[go: up one dir, main page]

WO2021093352A1 - 一种提高小负载下串联谐振试验调谐稳定性的装置 - Google Patents

一种提高小负载下串联谐振试验调谐稳定性的装置 Download PDF

Info

Publication number
WO2021093352A1
WO2021093352A1 PCT/CN2020/101076 CN2020101076W WO2021093352A1 WO 2021093352 A1 WO2021093352 A1 WO 2021093352A1 CN 2020101076 W CN2020101076 W CN 2020101076W WO 2021093352 A1 WO2021093352 A1 WO 2021093352A1
Authority
WO
WIPO (PCT)
Prior art keywords
tuning
series resonance
improving
rated
small load
Prior art date
Application number
PCT/CN2020/101076
Other languages
English (en)
French (fr)
Inventor
王黎明
魏本刚
张文辉
陈坚
杨来斌
Original Assignee
上海恒能泰企业管理有限公司璞能电力科技工程分公司
国网上海市电力公司
上海高试电气科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恒能泰企业管理有限公司璞能电力科技工程分公司, 国网上海市电力公司, 上海高试电气科技有限公司 filed Critical 上海恒能泰企业管理有限公司璞能电力科技工程分公司
Priority to AU2020239815A priority Critical patent/AU2020239815B2/en
Publication of WO2021093352A1 publication Critical patent/WO2021093352A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits

Definitions

  • the invention relates to the technical field of inductive series resonance power frequency high voltage test of electrical equipment, in particular to a device for improving the tuning stability of a series resonance test under a small load.
  • Series resonance test is a commonly used method for power frequency and high voltage test of high-voltage electrical equipment. Its principle is mainly to use the series resonance between the inductance and the capacitance of the test object (called the load capacitance) to realize the low voltage input
  • the high output voltage is used to reduce the requirement of high-voltage test on the power supply capacity.
  • large-capacity samples large load capacitance
  • the frequency of the test circuit is changed by the variable frequency power supply to realize the series resonance between the reactor and the equivalent capacitance of the tested product;
  • the second is The method does not change the power frequency, and changes the inductance in the test circuit by tuning the inductance to achieve resonance with the tested product, that is, the adjustable inductance series resonance power frequency high voltage test method.
  • the second method does not change the frequency during the test, which is more effective for the assessment of high-voltage electrical equipment that actually runs under the power frequency.
  • the procedure of the tuned series resonance power frequency high voltage test is usually to pre-tune at a lower voltage, that is, adjust and change the tuning inductance, and determine whether it is close to tuning by measuring whether the power factor of the loop is close to it, and then it is close to tuning. Raise the voltage to the target voltage of the output test and complete the test. Because the measurement error under lower voltage will be relatively large and the tuning inductance may fluctuate slightly when the voltage is increased to the target voltage of the output test after the tuning is close, if tuning is found during the voltage increase If the temperature deviates greatly, it is necessary to stop the boost, then adjust and change the inductance of the tuning inductor, and continue to boost after the tuning degree requirements are met, and so on until the target test voltage is reached.
  • the flow chart of the tuning process is shown in Figure 1.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art and provide a device for improving the tuning stability of the series resonance test under a small load, and solve the problem of poor tuning stability of the series resonance test under a small load.
  • a device for improving the tuning stability of a series resonance test under a small load comprising a column voltage regulator, an excitation transformer, a tuning inductance, a measuring voltage divider, a measurement module and a host computer, and the input end of the column voltage regulator is connected To the power supply, the output terminal is connected to the input terminal of the excitation transformer, the output terminal of the excitation transformer is connected in series with the tuning inductance and the capacitor of the test sample to form a closed loop, the measuring voltage divider is connected in parallel with the capacitor of the test sample, and the input of the measuring module
  • the measuring module and the output terminal of the measuring voltage divider are both connected to the upper computer, and the device further includes a damping resistor connected in series between the excitation transformer and the tuning inductor.
  • the measurement module includes a power factor meter and a current transformer, the input end of the power factor meter is connected to the primary side of the excitation transformer, and the current transformer is connected to the secondary side of the excitation transformer.
  • the resistance value of the damping resistor is specifically:
  • a is the intermediate variable
  • b is the intermediate variable
  • c is the intermediate variable
  • R 1 is the resistance value of the damping resistor
  • U 2N is the rated output voltage of the secondary side of the excitation transformer
  • is 2 ⁇ f
  • f is the power frequency
  • C min is the capacitance of the measuring voltage divider
  • CN is the design rated load
  • U N is the rated test voltage
  • is the upper limit of the proportion of the design rated load
  • ⁇ l is the distance at which the air gap of the tuning inductor may jitter
  • is the lower limit of the proportion of the designed rated load
  • ⁇ 0 is the vacuum permeability
  • N is the number of turns of the tuning inductor
  • S 0 is the equivalent magnetic area of the tuning inductor air gap.
  • the power frequency of the power supply is 50 Hz.
  • the lower limit of the proportion of the designed rated load is 10%.
  • the upper limit of the proportion of the designed rated load is 40%.
  • the rated withstand voltage of the damping resistor is the rated output voltage of the secondary side of the excitation transformer.
  • a short-circuit switch is connected in parallel with the damping resistor, and when the capacitance value of the capacitor of the test sample exceeds 40% of the designed rated load, the short-circuit switch is turned on.
  • the present invention has the following beneficial effects:
  • the short-circuit switch can be turned on when the capacitance value of the capacitor of the test sample exceeds 40% of the designed rated load, so as not to affect the normal test.
  • FIG. 1 is a flow chart of the tuning process
  • Figure 2 is a schematic diagram of the structure of the present invention.
  • Figure 3 is the equivalent circuit diagram of the test circuit.
  • the technical solution of the present invention solves the problem of poor tuning stability of the series resonance test under small load conditions, specifically through the output of the excitation transformer (or step-up transformer) in the adjustable inductance series resonance power frequency high voltage test device (or system) A damping resistor is connected between the terminal and the tuning inductor.
  • a device for improving the tuning stability of series resonance test under small load includes column voltage regulator, excitation transformer, tuning inductance, measuring voltage divider, measuring module and host computer, column voltage regulator
  • the input end of the excitation transformer is connected to the power supply, and the output end is connected to the input end of the excitation transformer.
  • the output end of the excitation transformer is connected in series with the tuning inductance and the capacitance of the test sample to form a closed loop.
  • the measuring voltage divider is connected in parallel with the capacitance of the test sample.
  • the excitation transformer is connected, and the output ends of the measuring module and the measuring voltage divider are both connected with the upper computer.
  • the device also includes a damping resistor, which is connected in series between the excitation transformer and the tuning inductor.
  • the measurement module includes a power factor meter and a current transformer.
  • the input end of the power factor meter is connected to the primary side of the excitation transformer, and the current transformer is connected to the secondary side of the excitation transformer.
  • the resistance range of the damping resistor is determined by the following method:
  • the inductance value can be changed by adjusting the size of the air gap.
  • the theoretical calculation formula of the inductance value of the adjustable air gap tuning inductor L 1 is as follows:
  • N is the number of turns of the coil;
  • R m0 is the air gap equivalent magnetic resistance;
  • ⁇ 0 is the vacuum permeability;
  • S 0 is the air gap equivalent magnetic area;
  • l 0 is the air gap geometric length.
  • FIG. 3 The equivalent circuit of the test circuit viewed from the secondary side of the excitation transformer is shown in Figure 3.
  • R 0 is the equivalent resistance of the test loop
  • L 0 is the equivalent inductance of the test loop.
  • the stray capacitance of the loop is very small compared to the load capacitance (ie, the equivalent capacitance of the tested product) and the voltage divider capacitance, and can be ignored Excluding.
  • C x is the equivalent capacitance of the test product, that is, the load capacitance.
  • the tuning inductance is much larger than the equivalent inductance of the test loop when it is close to tuning, that is, L 1 >>L 0 , and the total loop inductance can be approximated as L ⁇ L 1 .
  • the tuning inductance is tuned from large to small when tuning is started, that is, the air gap of the tuning inductance is tuned from small to large. Assuming that the loop power factor reaches When the total inductance of the loop is L, and the air gap length of the tuning inductance is l, then
  • the air gap of the tuning inductor fluctuates slightly, for example, the air gap length is slightly reduced by ⁇ l, the inductance is reduced by ⁇ L, and the power factor of the loop drops to then
  • f is the power frequency, 50Hz.
  • formula (5) can be approximated as the condition for the damping resistance R 1 to be series in, namely
  • the lower limit of the series-connected damping resistor needs to be determined according to the lower limit of the small load capacitance that needs to be considered. The most extreme case is no-load, that is, only the capacitance of the voltage divider is measured.
  • the minimum load condition that needs to be considered for the adjustable inductance series resonance power frequency high voltage test device (or system) is that the load is only 10% of the design rated load CN , that is
  • U 2N is the rated output voltage of the secondary side of the excitation transformer
  • U t is the test target voltage
  • the maximum does not exceed the rated test voltage U N of the adjustable inductance series resonance power frequency high voltage test device (or system).
  • the upper limit of the damping resistance in series should be determined by the upper limit of the load under consideration of the small load.
  • the unstable tuning is likely to occur when the load is less than 40% of the design rated load CN .
  • the resistance value of the damping resistor R 1 is specifically:
  • a is the intermediate variable
  • b is the intermediate variable
  • c is the intermediate variable
  • R 1 is the resistance value of the damping resistor
  • U 2N is the rated output voltage of the secondary side of the excitation transformer
  • is 2 ⁇ f
  • f is the power frequency
  • C min is the capacitance of the measuring voltage divider
  • CN is the design rated load
  • U N is the rated test voltage
  • is the upper limit of the proportion of the design rated load
  • ⁇ l is the distance at which the air gap of the tuning inductor may jitter
  • is the lower limit of the proportion of the designed rated load
  • ⁇ 0 is the vacuum permeability
  • N is the number of turns of the tuning inductor
  • S 0 is the equivalent magnetic area of the tuning inductor air gap.
  • the power frequency of the power supply is 50Hz
  • the lower limit of the proportion of the design rated load is 10%
  • the upper limit of the proportion of the design rated load is 40%.
  • a short-circuit switch is connected in parallel to the damping resistor.
  • the short-circuit switch is turned on. That is, under non-small load conditions, the adjustable-inductance series resonance power frequency high-voltage test device (or system) usually does not need to be connected in series with a damping resistor to achieve stable tuning, so the series-in damping resistor can be short-circuited through a short switch .
  • the so-called non-small load condition usually refers to the condition that the load capacitance of the test product is greater than 40% of the rated test load capacitance range of the adjustable inductance series resonance power frequency high voltage test device (or system).
  • the case of small load means that the load capacitance of the test product is less than 40% of the rated load capacitance range of the adjustable inductance series resonance power frequency high voltage test device (or system).
  • the present invention provides a method for improving the tuning stability of a series resonance test under a small load.
  • the method includes: an excitation transformer (or a booster) in an inductive series resonance power frequency high voltage test device (or system).
  • a damping resistor is connected between the output terminal of the transformer) and the tuning inductor.
  • a set of 400kV adjustable inductance series resonance power frequency high voltage test device is taken as an example to illustrate the specific implementation of the method of this patent.
  • the total loop capacitance at this time is 5000pF.
  • the inductance will change by about 1H, and the loop power factor will change to Far below the lower limit of the tuning target range Therefore, it is necessary to adjust the tuning inductance, and even the reciprocating adjustment may not be stable.
  • the damping resistance connected in series needs to be limited to the range of 5334 ⁇ R 1 ⁇ 6511 ⁇ .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种提高小负载下串联谐振试验调谐稳定性的装置,包括柱式调压器、励磁变压器、调谐电感(L 1)、测量分压器(C 1、C 2)、测量模块和上位机,柱式调压器的输入端连接至电源(AC),输出端连接至励磁变压器的输入端,励磁变压器的输出端与调谐电感(L 1)和试品电容(Cx)串联构成闭合回路,测量分压器(C 1、C 2)与试品电容(Cx)并联,测量模块的输入端与励磁变压器连接,测量模块和测量分压器(C 1、C 2)的输出端均与上位机连接,装置还包括阻尼电阻(R 1),该阻尼电阻(R 1)串联于励磁变压器和调谐电感(L 1)之间。与现有技术相比,本方案通过在励磁变压器的输出端和调谐电感(L 1)之间串接阻尼电阻(R 1),使得小负载下串联谐振试验的调谐更加稳定,调谐速度更快。

Description

一种提高小负载下串联谐振试验调谐稳定性的装置 技术领域
本发明涉及电气设备的调感式串联谐振工频高电压试验技术领域,尤其是涉及一种提高小负载下串联谐振试验调谐稳定性的装置。
背景技术
串联谐振试验是一种高压电器设备工频高电压试验常用的方法,其原理主要是利用电感和被试品电容(称为负载电容)之间的串联谐振以实现通过输入低电压而在试品上输出高电压,以减小高电压试验对电源容量的要求,对于大容量试品(负载电容大)的试验具有降低试验电源和试验设备容量要求的巨大优势。目前常采用的串联谐振试验方法主要有两种,第一种是变频串联谐振试验方法,通过变频电源改变试验回路的频率实现电抗器与被试品等效电容之间的串联谐振;第二种方法不改变电源频率,通过调谐电感改变试验回路中的电感从而实现与被试品之间的谐振,即调感式串联谐振工频高电压试验方法。与第一种方法相比,第二种方法试验时不改变频率,对实际在工频下运行的高压电器设备的考核更有效。
调感式串联谐振工频高电压试验的步骤通常是先在较低电压下预调谐,即调节改变调谐电感,通过测量回路的功率因数是否接近于来判断是否已接近调谐,在接近调谐以后再把电压升高至输出试验目标电压,完成试验。由于较低电压下的测量误差会相对较大和在接近调谐以后再把电压升高至输出试验目标电压的过程中调谐电感可能会略有波动这两个主要原因,电压升高过程中如果发现调谐度发生较大偏离,则需要停止升压,再调节改变调谐电感的电感量,满足调谐度要求以后再继续升压,如此循环,直至达到目标试验电压。调谐过程的流程框图见图1。
但是在实际应用过程中,发明人发现,在小负载情况下(试品的等效电容较小),调谐电感的电感量波动较大,上述“预调谐→升压→再调谐→再升压”的过程中出现不稳定甚至往复调节的情况,“预调谐→升压→再调谐→再升压”的过程中经常出现不稳定甚至往复调节的情况。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种提高小负载下串联谐振试验调谐稳定性的装置,解决了小负载情况下串联谐振试验调谐稳定性差的问题。
本发明的目的可以通过以下技术方案来实现:
一种提高小负载下串联谐振试验调谐稳定性的装置,包括柱式调压器、励磁变压器、调谐电感、测量分压器、测量模块和上位机,所述柱式调压器的输入端连接至电源,输出端连接至励磁变压器的输入端,所述励磁变压器的输出端与调谐电感和试品电容串联构成闭合回路,所述测量分压器与试品电容并联,所述测量模块的输入端与励磁变压器连接,所述测量模块和测量分压器的输出端均与上位机连接,所述装置还包括阻尼电阻,该阻尼电阻串联于励磁变压器和调谐电感之间。
所述测量模块包括功率因数表和电流互感器,所述功率因数表的输入端连接励磁变压器的一次侧,所述电流互感器连接励磁变压器二次侧。
所述阻尼电阻的阻值具体为:
Figure PCTCN2020101076-appb-000001
Figure PCTCN2020101076-appb-000002
Figure PCTCN2020101076-appb-000003
Figure PCTCN2020101076-appb-000004
其中:a为中间变量,b为中间变量,c为中间变量,R 1为阻尼电阻的阻值,U 2N为激磁变压器二次侧的额定输出电压,ω为2πf,f为电源工频,C min为测量分压器的电容量,C N为设计额定负载,U N为额定试验电压,β为设计额定负载的比例上限,
Figure PCTCN2020101076-appb-000005
为调谐目标范围的上限,Δl为调谐电感气隙可能抖动的距离,
Figure PCTCN2020101076-appb-000006
为调谐目标范围的下限,α为设计额定负载的比例下限,μ 0为真空磁导率,N为调谐电感的线圈匝数,S 0为调谐电感气隙等效导磁面积。
所述电源工频为50Hz。
所述设计额定负载的比例下限为10%。
所述设计额定负载的比例上限为40%。
所述阻尼电阻的额定耐受电压为激磁变压器二次侧的额定输出电压。
所述阻尼电阻上并联有短接开关,当试品电容的电容值超过设计额定负载的40%时,接通短接开关。
与现有技术相比,本发明具有以下有益效果:
1)通过在励磁变压器的输出端和调谐电感之间串接阻尼电阻,使得小负载下串联谐振试验的调谐更加稳定,调谐速度更快。
2)通过设置短接开关,可以在试品电容的电容值超过设计额定负载的40%时,接通短接开关,从而不影响正常的试验。
附图说明
图1为调谐过程的流程框图;
图2为本发明的结构示意图;
图3为试验回路的等效电路图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
本发明技术方案解决了小负载情况下串联谐振试验调谐稳定性差的问题,具体通过在调感式串联谐振工频高电压试验装置(或系统)中的励磁变压器(或称升压变压器)的输出端和调谐电感之间接入阻尼电阻。
一种提高小负载下串联谐振试验调谐稳定性的装置,如图2所示,包括柱式调压器、励磁变压器、调谐电感、测量分压器、测量模块和上位机,柱式调压器的输入端连接至电源,输出端连接至励磁变压器的输入端,励磁变压器的输出端与调谐电感和试品电容串联构成闭合回路,测量分压器与试品电容并联,测量模块的输入端与励磁变压器连接,测量模块和测量分压器的输出端均与上位机连接,装置还包括阻尼电阻,该阻尼电阻串联于励磁变压器和调谐电感之间。
测量模块包括功率因数表和电流互感器,功率因数表的输入端连接励磁变压器的一次侧,电流互感器连接励磁变压器二次侧。
阻尼电阻的阻值范围通过以下方法确定:
针对采用调气隙式调谐电感的串联谐振工频高电压试验,通过调节气隙大小实现电感值的改变。调气隙式调谐电感L 1的电感值理论计算公式如下:
Figure PCTCN2020101076-appb-000007
式(1)中,N为线圈匝数;R m0为气隙等效磁阻;μ 0为真空磁导率;S 0为气隙等效导磁面积;l 0为气隙几何长度。
参见图2,从励磁变压器副边看的试验回路等效电路如图3所示。图中,R 0为试验回路等效电阻,L 0为试验回路等效电感,回路的杂散电容相比于负载电容(即被试品等效电容)和分压器电容很小,可以忽略不计。
回路总电阻R=R 0+R 1,回路总电感L=L 0+L 1,回路总电容
Figure PCTCN2020101076-appb-000008
C min为分压器的电容,由分压器高压臂和低压臂电容C 1和C 2组成。C x为试品等效电容,即负载电容。通常在小负载情况下,接近调谐时调谐电感远大于试验回路等效电感,即L 1>>L 0,回路总电感可以近似为L≈L 1。通常开始调谐的时候调谐电感是从大往小调的,即调谐电感的气隙从小往大调。假定回路功率因数达到
Figure PCTCN2020101076-appb-000009
时回路总电感为L,调谐电感的气隙长度为l,则
Figure PCTCN2020101076-appb-000010
Figure PCTCN2020101076-appb-000011
此后调谐过程中如调谐电感的气隙略有波动,如气隙长度略微减小△l,电感减小了△L,回路的功率因数降为
Figure PCTCN2020101076-appb-000012
Figure PCTCN2020101076-appb-000013
Figure PCTCN2020101076-appb-000014
整理可得,
Figure PCTCN2020101076-appb-000015
式中ω=2πf,f为工频,50Hz。
解方程(4)可得,当气隙长度减小△l时要保持回路功率因数不低于
Figure PCTCN2020101076-appb-000016
的 条件为
Figure PCTCN2020101076-appb-000017
式中,
Figure PCTCN2020101076-appb-000018
Figure PCTCN2020101076-appb-000019
Figure PCTCN2020101076-appb-000020
通常满足式(5)时,串入的阻尼电阻需远大于试验回路等效电阻,因此可以近似地将式(5)作为需串入的阻尼电阻R 1的条件,即
Figure PCTCN2020101076-appb-000021
由式(6)也可见,串入阻尼电阻的下限需要按照需考虑的小负载电容情况的下限确定。最极端的情况是空载,即只有测量分压器的电容,
Figure PCTCN2020101076-appb-000022
通常调感式串联谐振工频高电压试验装置(或系统)需要考虑的最小负载情况是负载只有10%设计额定负载C N的情况,即
Figure PCTCN2020101076-appb-000023
同时,需考虑如果串入的阻尼电阻太大,则可能限值了回路电流,导致即使调谐了试品上也升不到试验目标电压。根据试验目标电压条件又可推得R 1需满足条件:
Figure PCTCN2020101076-appb-000024
式中,U 2N为激磁变压器二次侧的额定输出电压,U t为试验目标电压,最高不超过调感式串联谐振工频高电压试验装置(或系统)的额定试验电压U N
由式(7)可见,串入阻尼电阻的上限应该由所考虑的小负载情况的负载上限确定。通常在调感式串联谐振工频高电压试验装置(或系统)中容易出现调谐不稳定的情况是在负载小于40%设计额定负载C N的情况下。
阻尼电阻R 1的阻值具体为:
Figure PCTCN2020101076-appb-000025
Figure PCTCN2020101076-appb-000026
Figure PCTCN2020101076-appb-000027
Figure PCTCN2020101076-appb-000028
其中:a为中间变量,b为中间变量,c为中间变量,R 1为阻尼电阻的阻值,U 2N为激磁变压器二次侧的额定输出电压,ω为2πf,f为电源工频,C min为测量分压器的电容量,C N为设计额定负载,U N为额定试验电压,β为设计额定负载的比例上限,
Figure PCTCN2020101076-appb-000029
为调谐目标范围的上限,Δl为调谐电感气隙可能抖动的距离,
Figure PCTCN2020101076-appb-000030
为调谐目标范围的下限,α为设计额定负载的比例下限,μ 0为真空磁导率,N为调谐电感的线圈匝数,S 0为调谐电感气隙等效导磁面积。
电源工频为50Hz,设计额定负载的比例下限为10%,设计额定负载的比例上限为40%。
另外,调谐时,励磁变压器二次侧的电压几乎全加在阻尼电阻上,串入阻尼电阻的可耐受额定电压U R1N应按U R1N=U 2N限定。
阻尼电阻上并联有短接开关,当试品电容的电容值超过设计额定负载的40%时,接通短接开关。即在非小负载情况下,调感式串联谐振工频高电压试验装置(或系统)通常无需另外串入阻尼电阻即可实现稳定调谐,因此可以将串入的阻尼电阻通过短接开关短接。所谓非小负载情况通常是指试品负载电容大于调感式串联谐振工频高电压试验装置(或系统)额定试验负载电容范围40%的情况。反之,小负载的情况即是指试品负载电容小于调感式串联谐振工频高电压试验装置(或系统)额定负载电容范围40%的情况。
本发明提供了一种提高小负载下串联谐振试验调谐稳定性的方法,所述的方法包括:在调感式串联谐振工频高电压试验装置(或系统)中的励磁变压器(或称升压变压器)的输出端和调谐电感之间接入阻尼电阻。现具体阐述如下:
以一套400kV的调感式串联谐振工频高电压试验装置为例来说明本专利方法的具体实施方式。电源为0.4kV,工频50Hz;励磁变压器二次侧额定电压U 2N=9kV;调谐电抗器额定容量Q LN=1200kVA,额定电压U LN=400kV,允许通过的额定电流I LN=3A,线圈匝数N=28000,气隙等效导磁面积S 0=400cm 2,气隙最大长度l max=200mm;电容分压器的电容量为3000pF,即空载时C min=3000pF;最高试验目 标电压U N=400kV,设计额定试验负载电容C N=20000pF;回路等效电阻按最高不超过R 0=100Ω估计,小负载情况下接近调谐时调谐电感L 1>>L 0,因此忽略回路等效电感L 0。ω=100π,μ 0=4π×10 -7H/m,调谐目标范围为
Figure PCTCN2020101076-appb-000031
如这套调感式串联谐振工频高电压试验装置要考虑的最小试品负载为10%额定试验电容即能稳定调谐,即C x=2000pF。加上分压器电容,此时回路总电容为5000pF。按式(1)计算,调谐电感的电感量和气隙长度之间的关系为L 1=39408/lH,l单位为mm。按现有方法不串入阻尼电阻时,R=R 0=100Ω,回路功率因数调节到
Figure PCTCN2020101076-appb-000032
时,电感需调节到2026.49H,气隙长度l=19.446mm。调谐过程中如气隙略有波动,以减小0.01mm为例,则电感会变化约1H,回路功率因数变化到
Figure PCTCN2020101076-appb-000033
远低于调谐目标范围下限
Figure PCTCN2020101076-appb-000034
因此又需要调节调谐电感,甚至会出现往复调节不能稳定。
按照本发明专利方法,在空载情况下,按式(6)计算,串入阻尼电阻R 1≥2611Ω。则在R 1=2611Ω的情况下,即使忽略回路等效电阻R 0,R=R 1,回路功率因数调节到
Figure PCTCN2020101076-appb-000035
时,电感需调节到2028.11H,气隙长度l=19.431mm。调谐过程中如气隙略有波动,以减小0.01mm为例,则电感会变化约1H,回路功率因数变化到
Figure PCTCN2020101076-appb-000036
仍满足调谐目标范围下限
Figure PCTCN2020101076-appb-000037
因此不需要再调节调谐电感,调谐稳定。以设计额定试验负载电容40%以下作为小负载范围,按式(7)计算,C=3000+40%×20000=11000pF时,串入的阻尼电阻R 1≤6511Ω。在2611Ω≤R 1≤6511Ω范围内,理论上10%-40%小负载情况下调谐都能稳定且输出都能达到试验目标电压。
极端情况下,如需考虑空载情况下的稳定调谐,即只有分压器电容C=C min=3000pF。此时,按本发明方法计算,串入的阻尼电阻需限定在5334Ω≤R 1≤6511Ω范围内。
从上述实施例可以看出,按本发明方法串接阻尼电阻后,小负载情况下的调谐稳定性可以大大提高,调谐速度显著加快。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (8)

  1. 一种提高小负载下串联谐振试验调谐稳定性的装置,包括柱式调压器、励磁变压器、调谐电感、测量分压器、测量模块和上位机,所述柱式调压器的输出端连接至电源,输出端连接至励磁变压器的输入端,所述励磁变压器的输出端与调谐电感和试品电容串联构成闭合回路,所述测量分压器与试品电容并联,所述测量模块和测量分压器的输出端均与上位机连接,所述测量模块的输入端与励磁变压器连接,其特征在于,所述装置还包括阻尼电阻,该阻尼电阻串联于励磁变压器和调谐电感之间,其中,小负载是指试品电容小于设计额定负载的40%。
  2. 根据权利要求1所述的一种提高小负载下串联谐振试验调谐稳定性的装置,其特征在于,所述测量模块包括功率因数表和电流互感器,所述功率因数表的输入端连接励磁变压器的一次侧,所述电流互感器连接励磁变压器二次侧。
  3. 根据权利要求1所述的一种提高小负载下串联谐振试验调谐稳定性的装置,其特征在于,所述阻尼电阻的阻值具体为:
    Figure PCTCN2020101076-appb-100001
    Figure PCTCN2020101076-appb-100002
    Figure PCTCN2020101076-appb-100003
    Figure PCTCN2020101076-appb-100004
    其中:a为中间变量,b为中间变量,c为中间变量,R 1为阻尼电阻的阻值,U 2N为激磁变压器二次侧的额定输出电压,ω为2πf,f为电源工频,C min为测量分压器的电容量,C N为设计额定负载,U N为额定试验电压,β为设计额定负载的比例上限,
    Figure PCTCN2020101076-appb-100005
    为调谐目标范围的上限,Δl为调谐电感气隙可能抖动的距离,
    Figure PCTCN2020101076-appb-100006
    为调谐目标范围的下限,α为设计额定负载的比例下限,μ 0为真空磁导率,N为调谐电感的线圈匝数,S 0为调谐电感气隙等效导磁面积。
  4. 根据权利要求3所述的一种提高小负载下串联谐振试验调谐稳定性的装置,其特征在于,所述电源工频为50Hz。
  5. 根据权利要求3所述的一种提高小负载下串联谐振试验调谐稳定性的装置, 其特征在于,所述设计额定负载的比例下限为10%。
  6. 根据权利要求3所述的一种提高小负载下串联谐振试验调谐稳定性的装置,其特征在于,所述设计额定负载的比例上限为40%。
  7. 根据权利要求3所述的一种提高小负载下串联谐振试验调谐稳定性的装置,其特征在于,所述阻尼电阻的额定耐受电压为激磁变压器二次侧的额定输出电压。
  8. 根据权利要求1所述的一种提高小负载下串联谐振试验调谐稳定性的装置,其特征在于,所述阻尼电阻上并联有短接开关,当试品电容的电容值超过设计额定负载的40%时,接通短接开关。
PCT/CN2020/101076 2019-11-13 2020-07-09 一种提高小负载下串联谐振试验调谐稳定性的装置 WO2021093352A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2020239815A AU2020239815B2 (en) 2019-11-13 2020-07-09 A device for improving tuning stability of series resonance under small load

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911107893.9 2019-11-13
CN201911107893.9A CN110703059B (zh) 2019-11-13 2019-11-13 一种提高小负载下串联谐振试验调谐稳定性的装置

Publications (1)

Publication Number Publication Date
WO2021093352A1 true WO2021093352A1 (zh) 2021-05-20

Family

ID=69205947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101076 WO2021093352A1 (zh) 2019-11-13 2020-07-09 一种提高小负载下串联谐振试验调谐稳定性的装置

Country Status (3)

Country Link
CN (1) CN110703059B (zh)
AU (1) AU2020239815B2 (zh)
WO (1) WO2021093352A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484812A (zh) * 2021-05-26 2021-10-08 广西电网有限责任公司南宁供电局 一种电容式电压互感器的测量装置及测量方法
CN114002570A (zh) * 2021-11-30 2022-02-01 国网上海市电力公司 一种融合式串联谐振电感电容双重测压试验设备
CN114019330A (zh) * 2021-11-09 2022-02-08 安徽新力电业科技咨询有限责任公司 一种串联谐振法交流耐压试验装置及计算方法
CN114545157A (zh) * 2021-10-25 2022-05-27 国网浙江省电力有限公司湖州供电公司 一种串联谐振试验计算辅助方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703059B (zh) * 2019-11-13 2021-08-17 上海恒能泰企业管理有限公司璞能电力科技工程分公司 一种提高小负载下串联谐振试验调谐稳定性的装置
CN112067865A (zh) * 2020-09-14 2020-12-11 南方电网科学研究院有限责任公司 一种电流源装置及直流充电桩校验仪检定装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217470A (ja) * 1988-07-06 1990-01-22 Totoku Electric Co Ltd 高周波耐圧試験器
JPH07167910A (ja) * 1993-12-14 1995-07-04 Nippon Keisokki Seizosho:Kk 同調式部分放電測定器を使用したケーブルの部分放電測定方法
CN2672667Y (zh) * 2003-12-08 2005-01-19 大庆石油管理局 变频式串联谐振工频耐压试验装置
CN202119866U (zh) * 2011-05-25 2012-01-18 黑龙江省安装工程公司 变频串联谐振耐压试验装置
CN102735997A (zh) * 2012-06-19 2012-10-17 扬州市双宝电力设备有限公司 串联谐振耐压试验装置
CN102749566A (zh) * 2012-07-26 2012-10-24 广东电网公司惠州供电局 基于fpga的变频串联谐振试验方法
CN103675624A (zh) * 2013-12-13 2014-03-26 中国西电电气股份有限公司 一种避雷器工频电压试验装置及试验方法
CN102590717B (zh) * 2012-02-14 2014-04-23 重庆市电力公司电力科学研究院 Gis耐压测试方法
CN104136931A (zh) * 2012-02-27 2014-11-05 赖茵豪森机械制造公司 用于对高压技术仪器进行测试的测试系统和方法
CN107271869A (zh) * 2017-06-30 2017-10-20 国家电网公司 高海拔地区750kV并联电抗器局部放电试验方法
CN207020273U (zh) * 2017-04-10 2018-02-16 武汉国电华美电气设备有限公司 一种变频串联谐振试验装置
CN109901027A (zh) * 2017-12-08 2019-06-18 江华晟瑞电子有限公司 一种变频谐振试验装置
CN110703059A (zh) * 2019-11-13 2020-01-17 上海恒能泰企业管理有限公司璞能电力科技工程分公司 一种提高小负载下串联谐振试验调谐稳定性的装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565647B (zh) * 2012-02-14 2015-04-29 重庆市电力公司电力科学研究院 Gis耐压测试系统
CN104242255B (zh) * 2014-10-11 2017-04-05 国网重庆市电力公司电力科学研究院 一种gis同频同相交流耐压试验控制保护方法及系统
CN105974280A (zh) * 2016-05-09 2016-09-28 国网重庆市电力公司电力科学研究院 一种gis耐压试验装置
CN106054055B (zh) * 2016-08-02 2018-09-21 阜新市天琪电子有限责任公司 并联谐振式电容器交流寿命试验台

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217470A (ja) * 1988-07-06 1990-01-22 Totoku Electric Co Ltd 高周波耐圧試験器
JPH07167910A (ja) * 1993-12-14 1995-07-04 Nippon Keisokki Seizosho:Kk 同調式部分放電測定器を使用したケーブルの部分放電測定方法
CN2672667Y (zh) * 2003-12-08 2005-01-19 大庆石油管理局 变频式串联谐振工频耐压试验装置
CN202119866U (zh) * 2011-05-25 2012-01-18 黑龙江省安装工程公司 变频串联谐振耐压试验装置
CN102590717B (zh) * 2012-02-14 2014-04-23 重庆市电力公司电力科学研究院 Gis耐压测试方法
CN104136931A (zh) * 2012-02-27 2014-11-05 赖茵豪森机械制造公司 用于对高压技术仪器进行测试的测试系统和方法
CN102735997A (zh) * 2012-06-19 2012-10-17 扬州市双宝电力设备有限公司 串联谐振耐压试验装置
CN102749566A (zh) * 2012-07-26 2012-10-24 广东电网公司惠州供电局 基于fpga的变频串联谐振试验方法
CN103675624A (zh) * 2013-12-13 2014-03-26 中国西电电气股份有限公司 一种避雷器工频电压试验装置及试验方法
CN207020273U (zh) * 2017-04-10 2018-02-16 武汉国电华美电气设备有限公司 一种变频串联谐振试验装置
CN107271869A (zh) * 2017-06-30 2017-10-20 国家电网公司 高海拔地区750kV并联电抗器局部放电试验方法
CN109901027A (zh) * 2017-12-08 2019-06-18 江华晟瑞电子有限公司 一种变频谐振试验装置
CN110703059A (zh) * 2019-11-13 2020-01-17 上海恒能泰企业管理有限公司璞能电力科技工程分公司 一种提高小负载下串联谐振试验调谐稳定性的装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484812A (zh) * 2021-05-26 2021-10-08 广西电网有限责任公司南宁供电局 一种电容式电压互感器的测量装置及测量方法
CN114545157A (zh) * 2021-10-25 2022-05-27 国网浙江省电力有限公司湖州供电公司 一种串联谐振试验计算辅助方法
CN114019330A (zh) * 2021-11-09 2022-02-08 安徽新力电业科技咨询有限责任公司 一种串联谐振法交流耐压试验装置及计算方法
CN114019330B (zh) * 2021-11-09 2023-11-14 安徽新力电业科技咨询有限责任公司 一种串联谐振法交流耐压试验装置及计算方法
CN114002570A (zh) * 2021-11-30 2022-02-01 国网上海市电力公司 一种融合式串联谐振电感电容双重测压试验设备

Also Published As

Publication number Publication date
CN110703059B (zh) 2021-08-17
CN110703059A (zh) 2020-01-17
AU2020239815B2 (en) 2021-09-09
AU2020239815A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2021093352A1 (zh) 一种提高小负载下串联谐振试验调谐稳定性的装置
CN109521338B (zh) 基于串级式升压的变频并联谐振耐压试验方法
CN202634316U (zh) 一种基于电容分压器的取能装置
CN104300698A (zh) 一种具有高谐振频率稳定性的谐振增强型无线电能传输结构
CN105353335B (zh) 一种交流分压器自动校验装置及方法
CN107565709B (zh) 一种无线电能传输设备接收端动态调谐装置及其调谐方法
CN104020357B (zh) 一种直流偏压下的电容测试电路及测试方法
CN113765232B (zh) 一种基于三次谐波注入的分数阶恒流输出无线电能传输装置
CN108169576A (zh) 一种移动式无线电能传输系统的动态互感检测方法
CN108288857B (zh) 一种双谐振型三相有源电力滤波器、控制方法及装置
CN114823044B (zh) 一种频率和场强可变的匀强磁场发生器及其控制方法
CN110398674A (zh) 一种特高压并联电抗耐压及局部放电试验装置
CN207782415U (zh) 无功补偿装置及互感器检测设备
JP6707526B2 (ja) コンバータ及び受電装置
CN116305625A (zh) 基于pt理论的非自治恒压无铁芯隔离变换器设计方法
CN114157000A (zh) 一种基于杂散电容的高压取能装置及方法
CN108183558A (zh) 基于相位观察的谐振式无线电能传输的调谐方法及设备
CN204887662U (zh) 电感耦合等离子炬的自动阻抗匹配装置
CN111596149A (zh) 输电线路及高压并联电抗器的高电压试验装置及其应用方法
CN113394987B (zh) 容量可调的供电设备
CN111693835A (zh) 一种工频三倍频变频三合一集成无局放试验电源
CN207067381U (zh) 一种基于晶闸管控制电容器的工频串联谐振升压cvt检定装置
CN104503294A (zh) 一种基于直流负反馈原理的梯形-矩形加权数字积分器
US20130300381A1 (en) Power converter apparatus
CN111933436A (zh) 一种基于有源双级感应分压器的电压互感器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020239815

Country of ref document: AU

Date of ref document: 20200709

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887647

Country of ref document: EP

Kind code of ref document: A1