WO2021166027A1 - Objective optical system, imaging device, and endoscope - Google Patents
Objective optical system, imaging device, and endoscope Download PDFInfo
- Publication number
- WO2021166027A1 WO2021166027A1 PCT/JP2020/006019 JP2020006019W WO2021166027A1 WO 2021166027 A1 WO2021166027 A1 WO 2021166027A1 JP 2020006019 W JP2020006019 W JP 2020006019W WO 2021166027 A1 WO2021166027 A1 WO 2021166027A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- intersection
- optical system
- objective optical
- image side
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Definitions
- the present invention relates to an objective optical system, an imaging device, and an endoscope.
- Patent Document 1 An optical system having three lenses is disclosed in Patent Document 1 and Patent Document 2.
- the optical system includes a first lens having a negative power, a second lens having a positive power, an aperture diaphragm, and a third lens having a positive power.
- the objective optical system according to at least some embodiments of the present invention is used. From the object side to the image side, in order The first lens with negative refractive power and A second lens with positive refractive power and Aperture aperture and It consists of a third lens with positive refractive power.
- the second lens is a biconvex lens, The first lens, the second lens, and the third lens are made of a synthetic resin material. It is characterized in that the following conditional expressions (1), (2), and (3) are satisfied.
- ⁇ d1 is the Abbe number of the first lens
- ⁇ d2 is the Abbe number of the second lens
- f is the focal length of the objective optical system
- f1 is the focal length of the first lens
- the first intersection is the point where the image side surface of the first lens intersects the optical axis.
- the second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
- DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection. If the second intersection is closer to the image than the first intersection, the distance value is a positive value, Is.
- the image pickup apparatus may be used. From the object side to the image side, in order The first lens with negative refractive power and A second lens with positive refractive power and Aperture aperture and It consists of a third lens with positive refractive power.
- the second lens is a biconvex lens
- the first lens, the second lens, and the third lens are made of a synthetic resin material. It is characterized by providing an objective optical system that satisfies the following conditional expressions (1), (2), and (3).
- ⁇ d1 is the Abbe number of the first lens
- ⁇ d2 is the Abbe number of the second lens
- f is the focal length of the objective optical system
- f1 is the focal length of the first lens
- the first intersection is the point where the image side surface of the first lens intersects the optical axis.
- the second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
- DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection. If the second intersection is closer to the image than the first intersection, the distance value is a positive value, Is.
- the endoscope according to at least some embodiments of the present invention is From the object side to the image side, in order
- the first lens with negative refractive power and A second lens with positive refractive power and Aperture aperture and It consists of a third lens with positive refractive power.
- the second lens is a biconvex lens
- the first lens, the second lens, and the third lens are made of a synthetic resin material. It is characterized by providing an objective optical system that satisfies the following conditional expressions (1), (2), and (3).
- ⁇ d1 is the Abbe number of the first lens
- ⁇ d2 is the Abbe number of the second lens
- f is the focal length of the objective optical system
- f1 is the focal length of the first lens
- the first intersection is the point where the image side surface of the first lens intersects the optical axis.
- the second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
- DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection. If the second intersection is closer to the image than the first intersection, the distance value is a positive value, Is.
- an objective optical system that is compact but has sufficiently corrected chromatic aberration of magnification. Further, it is possible to provide an imaging device and an endoscope capable of acquiring a clear image.
- FIG. It is a figure which shows the cross-sectional view and the parameter of the objective optical system of this embodiment. It is sectional drawing and aberration diagram of the objective optical system of Example 1.
- FIG. It is sectional drawing and aberration diagram of the objective optical system of Example 2.
- FIG. It is sectional drawing and aberration diagram of the objective optical system of Example 3.
- FIG. It is sectional drawing and aberration diagram of the objective optical system of Example 4.
- FIG. It is sectional drawing and aberration diagram of the objective optical system of Example 5.
- FIG. It is sectional drawing and aberration diagram of the objective optical system of Example 6.
- FIG. It is sectional drawing and aberration diagram of the objective optical system of Example 7.
- FIG. It is sectional drawing and aberration diagram of the objective optical system of Example 8.
- FIG. It is sectional drawing and aberration diagram of the objective optical system of Example 9.
- FIG. It is a figure which shows the optical apparatus of this embodiment.
- the reason and operation of the objective optical system according to the present embodiment, the imaging device according to the present embodiment, and the endoscope according to the present embodiment will be described.
- the present invention is not limited to these embodiments.
- the objective optical system of the present embodiment has a first lens having a negative refractive power, a second lens having a positive refractive power, an aperture aperture, and a first lens having a positive refractive power in this order from the object side to the image side.
- the second lens is a biconvex lens
- the first lens, the second lens, and the third lens are made of a synthetic resin material, and the following conditional equations (1), (2), and ( It is characterized by satisfying 3).
- ⁇ d1 is the Abbe number of the first lens
- ⁇ d2 is the Abbe number of the second lens
- f is the focal length of the objective optical system
- f1 is the focal length of the first lens
- the first intersection is the point where the image side surface of the first lens intersects the optical axis.
- the second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
- DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection. If the second intersection is closer to the image than the first intersection, the distance value is a positive value, Is.
- FIG. 1 is a diagram showing a cross-sectional view and parameters of the objective optical system of the present embodiment.
- the objective optical system OBJ has a first lens L1 having a negative refractive power, a second lens L2 having a positive refractive power, an aperture aperture S, and a first lens having a positive refractive power in this order from the object side to the image side. It has three lenses L3 and.
- the first lens L1 is a biconcave negative lens. However, the shape of the first lens L1 is not limited to the biconcave shape.
- the second lens L2 is a biconvex positive lens.
- the third lens L3 is a biconvex positive lens. However, the shape of the third lens L3 is not limited to the biconvex shape.
- the refractive power of the lens located closest to the object is negative.
- both concave and negative lenses are arranged as the first lens L1 on the most object side. Therefore, a wide angle of view can be obtained.
- a biconvex lens is used for the second lens L2.
- the second lens L2 can have an appropriate refractive power. Therefore, the outer diameter of the first lens L1 can be reduced while satisfactorily correcting the astigmatic difference and the curvature of field. Further, the total length of the optical system can be shortened. Therefore, the shape of the second lens L2 is preferably a biconvex shape.
- the shape of the second lens L2 for example, a meniscus shape can be considered.
- the shape of the second lens L2 is a meniscus shape that is convex toward the image side, the refractive power of the side surface of the object has a negative refractive power. In this case, the height of the main ray becomes too high in the first lens L1. Therefore, the outer diameter of the first lens L1 becomes large.
- the shape of the second lens L2 is a meniscus shape that is convex toward the object, the curvature of the side surface of the object becomes large. Therefore, the refractive power of the side surface of the object becomes too large. As a result, it becomes difficult to satisfactorily correct astigmatism and curvature of field. Therefore, it is not preferable that the shape of the second lens L2 is a meniscus shape.
- the aperture diaphragm S is arranged between the second lens L2 and the third lens L3.
- a synthetic resin material is used for the first lens L1, the second lens L2, and the third lens L3.
- each lens can be manufactured by injection molding. If injection molding is used, the lens can be manufactured at low cost. Therefore, the cost can be reduced while ensuring good imaging performance.
- the objective optical system of this embodiment satisfies the conditional equations (1), (2), and (3).
- the parameters used in the conditional expression will be described.
- DZ2 is used in the above-mentioned conditional expression (3) and the later-described conditional expression (4). Further, in the conditional expression (5) described later, DY2 is used. DZ2 and DY2 will be described with reference to FIG.
- FIG. 1 shows a distance DZ2, a distance DY2, a lens surface R2, a surface apex VR2, an intersection point CP1, an intersection point CP2, a light ray CRmax, an optical axis AX, a straight line PL, and an optical image IM.
- DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
- the first intersection is a point where the image side surface of the first lens intersects the optical axis.
- the second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
- the surface top VR2 is a point where the lens surface R2 intersects the optical axis AX.
- the lens surface R2 is an image side surface of the first lens L1. Therefore, the surface top VR2 represents the first intersection.
- intersection point CP1 is the point where the light ray CRmax intersects the lens surface R2. Since the ray CRmax has reached the highest position of the optical image IM, the ray CRmax is the main ray of maximum image height.
- the lens surface R2 is an image side surface of the first lens L1. Therefore, the intersection CP1 represents the second intersection.
- the surface top VR2 is located on the optical axis AX, but the intersection CP1 is not located on the optical axis AX. Therefore, the distance DZ2 is calculated based on the distance parallel to the optical axis AX from the surface top VR2 to the intersection CP1.
- the point when the intersection CP1 is projected on the optical axis AX may be used instead of the intersection CP1.
- intersection point CP2 is the point where the straight line PL intersects the optical axis AX.
- the straight line PL is a virtual straight line that passes through the intersection CP1 and is orthogonal to the optical axis AX. Therefore, the intersection point CP2 represents a point when the intersection point CP1 is projected on the optical axis AX.
- the distance on the optical axis AX from the surface apex VR2 to the intersection CP2 represents the distance parallel to the optical axis AX from the surface apex VR2 to the intersection CP1. Therefore, the distance DZ2 may be calculated based on the distance on the optical axis AX from the surface top VR2 to the intersection CP2.
- intersection point CP1 and the intersection point CP2 are located on the straight line PL. Since the position of the intersection CP1 is known, the position of the intersection CP2 can be calculated from the position of the intersection CP1. By calculating the position of the intersection CP2, the distance on the optical axis AX from the surface top VR2 to the intersection CP2 can be calculated. As a result, the distance DZ2 can be calculated.
- the distance DZ2 is calculated based on the surface top VR2.
- the traveling direction of light is positive and the opposite direction is negative.
- the distance value is a positive value. That is, when the second intersection is located closer to the image than the first intersection, the distance value is a positive value.
- DY2 is the shortest distance from the optical axis to the second intersection.
- intersection CP1 represents the second intersection. Since the intersection CP2 is located on the optical axis AX, the position of the intersection CP2 can be regarded as the position of the optical axis AX.
- the intersection point CP1 and the intersection point CP2 are located on the straight line PL.
- the straight line PL is a virtual straight line that passes through the intersection CP1 and is orthogonal to the optical axis AX. Since the position of the intersection CP2 can be regarded as the position of the optical axis AX, the distance from the intersection CP2 to the intersection CP1 represents the shortest distance from the optical axis AX to the intersection CP1. Therefore, the distance DY2 may be calculated based on the distance from the intersection CP2 to the intersection CP1.
- the distance DY2 In the calculation of the distance DY2, the distance is calculated with reference to the optical axis AX.
- the intersection point CP1 is located on the lens surface R2.
- the lens surface R2 is a rotationally symmetric surface. Therefore, since there is only one direction from the optical axis AX to the intersection CP1, the distance value is always a positive value.
- Conditional expression (1) is a conditional expression that defines the Abbe number of the second lens.
- the conditional expression (1) is satisfied, the Abbe number of the second lens is different from the Abbe number of the first lens. Therefore, the occurrence of chromatic aberration of magnification can be suppressed.
- Conditional expression (2) is a conditional expression that defines the refractive power of the first lens.
- the refractive power of the first lens is defined with respect to the refractive power of the objective optical system.
- the refractive power of the first lens becomes too large. In this case, it is easily affected by manufacturing errors. For example, if the first lens is eccentric due to a manufacturing error, the aberration increases. Therefore, the imaging performance is greatly reduced.
- the refractive power of the first lens becomes too small. Therefore, it becomes difficult to secure a wide angle of view, or the outer diameter of the first lens becomes large.
- conditional expression (3) is a conditional expression that defines the passing position of the main ray having the maximum image height on the image side surface of the first lens.
- the point where the main ray of the maximum image height intersects the image side surface of the first lens is too close to the optical axis.
- the height of the off-axis light rays becomes too low between the first lens and the second lens.
- the distance between the first lens and the second lens becomes too narrow. Therefore, it becomes difficult to widen the optical system.
- the distance between the first lens and the second lens is the distance on the optical axis.
- the outer diameter of the first lens becomes large and the distance between the first lens and the second lens becomes too wide. Therefore, it becomes difficult to sufficiently correct the chromatic aberration of magnification. In addition, the distance from the lens surface located closest to the image side to the image surface becomes too short.
- conditional expression (3) it is preferable to satisfy the following conditional expression (3'). 0.59 ⁇ DZ2 / f ⁇ 0.9 (3')
- the image side surface of the first lens is an aspherical surface, and it is preferable that the following conditional expression (4) is satisfied.
- the first intersection is the point where the image side surface of the first lens intersects the optical axis.
- the second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
- DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection. If the second intersection is closer to the image than the first intersection, the distance value is a positive value, R2 is the radius of curvature of the image side of the first lens, Is.
- the image side surface of the first lens is an aspherical surface.
- the shape of the aspherical surface is a shape in which the curvature decreases from the center to the periphery.
- Conditional expression (4) is a conditional expression that defines the aspherical shape of the image side surface of the first lens.
- the radius of curvature of the image side surface of the first lens becomes large, so that the correction effect due to the aspherical surface weakens. Further, the point where the main ray having the maximum image height intersects the image side surface of the first lens is too close to the optical axis. In this case, the height of the off-axis ray becomes low. Therefore, the correction effect of the aspherical surface is weakened with respect to the off-axis light rays. Also, the distance between the first lens and the second lens becomes too narrow. Therefore, it becomes difficult to widen the optical system.
- conditional expression (4) it is preferable to satisfy the following conditional expression (4'). 1.05 ⁇ DZ2 / R2 ⁇ 1.35 (4')
- the objective optical system of the present embodiment preferably satisfies the following conditional expression (5).
- D2 is the distance between the image side surface of the first lens and the object side surface of the second lens on the optical axis.
- the second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
- DY2 is the shortest distance from the optical axis to the second intersection, Is.
- the objective optical system of the present embodiment preferably satisfies the following conditional expression (6). 0.25 ⁇ f / f2 ⁇ 0.6 (6) here, f is the focal length of the objective optical system, f2 is the focal length of the second lens, Is.
- Conditional formula (6) is a conditional formula that defines the refractive power of the second lens.
- the refractive power of the second lens is defined with respect to the refractive power of the objective optical system.
- the first lens By giving the first lens an appropriate amount of refractive power, light rays with a wide angle of view can be incident on the first lens.
- the light beam incident on the first lens finally incidents on the third lens.
- it is preferable that the light rays incident on the first lens are incident on the third lens in good condition.
- the image formed by the first lens and the second lens is imaged on the image plane by the third lens.
- the axial light rays incident on the center of the image plane are as parallel as possible to the optical axis. It is better to enter the third lens so as to be.
- a good state is a state in which the imaging magnification of the third lens is small, or a state in which the axial light beam incident on the third lens is substantially parallel to the optical axis.
- a second lens is arranged between the first lens and the third lens. In order for the light beam incident on the first lens to be incident on the third lens in a good state, it is necessary to give the second lens an appropriate magnitude of refractive power.
- the refractive power of the second lens becomes too small. In this case, the distance between the first lens and the second lens becomes too wide. Therefore, the total length of the optical system becomes long, and the outer diameter of the first lens becomes large. In addition, the chromatic aberration of magnification cannot be sufficiently corrected.
- the refractive power of the second lens becomes too large. In this case, it is easily affected by manufacturing errors. For example, if the second lens is eccentric due to a manufacturing error, the aberration increases. Therefore, the imaging performance is greatly reduced.
- the objective optical system of the present embodiment preferably satisfies the following conditional expression (7). -3.0 ⁇ f2 / f1 ⁇ -1.9 (7) here, f1 is the focal length of the first lens, f2 is the focal length of the second lens, Is.
- the conditional expression (7) is a conditional expression that defines the refractive power of the first lens.
- the refractive power of the first lens is defined with respect to the refractive power of the second lens.
- the refractive power of the first lens becomes too large as compared with the refractive power of the second lens. Therefore, the chromatic aberration of magnification cannot be sufficiently corrected.
- the refractive power of the first lens becomes too small as compared with the refractive power of the second lens. Therefore, the outer diameter of the first lens becomes large.
- the objective optical system of this embodiment preferably satisfies the following conditional expressions (8) and (9). 50 ⁇ d1 (8) ⁇ d2 ⁇ 35 (9) here, ⁇ d1 is the Abbe number of the first lens, ⁇ d2 is the Abbe number of the second lens, Is.
- the objective optical system of the present embodiment preferably satisfies the following conditional expressions (10), (11), and (12). nd1 ⁇ 1.55 (10) nd2 ⁇ 1.7 (11) nd3 ⁇ 1.55 (12) here, nd1 is the refractive index of the first lens on the e-line. nd2 is the refractive index of the second lens on the e-line. nd3 is the refractive index of the third lens on the e-line. Is.
- the image pickup apparatus of the present embodiment has a first lens having a negative refractive power, a second lens having a positive refractive power, an aperture aperture, and a third lens having a positive refractive power in this order from the object side to the image side.
- the second lens is a biconvex lens, and the first lens, the second lens, and the third lens are made of a synthetic resin material, and the above-mentioned conditional equations (1), (2), and (3). ) Is provided.
- the endoscope of the present embodiment has a first lens having a negative refractive power, a second lens having a positive refractive power, an aperture aperture, and a first lens having a positive refractive power in this order from the object side to the image side.
- the second lens is a biconvex lens, and the first lens, the second lens, and the third lens are made of a synthetic resin material. It is characterized by providing an objective optical system that satisfies 3).
- the imaging device of the present embodiment and the endoscope of the present embodiment may satisfy at least one of the above-mentioned conditional expressions (4) to (12).
- FIGS. 2 to 10 shows a cross-sectional view of the lens.
- the image plane is indicated by I.
- FIGS. 2 to 10 show a cross-sectional view of the lens.
- B is spherical aberration (SA)
- SA spherical aberration
- AS astigmatism
- CC chromatic aberration of magnification
- DT distortion
- CM coma
- SA spherical aberration
- AS astigmatism
- CC chromatic aberration of magnification
- DT distortion
- CM coma
- Coma is an aberration at a position 0.8 times the maximum image height.
- the horizontal axis represents the amount of aberration.
- the unit of the amount of aberration is mm.
- the unit of aberration is%.
- FYI is the image height, the unit is mm, and FNO is the F number.
- the unit of wavelength of the aberration curve is nm.
- the objective optical system of the first embodiment has a biconcave negative lens L1, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side.
- the aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
- the aspherical surface is provided on a total of three surfaces, that is, the image side surface of the biconcave negative lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
- the objective optical system of the second embodiment has a biconcave negative lens L1, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side.
- the aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
- the aspherical surface is provided on a total of three surfaces, that is, the image side surface of the biconcave negative lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
- the objective optical system of the third embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side.
- the aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
- the aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
- the objective optical system of the fourth embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side.
- the aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
- the aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
- the objective optical system of the fifth embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side.
- the aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
- the aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
- the objective optical system of the sixth embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side.
- the aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
- the aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
- the objective optical system of Example 7 has a biconcave negative lens L1, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side.
- the aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
- the aspherical surface is provided on a total of three surfaces, that is, the image side surface of the biconcave negative lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
- the objective optical system of Example 8 has a biconcave negative lens L1, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side.
- the aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
- the aspherical surface is provided on a total of three surfaces, that is, the image side surface of the biconcave negative lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
- the objective optical system of the ninth embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side.
- the aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
- the aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
- r is the radius of curvature of each lens surface
- d is the distance between each lens surface
- ne is the refractive index of the e-line of each lens
- ⁇ d is the Abbe number of each lens.
- OBJ is the object point distance
- f is the focal length of the objective optical system on the e-line
- Fno is the F number
- ⁇ is the half angle of view
- IH is the image height.
- the diaphragm is an aperture diaphragm.
- the aspherical shape has the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the conical coefficient is k, and the aspherical coefficient is A4, A6, A8, A10, A12, and so on. expressed.
- z (y 2 / r) / [1 + ⁇ 1- (1 + k) (y / r) 2 ⁇ 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10 + A12y 12 + ...
- "En” (n is an integer) indicates "10 -n ".
- the symbols of these specification values are also common to the numerical data of the examples described later.
- Example 2 Example 3 (2) f / f1 -0.965 -0.921 -0.882 (3) DZ2 / f 0.60 0.62 0.65 (4) DZ2 / R2 1.07 1.06 1.07 (5) D2 / DY2 1.27 1.34 0.90 (6) f / f2 0.482 0.447 0.390 (7) f2 / f1 -2.003 -2.062 -2.261
- Example 4 Example 5
- Example 6 (2) f / f1 -0.875 -0.844 -0.899 (3) DZ2 / f 0.72 0.82 0.56 (4) DZ2 / R2 1.20 1.32 0.95 (5) D2 / DY2 0.88 0.98 0.82 (6) f / f2 0.376 0.376 0.354 (7) f2 / f1 -2.328 -2.241 -2.542
- Example 7 Example 8
- Example 9 (2) f / f1 -0.965 -0.921 -0.882 (3) D
- FIG. 11 is a diagram showing an optical device of this embodiment.
- the optical device 1 is an image pickup device or an endoscope.
- the optical device 1 has an objective optical system OBJ.
- the image sensor IS can be used in the optical device 1.
- the optical image formed by the objective optical system OBJ can be imaged by the image sensor IS.
- the image can be acquired.
- the objective optical system OBJ can be used for a digital camera, a surveillance camera, and a mobile terminal.
- the objective optical system OBJ can be used for the flexible endoscope, the rigid endoscope, and the capsule endoscope.
- a clear image can be acquired. That is, a clear image can be acquired with an imaging device or an endoscope.
- the present invention is suitable for an objective optical system that is compact but has sufficiently corrected chromatic aberration of magnification. It is also suitable for imaging devices and endoscopes that can acquire clear images.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Provided is an objective optical system that, despite being small in size, has adequately corrected chromatic aberration of magnification. An objective optical system comprising, in order from the object side to the image side, a first lens L1 having a negative refractive power, a second lens L2 having a positive refractive power, an aperture diaphragm S, and a third lens L3 having a positive refractive power, the second lens L2 being a biconvex lens, and the first lens L1, the second L2, and the third lens L3 being formed from a synthetic resin material and satisfying conditional expressions (1), (2), and (3). (1): νd2<νd1. (2): -1.2<f/f1<-0.74. (3): 0.3<DZ2/f<0.9. A first intersection point is the point at which the object-side surface of the first lens and the optical axis intersect, a second intersection point is the point at which a principal ray at the maximum image height intersects the image-side surface of the first lens, and DZ2 is the distance parallel to the optical axis from the first intersection point to the second intersection point.
Description
本発明は、対物光学系、撮像装置、及び内視鏡に関する。
The present invention relates to an objective optical system, an imaging device, and an endoscope.
3枚のレンズを有する光学系が、特許文献1と特許文献2に開示されている。光学系は、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、正の屈折力を有する第3レンズと、を有する。
An optical system having three lenses is disclosed in Patent Document 1 and Patent Document 2. The optical system includes a first lens having a negative power, a second lens having a positive power, an aperture diaphragm, and a third lens having a positive power.
特許文献1に開示された光学系と特許文献2に開示された光学系では、倍率色収差が十分に補正されているとはいえない。そのため、光学像の周辺部において、良好な結像性能が得られない。
It cannot be said that the optical system disclosed in Patent Document 1 and the optical system disclosed in Patent Document 2 sufficiently correct the chromatic aberration of magnification. Therefore, good imaging performance cannot be obtained in the peripheral portion of the optical image.
本発明は、このような課題に鑑みてなされたものであって、小型でありながら、倍率色収差が十分に補正されている対物光学系を提供することを目的とする。また、鮮明な画像が取得できる撮像装置、及び内視鏡を提供することを目的とする。
The present invention has been made in view of such a problem, and an object of the present invention is to provide an objective optical system which is small in size and whose chromatic aberration of magnification is sufficiently corrected. Another object of the present invention is to provide an imaging device capable of acquiring a clear image and an endoscope.
上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る対物光学系は、
物体側から像側へ順に、
負の屈折力を有する第1レンズと、
正の屈折力を有する第2レンズと、
開口絞りと、
正の屈折力を有する第3レンズと、からなり、
第2レンズは、両凸レンズであり、
第1レンズ、第2レンズ、及び第3レンズは、合成樹脂材料からなり、
以下の条件式(1)、(2)、(3)を満足することを特徴とする。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
fは、対物光学系の焦点距離、
f1は、第1レンズの焦点距離、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
である。
In order to solve the above-mentioned problems and achieve the object, the objective optical system according to at least some embodiments of the present invention is used.
From the object side to the image side, in order
The first lens with negative refractive power and
A second lens with positive refractive power and
Aperture aperture and
It consists of a third lens with positive refractive power.
The second lens is a biconvex lens,
The first lens, the second lens, and the third lens are made of a synthetic resin material.
It is characterized in that the following conditional expressions (1), (2), and (3) are satisfied.
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
Is.
物体側から像側へ順に、
負の屈折力を有する第1レンズと、
正の屈折力を有する第2レンズと、
開口絞りと、
正の屈折力を有する第3レンズと、からなり、
第2レンズは、両凸レンズであり、
第1レンズ、第2レンズ、及び第3レンズは、合成樹脂材料からなり、
以下の条件式(1)、(2)、(3)を満足することを特徴とする。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
fは、対物光学系の焦点距離、
f1は、第1レンズの焦点距離、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
である。
In order to solve the above-mentioned problems and achieve the object, the objective optical system according to at least some embodiments of the present invention is used.
From the object side to the image side, in order
The first lens with negative refractive power and
A second lens with positive refractive power and
Aperture aperture and
It consists of a third lens with positive refractive power.
The second lens is a biconvex lens,
The first lens, the second lens, and the third lens are made of a synthetic resin material.
It is characterized in that the following conditional expressions (1), (2), and (3) are satisfied.
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
Is.
また、本発明の少なくとも幾つかの実施形態に係る撮像装置は、
物体側から像側へ順に、
負の屈折力を有する第1レンズと、
正の屈折力を有する第2レンズと、
開口絞りと、
正の屈折力を有する第3レンズと、からなり、
第2レンズは、両凸レンズであり、
第1レンズ、第2レンズ、及び第3レンズは、合成樹脂材料からなり、
以下の条件式(1)、(2)、(3)を満足する対物光学系を備えることを特徴とする。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
fは、対物光学系の焦点距離、
f1は、第1レンズの焦点距離、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
である。 Further, the image pickup apparatus according to at least some embodiments of the present invention may be used.
From the object side to the image side, in order
The first lens with negative refractive power and
A second lens with positive refractive power and
Aperture aperture and
It consists of a third lens with positive refractive power.
The second lens is a biconvex lens,
The first lens, the second lens, and the third lens are made of a synthetic resin material.
It is characterized by providing an objective optical system that satisfies the following conditional expressions (1), (2), and (3).
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
Is.
物体側から像側へ順に、
負の屈折力を有する第1レンズと、
正の屈折力を有する第2レンズと、
開口絞りと、
正の屈折力を有する第3レンズと、からなり、
第2レンズは、両凸レンズであり、
第1レンズ、第2レンズ、及び第3レンズは、合成樹脂材料からなり、
以下の条件式(1)、(2)、(3)を満足する対物光学系を備えることを特徴とする。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
fは、対物光学系の焦点距離、
f1は、第1レンズの焦点距離、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
である。 Further, the image pickup apparatus according to at least some embodiments of the present invention may be used.
From the object side to the image side, in order
The first lens with negative refractive power and
A second lens with positive refractive power and
Aperture aperture and
It consists of a third lens with positive refractive power.
The second lens is a biconvex lens,
The first lens, the second lens, and the third lens are made of a synthetic resin material.
It is characterized by providing an objective optical system that satisfies the following conditional expressions (1), (2), and (3).
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
Is.
また、本発明の少なくとも幾つかの実施形態に係る内視鏡は、
物体側から像側へ順に、
負の屈折力を有する第1レンズと、
正の屈折力を有する第2レンズと、
開口絞りと、
正の屈折力を有する第3レンズと、からなり、
第2レンズは、両凸レンズであり、
第1レンズ、第2レンズ、及び第3レンズは、合成樹脂材料からなり、
以下の条件式(1)、(2)、(3)を満足する対物光学系を備えることを特徴とする。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
fは、対物光学系の焦点距離、
f1は、第1レンズの焦点距離、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
である。 Further, the endoscope according to at least some embodiments of the present invention is
From the object side to the image side, in order
The first lens with negative refractive power and
A second lens with positive refractive power and
Aperture aperture and
It consists of a third lens with positive refractive power.
The second lens is a biconvex lens,
The first lens, the second lens, and the third lens are made of a synthetic resin material.
It is characterized by providing an objective optical system that satisfies the following conditional expressions (1), (2), and (3).
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
Is.
物体側から像側へ順に、
負の屈折力を有する第1レンズと、
正の屈折力を有する第2レンズと、
開口絞りと、
正の屈折力を有する第3レンズと、からなり、
第2レンズは、両凸レンズであり、
第1レンズ、第2レンズ、及び第3レンズは、合成樹脂材料からなり、
以下の条件式(1)、(2)、(3)を満足する対物光学系を備えることを特徴とする。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
fは、対物光学系の焦点距離、
f1は、第1レンズの焦点距離、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
である。 Further, the endoscope according to at least some embodiments of the present invention is
From the object side to the image side, in order
The first lens with negative refractive power and
A second lens with positive refractive power and
Aperture aperture and
It consists of a third lens with positive refractive power.
The second lens is a biconvex lens,
The first lens, the second lens, and the third lens are made of a synthetic resin material.
It is characterized by providing an objective optical system that satisfies the following conditional expressions (1), (2), and (3).
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
Is.
本発明によれば、小型でありながら、倍率色収差が十分に補正されている対物光学系を提供することができる。また、鮮明な画像が取得できる撮像装置、及び内視鏡を提供することができる。
According to the present invention, it is possible to provide an objective optical system that is compact but has sufficiently corrected chromatic aberration of magnification. Further, it is possible to provide an imaging device and an endoscope capable of acquiring a clear image.
以下、本実施形態に係る対物光学系、本実施形態に係る撮像装置、及び本実施形態に係る内視鏡について、このような構成をとった理由と作用を説明する。なお、これらの実施形態によりこの発明が限定されるものではない。
Hereinafter, the reason and operation of the objective optical system according to the present embodiment, the imaging device according to the present embodiment, and the endoscope according to the present embodiment will be described. The present invention is not limited to these embodiments.
本実施形態の対物光学系は、物体側から像側へ順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、正の屈折力を有する第3レンズと、からなり、第2レンズは、両凸レンズであり、第1レンズ、第2レンズ、及び第3レンズは、合成樹脂材料からなり、以下の条件式(1)、(2)、(3)を満足することを特徴とする。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
fは、対物光学系の焦点距離、
f1は、第1レンズの焦点距離、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
である。 The objective optical system of the present embodiment has a first lens having a negative refractive power, a second lens having a positive refractive power, an aperture aperture, and a first lens having a positive refractive power in this order from the object side to the image side. The second lens is a biconvex lens, the first lens, the second lens, and the third lens are made of a synthetic resin material, and the following conditional equations (1), (2), and ( It is characterized by satisfying 3).
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
Is.
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
fは、対物光学系の焦点距離、
f1は、第1レンズの焦点距離、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
である。 The objective optical system of the present embodiment has a first lens having a negative refractive power, a second lens having a positive refractive power, an aperture aperture, and a first lens having a positive refractive power in this order from the object side to the image side. The second lens is a biconvex lens, the first lens, the second lens, and the third lens are made of a synthetic resin material, and the following conditional equations (1), (2), and ( It is characterized by satisfying 3).
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
Is.
本実施形態の対物光学系について説明する。図1は、本実施形態の対物光学系の断面図とパラメータを示す図である。
The objective optical system of this embodiment will be described. FIG. 1 is a diagram showing a cross-sectional view and parameters of the objective optical system of the present embodiment.
対物光学系OBJは、物体側から像側へ順に、負の屈折力を有する第1レンズL1と、正の屈折力を有する第2レンズL2と、開口絞りSと、正の屈折力を有する第3レンズL3と、を有する。
The objective optical system OBJ has a first lens L1 having a negative refractive power, a second lens L2 having a positive refractive power, an aperture aperture S, and a first lens having a positive refractive power in this order from the object side to the image side. It has three lenses L3 and.
第1レンズL1は、両凹負レンズである。ただし、第1レンズL1の形状は、両凹形状に限られない。第2レンズL2は、両凸正レンズである。第3レンズL3は、両凸正レンズである。ただし、第3レンズL3の形状は、両凸形状に限られない。
The first lens L1 is a biconcave negative lens. However, the shape of the first lens L1 is not limited to the biconcave shape. The second lens L2 is a biconvex positive lens. The third lens L3 is a biconvex positive lens. However, the shape of the third lens L3 is not limited to the biconvex shape.
広い画角、例えば、130°以上の画角を対物光学系に持たせるためには、最も物体側に位置するレンズの屈折力を、負の屈折力することが好ましい。対物光学系OBJでは、最も物体側に、第1レンズL1として両凹負レンズが配置されている。よって、広い画角を得ることができる。
In order for the objective optical system to have a wide angle of view, for example, an angle of view of 130 ° or more, it is preferable that the refractive power of the lens located closest to the object is negative. In the objective optical system OBJ, both concave and negative lenses are arranged as the first lens L1 on the most object side. Therefore, a wide angle of view can be obtained.
第2レンズL2には、両凸レンズが用いられている。第2レンズL2に両凸レンズを用いることで、第2レンズL2に適切な屈折力を持たせることができる。そのため、非点隔差と像面湾曲を良好に補正しつつ、第1レンズL1の外径を小さくすることができる。更に、光学系の全長を短縮することができる。よって、第2レンズL2の形状は、両凸形状にすることが好ましい。
A biconvex lens is used for the second lens L2. By using a biconvex lens for the second lens L2, the second lens L2 can have an appropriate refractive power. Therefore, the outer diameter of the first lens L1 can be reduced while satisfactorily correcting the astigmatic difference and the curvature of field. Further, the total length of the optical system can be shortened. Therefore, the shape of the second lens L2 is preferably a biconvex shape.
第2レンズL2の形状としては、例えば、メニスカス形状が考えられる。しかしながら、第2レンズL2の形状を像側に凸のメニスカス形状にすると、物体側面の屈折力が負の屈折力を有することになる。この場合、主光線の高さが、第1レンズL1で高くなり過ぎる。そのため、第1レンズL1の外径が大きくなる。
As the shape of the second lens L2, for example, a meniscus shape can be considered. However, if the shape of the second lens L2 is a meniscus shape that is convex toward the image side, the refractive power of the side surface of the object has a negative refractive power. In this case, the height of the main ray becomes too high in the first lens L1. Therefore, the outer diameter of the first lens L1 becomes large.
第2レンズL2の形状を物体側に凸のメニスカス形状にすると、物体側面の曲率が大きくなる。そのため、物体側面の屈折力が大きくなり過ぎる。その結果、非点隔差と像面湾曲を良好に補正することが困難になる。よって、第2レンズL2の形状をメニスカス形状にすることは好ましくない。
If the shape of the second lens L2 is a meniscus shape that is convex toward the object, the curvature of the side surface of the object becomes large. Therefore, the refractive power of the side surface of the object becomes too large. As a result, it becomes difficult to satisfactorily correct astigmatism and curvature of field. Therefore, it is not preferable that the shape of the second lens L2 is a meniscus shape.
対物光学系OBJでは、開口絞りSが、第2レンズL2と第3レンズL3との間に配置されている。このようにすることで、第1レンズL1と第2レンズL2とで得られる倍率色収差の補正作用を、強めることができる。
In the objective optical system OBJ, the aperture diaphragm S is arranged between the second lens L2 and the third lens L3. By doing so, the correction effect of the chromatic aberration of magnification obtained by the first lens L1 and the second lens L2 can be strengthened.
第1レンズL1、第2レンズL2、及び第3レンズL3には、合成樹脂材料が用いられている。各レンズに合成樹脂材料を用いることで、各レンズを射出成形で製作することができる。射出成形を用いると、レンズを低コストで製作することができる。よって、良好な結像性能を確保しつつ、コストを低減することができる。
A synthetic resin material is used for the first lens L1, the second lens L2, and the third lens L3. By using a synthetic resin material for each lens, each lens can be manufactured by injection molding. If injection molding is used, the lens can be manufactured at low cost. Therefore, the cost can be reduced while ensuring good imaging performance.
本実施形態の対物光学系は、条件式(1)、(2)、(3)を満足する。条件式について説明する前に、条件式に用いられているパラメータについて説明する。
The objective optical system of this embodiment satisfies the conditional equations (1), (2), and (3). Before explaining the conditional expression, the parameters used in the conditional expression will be described.
上述の条件式(3)と後述の条件式(4)では、DZ2が用いられている。また、後述の条件式(5)では、DY2が用いられている。DZ2とDY2について、図1を用いて説明する。
DZ2 is used in the above-mentioned conditional expression (3) and the later-described conditional expression (4). Further, in the conditional expression (5) described later, DY2 is used. DZ2 and DY2 will be described with reference to FIG.
図1には、距離DZ2、距離DY2、レンズ面R2、面頂VR2、交点CP1、交点CP2、光線CRmax、光軸AX、直線PL、光学像IMが図示されている。
FIG. 1 shows a distance DZ2, a distance DY2, a lens surface R2, a surface apex VR2, an intersection point CP1, an intersection point CP2, a light ray CRmax, an optical axis AX, a straight line PL, and an optical image IM.
(距離DZ2)
上述のように、DZ2は、第1交点から第2交点までの、光軸に平行な距離である。第1交点は、第1レンズの像側面が光軸と交わる点である。第2交点は、最大像高の主光線が第1レンズの像側面と交わる点である。 (Distance DZ2)
As described above, DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection. The first intersection is a point where the image side surface of the first lens intersects the optical axis. The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
上述のように、DZ2は、第1交点から第2交点までの、光軸に平行な距離である。第1交点は、第1レンズの像側面が光軸と交わる点である。第2交点は、最大像高の主光線が第1レンズの像側面と交わる点である。 (Distance DZ2)
As described above, DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection. The first intersection is a point where the image side surface of the first lens intersects the optical axis. The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
面頂VR2は、レンズ面R2が光軸AXと交わる点である。レンズ面R2は、第1レンズL1の像側面である。よって、面頂VR2は、第1交点を表している。
The surface top VR2 is a point where the lens surface R2 intersects the optical axis AX. The lens surface R2 is an image side surface of the first lens L1. Therefore, the surface top VR2 represents the first intersection.
交点CP1は、光線CRmaxがレンズ面R2と交わる点である。光線CRmaxは、光学像IMの最も高い位置に到達しているので、光線CRmaxは、最大像高の主光線である。レンズ面R2は、第1レンズL1の像側面である。よって、交点CP1は、第2交点を表している。
The intersection point CP1 is the point where the light ray CRmax intersects the lens surface R2. Since the ray CRmax has reached the highest position of the optical image IM, the ray CRmax is the main ray of maximum image height. The lens surface R2 is an image side surface of the first lens L1. Therefore, the intersection CP1 represents the second intersection.
ただし、面頂VR2は光軸AX上に位置しているが、交点CP1は光軸AX上に位置していない。そのため、距離DZ2は、面頂VR2から交点CP1までの光軸AXに平行な距離に基づいて算出される。
However, the surface top VR2 is located on the optical axis AX, but the intersection CP1 is not located on the optical axis AX. Therefore, the distance DZ2 is calculated based on the distance parallel to the optical axis AX from the surface top VR2 to the intersection CP1.
面頂VR2から交点CP1までの光軸AXに平行な距離の算出では、交点CP1の代わりに、交点CP1を光軸AX上に投影したときの点を用いれば良い。
In calculating the distance parallel to the optical axis AX from the surface top VR2 to the intersection CP1, the point when the intersection CP1 is projected on the optical axis AX may be used instead of the intersection CP1.
交点CP2は、直線PLが光軸AXと交わる点である。直線PLは、交点CP1を通り、且つ光軸AXと直交する仮想の直線である。よって、交点CP2は、交点CP1を光軸AX上に投影したときの点を表している。
The intersection point CP2 is the point where the straight line PL intersects the optical axis AX. The straight line PL is a virtual straight line that passes through the intersection CP1 and is orthogonal to the optical axis AX. Therefore, the intersection point CP2 represents a point when the intersection point CP1 is projected on the optical axis AX.
面頂VR2から交点CP2までの光軸AX上の距離は、面頂VR2から交点CP1までの光軸AXに平行な距離を表している。よって、距離DZ2は、面頂VR2から交点CP2までの光軸AX上の距離に基づいて算出すれば良い。
The distance on the optical axis AX from the surface apex VR2 to the intersection CP2 represents the distance parallel to the optical axis AX from the surface apex VR2 to the intersection CP1. Therefore, the distance DZ2 may be calculated based on the distance on the optical axis AX from the surface top VR2 to the intersection CP2.
交点CP1と交点CP2は、直線PL上に位置する。交点CP1の位置は既知なので、交点CP1の位置から交点CP2の位置を算出することができる。交点CP2の位置が算出されることで、面頂VR2から交点CP2までの光軸AX上の距離を算出することができる。その結果、距離DZ2を算出することができる。
The intersection point CP1 and the intersection point CP2 are located on the straight line PL. Since the position of the intersection CP1 is known, the position of the intersection CP2 can be calculated from the position of the intersection CP1. By calculating the position of the intersection CP2, the distance on the optical axis AX from the surface top VR2 to the intersection CP2 can be calculated. As a result, the distance DZ2 can be calculated.
距離DZ2は、面頂VR2を基準にして算出される。距離の値の正負については、光の進行方向を正、逆方向を負とする。交点CP1が面頂VR2よりも像側に位置する場合、距離の値は正の値である。すなわち、第2交点が第1交点よりも像側に位置する場合、距離の値は正の値である。
The distance DZ2 is calculated based on the surface top VR2. Regarding the positive / negative of the distance value, the traveling direction of light is positive and the opposite direction is negative. When the intersection point CP1 is located on the image side of the surface top VR2, the distance value is a positive value. That is, when the second intersection is located closer to the image than the first intersection, the distance value is a positive value.
(距離DY2)
後述のように、DY2は、光軸から第2交点までの最短距離である。 (Distance DY2)
As will be described later, DY2 is the shortest distance from the optical axis to the second intersection.
後述のように、DY2は、光軸から第2交点までの最短距離である。 (Distance DY2)
As will be described later, DY2 is the shortest distance from the optical axis to the second intersection.
上述のように、交点CP1は、第2交点を表している。交点CP2は、光軸AX上に位置しているので、交点CP2の位置を光軸AXの位置と見なすことができる。
As described above, the intersection CP1 represents the second intersection. Since the intersection CP2 is located on the optical axis AX, the position of the intersection CP2 can be regarded as the position of the optical axis AX.
交点CP1と交点CP2は、直線PL上に位置する。直線PLは、交点CP1を通り、且つ光軸AXと直交する仮想の直線である。交点CP2の位置は光軸AXの位置と見なせるので、交点CP2から交点CP1までの距離が、光軸AXから交点CP1までの最短距離を表している。よって、距離DY2は、交点CP2から交点CP1までの距離に基づいて算出すれば良い。
The intersection point CP1 and the intersection point CP2 are located on the straight line PL. The straight line PL is a virtual straight line that passes through the intersection CP1 and is orthogonal to the optical axis AX. Since the position of the intersection CP2 can be regarded as the position of the optical axis AX, the distance from the intersection CP2 to the intersection CP1 represents the shortest distance from the optical axis AX to the intersection CP1. Therefore, the distance DY2 may be calculated based on the distance from the intersection CP2 to the intersection CP1.
距離DY2の算出では、光軸AXを基準にして距離が算出される。交点CP1はレンズ面R2上に位置している。レンズ面R2は、回転対称面である。よって、光軸AXから交点CP1に向かう方向は1つだけなので、距離の値は常に正の値である。
In the calculation of the distance DY2, the distance is calculated with reference to the optical axis AX. The intersection point CP1 is located on the lens surface R2. The lens surface R2 is a rotationally symmetric surface. Therefore, since there is only one direction from the optical axis AX to the intersection CP1, the distance value is always a positive value.
条件式(1)、(2)、(3)について説明する。
The conditional expressions (1), (2), and (3) will be explained.
画角の広い光学系では、軸外における結像性能を良くする必要がある。軸外における結像性能を良好にするためには、倍率色収差の発生を抑制すれば良い。倍率色収差の発生を抑制するためには、第2レンズに、第1レンズよりも分散が大きい合成樹脂材料を用いると良い。
In an optical system with a wide angle of view, it is necessary to improve the imaging performance off the axis. In order to improve the imaging performance off the axis, it is sufficient to suppress the occurrence of chromatic aberration of magnification. In order to suppress the occurrence of chromatic aberration of magnification, it is preferable to use a synthetic resin material having a larger dispersion than that of the first lens for the second lens.
条件式(1)は、第2レンズのアッベ数を規定する条件式である。条件式(1)を満足する場合、第2レンズのアッベ数は、第1レンズのアッベ数と異なる。そのため、倍率色収差の発生を抑制することができる。
Conditional expression (1) is a conditional expression that defines the Abbe number of the second lens. When the conditional expression (1) is satisfied, the Abbe number of the second lens is different from the Abbe number of the first lens. Therefore, the occurrence of chromatic aberration of magnification can be suppressed.
条件式(2)は、第1レンズの屈折力を規定する条件式である。条件式(2)では、第1レンズの屈折力を、対物光学系の屈折力に対して規定している。
Conditional expression (2) is a conditional expression that defines the refractive power of the first lens. In the conditional expression (2), the refractive power of the first lens is defined with respect to the refractive power of the objective optical system.
条件式(2)の下限値を下回る場合、第1レンズの屈折力が大きくなり過ぎる。この場合、製造誤差の影響を受け易くなる。例えば、製造誤差によって第1レンズが偏心すると、収差が増大する。そのため、結像性能が大きく低下する。
If it falls below the lower limit of the conditional expression (2), the refractive power of the first lens becomes too large. In this case, it is easily affected by manufacturing errors. For example, if the first lens is eccentric due to a manufacturing error, the aberration increases. Therefore, the imaging performance is greatly reduced.
結像性能の低下を防止するためには、製造誤差を小さくしなくてはならない。しかしながら、製造誤差を小さくしようとすると、製造コストが増大してしまう。
In order to prevent deterioration of imaging performance, manufacturing error must be reduced. However, if an attempt is made to reduce the manufacturing error, the manufacturing cost will increase.
条件式(2)の上限値を上回る場合、第1レンズの屈折力が小さくなり過ぎる。そのため、広い画角を確保することが困難になるか、又は、第1レンズの外径が大きくなる。
If the upper limit of the conditional expression (2) is exceeded, the refractive power of the first lens becomes too small. Therefore, it becomes difficult to secure a wide angle of view, or the outer diameter of the first lens becomes large.
条件式(3)は、第1レンズの像側面における最大像高の主光線の通過位置を規定する条件式である。
The conditional expression (3) is a conditional expression that defines the passing position of the main ray having the maximum image height on the image side surface of the first lens.
条件式(3)の下限値を下回る場合、最大像高の主光線が第1レンズの像側面と交わる点が、光軸に近づき過ぎる。この場合、第1レンズと第2レンズとの間で、軸外光線の高さが低くなり過ぎる。また、第1レンズと第2レンズとの間隔が狭くなり過ぎる。そのため、光学系を広角にすることが難しくなる。第1レンズと第2レンズとの間隔は、光軸上の間隔である。
If it is below the lower limit of the conditional expression (3), the point where the main ray of the maximum image height intersects the image side surface of the first lens is too close to the optical axis. In this case, the height of the off-axis light rays becomes too low between the first lens and the second lens. Further, the distance between the first lens and the second lens becomes too narrow. Therefore, it becomes difficult to widen the optical system. The distance between the first lens and the second lens is the distance on the optical axis.
条件式(3)の上限値を上回る場合、第1レンズの外径が大きくなると共に、第1レンズと第2レンズとの間隔が広くなり過ぎる。そのため、倍率色収差を十分に補正することが困難になる。また、最も像側に位置するレンズ面から像面までの距離が短くなり過ぎてしまう。
If the upper limit of the conditional expression (3) is exceeded, the outer diameter of the first lens becomes large and the distance between the first lens and the second lens becomes too wide. Therefore, it becomes difficult to sufficiently correct the chromatic aberration of magnification. In addition, the distance from the lens surface located closest to the image side to the image surface becomes too short.
条件式(3)に代えて、以下の条件式(3’)を満足することが好ましい。
0.59<DZ2/f<0.9 (3’) Instead of the conditional expression (3), it is preferable to satisfy the following conditional expression (3').
0.59 <DZ2 / f <0.9 (3')
0.59<DZ2/f<0.9 (3’) Instead of the conditional expression (3), it is preferable to satisfy the following conditional expression (3').
0.59 <DZ2 / f <0.9 (3')
本実施形態の対物光学系では、第1レンズの像側面は、非球面であり、以下の条件式(4)を満足することが好ましい。
0.8<DZ2/R2<1.4 (4)
ここで、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
R2は、第1レンズの像側面の曲率半径、
である。 In the objective optical system of the present embodiment, the image side surface of the first lens is an aspherical surface, and it is preferable that the following conditional expression (4) is satisfied.
0.8 <DZ2 / R2 <1.4 (4)
here,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
R2 is the radius of curvature of the image side of the first lens,
Is.
0.8<DZ2/R2<1.4 (4)
ここで、
第1交点は、第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DZ2は、第1交点から第2交点までの、光軸に平行な距離、
第2交点が第1交点よりも像側に位置する場合、距離の値は正の値、
R2は、第1レンズの像側面の曲率半径、
である。 In the objective optical system of the present embodiment, the image side surface of the first lens is an aspherical surface, and it is preferable that the following conditional expression (4) is satisfied.
0.8 <DZ2 / R2 <1.4 (4)
here,
The first intersection is the point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
If the second intersection is closer to the image than the first intersection, the distance value is a positive value,
R2 is the radius of curvature of the image side of the first lens,
Is.
本実施形態の対物光学系では、第1レンズの像側面は、非球面である。非球面の形状は、中心から周辺に向かって曲率が小さくなる形状である。
In the objective optical system of this embodiment, the image side surface of the first lens is an aspherical surface. The shape of the aspherical surface is a shape in which the curvature decreases from the center to the periphery.
条件式(4)は、第1レンズの像側面の非球面形状を規定する条件式である。
Conditional expression (4) is a conditional expression that defines the aspherical shape of the image side surface of the first lens.
条件式(4)の下限値を下回る場合、第1レンズの像側面の曲率半径が大きくなるので、非球面による補正効果が弱まる。また、最大像高の主光線が第1レンズの像側面と交わる点が、光軸に近づき過ぎる。この場合、軸外光線の高さが低くなる。そのため、軸外光線に対して、非球面による補正効果が弱まる。また、第1レンズと第2レンズの間隔が狭くなり過ぎる。そのため、光学系を広角にすることが難しくなる。
If it is less than the lower limit of the conditional expression (4), the radius of curvature of the image side surface of the first lens becomes large, so that the correction effect due to the aspherical surface weakens. Further, the point where the main ray having the maximum image height intersects the image side surface of the first lens is too close to the optical axis. In this case, the height of the off-axis ray becomes low. Therefore, the correction effect of the aspherical surface is weakened with respect to the off-axis light rays. Also, the distance between the first lens and the second lens becomes too narrow. Therefore, it becomes difficult to widen the optical system.
条件式(4)の上限値を上回る場合、第1レンズと第2レンズとの間隔が広くなり過ぎる。そのため、倍率色収差を十分に補正することが困難になる。
If the upper limit of the conditional expression (4) is exceeded, the distance between the first lens and the second lens becomes too wide. Therefore, it becomes difficult to sufficiently correct the chromatic aberration of magnification.
条件式(4)に代えて、以下の条件式(4’)を満足することが好ましい。
1.05<DZ2/R2<1.35 (4’) Instead of the conditional expression (4), it is preferable to satisfy the following conditional expression (4').
1.05 <DZ2 / R2 <1.35 (4')
1.05<DZ2/R2<1.35 (4’) Instead of the conditional expression (4), it is preferable to satisfy the following conditional expression (4').
1.05 <DZ2 / R2 <1.35 (4')
本実施形態の対物光学系は、以下の条件式(5)を満足することが好ましい。
0.6<D2/DY2<1.35 (5)
ここで、
D2は、第1レンズの像側面と第2レンズの物体側面との光軸上の間隔、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DY2は、光軸から第2交点までの最短距離、
である。 The objective optical system of the present embodiment preferably satisfies the following conditional expression (5).
0.6 <D2 / DY2 <1.35 (5)
here,
D2 is the distance between the image side surface of the first lens and the object side surface of the second lens on the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DY2 is the shortest distance from the optical axis to the second intersection,
Is.
0.6<D2/DY2<1.35 (5)
ここで、
D2は、第1レンズの像側面と第2レンズの物体側面との光軸上の間隔、
第2交点は、最大像高の主光線が第1レンズの像側面と交わる点、
DY2は、光軸から第2交点までの最短距離、
である。 The objective optical system of the present embodiment preferably satisfies the following conditional expression (5).
0.6 <D2 / DY2 <1.35 (5)
here,
D2 is the distance between the image side surface of the first lens and the object side surface of the second lens on the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DY2 is the shortest distance from the optical axis to the second intersection,
Is.
条件式(5)の下限値を下回る場合、第1レンズと第2レンズとの間隔が狭くなり過ぎる。そのため、広い画角を確保することが困難になる。
If it falls below the lower limit of the conditional expression (5), the distance between the first lens and the second lens becomes too narrow. Therefore, it becomes difficult to secure a wide angle of view.
条件式(5)の上限値を上回る場合、第1レンズと第2レンズとの間隔が広くなり過ぎる。そのため、倍率色収差を十分に補正することが困難になる。
If the upper limit of the conditional expression (5) is exceeded, the distance between the first lens and the second lens becomes too wide. Therefore, it becomes difficult to sufficiently correct the chromatic aberration of magnification.
本実施形態の対物光学系は、以下の条件式(6)を満足することが好ましい。
0.25<f/f2<0.6 (6)
ここで、
fは、対物光学系の焦点距離、
f2は、第2レンズの焦点距離、
である。 The objective optical system of the present embodiment preferably satisfies the following conditional expression (6).
0.25 <f / f2 <0.6 (6)
here,
f is the focal length of the objective optical system,
f2 is the focal length of the second lens,
Is.
0.25<f/f2<0.6 (6)
ここで、
fは、対物光学系の焦点距離、
f2は、第2レンズの焦点距離、
である。 The objective optical system of the present embodiment preferably satisfies the following conditional expression (6).
0.25 <f / f2 <0.6 (6)
here,
f is the focal length of the objective optical system,
f2 is the focal length of the second lens,
Is.
条件式(6)は、第2レンズの屈折力を規定する条件式である。条件式(6)では、第2レンズの屈折力を、対物光学系の屈折力に対して規定している。
Conditional formula (6) is a conditional formula that defines the refractive power of the second lens. In the conditional expression (6), the refractive power of the second lens is defined with respect to the refractive power of the objective optical system.
第1レンズに適切な大きさの屈折力を持たせることで、画角の広い光線を第1レンズに入射させることができる。第1レンズに入射した光線は、最終的に、第3レンズに入射する。このとき、第1レンズに入射した光線を、良好な状態で、第3レンズに入射させることが好ましい。
By giving the first lens an appropriate amount of refractive power, light rays with a wide angle of view can be incident on the first lens. The light beam incident on the first lens finally incidents on the third lens. At this time, it is preferable that the light rays incident on the first lens are incident on the third lens in good condition.
第1レンズと第2レンズで形成された像は、第3レンズで像面に結像される。第3レンズでの諸収差の発生を抑えるためには、第3レンズでの結像倍率を小さくするほうが良い、そのためには、像面の中心に入射する軸上光線は、光軸となるべく平行となるように第3レンズに入射するのがよい。良好な状態とは、第3レンズでの結像倍率が小さい状態、又は、第3レンズに入射する軸上光線が光軸と略平行になっている状態である。
The image formed by the first lens and the second lens is imaged on the image plane by the third lens. In order to suppress the occurrence of various aberrations in the third lens, it is better to reduce the imaging magnification in the third lens. For that purpose, the axial light rays incident on the center of the image plane are as parallel as possible to the optical axis. It is better to enter the third lens so as to be. A good state is a state in which the imaging magnification of the third lens is small, or a state in which the axial light beam incident on the third lens is substantially parallel to the optical axis.
第1レンズと第3レンズとの間には、第2レンズが配置されている。第1レンズに入射した光線を、良好な状態で、第3レンズに入射させるためには、第2レンズに適切な大きさの屈折力を持たせる必要がある。
A second lens is arranged between the first lens and the third lens. In order for the light beam incident on the first lens to be incident on the third lens in a good state, it is necessary to give the second lens an appropriate magnitude of refractive power.
条件式(6)の下限値を下回る場合、第2レンズの屈折力が小さくなり過ぎる。この場合、第1レンズと第2レンズとの間隔が広くなり過ぎる。そのため、光学系の全長が長くなると共に、第1レンズの外径が大きくなる。また、倍率色収差の補正が十分に行えなくなる。
If it falls below the lower limit of the conditional expression (6), the refractive power of the second lens becomes too small. In this case, the distance between the first lens and the second lens becomes too wide. Therefore, the total length of the optical system becomes long, and the outer diameter of the first lens becomes large. In addition, the chromatic aberration of magnification cannot be sufficiently corrected.
条件式(6)の上限値を上回る場合、第2レンズの屈折力が大きくなり過ぎる。この場合、製造誤差の影響を受け易くなる。例えば、製造誤差によって第2レンズが偏心すると、収差が増大する。そのため、結像性能が大きく低下する。
If the upper limit of the conditional expression (6) is exceeded, the refractive power of the second lens becomes too large. In this case, it is easily affected by manufacturing errors. For example, if the second lens is eccentric due to a manufacturing error, the aberration increases. Therefore, the imaging performance is greatly reduced.
結像性能の低下を防止するためには、製造誤差を小さくしなくてはならない。しかしながら、製造誤差を小さくしようとすると、製造コストが増大してしまう。
In order to prevent deterioration of imaging performance, manufacturing error must be reduced. However, if an attempt is made to reduce the manufacturing error, the manufacturing cost will increase.
本実施形態の対物光学系は、以下の条件式(7)を満足することが好ましい。
-3.0<f2/f1<-1.9 (7)
ここで、
f1は、第1レンズの焦点距離、
f2は、第2レンズの焦点距離、
である。 The objective optical system of the present embodiment preferably satisfies the following conditional expression (7).
-3.0 <f2 / f1 <-1.9 (7)
here,
f1 is the focal length of the first lens,
f2 is the focal length of the second lens,
Is.
-3.0<f2/f1<-1.9 (7)
ここで、
f1は、第1レンズの焦点距離、
f2は、第2レンズの焦点距離、
である。 The objective optical system of the present embodiment preferably satisfies the following conditional expression (7).
-3.0 <f2 / f1 <-1.9 (7)
here,
f1 is the focal length of the first lens,
f2 is the focal length of the second lens,
Is.
条件式(7)は、第1レンズの屈折力を規定する条件式である。条件式(7)では、第1レンズの屈折力を、第2レンズの屈折力に対して規定している。
The conditional expression (7) is a conditional expression that defines the refractive power of the first lens. In the conditional expression (7), the refractive power of the first lens is defined with respect to the refractive power of the second lens.
条件式(7)の下限値を下回る場合、第1レンズの屈折力が第2レンズの屈折力に比べて大きくなり過ぎる。そのため、倍率色収差の補正が十分に行えなくなる。
If it is less than the lower limit of the conditional expression (7), the refractive power of the first lens becomes too large as compared with the refractive power of the second lens. Therefore, the chromatic aberration of magnification cannot be sufficiently corrected.
条件式(7)の上限値を上回る場合、第1レンズの屈折力が第2レンズの屈折力に比べて小さくなり過ぎる。そのため、第1レンズの外径が大きくなる。
If the upper limit of the conditional expression (7) is exceeded, the refractive power of the first lens becomes too small as compared with the refractive power of the second lens. Therefore, the outer diameter of the first lens becomes large.
本実施形態の対物光学系は、以下の条件式(8)、(9)を満足することが好ましい。
50<νd1 (8)
νd2<35 (9)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
である。 The objective optical system of this embodiment preferably satisfies the following conditional expressions (8) and (9).
50 <νd1 (8)
νd2 <35 (9)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
Is.
50<νd1 (8)
νd2<35 (9)
ここで、
νd1は、第1レンズのアッベ数、
νd2は、第2レンズのアッベ数、
である。 The objective optical system of this embodiment preferably satisfies the following conditional expressions (8) and (9).
50 <νd1 (8)
νd2 <35 (9)
here,
νd1 is the Abbe number of the first lens,
νd2 is the Abbe number of the second lens,
Is.
条件式(8)、(9)を満足することで、光学系を小型にしつつ、倍率色収差を十分に補正することができる。
By satisfying the conditional expressions (8) and (9), it is possible to sufficiently correct the chromatic aberration of magnification while reducing the size of the optical system.
本実施形態の対物光学系は、以下の条件式(10)、(11)、(12)を満足することが好ましい。
nd1<1.55 (10)
nd2<1.7 (11)
nd3<1.55 (12)
ここで、
nd1は、第1レンズのe線における屈折率、
nd2は、第2レンズのe線における屈折率、
nd3は、第3レンズのe線における屈折率、
である。 The objective optical system of the present embodiment preferably satisfies the following conditional expressions (10), (11), and (12).
nd1 <1.55 (10)
nd2 <1.7 (11)
nd3 <1.55 (12)
here,
nd1 is the refractive index of the first lens on the e-line.
nd2 is the refractive index of the second lens on the e-line.
nd3 is the refractive index of the third lens on the e-line.
Is.
nd1<1.55 (10)
nd2<1.7 (11)
nd3<1.55 (12)
ここで、
nd1は、第1レンズのe線における屈折率、
nd2は、第2レンズのe線における屈折率、
nd3は、第3レンズのe線における屈折率、
である。 The objective optical system of the present embodiment preferably satisfies the following conditional expressions (10), (11), and (12).
nd1 <1.55 (10)
nd2 <1.7 (11)
nd3 <1.55 (12)
here,
nd1 is the refractive index of the first lens on the e-line.
nd2 is the refractive index of the second lens on the e-line.
nd3 is the refractive index of the third lens on the e-line.
Is.
条件式(10)、(11)、(12)を満足することで、光学系を小型で安価にしつつ、諸収差を十分に補正することができる。
By satisfying the conditional expressions (10), (11), and (12), it is possible to sufficiently correct various aberrations while making the optical system compact and inexpensive.
本実施形態の撮像装置は、物体側から像側へ順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、正の屈折力を有する第3レンズと、からなり、第2レンズは、両凸レンズであり、第1レンズ、第2レンズ、及び第3レンズは、合成樹脂材料からなり、上述の条件式(1)、(2)、(3)を満足する対物光学系を備えることを特徴とする。
The image pickup apparatus of the present embodiment has a first lens having a negative refractive power, a second lens having a positive refractive power, an aperture aperture, and a third lens having a positive refractive power in this order from the object side to the image side. The second lens is a biconvex lens, and the first lens, the second lens, and the third lens are made of a synthetic resin material, and the above-mentioned conditional equations (1), (2), and (3). ) Is provided.
本実施形態の内視鏡は、物体側から像側へ順に、負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、開口絞りと、正の屈折力を有する第3レンズと、からなり、第2レンズは、両凸レンズであり、第1レンズ、第2レンズ、及び第3レンズは、合成樹脂材料からなり、上述の条件式(1)、(2)、(3)を満足する対物光学系を備えることを特徴とする。
The endoscope of the present embodiment has a first lens having a negative refractive power, a second lens having a positive refractive power, an aperture aperture, and a first lens having a positive refractive power in this order from the object side to the image side. The second lens is a biconvex lens, and the first lens, the second lens, and the third lens are made of a synthetic resin material. It is characterized by providing an objective optical system that satisfies 3).
本実施形態の撮像装置と本実施形態の内視鏡は、上述の条件式(4)~(12)の少なくとも1つを満足していても良い。
The imaging device of the present embodiment and the endoscope of the present embodiment may satisfy at least one of the above-mentioned conditional expressions (4) to (12).
以下に、対物光学系の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
Hereinafter, examples of the objective optical system will be described in detail based on the drawings. The present invention is not limited to this embodiment.
各実施例のレンズ断面図について説明する。図2~図10において、(a)はレンズ断面図を示している。像面はIで示してある。
The lens cross-sectional view of each embodiment will be described. In FIGS. 2 to 10, (a) shows a cross-sectional view of the lens. The image plane is indicated by I.
各実施例の収差図について説明する。図2~図10において、(a)はレンズ断面図を示している。(b)は球面収差(SA)、(c)は非点収差(AS)、(d)は倍率色収差(CC)、(e)は歪曲収差(DT)、(f)はコマ収差(CM)を示している。コマ収差(CM)は、最大像高の0.8倍の位置における収差である。
The aberration diagram of each embodiment will be described. In FIGS. 2 to 10, (a) shows a cross-sectional view of the lens. (B) is spherical aberration (SA), (c) is astigmatism (AS), (d) is chromatic aberration of magnification (CC), (e) is distortion (DT), and (f) is coma (CM). Is shown. Coma (CM) is an aberration at a position 0.8 times the maximum image height.
各収差図において、横軸は収差量を表している。球面収差、非点収差、倍率色収差、コマ収差については、収差量の単位はmmである。また、歪曲収差については、収差量の単位は%である。FIYは像高で単位はmm、FNOはFナンバーである。収差曲線の波長の単位はnmである。
In each aberration diagram, the horizontal axis represents the amount of aberration. For spherical aberration, astigmatism, chromatic aberration of magnification, and coma, the unit of the amount of aberration is mm. For distortion, the unit of aberration is%. FYI is the image height, the unit is mm, and FNO is the F number. The unit of wavelength of the aberration curve is nm.
実施例1の対物光学系は、物体側から順に、両凹負レンズL1と、両凸正レンズL2と、両凸正レンズL3と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。
The objective optical system of the first embodiment has a biconcave negative lens L1, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side. The aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
非球面は、両凹負レンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、の合計3面に設けられている。
The aspherical surface is provided on a total of three surfaces, that is, the image side surface of the biconcave negative lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
実施例2の対物光学系は、物体側から順に、両凹負レンズL1と、両凸正レンズL2と、両凸正レンズL3と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。
The objective optical system of the second embodiment has a biconcave negative lens L1, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side. The aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
非球面は、両凹負レンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、の合計3面に設けられている。
The aspherical surface is provided on a total of three surfaces, that is, the image side surface of the biconcave negative lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
実施例3の対物光学系は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凸正レンズL2と、両凸正レンズL3と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。
The objective optical system of the third embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side. The aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
非球面は、負メニスカスレンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、の合計3面に設けられている。
The aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
実施例4の対物光学系は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凸正レンズL2と、両凸正レンズL3と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。
The objective optical system of the fourth embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side. The aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
非球面は、負メニスカスレンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、の合計3面に設けられている。
The aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
実施例5の対物光学系は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凸正レンズL2と、両凸正レンズL3と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。
The objective optical system of the fifth embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side. The aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
非球面は、負メニスカスレンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、の合計3面に設けられている。
The aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
実施例6の対物光学系は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凸正レンズL2と、両凸正レンズL3と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。
The objective optical system of the sixth embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side. The aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
非球面は、負メニスカスレンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、の合計3面に設けられている。
The aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
実施例7の対物光学系は、物体側から順に、両凹負レンズL1と、両凸正レンズL2と、両凸正レンズL3と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。
The objective optical system of Example 7 has a biconcave negative lens L1, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side. The aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
非球面は、両凹負レンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、の合計3面に設けられている。
The aspherical surface is provided on a total of three surfaces, that is, the image side surface of the biconcave negative lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
実施例8の対物光学系は、物体側から順に、両凹負レンズL1と、両凸正レンズL2と、両凸正レンズL3と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。
The objective optical system of Example 8 has a biconcave negative lens L1, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side. The aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
非球面は、両凹負レンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、の合計3面に設けられている。
The aspherical surface is provided on a total of three surfaces, that is, the image side surface of the biconcave negative lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
実施例9の対物光学系は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、両凸正レンズL2と、両凸正レンズL3と、を有する。開口絞りSは、両凸正レンズL2と両凸正レンズL3との間に配置されている。
The objective optical system of the ninth embodiment has a negative meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, and a biconvex positive lens L3 in order from the object side. The aperture diaphragm S is arranged between the biconvex positive lens L2 and the biconvex regular lens L3.
非球面は、負メニスカスレンズL1の像側面と、両凸正レンズL2の物体側面と、両凸正レンズL3の像側面と、の合計3面に設けられている。
The aspherical surface is provided on a total of three surfaces, that is, the image side surface of the negative meniscus lens L1, the object side surface of the biconvex positive lens L2, and the image side surface of the biconvex positive lens L3.
以下に、上記各実施例の数値データを示す。面データにおいて、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、neは各レンズのe線の屈折率、νdは各レンズのアッベ数である。
The numerical data of each of the above examples is shown below. In the surface data, r is the radius of curvature of each lens surface, d is the distance between each lens surface, ne is the refractive index of the e-line of each lens, and νd is the Abbe number of each lens.
各種データにおいて、OBJは物点距離、fはe線における対物光学系の焦点距離、Fno.はFナンバー、ωは半画角、IHは像高である。絞りは開口絞りである。
In various data, OBJ is the object point distance, f is the focal length of the objective optical system on the e-line, and Fno. Is the F number, ω is the half angle of view, and IH is the image height. The diaphragm is an aperture diaphragm.
また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10、A12…としたとき、次の式で表される。
z=(y2/r)/[1+{1-(1+k)(y/r)2}1/2]
+A4y4+A6y6+A8y8+A10y10+A12y12+…
また、非球面係数において、「E-n」(nは整数)は、「10-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。 The aspherical shape has the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the conical coefficient is k, and the aspherical coefficient is A4, A6, A8, A10, A12, and so on. expressed.
z = (y 2 / r) / [1 + {1- (1 + k) (y / r) 2 } 1/2 ]
+ A4y 4 + A6y 6 + A8y 8 + A10y 10 + A12y 12 + ...
Further, in the aspherical coefficient, "En" (n is an integer) indicates "10 -n ". The symbols of these specification values are also common to the numerical data of the examples described later.
z=(y2/r)/[1+{1-(1+k)(y/r)2}1/2]
+A4y4+A6y6+A8y8+A10y10+A12y12+…
また、非球面係数において、「E-n」(nは整数)は、「10-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。 The aspherical shape has the following equation when the optical axis direction is z, the direction orthogonal to the optical axis is y, the conical coefficient is k, and the aspherical coefficient is A4, A6, A8, A10, A12, and so on. expressed.
z = (y 2 / r) / [1 + {1- (1 + k) (y / r) 2 } 1/2 ]
+ A4y 4 + A6y 6 + A8y 8 + A10y 10 + A12y 12 + ...
Further, in the aspherical coefficient, "En" (n is an integer) indicates "10 -n ". The symbols of these specification values are also common to the numerical data of the examples described later.
数値実施例1
単位 mm
面データ
面番号 r d ne νd
1 -67.5778 0.3800 1.53336 56.00
2* 0.3644 0.6446 1.
3* 1.2135 0.9791 1.64117 23.90
4 -2.1149 0.0400 1.
5(絞り) ∞ 0.0940 1.
6 13.3727 0.8000 1.53336 56.00
7* -0.8892 1.3628 1.
像面 ∞
非球面データ
第2面
k=-0.8112
第3面
k=0.
A2=0.0000E+00,A4=-2.2107E-01
第7面
k=0.
A2=0.0000E+00,A4=2.6525E-01,A6=6.6785E-01
各種データ
OBJ 10.0
f 0.654
Fno. 4.31
ω 70.5
IH 0.975 Numerical Example 1
Unit mm
Surface data Surface number r d ne ν d
1 -67.5778 0.3800 1.53336 56.00
2 * 0.3644 0.6446 1.
3 * 1.2135 0.9791 1.64117 23.90
4-2.1149 0.0400 1.
5 (Aperture) ∞ 0.0940 1.
6 13.3727 0.8000 1.53336 56.00
7 * -0.8892 1.3628 1.
Image plane ∞
Second surface of aspherical data
k = -0.8112
Third side
k = 0.
A2 = 0.000E + 00, A4 = -2.2107E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 2.6525E-01, A6 = 6.6785E-01
Various data OBJ 10.0
f 0.654
Fno. 4.31
ω 70.5
IH 0.975
単位 mm
面データ
面番号 r d ne νd
1 -67.5778 0.3800 1.53336 56.00
2* 0.3644 0.6446 1.
3* 1.2135 0.9791 1.64117 23.90
4 -2.1149 0.0400 1.
5(絞り) ∞ 0.0940 1.
6 13.3727 0.8000 1.53336 56.00
7* -0.8892 1.3628 1.
像面 ∞
非球面データ
第2面
k=-0.8112
第3面
k=0.
A2=0.0000E+00,A4=-2.2107E-01
第7面
k=0.
A2=0.0000E+00,A4=2.6525E-01,A6=6.6785E-01
各種データ
OBJ 10.0
f 0.654
Fno. 4.31
ω 70.5
IH 0.975 Numerical Example 1
Unit mm
Surface data Surface number r d ne ν d
1 -67.5778 0.3800 1.53336 56.00
2 * 0.3644 0.6446 1.
3 * 1.2135 0.9791 1.64117 23.90
4-2.1149 0.0400 1.
5 (Aperture) ∞ 0.0940 1.
6 13.3727 0.8000 1.53336 56.00
7 * -0.8892 1.3628 1.
Image plane ∞
Second surface of aspherical data
k = -0.8112
Third side
k = 0.
A2 = 0.000E + 00, A4 = -2.2107E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 2.6525E-01, A6 = 6.6785E-01
Various data OBJ 10.0
f 0.654
Fno. 4.31
ω 70.5
IH 0.975
数値実施例2
単位 mm
面データ
面番号 r d ne νd
1 -35.5588 0.3800 1.53336 56.00
2* 0.3645 0.6703 1.
3* 1.3190 0.8967 1.64117 23.90
4 -2.0172 0.0400 1.
5(絞り) ∞ 0.0940 1.
6 13.0628 0.9000 1.53336 56.00
7* -0.8450 1.3223 1.
像面 ∞
非球面データ
第2面
k=-0.7942
第3面
k=0.
A2=0.0000E+00,A4=-1.7926E-01
第7面
k=0.
A2=0.0000E+00,A4=3.0360E-01,A6=6.6355E-01
各種データ
OBJ 10.0
f 0.621
Fno. 4.19
ω 78.3
IH 0.975 Numerical Example 2
Unit mm
Surface data Surface number r d ne ν d
1 -35.5588 0.3800 1.53336 56.00
2 * 0.3645 0.6703 1.
3 * 1.3190 0.8967 1.64117 23.90
4-2.0172 0.0400 1.
5 (Aperture) ∞ 0.0940 1.
6 13.0628 0.9000 1.53336 56.00
7 * -0.8450 1.3223 1.
Image plane ∞
Second surface of aspherical data
k = -0.7942
Third side
k = 0.
A2 = 0.000E + 00, A4 = -1.7926E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.0360E-01, A6 = 6.6355E-01
Various data OBJ 10.0
f 0.621
Fno. 4.19
ω 78.3
IH 0.975
単位 mm
面データ
面番号 r d ne νd
1 -35.5588 0.3800 1.53336 56.00
2* 0.3645 0.6703 1.
3* 1.3190 0.8967 1.64117 23.90
4 -2.0172 0.0400 1.
5(絞り) ∞ 0.0940 1.
6 13.0628 0.9000 1.53336 56.00
7* -0.8450 1.3223 1.
像面 ∞
非球面データ
第2面
k=-0.7942
第3面
k=0.
A2=0.0000E+00,A4=-1.7926E-01
第7面
k=0.
A2=0.0000E+00,A4=3.0360E-01,A6=6.6355E-01
各種データ
OBJ 10.0
f 0.621
Fno. 4.19
ω 78.3
IH 0.975 Numerical Example 2
Unit mm
Surface data Surface number r d ne ν d
1 -35.5588 0.3800 1.53336 56.00
2 * 0.3645 0.6703 1.
3 * 1.3190 0.8967 1.64117 23.90
4-2.0172 0.0400 1.
5 (Aperture) ∞ 0.0940 1.
6 13.0628 0.9000 1.53336 56.00
7 * -0.8450 1.3223 1.
Image plane ∞
Second surface of aspherical data
k = -0.7942
Third side
k = 0.
A2 = 0.000E + 00, A4 = -1.7926E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.0360E-01, A6 = 6.6355E-01
Various data OBJ 10.0
f 0.621
Fno. 4.19
ω 78.3
IH 0.975
数値実施例3
単位 mm
面データ
面番号 r d ne νd
1 453.6508 0.3800 1.53336 56.00
2* 0.3810 0.4796 1.
3* 1.2280 1.1074 1.64117 23.90
4 -4.3141 0.0400 1.
5(絞り) ∞ 0.1922 1.
6 2.2176 0.8013 1.53336 56.00
7* -0.7871 1.2582 1.
像面 ∞
非球面データ
第2面
k=-0.8490
第3面
k=0.
A2=0.0000E+00,A4=-1.6622E-01
第7面
k=0.
A2=0.0000E+00,A4=3.1722E-01,A6=8.1801E-01
各種データ
OBJ 10.0
f 0.631
Fno. 4.32
ω 69.8
IH 0.975 Numerical Example 3
Unit mm
Surface data Surface number r d ne ν d
1 453.6508 0.3800 1.53336 56.00
2 * 0.3810 0.4796 1.
3 * 1.2280 1.1074 1.64117 23.90
4-4.3141 0.0400 1.
5 (Aperture) ∞ 0.1922 1.
6 2.2176 0.8013 1.53336 56.00
7 * -0.7871 1.2582 1.
Image plane ∞
Second surface of aspherical data
k = -0.8490
Third side
k = 0.
A2 = 0.000E + 00, A4 = -1.6622E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.1722E-01, A6 = 8.1801E-01
Various data OBJ 10.0
f 0.631
Fno. 4.32
ω 69.8
IH 0.975
単位 mm
面データ
面番号 r d ne νd
1 453.6508 0.3800 1.53336 56.00
2* 0.3810 0.4796 1.
3* 1.2280 1.1074 1.64117 23.90
4 -4.3141 0.0400 1.
5(絞り) ∞ 0.1922 1.
6 2.2176 0.8013 1.53336 56.00
7* -0.7871 1.2582 1.
像面 ∞
非球面データ
第2面
k=-0.8490
第3面
k=0.
A2=0.0000E+00,A4=-1.6622E-01
第7面
k=0.
A2=0.0000E+00,A4=3.1722E-01,A6=8.1801E-01
各種データ
OBJ 10.0
f 0.631
Fno. 4.32
ω 69.8
IH 0.975 Numerical Example 3
Unit mm
Surface data Surface number r d ne ν d
1 453.6508 0.3800 1.53336 56.00
2 * 0.3810 0.4796 1.
3 * 1.2280 1.1074 1.64117 23.90
4-4.3141 0.0400 1.
5 (Aperture) ∞ 0.1922 1.
6 2.2176 0.8013 1.53336 56.00
7 * -0.7871 1.2582 1.
Image plane ∞
Second surface of aspherical data
k = -0.8490
Third side
k = 0.
A2 = 0.000E + 00, A4 = -1.6622E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.1722E-01, A6 = 8.1801E-01
Various data OBJ 10.0
f 0.631
Fno. 4.32
ω 69.8
IH 0.975
数値実施例4
単位 mm
面データ
面番号 r d ne νd
1 41.4725 0.3800 1.53336 56.00
2* 0.3805 0.4800 1.
3* 1.1458 1.1373 1.64117 23.90
4 -11.1625 0.0400 1.
5(絞り) ∞ 0.2672 1.
6 1.8503 0.7191 1.53336 56.00
7* -0.7898 1.2764 1.
像面 ∞
非球面データ
第2面
k=-0.7753
第3面
k=0.
A2=0.0000E+00,A4=-1.0391E-01
第7面
k=0.
A2=0.0000E+00,A4=2.6615E-01,A6=9.5022E-01
各種データ
OBJ 10.0
f 0.632
Fno. 4.28
ω 70.0
IH 0.975 Numerical Example 4
Unit mm
Surface data Surface number r d ne ν d
1 41.4725 0.3800 1.53336 56.00
2 * 0.3805 0.4800 1.
3 * 1.1458 1.1373 1.64117 23.90
4 -11.1625 0.0400 1.
5 (Aperture) ∞ 0.2672 1.
6 1.8503 0.7191 1.53336 56.00
7 * -0.7898 1.2764 1.
Image plane ∞
Second surface of aspherical data
k = -0.7753
Third side
k = 0.
A2 = 0.000E + 00, A4 = -1.0391E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 2.6615E-01, A6 = 9.5022E-01
Various data OBJ 10.0
f 0.632
Fno. 4.28
ω 70.0
IH 0.975
単位 mm
面データ
面番号 r d ne νd
1 41.4725 0.3800 1.53336 56.00
2* 0.3805 0.4800 1.
3* 1.1458 1.1373 1.64117 23.90
4 -11.1625 0.0400 1.
5(絞り) ∞ 0.2672 1.
6 1.8503 0.7191 1.53336 56.00
7* -0.7898 1.2764 1.
像面 ∞
非球面データ
第2面
k=-0.7753
第3面
k=0.
A2=0.0000E+00,A4=-1.0391E-01
第7面
k=0.
A2=0.0000E+00,A4=2.6615E-01,A6=9.5022E-01
各種データ
OBJ 10.0
f 0.632
Fno. 4.28
ω 70.0
IH 0.975 Numerical Example 4
Unit mm
Surface data Surface number r d ne ν d
1 41.4725 0.3800 1.53336 56.00
2 * 0.3805 0.4800 1.
3 * 1.1458 1.1373 1.64117 23.90
4 -11.1625 0.0400 1.
5 (Aperture) ∞ 0.2672 1.
6 1.8503 0.7191 1.53336 56.00
7 * -0.7898 1.2764 1.
Image plane ∞
Second surface of aspherical data
k = -0.7753
Third side
k = 0.
A2 = 0.000E + 00, A4 = -1.0391E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 2.6615E-01, A6 = 9.5022E-01
Various data OBJ 10.0
f 0.632
Fno. 4.28
ω 70.0
IH 0.975
数値実施例5
単位 mm
面データ
面番号 r d ne νd
1 43.8711 0.3800 1.53336 56.00
2* 0.3502 0.5000 1.
3* 1.1934 1.1000 1.64117 23.90
4 -3.0438 0.0400 1.
5(絞り) ∞ 0.3540 1.
6 2.1804 0.8000 1.53336 56.00
7* -0.7625 1.1271 1.
像面 ∞
非球面データ
第2面
k=-0.7076
第3面
k=0.
A2=0.0000E+00,A4=1.9535E-01
第7面
k=0.
A2=0.0000E+00,A4=3.7211E-01,A6=9.8200E-01
各種データ
OBJ 10.0
f 0.560
Fno. 4.31
ω 70.5
IH 0.975 Numerical Example 5
Unit mm
Surface data Surface number r d ne ν d
1 43.8711 0.3800 1.53336 56.00
2 * 0.3502 0.5000 1.
3 * 1.1934 1.1000 1.64117 23.90
4 -3.0438 0.0400 1.
5 (Aperture) ∞ 0.3540 1.
6 2.1804 0.8000 1.53336 56.00
7 * -0.7625 1.1271 1.
Image plane ∞
Second surface of aspherical data
k = -0.7076
Third side
k = 0.
A2 = 0.000E + 00, A4 = 1.9535E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.7211E-01, A6 = 9.8200E-01
Various data OBJ 10.0
f 0.560
Fno. 4.31
ω 70.5
IH 0.975
単位 mm
面データ
面番号 r d ne νd
1 43.8711 0.3800 1.53336 56.00
2* 0.3502 0.5000 1.
3* 1.1934 1.1000 1.64117 23.90
4 -3.0438 0.0400 1.
5(絞り) ∞ 0.3540 1.
6 2.1804 0.8000 1.53336 56.00
7* -0.7625 1.1271 1.
像面 ∞
非球面データ
第2面
k=-0.7076
第3面
k=0.
A2=0.0000E+00,A4=1.9535E-01
第7面
k=0.
A2=0.0000E+00,A4=3.7211E-01,A6=9.8200E-01
各種データ
OBJ 10.0
f 0.560
Fno. 4.31
ω 70.5
IH 0.975 Numerical Example 5
Unit mm
Surface data Surface number r d ne ν d
1 43.8711 0.3800 1.53336 56.00
2 * 0.3502 0.5000 1.
3 * 1.1934 1.1000 1.64117 23.90
4 -3.0438 0.0400 1.
5 (Aperture) ∞ 0.3540 1.
6 2.1804 0.8000 1.53336 56.00
7 * -0.7625 1.1271 1.
Image plane ∞
Second surface of aspherical data
k = -0.7076
Third side
k = 0.
A2 = 0.000E + 00, A4 = 1.9535E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.7211E-01, A6 = 9.8200E-01
Various data OBJ 10.0
f 0.560
Fno. 4.31
ω 70.5
IH 0.975
数値実施例6
単位 mm
面データ
面番号 r d ne νd
1 83.3059 0.3800 1.53336 56.00
2* 0.3826 0.4213 1.
3* 1.3628 1.0673 1.64117 23.90
4 -5.9748 0.0400 1.
5(絞り) ∞ 0.1632 1.
6 1.9784 0.8290 1.53336 56.00
7* -0.7634 1.3452 1.
像面 ∞
非球面データ
第2面
k=-0.8909
第3面
k=0.
A2=0.0000E+00,A4=-2.6726E-01
第7面
k=0.
A2=0.0000E+00,A4=2.9122E-01,A6=1.0184E+00
各種データ
OBJ 10.0
f 0.649
Fno. 4.46
ω 69.8
IH 0.975 Numerical Example 6
Unit mm
Surface data Surface number r d ne ν d
1 83.3059 0.3800 1.53336 56.00
2 * 0.3826 0.4213 1.
3 * 1.3628 1.0673 1.64117 23.90
4-5.9748 0.0400 1.
5 (Aperture) ∞ 0.1632 1.
6 1.9784 0.8290 1.53336 56.00
7 * -0.7634 1.3452 1.
Image plane ∞
Second surface of aspherical data
k = -0.8909
Third side
k = 0.
A2 = 0.000E + 00, A4 = -2.6726E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 2.9122E-01, A6 = 1.0184E + 00
Various data OBJ 10.0
f 0.649
Fno. 4.46
ω 69.8
IH 0.975
単位 mm
面データ
面番号 r d ne νd
1 83.3059 0.3800 1.53336 56.00
2* 0.3826 0.4213 1.
3* 1.3628 1.0673 1.64117 23.90
4 -5.9748 0.0400 1.
5(絞り) ∞ 0.1632 1.
6 1.9784 0.8290 1.53336 56.00
7* -0.7634 1.3452 1.
像面 ∞
非球面データ
第2面
k=-0.8909
第3面
k=0.
A2=0.0000E+00,A4=-2.6726E-01
第7面
k=0.
A2=0.0000E+00,A4=2.9122E-01,A6=1.0184E+00
各種データ
OBJ 10.0
f 0.649
Fno. 4.46
ω 69.8
IH 0.975 Numerical Example 6
Unit mm
Surface data Surface number r d ne ν d
1 83.3059 0.3800 1.53336 56.00
2 * 0.3826 0.4213 1.
3 * 1.3628 1.0673 1.64117 23.90
4-5.9748 0.0400 1.
5 (Aperture) ∞ 0.1632 1.
6 1.9784 0.8290 1.53336 56.00
7 * -0.7634 1.3452 1.
Image plane ∞
Second surface of aspherical data
k = -0.8909
Third side
k = 0.
A2 = 0.000E + 00, A4 = -2.6726E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 2.9122E-01, A6 = 1.0184E + 00
Various data OBJ 10.0
f 0.649
Fno. 4.46
ω 69.8
IH 0.975
数値実施例7
単位 mm
面データ
面番号 r d ne νd
1 -34.3216 0.3800 1.53336 56.00
2* 0.4148 0.3810 1.
3* 1.2461 1.1455 1.64117 23.90
4 -30.6935 0.0400 1.
5(絞り) ∞ 0.2053 1.
6 1.8472 0.7349 1.53336 56.00
7* -0.7585 1.3869 1.
像面 ∞
非球面データ
第2面
k=-1.0117
A2=0.0000E+00,A4=-7.5223E-02,A6=-2.1668E-01
第3面
k=0.
A2=0.0000E+00,A4=-3.5265E-01
第7面
k=0.
A2=0.0000E+00,A4=3.6153E-01,A6=7.8683E-01
各種データ
OBJ 10.0
f 0.686
Fno. 4.45
ω 69.6
IH 0.975 Numerical Example 7
Unit mm
Surface data Surface number r d ne ν d
1 -34.3216 0.3800 1.53336 56.00
2 * 0.4148 0.3810 1.
3 * 1.2461 1.1455 1.64117 23.90
4 -30.6935 0.0400 1.
5 (Aperture) ∞ 0.2053 1.
6 1.8472 0.7349 1.53336 56.00
7 * -0.7585 1.3869 1.
Image plane ∞
Second surface of aspherical data
k = -1.0117
A2 = 0.000E + 00, A4 = -7.5223E-02, A6 = -2.1668E-01
Third side
k = 0.
A2 = 0.000E + 00, A4 = -3.5265E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.6153E-01, A6 = 7.8683E-01
Various data OBJ 10.0
f 0.686
Fno. 4.45
ω 69.6
IH 0.975
単位 mm
面データ
面番号 r d ne νd
1 -34.3216 0.3800 1.53336 56.00
2* 0.4148 0.3810 1.
3* 1.2461 1.1455 1.64117 23.90
4 -30.6935 0.0400 1.
5(絞り) ∞ 0.2053 1.
6 1.8472 0.7349 1.53336 56.00
7* -0.7585 1.3869 1.
像面 ∞
非球面データ
第2面
k=-1.0117
A2=0.0000E+00,A4=-7.5223E-02,A6=-2.1668E-01
第3面
k=0.
A2=0.0000E+00,A4=-3.5265E-01
第7面
k=0.
A2=0.0000E+00,A4=3.6153E-01,A6=7.8683E-01
各種データ
OBJ 10.0
f 0.686
Fno. 4.45
ω 69.6
IH 0.975 Numerical Example 7
Unit mm
Surface data Surface number r d ne ν d
1 -34.3216 0.3800 1.53336 56.00
2 * 0.4148 0.3810 1.
3 * 1.2461 1.1455 1.64117 23.90
4 -30.6935 0.0400 1.
5 (Aperture) ∞ 0.2053 1.
6 1.8472 0.7349 1.53336 56.00
7 * -0.7585 1.3869 1.
Image plane ∞
Second surface of aspherical data
k = -1.0117
A2 = 0.000E + 00, A4 = -7.5223E-02, A6 = -2.1668E-01
Third side
k = 0.
A2 = 0.000E + 00, A4 = -3.5265E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.6153E-01, A6 = 7.8683E-01
Various data OBJ 10.0
f 0.686
Fno. 4.45
ω 69.6
IH 0.975
数値実施例8
単位 mm
面データ
面番号 r d ne νd
1 -11.6179 0.3800 1.53336 56.00
2* 0.3436 0.4385 1.
3* 1.1116 0.9207 1.64117 23.90
4 -2.6054 0.0400 1.
5(絞り) ∞ 0.0940 1.
6 3.1350 0.8000 1.53336 56.00
7* -0.9314 1.4907 1.
像面 ∞
非球面データ
第2面
k=-0.7735
第3面
k=0.
A2=0.0000E+00,A4=-1.4315E-01
第7面
k=0.
A2=0.0000E+00,A4=3.2902E-01,A6=5.2510E-01
各種データ
OBJ 10.0
f 0.734
Fno. 4.56
ω 69.5
IH 0.975 Numerical Example 8
Unit mm
Surface data Surface number r d ne ν d
1 -11.6179 0.3800 1.53336 56.00
2 * 0.3436 0.4385 1.
3 * 1.1116 0.9207 1.64117 23.90
4 -2.6054 0.0400 1.
5 (Aperture) ∞ 0.0940 1.
6 3.1350 0.8000 1.53336 56.00
7 * -0.9314 1.4907 1.
Image plane ∞
Second surface of aspherical data
k = -0.7735
Third side
k = 0.
A2 = 0.000E + 00, A4 = -1.4315E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.2902E-01, A6 = 5.2510E-01
Various data OBJ 10.0
f 0.734
Fno. 4.56
ω 69.5
IH 0.975
単位 mm
面データ
面番号 r d ne νd
1 -11.6179 0.3800 1.53336 56.00
2* 0.3436 0.4385 1.
3* 1.1116 0.9207 1.64117 23.90
4 -2.6054 0.0400 1.
5(絞り) ∞ 0.0940 1.
6 3.1350 0.8000 1.53336 56.00
7* -0.9314 1.4907 1.
像面 ∞
非球面データ
第2面
k=-0.7735
第3面
k=0.
A2=0.0000E+00,A4=-1.4315E-01
第7面
k=0.
A2=0.0000E+00,A4=3.2902E-01,A6=5.2510E-01
各種データ
OBJ 10.0
f 0.734
Fno. 4.56
ω 69.5
IH 0.975 Numerical Example 8
Unit mm
Surface data Surface number r d ne ν d
1 -11.6179 0.3800 1.53336 56.00
2 * 0.3436 0.4385 1.
3 * 1.1116 0.9207 1.64117 23.90
4 -2.6054 0.0400 1.
5 (Aperture) ∞ 0.0940 1.
6 3.1350 0.8000 1.53336 56.00
7 * -0.9314 1.4907 1.
Image plane ∞
Second surface of aspherical data
k = -0.7735
Third side
k = 0.
A2 = 0.000E + 00, A4 = -1.4315E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.2902E-01, A6 = 5.2510E-01
Various data OBJ 10.0
f 0.734
Fno. 4.56
ω 69.5
IH 0.975
数値実施例9
単位 mm
面データ
面番号 r d ne νd
1 20.1287 0.3800 1.53336 56.00
2* 0.3992 0.7593 1.
3* 1.3349 1.0270 1.64117 23.90
4 -10.6598 0.0400 1.
5(絞り) ∞ 0.0940 1.
6 1.9296 0.8000 1.53336 56.00
7* -0.8065 1.1953 1.
像面 ∞
非球面データ
第2面
k=-0.9226
A2=0.0000E+00,A4=7.4369E-02
第3面
k=0.
A2=0.0000E+00,A4=-2.7080E-01
第7面
k=0.
A2=0.0000E+00,A4=3.5316E-01,A6=1.0020E+00
各種データ
OBJ 10.0
f 0.576
Fno. 3.83
ω 69.9
IH 0.975 Numerical Example 9
Unit mm
Surface data Surface number r d ne ν d
1 20.1287 0.3800 1.53336 56.00
2 * 0.3992 0.7593 1.
3 * 1.3349 1.0270 1.64117 23.90
4 -10.6598 0.0400 1.
5 (Aperture) ∞ 0.0940 1.
6 1.9296 0.8000 1.53336 56.00
7 * -0.8065 1.1953 1.
Image plane ∞
Second surface of aspherical data
k = -0.9226
A2 = 0.000E + 00, A4 = 7.4369E-02
Third side
k = 0.
A2 = 0.000E + 00, A4 = -2.7080E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.5316E-01, A6 = 1.020E + 00
Various data OBJ 10.0
f 0.576
Fno. 3.83
ω 69.9
IH 0.975
単位 mm
面データ
面番号 r d ne νd
1 20.1287 0.3800 1.53336 56.00
2* 0.3992 0.7593 1.
3* 1.3349 1.0270 1.64117 23.90
4 -10.6598 0.0400 1.
5(絞り) ∞ 0.0940 1.
6 1.9296 0.8000 1.53336 56.00
7* -0.8065 1.1953 1.
像面 ∞
非球面データ
第2面
k=-0.9226
A2=0.0000E+00,A4=7.4369E-02
第3面
k=0.
A2=0.0000E+00,A4=-2.7080E-01
第7面
k=0.
A2=0.0000E+00,A4=3.5316E-01,A6=1.0020E+00
各種データ
OBJ 10.0
f 0.576
Fno. 3.83
ω 69.9
IH 0.975 Numerical Example 9
Unit mm
Surface data Surface number r d ne ν d
1 20.1287 0.3800 1.53336 56.00
2 * 0.3992 0.7593 1.
3 * 1.3349 1.0270 1.64117 23.90
4 -10.6598 0.0400 1.
5 (Aperture) ∞ 0.0940 1.
6 1.9296 0.8000 1.53336 56.00
7 * -0.8065 1.1953 1.
Image plane ∞
Second surface of aspherical data
k = -0.9226
A2 = 0.000E + 00, A4 = 7.4369E-02
Third side
k = 0.
A2 = 0.000E + 00, A4 = -2.7080E-01
7th page
k = 0.
A2 = 0.000E + 00, A4 = 3.5316E-01, A6 = 1.020E + 00
Various data OBJ 10.0
f 0.576
Fno. 3.83
ω 69.9
IH 0.975
各実施例における条件式の値を以下に掲げる。
条件式 実施例1 実施例2 実施例3
(2)f/f1 -0.965 -0.921 -0.882
(3)DZ2/f 0.60 0.62 0.65
(4)DZ2/R2 1.07 1.06 1.07
(5)D2/DY2 1.27 1.34 0.90
(6)f/f2 0.482 0.447 0.390
(7)f2/f1 -2.003 -2.062 -2.261
条件式 実施例4 実施例5 実施例6
(2)f/f1 -0.875 -0.844 -0.899
(3)DZ2/f 0.72 0.82 0.56
(4)DZ2/R2 1.20 1.32 0.95
(5)D2/DY2 0.88 0.98 0.82
(6)f/f2 0.376 0.376 0.354
(7)f2/f1 -2.328 -2.241 -2.542
条件式 実施例7 実施例8 実施例9
(2)f/f1 -0.896 -1.186 -0.750
(3)DZ2/f 0.51 0.38 0.88
(4)DZ2/R2 0.84 0.81 1.27
(5)D2/DY2 0.69 1.05 1.23
(6)f/f2 0.362 0.545 0.301
(7)f2/f1 -2.474 -2.174 -2.49 The values of the conditional expressions in each embodiment are listed below.
Conditional expression Example 1 Example 2 Example 3
(2) f / f1 -0.965 -0.921 -0.882
(3) DZ2 / f 0.60 0.62 0.65
(4) DZ2 / R2 1.07 1.06 1.07
(5) D2 / DY2 1.27 1.34 0.90
(6) f / f2 0.482 0.447 0.390
(7) f2 / f1 -2.003 -2.062 -2.261
Conditional expression Example 4 Example 5 Example 6
(2) f / f1 -0.875 -0.844 -0.899
(3) DZ2 / f 0.72 0.82 0.56
(4) DZ2 / R2 1.20 1.32 0.95
(5) D2 / DY2 0.88 0.98 0.82
(6) f / f2 0.376 0.376 0.354
(7) f2 / f1 -2.328 -2.241 -2.542
Conditional expression Example 7 Example 8 Example 9
(2) f / f1 -0.896 -1.186 -0.750
(3) DZ2 / f 0.51 0.38 0.88
(4) DZ2 / R2 0.84 0.81 1.27
(5) D2 / DY2 0.69 1.05 1.23
(6) f / f2 0.362 0.545 0.301
(7) f2 / f1 -2.474 -2.174 -2.49
条件式 実施例1 実施例2 実施例3
(2)f/f1 -0.965 -0.921 -0.882
(3)DZ2/f 0.60 0.62 0.65
(4)DZ2/R2 1.07 1.06 1.07
(5)D2/DY2 1.27 1.34 0.90
(6)f/f2 0.482 0.447 0.390
(7)f2/f1 -2.003 -2.062 -2.261
条件式 実施例4 実施例5 実施例6
(2)f/f1 -0.875 -0.844 -0.899
(3)DZ2/f 0.72 0.82 0.56
(4)DZ2/R2 1.20 1.32 0.95
(5)D2/DY2 0.88 0.98 0.82
(6)f/f2 0.376 0.376 0.354
(7)f2/f1 -2.328 -2.241 -2.542
条件式 実施例7 実施例8 実施例9
(2)f/f1 -0.896 -1.186 -0.750
(3)DZ2/f 0.51 0.38 0.88
(4)DZ2/R2 0.84 0.81 1.27
(5)D2/DY2 0.69 1.05 1.23
(6)f/f2 0.362 0.545 0.301
(7)f2/f1 -2.474 -2.174 -2.49 The values of the conditional expressions in each embodiment are listed below.
Conditional expression Example 1 Example 2 Example 3
(2) f / f1 -0.965 -0.921 -0.882
(3) DZ2 / f 0.60 0.62 0.65
(4) DZ2 / R2 1.07 1.06 1.07
(5) D2 / DY2 1.27 1.34 0.90
(6) f / f2 0.482 0.447 0.390
(7) f2 / f1 -2.003 -2.062 -2.261
Conditional expression Example 4 Example 5 Example 6
(2) f / f1 -0.875 -0.844 -0.899
(3) DZ2 / f 0.72 0.82 0.56
(4) DZ2 / R2 1.20 1.32 0.95
(5) D2 / DY2 0.88 0.98 0.82
(6) f / f2 0.376 0.376 0.354
(7) f2 / f1 -2.328 -2.241 -2.542
Conditional expression Example 7 Example 8 Example 9
(2) f / f1 -0.896 -1.186 -0.750
(3) DZ2 / f 0.51 0.38 0.88
(4) DZ2 / R2 0.84 0.81 1.27
(5) D2 / DY2 0.69 1.05 1.23
(6) f / f2 0.362 0.545 0.301
(7) f2 / f1 -2.474 -2.174 -2.49
図11は、本実施形態の光学装置を示す図である。光学装置1は、撮像装置又は内視鏡である。光学装置1は、対物光学系OBJを有する。
FIG. 11 is a diagram showing an optical device of this embodiment. The optical device 1 is an image pickup device or an endoscope. The optical device 1 has an objective optical system OBJ.
光学装置1では、撮像素子ISを用いることができる。この場合、対物光学系OBJによって形成された光学像を、撮像素子ISで撮像することができる。その結果、画像を取得することができる。
The image sensor IS can be used in the optical device 1. In this case, the optical image formed by the objective optical system OBJ can be imaged by the image sensor IS. As a result, the image can be acquired.
撮像装置では、例えば、デジタルカメラ、監視カメラ、及び携帯端末に、対物光学系OBJを用いることができる。内視鏡では、軟性内視鏡、硬性内視鏡、及びカプセル内視鏡に、対物光学系OBJを用いることができる。
In the imaging device, for example, the objective optical system OBJ can be used for a digital camera, a surveillance camera, and a mobile terminal. In the endoscope, the objective optical system OBJ can be used for the flexible endoscope, the rigid endoscope, and the capsule endoscope.
対物光学系OBJでは、倍率色収差が十分に補正されている。よって、本実施形態の光学装置によれば、鮮明な画像を取得することができる。すなわち、撮像装置又は内視鏡において、鮮明な画像を取得することができる。
In the objective optical system OBJ, chromatic aberration of magnification is sufficiently corrected. Therefore, according to the optical device of the present embodiment, a clear image can be acquired. That is, a clear image can be acquired with an imaging device or an endoscope.
以上のように、本発明は、小型でありながら、倍率色収差が十分に補正されている対物光学系に適している。また、鮮明な画像が取得できる撮像装置、及び内視鏡に適している。
As described above, the present invention is suitable for an objective optical system that is compact but has sufficiently corrected chromatic aberration of magnification. It is also suitable for imaging devices and endoscopes that can acquire clear images.
1 光学装置
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
S 開口絞り
I 像面
IM 光学像
OBJ 対物光学系
IS 撮像素子 1 Optical device L1 1st lens L2 2nd lens L3 3rd lens S Aperture aperture I Image plane IM Optical image OBJ Objective optical system IS Imaging element
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
S 開口絞り
I 像面
IM 光学像
OBJ 対物光学系
IS 撮像素子 1 Optical device L1 1st lens L2 2nd lens L3 3rd lens S Aperture aperture I Image plane IM Optical image OBJ Objective optical system IS Imaging element
Claims (19)
- 物体側から像側へ順に、
負の屈折力を有する第1レンズと、
正の屈折力を有する第2レンズと、
開口絞りと、
正の屈折力を有する第3レンズと、からなり、
前記第2レンズは、両凸レンズであり、
前記第1レンズ、前記第2レンズ、及び前記第3レンズは、合成樹脂材料からなり、
以下の条件式(1)、(2)、(3)を満足することを特徴とする対物光学系。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、前記第1レンズのアッベ数、
νd2は、前記第2レンズのアッベ数、
fは、前記対物光学系の焦点距離、
f1は、前記第1レンズの焦点距離、
第1交点は、前記第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が前記第1レンズの像側面と交わる点、
DZ2は、前記第1交点から前記第2交点までの、光軸に平行な距離、
前記第2交点が前記第1交点よりも像側に位置する場合、距離の値は正の値、
である。 From the object side to the image side, in order
The first lens with negative refractive power and
A second lens with positive refractive power and
Aperture aperture and
It consists of a third lens with positive refractive power.
The second lens is a biconvex lens.
The first lens, the second lens, and the third lens are made of a synthetic resin material.
An objective optical system characterized by satisfying the following conditional expressions (1), (2), and (3).
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens.
νd2 is the Abbe number of the second lens.
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is a point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
When the second intersection is located closer to the image than the first intersection, the distance value is a positive value.
Is. - 前記第1レンズの像側面は、非球面であり、
以下の条件式(4)を満足することを特徴とする請求項1に記載の対物光学系。
0.8<DZ2/R2<1.4 (4)
ここで、
DZ2は、前記第1交点から前記第2交点までの、光軸に平行な距離、
R2は、前記第1レンズの像側面の曲率半径、
である。 The image side surface of the first lens is an aspherical surface.
The objective optical system according to claim 1, wherein the objective optical system satisfies the following conditional expression (4).
0.8 <DZ2 / R2 <1.4 (4)
here,
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
R2 is the radius of curvature of the image side surface of the first lens.
Is. - 以下の条件式(5)を満足することを特徴とする請求項1に記載の対物光学系。
0.6<D2/DY2<1.35 (5)
ここで、
D2は、前記第1レンズの像側面と前記第2レンズの物体側面との光軸上の間隔、
DY2は、前記光軸から前記第2交点までの最短距離、
である。 The objective optical system according to claim 1, wherein the objective optical system satisfies the following conditional expression (5).
0.6 <D2 / DY2 <1.35 (5)
here,
D2 is the distance between the image side surface of the first lens and the object side surface of the second lens on the optical axis.
DY2 is the shortest distance from the optical axis to the second intersection.
Is. - 以下の条件式(6)を満足することを特徴とする請求項1に記載の対物光学系。
0.25<f/f2<0.6 (6)
ここで、
fは、前記対物光学系の焦点距離、
f2は、前記第2レンズの焦点距離、
である。 The objective optical system according to claim 1, wherein the objective optical system satisfies the following conditional expression (6).
0.25 <f / f2 <0.6 (6)
here,
f is the focal length of the objective optical system,
f2 is the focal length of the second lens,
Is. - 以下の条件式(7)を満足することを特徴とする請求項4に記載の対物光学系。
-3.0<f2/f1<-1.9 (7)
ここで、
f1は、前記第1レンズの焦点距離、
f2は、前記第2レンズの焦点距離、
である。 The objective optical system according to claim 4, wherein the objective optical system satisfies the following conditional expression (7).
-3.0 <f2 / f1 <-1.9 (7)
here,
f1 is the focal length of the first lens,
f2 is the focal length of the second lens,
Is. - 以下の条件式(8)、(9)を満足することを特徴とする請求項1に記載の対物光学系。
50<νd1 (8)
νd2<35 (9)
ここで、
νd1は、前記第1レンズのアッベ数、
νd2は、前記第2レンズのアッベ数、
である。 The objective optical system according to claim 1, wherein the following conditional expressions (8) and (9) are satisfied.
50 <νd1 (8)
νd2 <35 (9)
here,
νd1 is the Abbe number of the first lens.
νd2 is the Abbe number of the second lens.
Is. - 物体側から像側へ順に、
負の屈折力を有する第1レンズと、
正の屈折力を有する第2レンズと、
開口絞りと、
正の屈折力を有する第3レンズと、からなり、
前記第2レンズは、両凸レンズであり、
前記第1レンズ、前記第2レンズ、及び前記第3レンズは、合成樹脂材料からなり、
以下の条件式(1)、(2)、(3)を満足する対物光学系を備えることを特徴とする撮像装置。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、前記第1レンズのアッベ数、
νd2は、前記第2レンズのアッベ数、
fは、前記対物光学系の焦点距離、
f1は、前記第1レンズの焦点距離、
第1交点は、前記第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が前記第1レンズの像側面と交わる点、
DZ2は、前記第1交点から前記第2交点までの、光軸に平行な距離、
前記第2交点が前記第1交点よりも像側に位置する場合、距離の値は正の値、
である。 From the object side to the image side, in order
The first lens with negative refractive power and
A second lens with positive refractive power and
Aperture aperture and
It consists of a third lens with positive refractive power.
The second lens is a biconvex lens.
The first lens, the second lens, and the third lens are made of a synthetic resin material.
An imaging device including an objective optical system that satisfies the following conditional expressions (1), (2), and (3).
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens.
νd2 is the Abbe number of the second lens.
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is a point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
When the second intersection is located closer to the image than the first intersection, the distance value is a positive value.
Is. - 前記第1レンズの像側面は、非球面であり、
以下の条件式(4)を満足することを特徴とする請求項7に記載の撮像装置。
0.8<DZ2/R2<1.4 (4)
ここで、
DZ2は、前記第1交点から前記第2交点までの、光軸に平行な距離、
R2は、前記第1レンズの像側面の曲率半径、
である。 The image side surface of the first lens is an aspherical surface.
The imaging device according to claim 7, wherein the imaging device satisfies the following conditional expression (4).
0.8 <DZ2 / R2 <1.4 (4)
here,
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
R2 is the radius of curvature of the image side surface of the first lens.
Is. - 以下の条件式(5)を満足することを特徴とする請求項7に記載の撮像装置。
0.6<D2/DY2<1.35 (5)
ここで、
D2は、前記第1レンズの像側面と前記第2レンズの物体側面との光軸上の間隔、
DY2は、前記光軸から第2交点までの最短距離、
である。 The imaging device according to claim 7, wherein the imaging device satisfies the following conditional expression (5).
0.6 <D2 / DY2 <1.35 (5)
here,
D2 is the distance between the image side surface of the first lens and the object side surface of the second lens on the optical axis.
DY2 is the shortest distance from the optical axis to the second intersection.
Is. - 以下の条件式(6)を満足することを特徴とする請求項7に記載の撮像装置。
0.25<f/f2<0.6 (6)
ここで、
fは、前記対物光学系の焦点距離、
f2は、前記第2レンズの焦点距離、
である。 The imaging device according to claim 7, wherein the imaging device satisfies the following conditional expression (6).
0.25 <f / f2 <0.6 (6)
here,
f is the focal length of the objective optical system,
f2 is the focal length of the second lens,
Is. - 以下の条件式(7)を満足することを特徴とする請求項10に記載の撮像装置。
-3.0<f2/f1<-1.9 (7)
ここで、
f1は、前記第1レンズの焦点距離、
f2は、前記第2レンズの焦点距離、
である。 The imaging device according to claim 10, wherein the imaging device satisfies the following conditional expression (7).
-3.0 <f2 / f1 <-1.9 (7)
here,
f1 is the focal length of the first lens,
f2 is the focal length of the second lens,
Is. - 以下の条件式(8)、(9)を満足することを特徴とする請求項7に記載の撮像装置。
50<νd1 (8)
νd2<35 (9)
ここで、
νd1は、前記第1レンズのアッベ数、
νd2は、前記第2レンズのアッベ数、
である。 The imaging device according to claim 7, wherein the following conditional expressions (8) and (9) are satisfied.
50 <νd1 (8)
νd2 <35 (9)
here,
νd1 is the Abbe number of the first lens.
νd2 is the Abbe number of the second lens.
Is. - 物体側から像側へ順に、
負の屈折力を有する第1レンズと、
正の屈折力を有する第2レンズと、
開口絞りと、
正の屈折力を有する第3レンズと、からなり、
前記第2レンズは、両凸レンズであり、
前記第1レンズ、前記第2レンズ、及び前記第3レンズは、合成樹脂材料からなり、
以下の条件式(1)、(2)、(3)を満足する対物光学系を備えることを特徴とする内視鏡。
νd2<νd1 (1)
-1.2<f/f1<-0.74 (2)
0.3<DZ2/f<0.9 (3)
ここで、
νd1は、前記第1レンズのアッベ数、
νd2は、前記第2レンズのアッベ数、
fは、前記対物光学系の焦点距離、
f1は、前記第1レンズの焦点距離、
第1交点は、前記第1レンズの像側面が光軸と交わる点、
第2交点は、最大像高の主光線が前記第1レンズの像側面と交わる点、
DZ2は、前記第1交点から前記第2交点までの、光軸に平行な距離、
前記第2交点が前記第1交点よりも像側に位置する場合、距離の値は正の値、
である。 From the object side to the image side, in order
The first lens with negative refractive power and
A second lens with positive refractive power and
Aperture aperture and
It consists of a third lens with positive refractive power.
The second lens is a biconvex lens.
The first lens, the second lens, and the third lens are made of a synthetic resin material.
An endoscope comprising an objective optical system satisfying the following conditional expressions (1), (2), and (3).
νd2 <νd1 (1)
-1.2 <f / f1 <-0.74 (2)
0.3 <DZ2 / f <0.9 (3)
here,
νd1 is the Abbe number of the first lens.
νd2 is the Abbe number of the second lens.
f is the focal length of the objective optical system,
f1 is the focal length of the first lens,
The first intersection is a point where the image side surface of the first lens intersects the optical axis.
The second intersection is the point where the main ray with the maximum image height intersects the image side surface of the first lens.
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
When the second intersection is located closer to the image than the first intersection, the distance value is a positive value.
Is. - 前記第1レンズの像側面は、非球面であり、
以下の条件式(4)を満足することを特徴とする請求項13に記載の内視鏡。
0.8<DZ2/R2<1.4 (4)
ここで、
DZ2は、前記第1交点から前記第2交点までの、光軸に平行な距離、
R2は、前記第1レンズの像側面の曲率半径、
である。 The image side surface of the first lens is an aspherical surface.
The endoscope according to claim 13, wherein the endoscope satisfies the following conditional expression (4).
0.8 <DZ2 / R2 <1.4 (4)
here,
DZ2 is the distance parallel to the optical axis from the first intersection to the second intersection.
R2 is the radius of curvature of the image side surface of the first lens.
Is. - 以下の条件式(5)を満足することを特徴とする請求項13に記載の内視鏡。
0.6<D2/DY2<1.35 (5)
ここで、
D2は、前記第1レンズの像側面と前記第2レンズの物体側面との光軸上の間隔、
DY2は、前記光軸から第2交点までの最短距離、
である。 The endoscope according to claim 13, wherein the endoscope satisfies the following conditional expression (5).
0.6 <D2 / DY2 <1.35 (5)
here,
D2 is the distance between the image side surface of the first lens and the object side surface of the second lens on the optical axis.
DY2 is the shortest distance from the optical axis to the second intersection.
Is. - 以下の条件式(6)を満足することを特徴とする請求項13に記載の内視鏡。
0.25<f/f2<0.6 (6)
ここで、
fは、前記対物光学系の焦点距離、
f2は、前記第2レンズの焦点距離、
である。 The endoscope according to claim 13, wherein the endoscope satisfies the following conditional expression (6).
0.25 <f / f2 <0.6 (6)
here,
f is the focal length of the objective optical system,
f2 is the focal length of the second lens,
Is. - 以下の条件式(7)を満足することを特徴とする請求項16に記載の内視鏡。
-3.0<f2/f1<-1.9 (7)
ここで、
f1は、前記第1レンズの焦点距離、
f2は、前記第2レンズの焦点距離、
である。 The endoscope according to claim 16, wherein the endoscope satisfies the following conditional expression (7).
-3.0 <f2 / f1 <-1.9 (7)
here,
f1 is the focal length of the first lens,
f2 is the focal length of the second lens,
Is. - 以下の条件式(8)、(9)を満足することを特徴とする請求項13に記載の内視鏡。
50<νd1 (8)
νd2<35 (9)
ここで、
νd1は、前記第1レンズのアッベ数、
νd2は、前記第2レンズのアッベ数、
である。 The endoscope according to claim 13, wherein the endoscope satisfies the following conditional expressions (8) and (9).
50 <νd1 (8)
νd2 <35 (9)
here,
νd1 is the Abbe number of the first lens.
νd2 is the Abbe number of the second lens.
Is. - 前記内視鏡は、カプセル内視鏡であることを特徴とする請求項13に記載の内視鏡。 The endoscope according to claim 13, wherein the endoscope is a capsule endoscope.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/006019 WO2021166027A1 (en) | 2020-02-17 | 2020-02-17 | Objective optical system, imaging device, and endoscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/006019 WO2021166027A1 (en) | 2020-02-17 | 2020-02-17 | Objective optical system, imaging device, and endoscope |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021166027A1 true WO2021166027A1 (en) | 2021-08-26 |
Family
ID=77391492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/006019 WO2021166027A1 (en) | 2020-02-17 | 2020-02-17 | Objective optical system, imaging device, and endoscope |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021166027A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114052622A (en) * | 2021-12-15 | 2022-02-18 | 厦门力鼎光电股份有限公司 | Medical endoscope lens |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05107470A (en) * | 1991-05-13 | 1993-04-30 | Olympus Optical Co Ltd | Objective lens for endoscope |
JP2008089813A (en) * | 2006-09-29 | 2008-04-17 | Fujinon Corp | Imaging lens and camera device having the same |
JP2010014855A (en) * | 2008-07-02 | 2010-01-21 | Fujinon Corp | Imaging lens and imaging apparatus |
US8189276B1 (en) * | 2011-01-20 | 2012-05-29 | Largan Precision Co. | Photographing optical lens assembly |
US20120212839A1 (en) * | 2011-02-23 | 2012-08-23 | Largan Precision Co., Ltd. | Wide viewing angle optical lens assembly |
WO2017068637A1 (en) * | 2015-10-20 | 2017-04-27 | オリンパス株式会社 | Imaging device and optical apparatus provided therewith |
WO2017068726A1 (en) * | 2015-10-23 | 2017-04-27 | オリンパス株式会社 | Imaging device and optical device provided with same |
US20180113280A1 (en) * | 2016-10-21 | 2018-04-26 | Largan Precision Co., Ltd. | Micro imaging system, imaging apparatus and electronic device |
JP2018088012A (en) * | 2013-03-28 | 2018-06-07 | 日本電産サンキョー株式会社 | Wide-angle lens |
-
2020
- 2020-02-17 WO PCT/JP2020/006019 patent/WO2021166027A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05107470A (en) * | 1991-05-13 | 1993-04-30 | Olympus Optical Co Ltd | Objective lens for endoscope |
JP2008089813A (en) * | 2006-09-29 | 2008-04-17 | Fujinon Corp | Imaging lens and camera device having the same |
JP2010014855A (en) * | 2008-07-02 | 2010-01-21 | Fujinon Corp | Imaging lens and imaging apparatus |
US8189276B1 (en) * | 2011-01-20 | 2012-05-29 | Largan Precision Co. | Photographing optical lens assembly |
US20120212839A1 (en) * | 2011-02-23 | 2012-08-23 | Largan Precision Co., Ltd. | Wide viewing angle optical lens assembly |
JP2018088012A (en) * | 2013-03-28 | 2018-06-07 | 日本電産サンキョー株式会社 | Wide-angle lens |
WO2017068637A1 (en) * | 2015-10-20 | 2017-04-27 | オリンパス株式会社 | Imaging device and optical apparatus provided therewith |
WO2017068726A1 (en) * | 2015-10-23 | 2017-04-27 | オリンパス株式会社 | Imaging device and optical device provided with same |
US20180113280A1 (en) * | 2016-10-21 | 2018-04-26 | Largan Precision Co., Ltd. | Micro imaging system, imaging apparatus and electronic device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114052622A (en) * | 2021-12-15 | 2022-02-18 | 厦门力鼎光电股份有限公司 | Medical endoscope lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11199682B2 (en) | Imaging optical system and image capturing apparatus | |
JP5201690B2 (en) | Imaging lens | |
JP5666489B2 (en) | Imaging optics | |
US10107993B2 (en) | Wide-angle optical system and image pickup apparatus using the same | |
CN110730922B (en) | Lens system, camera system, and imaging system | |
CN110208934B (en) | Zoom lens and image pickup apparatus | |
JP6410865B2 (en) | Imaging lens | |
JP3495631B2 (en) | Wide-angle lens | |
US8000035B2 (en) | Wide-angle lens, optical apparatus, and method for focusing | |
JP7075474B2 (en) | Imaging optical lens | |
US7656591B2 (en) | Retrofocus lens system and image-taking device | |
JP2596827B2 (en) | Endoscope objective lens | |
US10551617B2 (en) | Image pickup apparatus which corrects chromatic aberration in a wide wavelength range, and capsule endoscope | |
US20050248857A1 (en) | Large-aperture-ratio internal focusing telephoto lens | |
US20220373768A1 (en) | Optical system, optical apparatus, and method for manufacturing optical system | |
JP2016139087A (en) | Imaging optical system | |
US10564406B2 (en) | Objective optical system for endoscope | |
US10379325B2 (en) | Optical system and optical apparatus including the same | |
JP4929902B2 (en) | Single focus lens and imaging apparatus having the same | |
JP3397447B2 (en) | Large aperture super wide angle lens system | |
CN115220180A (en) | Optical system and image pickup apparatus having the same | |
WO2021166027A1 (en) | Objective optical system, imaging device, and endoscope | |
CN118625496A (en) | Optical system and image pickup device having the same | |
US12066598B2 (en) | Optical system, lens apparatus, and image capturing apparatus | |
JP3683995B2 (en) | Endoscope objective lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20919880 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20919880 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |