by the HCU torque distribution module.
- torque compensation is performed on the current output torque of the gearbox to determine the target output torque of the gearbox.
- torque compensation can be performed on the current output torque of the gearbox through the second motor, and performing torque compensation on the current output torque of the gearbox can reduce the occurrence of power interruption caused by clutch opening during shifting.
- step 530 may include:
- the first target rotational speed and the first target torque of the engine and the second target rotational speed and the second target torque of the first electric machine are determined.
- the target gear information may include a first target rotational speed and a first target torque of the engine and a second target rotational speed and a second target torque of the first electric machine.
- the corresponding first target rotational speed, first target torque, second target rotational speed and second target torque can be determined according to the target gear information.
- a target output rotational speed of the gearbox and a target output torque of the gearbox are determined.
- the target output speed of the gearbox may be determined by the first target speed and the second target speed, and the target output torque of the gearbox may be determined by the first target torque and the second target torque.
- the vehicle is shifted to realize the shift control of the vehicle.
- the output shaft of the gearbox can be connected with the axle, and the gear position of the vehicle can be adjusted through the output shaft of the gearbox.
- the vehicle is shifted to realize the shift control of the vehicle, which may include:
- the torque after torque reduction may be preset according to the actual vehicle model.
- the torque reduction of the engine and motor before shifting can stabilize the speed of the engine and the motor and reduce the sudden change of acceleration.
- the engine and the first electric machine are respectively regulated in speed.
- the rotational speeds of the engine and the first electric machine are adjusted from the current rotational speed to the first target rotational speed and the second target rotational speed, respectively.
- the adjustment of the rotational speed can be achieved by the first motor and the second motor.
- the output speed of the gearbox maintains the target output speed
- the clutch can be closed when the output speed remains unchanged within the first preset time period.
- the target output rotational speed may include a range of target output rotational speeds that is greater and less than a preset value of the target output rotational speed.
- the first preset time period may be set according to the vehicle model.
- the gear shift is completed when the output torque of the gearbox maintains the target output torque and remains unchanged for a second preset time period.
- the target output torque may include a range of target output torques greater and less than the target output torque preset value.
- the second preset time period may be set according to the vehicle model.
- the clutch in the first preset time period, if the output speed of the transmission maintains the target output speed, the clutch is closed; in the second preset time period, if the output torque of the transmission maintains If the target output torque is reached, the vehicle gear shift is completed, and the gear shift control of the vehicle is realized, which may include:
- the clutch may be closed.
- the gear shift can be completed.
- the vehicle it is judged whether the vehicle needs to be shifted according to the speed information, acceleration information, gear position information and weight information of the vehicle; according to whether the driving mode and/or driving type change, it is judged whether the vehicle needs to be shifted. Shifting is required; according to the information of road conditions and environment, it is judged whether the vehicle needs to be shifted; after it is determined that the vehicle needs shifting, the preset shifting schedule is called; based on the driving state of the vehicle, driving behavior state and road conditions state, look for the corresponding target gear position information in the gear shift regular table; according to the target gear position information, determine the first target speed and first target torque of the engine and the second target speed and the first target speed of the first motor.
- the invention solves the situation that the related art does not consider the influence of the external influence factors on the shift during the driving of the vehicle, and realizes the automatic shift adjustment according to the external influence factors. And through the torque compensation of the second electric motor, the interruption of shifting power is reduced. Compared with the solutions in the related art, the solution is more comprehensive and effective, and has a greater effect on improving the shifting quality, drivability and comfort of the vehicle.
- FIG. 6 is an implementation flow chart of a multi-dimensional-based shift control method provided in Embodiment 2 of the present application, and exemplarily provides one of the implementation manners. As shown in Figure 6,
- Step 610 the sensor acquires the vehicle driving state, driving behavior state and road condition environment state, and uploads it to the HCU through the intelligent network connection control system.
- Step 620 The HCU determines that the vehicle needs to shift gears based on the multi-dimensional parameter information.
- the multi-dimensional parameter information may include vehicle driving state information, driving behavior state information, and road condition environment state information.
- Step 630 The HCU calls the shift regularity map in the shift module, and determines the target gear information according to the multi-dimensional parameter information.
- Step 640 if the target gear is lower than the current gear, call the downshift control module to realize downshift control; otherwise, call the upshift control module to realize upshift control.
- the second motor can be called to perform torque compensation on the output torque of the gearbox, so as to reduce the power interruption phenomenon of the vehicle during the shifting process.
- first motor and the second motor can be controlled, and the speed of the engine and the first motor can be adjusted to realize the speed adjustment.
- the vehicle driving state, driving behavior state and road condition environment state are obtained through sensors, and uploaded to the HCU through the intelligent network control system.
- the HCU determines that the vehicle needs to shift gears based on the multi-dimensional parameter information, and the HCU calls the shift
- the gear shifting pattern in the module determines the target gear information according to the multi-dimensional parameter information. If the target gear is lower than the current gear, the downshift control module is called to realize the downshift control; otherwise, the upshift control module is called to realize the upshift control.
- the invention solves the situation that the related art does not consider the influence of the external influence factors on the gear shifting during the driving of the vehicle, and realizes the automatic shift adjustment according to the external influence factors. And through the torque compensation of the second electric motor, the interruption of shifting power is reduced. Compared with the solutions in the related art, the solution is more comprehensive and effective, and has a greater effect on improving the shifting quality, drivability and comfort of the vehicle.
- FIG. 7 is a structural diagram of a multi-dimensional-based shift control device provided in Embodiment 3 of the present application, and the device can be applied to the situation where the related art does not take into account the influence of external factors during vehicle driving on shifting , improve shifting accuracy and efficiency.
- the device may be implemented in software and/or hardware, and is typically integrated into a vehicle system.
- the device includes: a judgment module 710 , a determination module 720 and a shift module 730 , wherein,
- the judging module 710 is configured to judge the shift demand of the vehicle according to the obtained vehicle driving state, driving behavior state and road condition environment state when the vehicle is running;
- the determining module 720 is configured to determine the target gear information of the vehicle according to the driving state of the vehicle, the driving behavior state and the road condition environment state if the vehicle needs to shift gears;
- the shift module 730 is configured to shift the vehicle according to the target gear position information, so as to realize the shift control of the vehicle.
- the multi-dimensional shift control device determines the shift demand of the vehicle according to the obtained vehicle driving state, driving behavior state and road environment state when the vehicle is running; if the vehicle needs When shifting gears, the target gear information of the vehicle is determined according to the driving state of the vehicle, the driving behavior state and the road condition environment state; and the vehicle is shifted according to the target gear information,
- the gear shift control of the vehicle is realized, the problem that the related art does not consider the influence of the external influence factors on the shift in the driving process of the vehicle is solved, and the automatic shift adjustment according to the external influence factors is realized.
- the judgment module 710 can be configured as:
- the speed information, acceleration information, gear position information and weight information of the vehicle determine whether the vehicle needs to be shifted;
- the determining module 720 may be configured as:
- the corresponding target gear position information is searched in the shift regularity table.
- the shift module 730 can be configured as:
- the target gear information determine the first target speed and the first target torque of the engine and the second target speed and the second target torque of the first motor
- the vehicle is shifted to realize the shift control of the vehicle.
- the vehicle is shifted to realize the shift control of the vehicle, which may include:
- the clutch in the first preset time period, if the output speed of the transmission maintains the target output speed, the clutch is closed; in the second preset time period, if the output torque of the transmission maintains If the target output torque is reached, the vehicle gear shift is completed, and the gear shift control of the vehicle is realized, which may include:
- the apparatus may further include: a first execution module and a second execution module, wherein,
- a first execution module configured to determine a torque compensation value based on the input driver demand torque, the detected current engine torque and the detected current input torque of the transmission;
- the second execution module is configured to perform torque compensation on the current output torque of the gearbox according to the torque compensation value, and determine the target output torque of the gearbox.
- the multi-dimensional shift control device provided by the embodiment of the present application can execute the multi-dimensional shift control method provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
- FIG. 8 is a schematic structural diagram of a vehicle according to Embodiment 4 of the application.
- the vehicle includes a processor 810, a memory 820 and a sensing device 830; the number of processors 810 in the vehicle may be one or more One processor 810 is taken as an example in FIG. 8 ; the processor 810 , the memory 820 and the sensing device 830 in the vehicle may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 8 .
- the memory 820 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the multi-dimensional-based shift control method in the embodiments of the present application (for example, multi-dimensional-based shift control methods).
- the processor 810 executes various functional applications and data processing of the vehicle by running the software programs, instructions and modules stored in the memory 820 , that is, to implement the above-mentioned multi-dimensional-based shift control method.
- the memory 820 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal, and the like. Additionally, memory 820 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device. In some instances, memory 820 may include memory located remotely from processor 810, which may be connected to the device/terminal/server through a network. Examples of such networks may include the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
- the sensor device 830 is configured to collect the vehicle driving state, the driving behavior state and the road condition environment state.
- the vehicle provided by the embodiments of the present application can implement the multi-dimensional shift control method provided by the above embodiments, and has corresponding functions and beneficial effects.
- Embodiment 5 of the present application further provides a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a multi-dimensional-based shift control method when executed by a computer processor, and the method includes:
- the vehicle is shifted to realize the shift control of the vehicle.
- a storage medium containing computer-executable instructions provided by the embodiments of the present application can perform the above-mentioned method operations, and can also perform the multi-dimensional transformation provided by any embodiment of the present application. Relevant operations in the gear control method.
- the present application can be implemented by software and necessary general-purpose hardware, and of course can also be implemented by hardware, but in many cases, the former is a better implementation.
- the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to related technologies, and the computer software products can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in the various embodiments of the present application.
- the units and modules included are only divided according to functional logic, as long as the corresponding functions can be realized; in addition, the names of the functional units are only for the convenience of distinguishing from each other. .
- the gear shifting requirement of the vehicle is judged;
- the driving behavior state and the road condition environment state determine the target gear information of the vehicle; according to the target gear information, the vehicle is shifted to realize the shifting control of the vehicle and solve the related problems.
- the technology does not take into account the influence of external factors during the driving process of the vehicle on shifting, and realizes automatic shifting adjustment according to external factors.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Transmission Device (AREA)
Abstract
一种基于多维度的换挡控制方法、装置、车辆及介质。该方法包括:当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断车辆的换挡需求;若车辆需要进行换挡,则根据车辆行驶状态、驾驶行为状态和路况环境状态,确定车辆的目标挡位信息;根据目标挡位信息,对车辆进行换挡,实现对车辆的换挡控制。
Description
本公开要求在2020年09月23日提交中国专利局、申请号为202011011070.9的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
本申请实施例涉及车辆技术,例如涉及一种基于多维度的换挡控制方法、装置、车辆及介质。
当前,汽车行业正朝着“新四化”的方向发展,“新四化”是指电动化、网联化、智能化和共享化。以电动化为基础实现节能出行,以网联化为纽带实现大数据共享,以智能化为方向实现美妙出行,这些将成为汽车实现终极智能驾乘目标的可行途径。新能源汽车相比于传统汽车而言,在推动“新四化”的过程中更具一些优势,在具备人工智能或者自动驾驶功能的汽车开发过程中,车辆换挡慢和换挡延迟会在很大程度上影响车辆的驾驶性和动力性,因此主动智能的换挡控制是必须要解决的关键问题。
相关技术中,可以基于车辆的运行状态确定影响换挡的参数,然后进行换挡表的设计和调用。但是,相关技术没有考虑到车辆驾驶过程中的外界影响因素对换挡造成影响的情况,不能根据外界影响因素进行自动换挡调整。
发明内容
本申请提供一种基于多维度的换挡控制方法、装置、车辆及介质,以实现根据外界影响因素进行自动换挡调整。
第一方面,本申请实施例提供了一种基于多维度的换挡控制方法,该方法 包括:
当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求;
若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息;
根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制。
第二方面,本申请实施例还提供了一种基于多维度的换挡控制装置,该装置包括:判断模块、确定模块和换挡模块,其中,
判断模块,被配置为当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求;
确定模块,被配置为若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息;
换挡模块,被配置为根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制。
第三方面,本申请实施例还提供了一种车辆,该车辆包括:
处理器;
存储装置,被配置为存储程序;
传感器装置,被配置为采集车辆行驶状态、驾驶行为状态和路况环境状态;
当所述程序被所述处理器执行,使得所述处理器实现如第一方面所述的基于多维度的换挡控制方法。
第四方面,本申请实施例还提供了一种存储介质,包含计算机可执行指令,所述计算机可执行指令在由计算机处理器执行时用于执行如第一方面所述的基 于多维度的换挡控制方法。
图1为本申请提供的双电机混合动力车辆动力系统结构图;
图2为本申请提供的双电机混合动力车辆的换挡控制系统结构图;
图3为本申请实施例一提供的一种基于多维度的换挡控制方法的流程图;
图4为本申请实施例一提供的一种智能网联信息采集系统图;
图5为本申请实施例二提供的一种基于多维度的换挡控制方法的流程图;
图6为本申请实施例二提供的一种基于多维度的换挡控制方法的实现流程图;
图7为本申请实施例三提供的一种基于多维度的换挡控制装置的结构图;
图8为本申请实施例四提供的一种车辆的结构示意图。
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、 规程、子例程、子程序等等。此外,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本申请可以用于解决混合动力车辆在不同行车工况下的换挡以及基于路况预测升降挡,根据内部和外部的多维度参数状态主动控制车辆换挡,以改善换挡品质,避免动力中断,为驾驶员提供更优越的驾驶感、舒适感和能耗节省效果。
图1为本申请提供的双电机混合动力车辆动力系统结构图,如图1所示,混合动力车辆的双电机动力系统可以包括发动机、第一电机、第二电机、动力电池、离合器、集成逆变器和变速箱等,发动机与变速箱通过离合器连接,第一电机与发动机连接,第二电机与变速箱连接,动力电池通过集成逆变器为第一电机和第二电机供电。
图2为本申请提供的双电机混合动力车辆的换挡控制系统结构图,如图2所示,智能网联控制系统可以对车辆行驶状态、驾驶行为状态以及路况环境状态进行监控,对数据进行处理,并把状态信息发给混合动力整车控制器(Hybrid Control Unit,HCU)控制器,HCU可以基于智能网联控制系统提供的状态信息、发动机参数信息、第一电机参数信息、变速箱参数信息和电池参数信息主动识别换挡时机和预测换挡。
其中,发动机参数信息可以包括转速、扭矩和节气门开度等,第一电机参数可以包括转速、扭矩、电流和电压等,变速箱参数信息可以包括输出轴转速和扭矩等,电池参数信息可以包括荷电状态、电流和电压等。
换挡控制系统可以包括HCU、发动机控制器(Engine Management System,EMS)、第一电机控制器(MotorControl Unit,MCU1)、第二电机控制器MCU2、电池管理系统(Battery Management System,BMS)和变速箱控制器(Transmission Control Unit,TCU)等。各个控制器之间可以通过CAN网络进行通信。相关车辆参数的采集可以通过传感器等设备实现。传感器与控制器也可以通过CAN网络进行通信。
另外,混合动力车辆的动力系统架构可以包括P3架构。P3架构的第二电机可以位于变速箱输出端,其电机助力和动能回收的效率高,急加速的效果非常直接。P3架构的动力传递路径不经过变速箱,电机助力和制动能量回收的效率更高,同时还降低变速箱的工作时长,有助于延长其使用寿命。
实施例一
图3为本申请实施例一提供的一种基于多维度的换挡控制方法的流程图,本实施例可适用于相关技术没有考虑到车辆驾驶过程中的外界影响因素对换挡造成影响的情况,该方法可以由车辆系统来执行,可包括如下步骤:
步骤310、当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求。
车辆驾驶过程中的外界影响因素可以包括车辆行驶状态、驾驶行为状态和路况环境状态,外界影响因素可以影响车辆的换挡。所以可以根据车辆行驶状态、驾驶行为状态和路况环境状态,判断车辆是否需要进行换挡。
其中,车辆行驶状态可以根据车辆行驶过程中的车速信息、加速度信息、挡位信息和重量信息进行确定。驾驶行为状态可以包括:驾驶模式和驾驶类型,驾驶模式可以包括驾驶员通过按键手动选择的车辆操作模式,例如,驾驶模式可以包括经济模式、运动模式和雪地模式等;驾驶类型可以包括通过智能网联收集的大数据,基于驾驶员驾驶表现的数据指标,通过后台存储大数据判断出用于的驾驶行为,例如,驾驶类型可以包括激进型、正常性和温和型等,驾驶 员驾驶表现的数据指标可以包括油门、制动踏板被踩频率、制动踏板被踩程度、车速和加速度等。路况环境可以包括地面附着系数、转向行车、红绿灯分布情况和距离、前方拥堵情况等。
图4为本申请实施例一提供的一种智能网联信息采集系统图,如图4所示,车辆行驶状态、驾驶行为状态和路况环境状态都可以通过传感器检测得到,智能网联控制系统可以通过传感器对车辆行驶状态、驾驶行为状态以及路况环境状态进行采集和监控。
步骤320、若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息。
车辆行驶状态、驾驶行为状态和路况环境状态至少一个符合换挡需求之后,车辆可以进行换挡。可以根据当前车辆行驶状态、当前驾驶行为状态和当前路况环境状态,在预设换挡规律表中进行查找目标档位信息。
其中,预设换挡信息表可以包括多个换挡信息表,预设换挡信息表可以存储在整车控制单元内部模块中。
需要说明的是,还可以通过发动机和第一电机的状态,在预设换挡规律表中查找目标档位信息。为了使得查找到的目标档位信息更加精确,也可以通过车辆行驶状态、驾驶行为状态、路况环境状态和发动机以及第一电机的状态,在预设换挡规律表中查找目标档位信息。
步骤330、根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制。
确定目标档位信息之后,根据当前档位与目标档位之间的差别,调整当前档位至目标档位,实现对车辆的换挡控制。
其中,目标档位信息可以包括发动机的第一转速和第一扭矩以及第一电机 的第二转速和第二扭矩。根据第一转速和第二转速,可以确定变速箱的输出转速;根据第一扭矩和第二扭矩,可以确定变速箱的输出扭矩。根据变速箱的输出转速和变速箱的输出扭矩,可以实现车辆的换挡控制。
另外,由于车辆进行换挡时,可能存在动力中断的现象,所以在对车辆进行换挡之间,还可以通过第二电机对变速箱的输出扭矩进行扭矩补偿。减少换挡过程中动力中断现象的发生,提高了混合动力车辆的驾驶性、舒适性和燃油经济性,同时改善了换挡品质。
本实施例的技术方案,通过当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求;若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息;根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制,解决相关技术没有考虑到车辆驾驶过程中的外界影响因素对换挡造成影响的情况,实现根据外界影响因素进行自动换挡调整。
实施例二
图5为本申请实施例二提供的一种基于多维度的换挡控制方法的流程图,本实施例是在上述实施例的基础上进行改动。在本实施例中,该方法可以包括:
步骤510、当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求。
一种实施方式中,步骤510可以包括:
根据车辆的速度信息、加速度信息、档位信息和重量信息,判断所述车辆是否需要进行换挡。
在一实施例中,传感器可以获取到车辆的速度信息、加速度信息、档位信 息和重量信息,并将信息数据传输至智能网联控制系统,智能网联控制系统可以对信息数据进行处理并判断。若信息数据所处的数据范围发生改变,则判断车辆需要进行换挡。即车辆的速度范围发生改变、加速度范围发生改变、档位发生改变或者重量发生改变。
需要说明的是,多个数据范围可以根据实际车辆进行预设。另外,车辆是否需要进行换挡还可以通过设置多个数据阈值来进行判断。例如,当速度大于第一速度或者小于第二阈值时,车辆需要进行换挡,通过其他数据信息判断车辆是否需要进行换挡也可以通过上述阈值来进行判断,在此不再赘述。
根据驾驶模式和/或驾驶类型是否变化,判断所述车辆是否需要进行换挡。
在一实施例中,驾驶模式和驾驶类型的分类在实施例一已经进行解释说明,此处的分类与实施例一中的分类可以保持一致。
当传感器检测到车辆的驾驶模式或者驾驶类型发生变化时,判断车辆需要进行换挡。
驾驶类型可以根据驾驶员进行确定,HCU可以存储车辆常用驾驶员的驾驶类型,传感器检测到驾驶类型包括的数据信息并上传至HCU后,HCU可以基于数据信息对驾驶员进行判别,进一步对驾驶类型进行判别。当驾驶员为陌生驾驶员时,HCU可以根据数据库中存储的大数据对驾驶类型进行判定。
根据路况环境状态信息,判断所述车辆是否需要进行换挡。
在一实施例中,利用雷达和摄像头,基于全球定位系统(Global Positioning System,GPS)导航数据,提前了解车辆前方的路况环境状态,根据路况环境状态进行换挡,并把预测的升降挡信息发给智能网联控制系统,避免到达拥挤路段时才紧急换挡。
智能网联控制系统可以通过仪表或娱乐系统提醒驾驶员,提醒信息可以包 括车辆加速行驶过程中的升挡提醒、制动减速过程中的降挡提醒、高速滑行时的空挡提醒、停车时候的空挡提醒等。
另外,通过车辆装配的智能网联控制系统(含感知设备和通信设备等),HCU可实时获取自身车辆行驶状态信息、前方车辆行驶状态信息以及路口红绿灯时间等信息。例如,当检测到前方为红绿灯路口或者自身车辆与前车间距小于预设距离且两者速度差值小于预设速度时,可以进行降挡控制;当车处于红绿灯交叉路口,可以利用GPS导航数据计算停车等待时间,判断与前车的间距大于预设距离或者速度差值超过预设差值时,可以进行升挡控制。
步骤520、根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息。
一种实施方式中,步骤520可以包括:
确定所述车辆需要换挡后,调用预设换挡规律表。
在一实施例中,在确定车辆需要换挡后,在调用存储在HCU中的预设换挡规律表。换挡规律表可以根据前述车辆行驶状态、驾驶行为状态和路况环境状态或者发动机和电机的状态信息确定对应的目标档位信息。
换挡规律表可以包括MAP1-MAPn。
基于车辆行驶状态、驾驶行为状态和路况环境状态,在所述换挡规律表中,找寻对应的目标档位信息。
在一实施例中,可以根据车辆行驶状态、驾驶行为状态和路况环境状态的信息数据所处的数据范围,确定对应的目标档位信息。
步骤530、根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制。
一种实施方式中,在步骤530对车辆进行换挡前,还可以包括:
基于输入的驾驶员需求扭矩、检测到的发动机当前扭矩和检测到的变速箱当前输入扭矩,确定扭矩补偿值。
在一实施例中,扭矩补偿值的计算可以通过HCU扭矩分配模块实现。
根据所述扭矩补偿值,对变速箱当前输出扭矩进行扭矩补偿,确定变速箱目标输出扭矩。
在一实施例中,可以通过第二电机对变速箱当前输出扭矩进行扭矩补偿,对变速箱当前输出扭矩进行扭矩补偿可以减少换挡过程中因离合器打开造成的动力中断现象的发生。
一种实施方式中,步骤530可以包括:
根据所述目标档位信息,确定发动机的第一目标转速和第一目标扭矩以及第一电机的第二目标转速和第二目标扭矩。
在一实施例中,目标档位信息可以包括发动机的第一目标转速和第一目标扭矩以及第一电机的第二目标转速和第二目标扭矩。根据目标档位信息可以确定对应的第一目标转速、第一目标扭矩、第二目标转速和第二目标扭矩。
基于所述第一目标转速、所述第一目标扭矩、所述第二目标转速和所述第二目标扭矩,确定变速箱的目标输出转速和变速箱的目标输出扭矩。
在一实施例中,变速箱的目标输出转速可以由第一目标转速和第二目标转速确定,变速箱的目标输出扭矩可以由第一目标扭矩和第二目标扭矩确定。
根据变速箱的目标输出转速和变速箱的目标输出扭矩,对车辆进行换挡,实现车辆的换挡控制。
在一实施例中,变速箱的输出轴可以与车轴连接,可以通过变速箱的输出轴对车辆档位进行调节。
一种实施方式中,根据变速箱的目标输出转速和变速箱的目标输出扭矩, 对车辆进行换挡,实现车辆的换挡控制,可以包括:
在对所述发动机和所述第一电机降扭之后,打开离合器。
在一实施例中,降扭之后的扭矩可以根据实际车型进行预设。
换挡之前对发动机和电机进行降扭,可以稳定发动机和电机的转速,减少加速突变。
基于所述第一目标转速和所述第二目标转速,分别对所述发动机和所述第一电机进行调速。
在一实施例中,将发动机和第一电机的转速分别从当前转速调节至第一目标转速和第二目标转速。
转速的调节可以通过第一电机和第二电机实现。
在第一预设时间段内,若所述变速箱的输出转速保持目标输出转速,则闭合所述离合器。
在一实施例中,变速箱的输出转速保持目标输出转速,且在第一预设时间段内不变时,可以闭合离合器。
目标输出转速可以包括大于和小于目标输出转速预设值的目标输出转速范围。
其中,第一预设时间段,可以根据车型进行设定。
在第二预设时间段内,若所述变速箱的输出扭矩保持目标输出扭矩,则完成车辆换挡,实现对车辆的换挡控制。
在一实施例中,变速箱的输出扭矩保持目标输出扭矩,且在第二预设时间段内保持不变时,完成换挡。
目标输出扭矩可以包括大于和小于目标输出扭矩预设值的目标输出扭矩范围。
其中,第二预设时间段,可以根据车型进行设定。
一种实施方式中,在第一预设时间段内,若所述变速器的输出转速保持目标输出转速,则闭合所述离合器;在第二预设时间段内,若所述变速器的输出扭矩保持目标输出扭矩,则完成车辆换挡,实现对车辆的换挡控制,可以包括:
在第一预设时间段内,若所述发动机和所述第一电机的转速分别保持第一目标转速和第二目标转速,则闭合所述离合器。
在一实施例中,传感器检测到发动机和第一电机的转速分别为第一目标转速和第二目标转速后,可以闭合离合器。
在第二预设时间段内,若所述发动机和所述第一电机的扭矩分别保持第一目标扭矩和第二目标扭矩,则完成车辆换挡,实现对车辆的换挡控制。
在一实施例中,传感器检测到发动机和第一电机的扭矩分别为第一目标扭矩和第二目标扭矩后,可以完成换挡。
本实施例的技术方案,通过根据车辆的速度信息、加速度信息、档位信息和重量信息,判断所述车辆是否需要进行换挡;根据驾驶模式和/或驾驶类型是否变化,判断所述车辆是否需要进行换挡;根据路况环境状态信息,判断所述车辆是否需要进行换挡;确定所述车辆需要换挡后,调用预设的换挡规律表;基于车辆行驶状态、驾驶行为状态和路况环境状态,在所述换挡规律表中,找寻对应的目标档位信息;根据所述目标档位信息,确定发动机的第一目标转速和第一目标扭矩以及第一电机的第二目标转速和第二目标扭矩;基于所述第一目标转速、所述第一目标扭矩、所述第二目标转速和所述第二目标扭矩,确定变速箱的目标输出转速和变速箱的目标输出扭矩;同时,基于输入的驾驶员需求扭矩、检测到的发动机当前扭矩和检测到的变速箱当前输入扭矩,确定扭矩补偿值;根据所述扭矩补偿值,对变速箱当前输出扭矩进行扭矩补偿,确定变 速箱目标输出扭矩;在对所述发动机和所述第一电机降扭之后,打开离合器;基于所述第一目标转速和所述第二目标转速,分别对所述发动机和所述第一电机进行调速;在第一预设时间段内,若所述变速箱的输出转速保持目标输出转速,则闭合所述离合器;在第二预设时间段内,若所述变速箱的输出扭矩保持目标输出扭矩,则完成车辆换挡,实现对车辆的换挡控制。解决相关技术没有考虑到车辆驾驶过程中的外界影响因素对换挡造成影响的情况,实现根据外界影响因素进行自动换挡调整。并且通过第二电机的扭矩补偿,减少换挡动力中断。相对于相关技术中的方案,本方案更为全面和有效,对于车辆的换挡品质、驾驶性和舒适性的提升作用更大。
图6为本申请实施例二提供的一种基于多维度的换挡控制方法的实现流程图,示例性的给出了其中一种实现方式。如图6所示,
步骤610、传感器获取车辆行驶状态、驾驶行为状态和路况环境状态,并通过智能网联控制系统上传至HCU。
步骤620、HCU基于多维度参数信息判断车辆需要进行换挡。
在一实施例中,多维参数信息可以包括车辆行驶状态信息、驾驶行为状态信息和路况环境状态信息。
步骤630、HCU调用换挡模块中的换挡规律图,根据多维参数信息确定目标档位信息。
步骤640、若目标档位低于当前档位,调用降档控制模块,实现降档控制;否则,调用升档控制模块,实现升档控制。
在一实施例中,换挡过程中,可以调用第二电机对变速箱输出扭矩进行扭矩补偿,减少车辆在换挡过程中出现动力中断现象。
另外,可以控制第一电机和第二电机,对发动机和第一电机进行调速,实现转速调节。
本实现方式的技术方案,通过传感器获取车辆行驶状态、驾驶行为状态和路况环境状态,并通过智能网联控制系统上传至HCU,HCU基于多维度参数信息判断车辆需要进行换挡,HCU调用换挡模块中的换挡规律图,根据多维参数信息确定目标档位信息,若目标档位低于当前档位,调用降档控制模块,实现降档控制;否则,调用升档控制模块,实现升档控制。解决相关技术没有考虑到车辆驾驶过程中的外界影响因素对换挡造成影响的情况,实现根据外界影响因素进行自动换挡调整。并且通过第二电机的扭矩补偿,减少换挡动力中断。相对于相关技术中的方案,本方案更为全面和有效,对于车辆的换挡品质、驾驶性和舒适性的提升作用更大。
实施例三
图7为本申请实施例三提供的一种基于多维度的换挡控制装置的结构图,该装置可以适用于在相关技术没有考虑到车辆驾驶过程中的外界影响因素对换挡造成影响的情况,提高换挡准确度和效率。该装置可以通过软件和/或硬件实现,并一般集成在车辆系统中。
如图7所示,该装置包括:判断模块710、确定模块720和换挡模块730,其中,
判断模块710,被配置为当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求;
确定模块720,被配置为若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息;
换挡模块730,被配置为根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制。
本实施例提供的基于多维度的换挡控制装置,通过当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求;若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息;根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制,解决相关技术没有考虑到车辆驾驶过程中的外界影响因素对换挡造成影响的问题,实现根据外界影响因素进行自动换挡调整。
在上述实施例的基础上,判断模块710,可被配置为:
根据车辆的速度信息、加速度信息、档位信息和重量信息,判断所述车辆是否需要进行换挡;
根据驾驶模式和/或驾驶类型是否变化,判断所述车辆是否需要进行换挡;
根据路况环境状态信息,判断所述车辆是否需要进行换挡。
在上述实施例的基础上,确定模块720,可被配置为:
确定所述车辆需要换挡后,调用预设的换挡规律表;
基于车辆行驶状态、驾驶行为状态和路况环境状态,在所述换挡规律表中,找寻对应的目标档位信息。
在上述实施例的基础上,换挡模块730,可被配置为:
根据所述目标档位信息,确定发动机的第一目标转速和第一目标扭矩以及第一电机的第二目标转速和第二目标扭矩;
基于所述第一目标转速、所述第一目标扭矩、所述第二目标转速和所述第二目标扭矩,确定变速箱的目标输出转速和变速箱的目标输出扭矩;
根据变速箱的目标输出转速和变速箱的目标输出扭矩,对车辆进行换挡,实现车辆的换挡控制。
一种实施方式中,根据变速箱的目标输出转速和变速箱的目标输出扭矩,对车辆进行换挡,实现车辆的换挡控制,可以包括:
在对所述发动机和所述第一电机降扭之后,打开离合器;
基于所述第一目标转速和所述第二目标转速,分别对所述发动机和所述第一电机进行调速;
在第一预设时间段内,若所述变速箱的输出转速保持目标输出转速,则闭合所述离合器;
在第二预设时间段内,若所述变速箱的输出扭矩保持目标输出扭矩,则完成车辆换挡,实现对车辆的换挡控制。
一种实施方式中,在第一预设时间段内,若所述变速器的输出转速保持目标输出转速,则闭合所述离合器;在第二预设时间段内,若所述变速器的输出扭矩保持目标输出扭矩,则完成车辆换挡,实现对车辆的换挡控制,可以包括:
在第一预设时间段内,若所述发动机和所述第一电机的转速分别保持第一目标转速和第二目标转速,则闭合所述离合器;
在第二预设时间段内,若所述发动机和所述第一电机的扭矩分别保持第一目标扭矩和第二目标扭矩,则完成车辆换挡,实现对车辆的换挡控制。
在上述实施例的基础上,该装置还可以包括:第一执行模块和第二执行模块,其中,
第一执行模块,被配置为基于输入的驾驶员需求扭矩、检测到的发动机当前扭矩和检测到的变速箱当前输入扭矩,确定扭矩补偿值;
第二执行模块,被配置为根据所述扭矩补偿值,对变速箱当前输出扭矩进 行扭矩补偿,确定变速箱目标输出扭矩。
本申请实施例所提供的基于多维度的换挡控制装置可执行本申请任意实施例所提供的基于多维度的换挡控制方法,具备执行方法相应的功能模块和有益效果。
实施例四
图8为本申请实施例四提供的一种车辆的结构示意图,如图8所示,该车辆包括处理器810、存储器820和传感装置830;车辆中处理器810的数量可以是一个或多个,图8中以一个处理器810为例;车辆中的处理器810、存储器820和传感装置830可以通过总线或其他方式连接,图8中以通过总线连接为例。
存储器820作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的基于多维度的换挡控制方法对应的程序指令/模块(例如,基于多维度的换挡控制装置中的判断模块710、确定模块720和换挡模块730)。处理器810通过运行存储在存储器820中的软件程序、指令以及模块,从而执行车辆的各种功能应用以及数据处理,即实现上述的基于多维度的换挡控制方法。
存储器820可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器820可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器820可包括相对于处理器810远程设置的存储器,这些远程存储器可以通过网络连接至设备/终端/服务器。上述网络的实例可包括互联网、企业内部网、局域网、移动通信网及其组合。
传感器装置830被配置为采集车辆行驶状态、驾驶行为状态和路况环境状态。
本申请实施例提供的车辆可以执行上述实施例提供的基于多维度的换挡控制方法,具备相应的功能和有益效果。
实施例五
本申请实施例五还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种基于多维度的换挡控制方法,该方法包括:
当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求;
若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息;
根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令可以执行如上所述的方法操作,还可以执行本申请任意实施例所提供的基于多维度的换挡控制方法中的相关操作.
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器 (Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
值得注意的是,上述搜索装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,只要能够实现相应的功能即可;另外,各功能单元的名称也只是为了便于相互区分。
本申请通过当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求;若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息;根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制,解决相关技术没有考虑到车辆驾驶过程中的外界影响因素对换挡造成影响的情况,实现根据外界影响因素进行自动换挡调整。
Claims (10)
- 一种基于多维度的换挡控制方法,所述基于多维度的换挡控制方法包括:当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求;若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息;根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制。
- 根据权利要求1所述的基于多维度的换挡控制方法,其中,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求,包括:根据车辆的速度信息、加速度信息、档位信息和重量信息,判断所述车辆是否需要进行换挡;根据驾驶模式和/或驾驶类型是否变化,判断所述车辆是否需要进行换挡;根据路况环境状态信息,判断所述车辆是否需要进行换挡。
- 根据权利要求1所述的基于多维度的换挡控制方法,其中,根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息,包括:确定所述车辆需要换挡后,调用预设的换挡规律表;基于车辆行驶状态、驾驶行为状态和路况环境状态,在所述换挡规律表中,找寻对应的目标档位信息。
- 根据权利要求1所述的基于多维度的换挡控制方法,在根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制之时,包括:基于输入的驾驶员需求扭矩、检测到的发动机当前扭矩和检测到的变速箱 当前输入扭矩,确定扭矩补偿值;根据所述扭矩补偿值,对变速箱当前输出扭矩进行扭矩补偿,确定变速箱目标输出扭矩。
- 根据权利要求4所述的基于多维度的换挡控制方法,其中,根据所述目标档位信息,对车辆进行换挡,实现车辆的换挡控制,包括:根据所述目标档位信息,确定发动机的第一目标转速和第一目标扭矩以及第一电机的第二目标转速和第二目标扭矩;基于所述第一目标转速、所述第一目标扭矩、所述第二目标转速和所述第二目标扭矩,确定变速箱的目标输出转速和变速箱的目标输出扭矩;根据变速箱的目标输出转速和变速箱的目标输出扭矩,对车辆进行换挡,实现车辆的换挡控制。
- 根据权利要求5所述的基于多维度的换挡控制方法,其中,根据变速箱的目标输出转速和变速箱的目标输出扭矩,对车辆进行换挡,实现车辆的换挡控制,包括:在对所述发动机和所述第一电机降扭之后,打开离合器;基于所述第一目标转速和所述第二目标转速,分别对所述发动机和所述第一电机进行调速;在第一预设时间段内,若所述变速箱的输出转速保持目标输出转速,则闭合所述离合器;在第二预设时间段内,若所述变速箱的输出扭矩保持目标输出扭矩,则完成车辆换挡,实现对车辆的换挡控制。
- 根据权利要求6所述的基于多维度的换挡控制方法,其中,在第一预设时间段内,若所述变速器的输出转速保持目标输出转速,则闭合所述离合器; 在第二预设时间段内,若所述变速器的输出扭矩保持目标输出扭矩,则完成车辆换挡,实现对车辆的换挡控制,包括:在第一预设时间段内,若所述发动机和所述第一电机的转速分别保持第一目标转速和第二目标转速,则闭合所述离合器;在第二预设时间段内,若所述发动机和所述第一电机的扭矩分别保持第一目标扭矩和第二目标扭矩,则完成车辆换挡,实现对车辆的换挡控制。
- 一种基于多维度的换挡控制装置,包括:判断模块、确定模块和换挡模块,其中,判断模块,被配置为当车辆运行时,根据获取到的车辆行驶状态、驾驶行为状态和路况环境状态,判断所述车辆的换挡需求;确定模块,被配置为若所述车辆需要进行换挡,则根据所述车辆行驶状态、所述驾驶行为状态和所述路况环境状态,确定所述车辆的目标档位信息;换挡模块,被配置为根据所述目标档位信息,对所述车辆进行换挡,实现对所述车辆的换挡控制。
- 一种车辆,所述车辆包括:处理器;存储装置,被配置为存储程序;传感器装置,被配置为采集车辆行驶状态、驾驶行为状态和路况环境状态;当所述程序被所述处理器执行,使得所述处理器实现如权利要求1-7中任一所述的基于多维度的换挡控制方法。
- 一种存储介质,包含计算机可执行指令,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-7中任一所述的基于多维度的换挡控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011011070.9A CN112092797B (zh) | 2020-09-23 | 2020-09-23 | 一种基于多维度的换挡控制方法、装置、车辆及介质 |
CN202011011070.9 | 2020-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022062572A1 true WO2022062572A1 (zh) | 2022-03-31 |
Family
ID=73755975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/105143 WO2022062572A1 (zh) | 2020-09-23 | 2021-07-08 | 基于多维度的换挡控制方法、装置、车辆及介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112092797B (zh) |
WO (1) | WO2022062572A1 (zh) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114692983A (zh) * | 2022-04-02 | 2022-07-01 | 北京信息科技大学 | 一种特种车辆自动换挡预测方法及系统 |
CN114715129A (zh) * | 2022-04-02 | 2022-07-08 | 北京汽车集团越野车有限公司 | 一种四驱混合动力车辆的控制方法及装置 |
CN115009295A (zh) * | 2022-07-14 | 2022-09-06 | 岚图汽车科技有限公司 | 一种档位控制方法及系统 |
CN115031020A (zh) * | 2022-04-20 | 2022-09-09 | 潍柴动力股份有限公司 | 车辆的控制方法、装置及车辆 |
CN115163818A (zh) * | 2022-06-29 | 2022-10-11 | 中国第一汽车股份有限公司 | 车辆换挡方法、装置、电子设备和存储介质 |
CN115257689A (zh) * | 2022-07-15 | 2022-11-01 | 东风汽车集团股份有限公司 | 一种汽车的控制方法、装置、介质、以及电子设备 |
CN115355313A (zh) * | 2022-08-31 | 2022-11-18 | 东风商用车有限公司 | 倒挡车速调整方法、装置、设备及可读存储介质 |
CN115366695A (zh) * | 2022-08-12 | 2022-11-22 | 重庆长安汽车股份有限公司 | 车辆扭矩控制权的动态管理方法、装置、车辆及存储介质 |
CN115507175A (zh) * | 2022-09-19 | 2022-12-23 | 长城汽车股份有限公司 | 两档减速器的换档控制方法及相关设备 |
CN115789239A (zh) * | 2022-11-02 | 2023-03-14 | 长城汽车股份有限公司 | 一种车辆档位硬止点的位置调整方法、装置及车载控制器 |
CN115952693A (zh) * | 2023-03-13 | 2023-04-11 | 中国重汽集团济南动力有限公司 | 基于大数据的变速箱载荷谱转化方法、装置、设备、介质 |
CN116001796A (zh) * | 2023-03-24 | 2023-04-25 | 盛瑞传动股份有限公司 | 车速控制方法、装置、车辆、设备和计算机可读存储介质 |
CN116061709A (zh) * | 2023-03-17 | 2023-05-05 | 湖南汽车工程职业学院 | 一种智能网联电动汽车输出转矩辅助控制系统 |
CN116677500A (zh) * | 2023-05-31 | 2023-09-01 | 中国第一汽车股份有限公司 | 教练车辆发动机扭矩的控制方法、装置、设备及介质 |
CN116923114A (zh) * | 2023-08-30 | 2023-10-24 | 东风华神汽车有限公司 | 一种纯电动商用教练车的动力总成控制方法及装置 |
CN118651083A (zh) * | 2024-07-16 | 2024-09-17 | 岚图汽车科技有限公司 | 车辆控制方法、装置、设备及存储介质 |
CN118705365A (zh) * | 2024-08-27 | 2024-09-27 | 潍柴动力股份有限公司 | 一种换挡控制方法、系统、设备及存储介质 |
CN118912198A (zh) * | 2024-10-12 | 2024-11-08 | 潍柴动力股份有限公司 | 一种挡箱换挡方法、装置、设备和存储介质 |
CN119189981A (zh) * | 2024-12-02 | 2024-12-27 | 长城汽车股份有限公司 | 一种车辆控制方法、装置、整车控制器、车辆和程序产品 |
WO2025016365A1 (zh) * | 2023-07-18 | 2025-01-23 | 中国第一汽车股份有限公司 | 混动车辆的能量调控方法及车辆 |
CN119554401A (zh) * | 2025-01-26 | 2025-03-04 | 临工重机股份有限公司 | 挡位控制方法、装置、车辆、计算机可读存储介质和计算机程序产品 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112092797B (zh) * | 2020-09-23 | 2021-09-21 | 中国第一汽车股份有限公司 | 一种基于多维度的换挡控制方法、装置、车辆及介质 |
CN112693326B (zh) * | 2021-01-19 | 2022-08-30 | 中国第一汽车股份有限公司 | 一种降扭量确定方法、装置、车辆及存储介质 |
CN112818910B (zh) | 2021-02-23 | 2022-03-18 | 腾讯科技(深圳)有限公司 | 车辆挡位控制方法、装置、计算机设备和存储介质 |
CN113606329B (zh) * | 2021-06-25 | 2023-04-25 | 东风汽车集团股份有限公司 | 车辆及其驾驶模式的确定方法、确定系统及tcu |
CN113625724B (zh) * | 2021-08-31 | 2023-07-21 | 东风柳州汽车有限公司 | 无人驾驶车路径规划方法、装置、设备及存储介质 |
CN113879310B (zh) * | 2021-11-15 | 2023-07-18 | 潍柴动力股份有限公司 | 降档跳档控制方法 |
CN114348008A (zh) * | 2021-12-13 | 2022-04-15 | 潍柴动力股份有限公司 | 一种车辆控制方法、装置、电子设备及存储介质 |
CN114228719B (zh) * | 2022-02-11 | 2024-05-07 | 同济大学 | 车辆辅助制动方法、电子设备及存储介质 |
CN114593201B (zh) * | 2022-02-24 | 2024-10-18 | 潍柴雷沃智慧农业科技股份有限公司 | 自动换挡控制方法、装置、电子设备、存储介质及拖拉机 |
CN114435146B (zh) * | 2022-03-01 | 2023-11-14 | 一汽解放汽车有限公司 | 车辆控制方法、装置、计算机设备和存储介质 |
CN115179939B (zh) * | 2022-07-13 | 2025-06-24 | 岚图汽车科技有限公司 | 车辆速度控制服务调用方法及装置 |
CN117948419A (zh) * | 2022-10-18 | 2024-04-30 | 广州汽车集团股份有限公司 | 基于场景的预测性换挡规律自适应方法及相关设备 |
CN116080414A (zh) * | 2022-12-23 | 2023-05-09 | 深蓝探索动力科技无锡有限公司 | 挡位信号处理方法和装置、计算机可读存储介质及电子设备 |
CN116044990B (zh) * | 2023-03-29 | 2023-06-27 | 北京集度科技有限公司 | 车辆档位切换方法、装置、电子设备、介质及程序产品 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070105690A1 (en) * | 2005-11-05 | 2007-05-10 | Klaus Steinhauser | Method for controlling the shift sequence of a multispeed automatic transmission in a motor vehicle |
CN110206878A (zh) * | 2019-04-29 | 2019-09-06 | 东风商用车有限公司 | 一种重型车自动变速箱的换挡控制方法 |
CN110356415A (zh) * | 2018-03-26 | 2019-10-22 | 长城汽车股份有限公司 | 一种车辆控制方法及装置 |
CN110871780A (zh) * | 2019-10-17 | 2020-03-10 | 重庆蓝黛动力传动机械股份有限公司 | 一种基于amt的混联式混合动力汽车系统及控制方法 |
CN112092797A (zh) * | 2020-09-23 | 2020-12-18 | 中国第一汽车股份有限公司 | 一种基于多维度的换挡控制方法、装置、车辆及介质 |
CN112818910A (zh) * | 2021-02-23 | 2021-05-18 | 腾讯科技(深圳)有限公司 | 车辆挡位控制方法、装置、计算机设备和存储介质 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4793217A (en) * | 1985-09-17 | 1988-12-27 | Toyota Jidosha Kabushiki Kaisha | Method and apparatus for controlling power transmitting system for automotive vehicle, including continuously variable transmission and auxiliary transmission |
US5335566A (en) * | 1992-07-06 | 1994-08-09 | Eaton Corporation | Shift control method/system |
CN101332816A (zh) * | 2008-06-11 | 2008-12-31 | 山东大学 | 开放式汽车机械式自动变速器电控系统 |
CN103204155B (zh) * | 2012-01-11 | 2016-01-13 | 上海汽车集团股份有限公司 | 一种汽车混合动力系统换挡模式的控制方法和控制装置 |
CN104442822B (zh) * | 2014-12-05 | 2017-02-22 | 合肥工业大学 | 电动汽车用电机‑变速器集成驱动系统的自动换挡控制方法 |
CN104896082B (zh) * | 2015-05-26 | 2017-03-29 | 吉林大学 | 具有驾驶风格识别的自动变速器换挡控制方法及系统 |
CN107878439B (zh) * | 2016-09-30 | 2019-11-26 | 上海汽车集团股份有限公司 | 一种启发动机过程中车辆动力源扭矩的控制方法及装置 |
CN109237011A (zh) * | 2018-09-11 | 2019-01-18 | 江苏大学 | 一种含有驾驶行为预测模型的自动变速箱换挡控制方法 |
-
2020
- 2020-09-23 CN CN202011011070.9A patent/CN112092797B/zh active Active
-
2021
- 2021-07-08 WO PCT/CN2021/105143 patent/WO2022062572A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070105690A1 (en) * | 2005-11-05 | 2007-05-10 | Klaus Steinhauser | Method for controlling the shift sequence of a multispeed automatic transmission in a motor vehicle |
CN110356415A (zh) * | 2018-03-26 | 2019-10-22 | 长城汽车股份有限公司 | 一种车辆控制方法及装置 |
CN110206878A (zh) * | 2019-04-29 | 2019-09-06 | 东风商用车有限公司 | 一种重型车自动变速箱的换挡控制方法 |
CN110871780A (zh) * | 2019-10-17 | 2020-03-10 | 重庆蓝黛动力传动机械股份有限公司 | 一种基于amt的混联式混合动力汽车系统及控制方法 |
CN112092797A (zh) * | 2020-09-23 | 2020-12-18 | 中国第一汽车股份有限公司 | 一种基于多维度的换挡控制方法、装置、车辆及介质 |
CN112818910A (zh) * | 2021-02-23 | 2021-05-18 | 腾讯科技(深圳)有限公司 | 车辆挡位控制方法、装置、计算机设备和存储介质 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114715129A (zh) * | 2022-04-02 | 2022-07-08 | 北京汽车集团越野车有限公司 | 一种四驱混合动力车辆的控制方法及装置 |
CN114692983A (zh) * | 2022-04-02 | 2022-07-01 | 北京信息科技大学 | 一种特种车辆自动换挡预测方法及系统 |
CN115031020B (zh) * | 2022-04-20 | 2023-10-20 | 潍柴动力股份有限公司 | 车辆的控制方法、装置及车辆 |
CN115031020A (zh) * | 2022-04-20 | 2022-09-09 | 潍柴动力股份有限公司 | 车辆的控制方法、装置及车辆 |
CN115163818A (zh) * | 2022-06-29 | 2022-10-11 | 中国第一汽车股份有限公司 | 车辆换挡方法、装置、电子设备和存储介质 |
CN115009295A (zh) * | 2022-07-14 | 2022-09-06 | 岚图汽车科技有限公司 | 一种档位控制方法及系统 |
CN115257689A (zh) * | 2022-07-15 | 2022-11-01 | 东风汽车集团股份有限公司 | 一种汽车的控制方法、装置、介质、以及电子设备 |
CN115366695A (zh) * | 2022-08-12 | 2022-11-22 | 重庆长安汽车股份有限公司 | 车辆扭矩控制权的动态管理方法、装置、车辆及存储介质 |
CN115355313A (zh) * | 2022-08-31 | 2022-11-18 | 东风商用车有限公司 | 倒挡车速调整方法、装置、设备及可读存储介质 |
CN115355313B (zh) * | 2022-08-31 | 2023-07-07 | 东风商用车有限公司 | 倒挡车速调整方法、装置、设备及可读存储介质 |
CN115507175B (zh) * | 2022-09-19 | 2023-09-22 | 长城汽车股份有限公司 | 两档减速器的换档控制方法及相关设备 |
CN115507175A (zh) * | 2022-09-19 | 2022-12-23 | 长城汽车股份有限公司 | 两档减速器的换档控制方法及相关设备 |
CN115789239A (zh) * | 2022-11-02 | 2023-03-14 | 长城汽车股份有限公司 | 一种车辆档位硬止点的位置调整方法、装置及车载控制器 |
CN115952693A (zh) * | 2023-03-13 | 2023-04-11 | 中国重汽集团济南动力有限公司 | 基于大数据的变速箱载荷谱转化方法、装置、设备、介质 |
CN115952693B (zh) * | 2023-03-13 | 2023-08-04 | 中国重汽集团济南动力有限公司 | 基于大数据的变速箱载荷谱转化方法、装置、设备、介质 |
CN116061709A (zh) * | 2023-03-17 | 2023-05-05 | 湖南汽车工程职业学院 | 一种智能网联电动汽车输出转矩辅助控制系统 |
CN116001796B (zh) * | 2023-03-24 | 2023-07-07 | 盛瑞传动股份有限公司 | 车速控制方法、装置、车辆、设备和计算机可读存储介质 |
CN116001796A (zh) * | 2023-03-24 | 2023-04-25 | 盛瑞传动股份有限公司 | 车速控制方法、装置、车辆、设备和计算机可读存储介质 |
CN116677500A (zh) * | 2023-05-31 | 2023-09-01 | 中国第一汽车股份有限公司 | 教练车辆发动机扭矩的控制方法、装置、设备及介质 |
WO2025016365A1 (zh) * | 2023-07-18 | 2025-01-23 | 中国第一汽车股份有限公司 | 混动车辆的能量调控方法及车辆 |
CN116923114A (zh) * | 2023-08-30 | 2023-10-24 | 东风华神汽车有限公司 | 一种纯电动商用教练车的动力总成控制方法及装置 |
CN118651083A (zh) * | 2024-07-16 | 2024-09-17 | 岚图汽车科技有限公司 | 车辆控制方法、装置、设备及存储介质 |
CN118705365A (zh) * | 2024-08-27 | 2024-09-27 | 潍柴动力股份有限公司 | 一种换挡控制方法、系统、设备及存储介质 |
CN118912198A (zh) * | 2024-10-12 | 2024-11-08 | 潍柴动力股份有限公司 | 一种挡箱换挡方法、装置、设备和存储介质 |
CN119189981A (zh) * | 2024-12-02 | 2024-12-27 | 长城汽车股份有限公司 | 一种车辆控制方法、装置、整车控制器、车辆和程序产品 |
CN119554401A (zh) * | 2025-01-26 | 2025-03-04 | 临工重机股份有限公司 | 挡位控制方法、装置、车辆、计算机可读存储介质和计算机程序产品 |
Also Published As
Publication number | Publication date |
---|---|
CN112092797A (zh) | 2020-12-18 |
CN112092797B (zh) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022062572A1 (zh) | 基于多维度的换挡控制方法、装置、车辆及介质 | |
Li et al. | Eco-departure of connected vehicles with V2X communication at signalized intersections | |
US10207699B2 (en) | Hybrid vehicle propulsion systems and methods | |
Yu et al. | Model predictive control for hybrid vehicle ecological driving using traffic signal and road slope information | |
Cheng et al. | Longitudinal autonomous driving based on game theory for intelligent hybrid electric vehicles with connectivity | |
US20140142822A1 (en) | Gps-based predictive shift schedule for automatic transmission | |
DE102019101254A1 (de) | Hybrides antriebsstrangsystem | |
CN109835335A (zh) | 电动车辆巡航控制方法和系统及车辆、控制器和存储介质 | |
CN105083277B (zh) | Amt公交车的档位输出策略 | |
KR20180048120A (ko) | 하이브리드 자동차 및 그를 위한 변속 제어 방법 | |
CN115140046A (zh) | 一种车辆控制方法、系统、车辆控制器及云服务器 | |
WO2019119945A1 (zh) | 一种汽车底盘集成控制方法及系统 | |
CN106347352A (zh) | 混合动力能量管理系统及其控制方法 | |
CN104925049A (zh) | 一种双离合自动变速器汽车的蠕动交互控制方法和系统 | |
Wang et al. | Hybrid electric vehicle modeling accuracy verification and global optimal control algorithm research | |
Li et al. | Periodicity based cruising control of passenger cars for optimized fuel consumption | |
CN113602252A (zh) | 一种混合动力汽车控制方法及装置 | |
DE102017124357A1 (de) | Antriebssysteme und verfahren für hybridfahrzeug | |
CN114857254A (zh) | 车辆空档滑行的控制方法、自动变速箱和车辆 | |
CN113968223B (zh) | 一种驾驶模式识别方法及装置 | |
CN115649147A (zh) | 一种考虑道路坡度混合动力客车切换协调控制方法 | |
CN102537312A (zh) | 一种自动变速器车刹车降档控制方法 | |
Shen et al. | Energy-efficient cruise control using optimal control for a hybrid electric vehicle | |
Reghunath et al. | Optimal gearshift strategy using predictive algorithm for fuel economy improvement | |
Ye et al. | Research on dynamic coordination active mode switching control strategy for hybrid electric vehicle based on traffic information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21870951 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21870951 Country of ref document: EP Kind code of ref document: A1 |