WO2021135908A1 - 基于波的高速旋转管状结构的转速及应变监测方法 - Google Patents
基于波的高速旋转管状结构的转速及应变监测方法 Download PDFInfo
- Publication number
- WO2021135908A1 WO2021135908A1 PCT/CN2020/136162 CN2020136162W WO2021135908A1 WO 2021135908 A1 WO2021135908 A1 WO 2021135908A1 CN 2020136162 W CN2020136162 W CN 2020136162W WO 2021135908 A1 WO2021135908 A1 WO 2021135908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tubular structure
- wave
- excitation
- strain
- speed
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000012544 monitoring process Methods 0.000 title claims abstract description 18
- 230000005284 excitation Effects 0.000 claims abstract description 30
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B15/00—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
- G01B15/06—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring the deformation in a solid
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
Definitions
- the invention relates to the field of structural dynamic monitoring, in particular to a method for monitoring the speed and strain of a wave-based high-speed rotating tubular structure.
- High-speed rotating tubular structures are widely used in various types of industrial structures such as rotors and flywheels. During the application process, it is usually necessary to monitor their speed and strain to avoid structural damage caused by excessive speed and strain.
- Existing rotational speed monitoring methods for high-speed rotating structures implanted devices are difficult to repair after damage, while non-implanted devices need to connect external devices to the rotating shaft or shield the sensor through the structural rotation process, which is not suitable for rotating shafts. It is impossible to provide external space and the tubular structure cannot achieve periodic occlusion.
- traditional strain gages require external wiring and monitoring equipment, which are cumbersome to arrange.
- the strain monitoring method that uses implanted equipment to collect signals and wirelessly transmit the collected signals to the monitoring equipment also faces the above-mentioned damage. Problems that are difficult to fix.
- the present invention provides a wave-based speed and strain monitoring method of a high-speed rotating tubular structure.
- the specific technical solutions are as follows:
- a wave-based speed and strain monitoring method of a high-speed rotating tubular structure includes the following steps:
- the receiving position and the position where the wave excitation is applied are on the same cross-section of the rotating tubular structure, and the receiving position is located at the same cross-section as the tubular structure.
- the outer surface of the opposite direction of rotation, and the angle between the two positions is less than 180°, the wavelength of the excitation wave is the same as the circumference of the outer boundary of the tubular structure, and the frequency of the control excitation wave is continuously increased from zero.
- the excitation frequency analyze the reception
- the frequency of the wave when the first maximum resonance frequency appears, the excitation is stopped.
- the value of the obtained resonance frequency is the angular velocity of the tubular structure rotating. According to the relationship between the rotational speed of the tubular structure and the strain, the radial direction of a point inside the rotating body is obtained. Strain ⁇ r and hoop strain ⁇ ⁇ .
- u r is the radial displacement of any point inside the tubular structure
- r is the radial coordinate
- ⁇ is the hoop coordinate
- ⁇ is the rotational angular velocity of the tubular structure
- a is the inner diameter of the tubular structure
- b is the outer diameter of the tubular structure
- E is the Young's modulus of the structural material
- ⁇ is the Poisson's ratio
- ⁇ is the circumference ratio
- the values of the coefficients C 1 and C 2 are related to the boundary conditions of the tubular structure:
- the beneficial effect of the present invention is that the present invention excites the wave on the outer surface of the high-speed rotating tubular structure, and analyzes the frequency of the received wave to obtain the speed of the high-speed rotating tubular structure. From the corresponding relationship between the rotational speed and the strain, a point inside the rotating body is obtained.
- the non-contact monitoring method eliminates the defects that traditional implanted equipment is difficult to repair after damage. Wave excitation and reception can be carried out on any cross section perpendicular to the symmetry axis of the tubular structure, eliminating the need for external connections on the axis of rotation.
- the equipment has specific limits for space requirements.
- the monitoring of rotation speed and strain through excitation waves can be applied to tubular structures of various sizes, eliminating the use of structural rotation to shield the sensor.
- the invention utilizes the relationship between the rotation speed and the strain to obtain the strain situation at any point inside the tubular structure, without arranging strain gauges at multiple positions of the tubular structure, and has simple equipment layout and little interference to the original structure.
- the wave-based monitoring method provided by the present invention can be applied to the monitoring of rotating structures that have been put into use because the equipment does not need to be implanted inside the rotating body.
- Figure 1 is a schematic diagram of the implementation process of the technical solution of the present invention.
- Figure 2 is a schematic diagram of the principle of the method of the present invention.
- the method for monitoring the speed and strain of the wave-based high-speed rotating tubular structure of the present invention specifically includes the following steps:
- the wave excitation 2 is given to the outer surface of the tubular structure 1, and the excitation 2 waves are received at the receiving position 3.
- the receiving 3 position and the wave excitation 2 position are on the same cross section of the rotating tubular structure 1, and the The receiving 3 position is located on the outer surface opposite to the rotation direction of the tubular structure 1, and the angle between the two positions is less than 180°.
- the wavelength of the excitation 2 wave is the same as the circumference of the outer boundary of the tubular structure 1, and the frequency of the excitation 2 wave is controlled from zero. Continuously increase, while increasing the frequency of excitation 2 at the same time, analyze the frequency of the received 3 waves, stop excitation 2 when the first maximum resonance frequency appears, and the value of the obtained resonance frequency is the angular velocity of the rotation of the tubular structure 1;
- the inner diameter of the tubular structure 1 is a, and the outer diameter is b.
- the deformation of the tubular structure 1 that rotates at an angular velocity ⁇ around the tubular structure rotating shaft 4 at a high speed can be regarded as uniform expansion and deformation.
- its radial coordinate r, hoop coordinate ⁇ and axial coordinate z For a point in the tubular structure 1 that determines the radial coordinate r and hoop coordinate ⁇ , the strain does not change with the axial coordinate z. Therefore, only the magnitude of the strain in the radial and circumferential directions is required.
- the radial strain ⁇ r and the hoop strain ⁇ ⁇ of a point inside the rotating body can be obtained,
- u r is the radial displacement of a point inside the tubular structure 1, which can be expressed as the equation of speed
- ⁇ is the mass density of the structural material
- E is the Young's modulus of the structural material
- ⁇ is the Poisson's ratio
- ⁇ is the pi
- the values of the coefficients C 1 and C 2 are related to the boundary conditions of the tubular structure 1:
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Operations Research (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明公开一种基于波的高速旋转管状结构的转速及应变监测方法,在管状结构外表面给予波激励,在接收位置对激励波进行接收,接收位置与施加波激励的位置在管状结构的同一横截面上且与管状结构的旋转方向相反的外表面,两个位置夹角小于180°,激励波的波长与管状结构外边界周长相同,控制激励波的频率从零开始不断增加,同时分析接收波的频率,当出现第一个最大的共振频率时停止激励,获得的共振频率的值的大小就是管状结构旋转的角速度大小,根据管状结构转速与应变的关系,得到旋转体内部一点的应变情况。本基于波的非接触监测方法,无需植入设备,对原结构干扰小,对空间条件要求低,同时,适用于任意尺寸的且包括已投入使用的旋转管状结构。
Description
本发明涉及结构动态监测领域,尤其是基于波的高速旋转管状结构的转速及应变监测方法。
高速旋转的管状结构广泛用于各类转子、飞轮等工业结构,在应用过程中,通常需要对其转速和应变情况进行监测,避免转速过高、应变过大带来的结构破坏。现有的针对高速旋转结构的转速监测方法,植入式设备在损坏后难以修复,而非植入式设备需要在转轴上外接设备或通过结构旋转过程对传感器进行遮挡来实现,不适用于转轴无法提供外接空间以及管状结构无法实现周期性遮挡的情形。针对应变监测的方法,传统应变片需要外接线路以及监测设备,布置较为繁琐,而通过植入式设备进行信号采集并将采集到的信号无线传输到监测设备的应变监测方式,同样面临上述损坏后难以修复的问题。
发明内容
为了克服现有技术的不足,本发明提供了一种基于波的高速旋转管状结构的转速及应变监测方法,具体技术方案如下:
一种基于波的高速旋转管状结构的转速及应变监测方法,该方法包括如下步骤:
在管状结构外表面给予波激励,在接收位置对激励波进行接收,所述的接收位置与施加波激励的位置在旋转管状结构的同一横截面上,且所述的接收位置位于与管状结构的旋转方向相反的外表面,且两个位置夹角小于180°,激励波的波长与管状结构外边界周长相同,控制激励波的频率从零开始不断增加,在增加激励频率的同时,分析接收波的频率,当出现第一个最大的共振频率时停止激励,获得的共振频率的值的大小就是管状结构旋转的角速度大小,根据管状结构转速与应变的关系,得到旋转体内部一点的径向应变ε
r和环向应变ε
θ。
进一步地,所述径向应变ε
r和环向应变ε
θ大小按如下公式获得,
r∈[a,b],θ∈[0,2π)
其中,u
r是管状结构内部任意一点的径向位移,r为径向坐标,θ为环向坐标,Ω为管状结构旋转角速度,a为管状结构的内径,b为管状结构的外径,ρ为结构材料的质量密度,E为结构材料的杨氏模量,ν为泊松比,π为圆周率,系数C
1与C
2的取值与管状结构的边界条件有关:
若旋转管状内外边界均为自由边界,则所述系数满足:
若管状结构的内边界固定、外边界自由,则所述系数满足:
本发明的有益效果是,本发明通过在高速旋转管状结构的外表面激励波,并分析接收波的频率,得到高速旋转管状结构的转速大小,由转速与应变的对应关系,得到旋转体内部一点的应变大小,非接触的监测方式消除了传统植入式设备在损坏后难以修复的缺陷,波的激励和接收可在任一垂直于管状结构对称轴的横截面上进行,消除了在转轴上外接设备对空间有特定要求的限值,通过激励波对转速和应变进行监测可适用于各类尺寸的管状结构,消除了利用结构旋转过程对传感器进行遮挡不适用于本身无法实现周期性遮挡的结构的缺陷。本发明利用转速和应变的关系可以获得管状结构内部任意点的应变情况,无需在管状结构多个位置布置应变片,设备布置简单,对原结构干扰小。同时,本发明提供的基于波的监测方式, 由于设备无需植入旋转体内部,能适用于已投入使用的旋转结构的监测。
下面结合附图和实施例对本发明进一步说明。
图1为本发明技术方案实施流程示意图;
图2为本发明的方法的原理示意图;
图中,1.管状结构,2.激励,3.接收,4.管状结构旋转轴。
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的基于波的高速旋转管状结构的转速及应变监测方法,具体包括如下步骤:
在管状结构1外表面给予波激励2,在接收3位置对激励2波进行接收,所述的接收3位置与施加波激励2的位置在旋转管状结构1的同一横截面上,且所述的接收3位置位于与管状结构1的旋转方向相反的外表面,且两个位置夹角小于180°,激励2波的波长与管状结构1外边界周长相同,控制激励2波的频率从零开始不断增加,在增加激励2频率的同时,分析接收3波的频率,当出现第一个最大的共振频率时停止激励2,获得的共振频率的值的大小就是管状结构1旋转的角速度大小;
如图2所示,管状结构1的内径为a,外径为b,以角速度Ω绕管状结构旋转轴4高速旋转的管状结构1的变形可以视为均匀的膨胀变形。设其径向坐标r,环向坐标θ与轴向坐标z,对于确定径向坐标r和环向坐标θ的管状结构1内一点,应变不随轴向坐标z改变。因此,只需径向与环向的应变大小。根据管状结构1转速与应变的关系,可以得到旋转体内部一点的径向应变ε
r和环向应变ε
θ大小,
其中,u
r是管状结构1内部一点的径向位移,可以表述为转速的方程,
式中,
r∈[a,b],θ∈[0,2π)
其中,ρ为结构材料的质量密度,E为结构材料的杨氏模量,ν为泊松比,π为圆周率,系数C
1与C
2的取值与管状结构1的边界条件有关:
若旋转管状结构1内外边界均为自由边界,则所述系数满足:
若旋转管状结构1的内边界固定外边界自由,则所述系数满足:
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。
Claims (1)
- 一种基于波的高速旋转管状结构的转速及应变监测方法,其特征在于,该方法包括如下步骤:在管状结构外表面给予波激励,在接收位置对激励波进行接收,所述的接收位置与施加波激励的位置在旋转管状结构的同一横截面上,且所述的接收位置位于与管状结构的旋转方向相反的外表面,且两个位置夹角小于180°,激励波的波长与管状结构外边界周长相同,控制激励波的频率从零开始不断增加,在增加激励频率的同时,分析接收波的频率,当出现第一个最大的共振频率时停止激励,获得的共振频率的值的大小就是管状结构旋转的角速度大小,根据管状结构转速与应变的关系,得到旋转体内部一点的径向应变ε r和环向应变ε θ;所述径向应变ε r和环向应变ε θ大小按如下公式获得,其中,u r是管状结构内部任意一点的径向位移,r为径向坐标,θ为环向坐标,Ω为管状结 构旋转角速度,a为管状结构的内径,b为管状结构的外径,ρ为结构材料的质量密度,E为结构材料的杨氏模量,ν为泊松比,π为圆周率,系数C 1与C 2的取值与管状结构的边界条件有关:若管状结构内外边界均为自由边界,则所述系数满足:若管状结构的内边界固定、外边界自由,则所述系数满足:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911405520.X | 2019-12-30 | ||
CN201911405520.XA CN111208312B (zh) | 2019-12-30 | 2019-12-30 | 基于波的高速旋转管状结构的转速及应变监测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021135908A1 true WO2021135908A1 (zh) | 2021-07-08 |
Family
ID=70784165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/136162 WO2021135908A1 (zh) | 2019-12-30 | 2020-12-14 | 基于波的高速旋转管状结构的转速及应变监测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111208312B (zh) |
WO (1) | WO2021135908A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111208312B (zh) * | 2019-12-30 | 2021-01-29 | 浙江大学 | 基于波的高速旋转管状结构的转速及应变监测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203432784U (zh) * | 2012-01-31 | 2014-02-12 | 西门子公司 | 用于旋转的机械部件的状态监控装置 |
CN103745091A (zh) * | 2013-12-20 | 2014-04-23 | 东北大学 | 一种薄壁圆柱筒结构振动故障特征确定方法 |
CN110362928A (zh) * | 2019-07-17 | 2019-10-22 | 大连民族大学 | 确定超弹性薄壁圆柱壳的内共振特性的方法 |
CN111208312A (zh) * | 2019-12-30 | 2020-05-29 | 浙江大学 | 基于波的高速旋转管状结构的转速及应变监测方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5670857B2 (ja) * | 2011-10-05 | 2015-02-18 | 日立オートモティブシステムズ株式会社 | 回転角速度センサ |
CN104570072B (zh) * | 2013-10-16 | 2017-10-27 | 中国石油化工股份有限公司 | 一种粘弹性介质中的球面pp波反射系数建模方法 |
CN104537205B (zh) * | 2014-11-17 | 2017-06-20 | 哈尔滨工程大学 | 一种被动约束阻尼旋转体结构的振动分析方法 |
CN106248278B (zh) * | 2016-07-25 | 2019-01-15 | 宁波威孚天力增压技术有限公司 | 一种涡轮增压器轴向力测量系统及其测试方法 |
DE202016104055U1 (de) * | 2016-07-25 | 2017-10-27 | Woco Industrietechnik Gmbh | Messeinrichtung und Abscheider mit Messeinrichtung |
CN106529048B (zh) * | 2016-11-11 | 2019-04-09 | 四川长虹空调有限公司 | 空调压缩机配管振动仿真方法 |
CN107356320B (zh) * | 2017-08-03 | 2019-12-06 | 天津大学 | 一种脉冲超声声场检测装置与方法 |
CN107620329B (zh) * | 2017-10-13 | 2020-10-13 | 北京工业大学 | 考虑竖向波动效应径向非均质土中管桩纵向振动分析方法 |
CN110442971B (zh) * | 2019-08-06 | 2022-11-18 | 东北大学 | 一种旋转圆柱壳动力学特性不确定性分析方法 |
CN110457823B (zh) * | 2019-08-13 | 2023-06-02 | 大连民族大学 | 超弹性圆柱薄壳强非线性振动的mlp方法 |
-
2019
- 2019-12-30 CN CN201911405520.XA patent/CN111208312B/zh active Active
-
2020
- 2020-12-14 WO PCT/CN2020/136162 patent/WO2021135908A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203432784U (zh) * | 2012-01-31 | 2014-02-12 | 西门子公司 | 用于旋转的机械部件的状态监控装置 |
CN103745091A (zh) * | 2013-12-20 | 2014-04-23 | 东北大学 | 一种薄壁圆柱筒结构振动故障特征确定方法 |
CN110362928A (zh) * | 2019-07-17 | 2019-10-22 | 大连民族大学 | 确定超弹性薄壁圆柱壳的内共振特性的方法 |
CN111208312A (zh) * | 2019-12-30 | 2020-05-29 | 浙江大学 | 基于波的高速旋转管状结构的转速及应变监测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111208312A (zh) | 2020-05-29 |
CN111208312B (zh) | 2021-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021135908A1 (zh) | 基于波的高速旋转管状结构的转速及应变监测方法 | |
US4170896A (en) | Balancing of high-speed shafts | |
Talebitooti et al. | Free vibrations of rotating composite conical shells with stringer and ring stiffeners | |
WO1990004768A1 (en) | Method and apparatus for continuously suppressing unwanted rotational phenomena in a rotating body | |
CN112541283A (zh) | 一种基于位移-应变传递比的转子叶片裂纹损伤识别方法 | |
CN105021352A (zh) | 一种主轴内置机械式在线动平衡系统 | |
CN113237599A (zh) | 一种适用于径向结构不对称传动轴动平衡补偿的夹具 | |
CN112507576A (zh) | 基于叶端位移-位移传递比的转子叶片裂纹损伤识别方法 | |
CN119124552B (zh) | 一种大载荷滚转动导数试验装置 | |
CN109660148B (zh) | 一种旋转机械宽带压电能量收集方法 | |
CN113063343A (zh) | 一种基于应变信号波形失真评价的转轴裂纹检测方法 | |
CN205826286U (zh) | 一种扭转减振器阻尼测试试验台 | |
CN106767372A (zh) | 带材厚度的监测装置、绕包机及带材厚度的监测方法 | |
CN109506823B (zh) | 一种旋转状态下的风机叶片的径向力测量装置 | |
CN206450176U (zh) | 带材厚度的监测装置及绕包机 | |
CN105787153A (zh) | 一种减振联轴器的设计方法 | |
CN102138802B (zh) | 微型骨骼二维力传感器、骨骼二维力传感装置 | |
CN204945162U (zh) | 一种基于光纤光栅应变传感器的风向测量装置 | |
US8511166B2 (en) | Strain measurement of rotating components | |
CN106840492A (zh) | 轴类扭力测试装置 | |
Oke et al. | B-spline wavelet-based finite element vibration analysis of composite pipes with internal surface defects of different geometries | |
CN1075544A (zh) | 回转机械对中状态监视装置 | |
CN110309615B (zh) | 一种旋转叶片固有频率的预测方法 | |
CN102706272B (zh) | 一种新型筒形磁场轴心测量装置 | |
CN109847952B (zh) | 一种基于驱动电流的双轴精密离心机回转台动平衡方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20910668 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20910668 Country of ref document: EP Kind code of ref document: A1 |