WO2020062561A1 - 偏光结构及显示装置 - Google Patents
偏光结构及显示装置 Download PDFInfo
- Publication number
- WO2020062561A1 WO2020062561A1 PCT/CN2018/119263 CN2018119263W WO2020062561A1 WO 2020062561 A1 WO2020062561 A1 WO 2020062561A1 CN 2018119263 W CN2018119263 W CN 2018119263W WO 2020062561 A1 WO2020062561 A1 WO 2020062561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compensation film
- polarizing
- film
- light
- optical compensation
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 110
- 230000001154 acute effect Effects 0.000 claims abstract description 12
- 239000004973 liquid crystal related substance Substances 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 11
- 230000002159 abnormal effect Effects 0.000 claims description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- -1 polyethylene terephthalate Polymers 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 claims description 2
- 239000010408 film Substances 0.000 description 135
- 239000010410 layer Substances 0.000 description 16
- 230000005684 electric field Effects 0.000 description 8
- 239000004988 Nematic liquid crystal Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000002547 anomalous effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
- G02B5/3041—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
Definitions
- the present application relates to the field of display, and in particular to a polarizing structure and a display device.
- the display device is generally composed of a backlight module and a display panel placed on the backlight module.
- the backlight module provides incident light for the display panel.
- the incident light is usually concentrated and incident on the display panel. Therefore, when viewing the display screen in the frontal direction, It can obtain better display image quality, but when viewing the display screen in the side view direction, the image quality is poor and the color cast is more serious, which makes the viewing angle of normal display smaller.
- a polarizing structure is provided according to various embodiments of the present application.
- a polarizing structure includes:
- a phase compensation film having a light incident surface and a light exit surface opposite to the light incident surface
- a polarizing film provided on the light emitting surface of the phase compensation film.
- An optical compensation film is disposed on the polarizing film and is located on the top layer of the polarizing structure.
- the optical compensation film has a first refractive index, the first refractive index is greater than the refractive index of air, and the optical compensation film is in contact with air.
- a convex structure is formed on one surface of the convex structure, and an angle formed by at least a part of the surface of the convex structure and the light incident surface is an acute angle.
- the convex structure is an elongated convex structure and has a circular arc surface.
- the optical compensation film is formed with a plurality of the convex structures and each of the elongated convex structures is side by side. Settings.
- the convex structure has a spherical curved surface
- the optical compensation film is formed with a plurality of the convex structures
- each of the convex structures is arranged in a two-dimensional matrix array.
- the radius of the curved surface is less than or equal to twice the height of the raised structure.
- the radius of the curved surface is less than or equal to twice the height of the raised structure.
- the optical compensation film is formed with a plurality of the convex structures and a center-to-center distance between adjacent convex structures is less than or equal to 10 ⁇ m.
- the optical compensation film is a single optical axis C-compensation film
- the first refractive index is a normal refractive index of the C-compensation film
- the polarizing film has a transmission axis
- the optical compensation film is a single optical axis A compensation film
- the optical axis of the single optical axis A-compensation film is parallel to the transmission axis, so
- the first refractive index is an abnormal refractive index of the single optical axis A-compensation film.
- the optical compensation film is doped with resin particles having anti-glare function.
- the polarizing film includes a polyvinyl alcohol film.
- the optical compensation film is formed with a plurality of the convex structures and a gap exists between adjacent convex structures, and a width of the gap is smaller than or close to a wavelength of incident light.
- the width of the gap is greater than or equal to 300 nm and less than or equal to 1000 nm.
- a supporting film is further provided between the polarizing film and the optical compensation film.
- the support film includes a polyethylene terephthalate support film.
- the support film includes a polymethyl methacrylate support film.
- the support film includes a triacetyl cellulose support film.
- the display panel Because in the display device, most of the light generated by the backlight module enters the polarizing structure vertically. If the surface of each layer of the polarizing structure is flat and perpendicular to the direction of the perpendicularly incident light, most of the incident light is emitted perpendicularly when it enters the display panel vertically. As a result, the display panel has better front view quality and side view quality.
- the optical compensation film is located on the top layer of the polarizing structure and has a first refractive index. The first refractive index is greater than the refractive index of air. That is, when light penetrates the optical compensation film and enters the air, it is emitted from light.
- the convex structure is formed on the optical compensation film.
- the angle formed between at least part of the surface of the convex structure and the light incident surface is an acute angle. After the incident light enters the optical compensation film, it is raised.
- the incident angle formed on the surface of the structure is less than 90 °, so refraction occurs, which deflects the normal incident light, so that the energy of the positive viewing angle is distributed to the side viewing angle, and the image quality of the side viewing angle is improved.
- another polarizing structure is provided.
- a polarizing structure includes:
- a phase compensation film having a light incident surface and a light exit surface opposite to the light incident surface
- a polarizing film provided on a light emitting surface of the phase compensation film
- An optical compensation film is disposed on the polarizing film and is located on the top layer of the polarizing structure.
- the optical compensation film has a first refractive index, the first refractive index is greater than the refractive index of air, and the optical compensation film is in contact with air.
- a convex structure is formed on one side of the convex structure, and the top of the convex structure includes a curved surface. The radius of the curved surface is less than or equal to twice the height of the convex structure.
- the optical compensation film is doped with an anti-glare resin. Particles.
- the above-mentioned polarizing structure can deflect most of the light perpendicularly incident on the display panel to the side viewing angle, and distribute the energy of the positive viewing angle to the side viewing angle, thereby improving the image quality of the side viewing angle, and can be reduced without increasing the thickness of the polarizing structure Reflective phenomenon.
- a display device is provided according to various embodiments of the present application.
- a display device includes:
- a backlight module configured to provide a light source
- a display panel is placed on one side of the backlight module and is set as a display screen
- the display panel includes a polarizing structure, and the polarizing structure includes:
- a phase compensation film having a light incident surface and a light exit surface opposite to the light incident surface
- a polarizing film provided on the light emitting surface of the phase compensation film.
- An optical compensation film is disposed on the polarizing film and is located on the top layer of the polarizing structure.
- the optical compensation film has a first refractive index, the first refractive index is greater than the refractive index of air, and the optical compensation film is in contact with air.
- a convex structure is formed on one surface of the convex structure, and an angle formed by at least a part of the surface of the convex structure and the light incident surface is an acute angle.
- the display panel of the above display device includes a polarizing structure, which can deflect the light perpendicularly incident on the display panel to the side viewing angle and distribute the energy of the positive viewing angle to the side viewing angle, thereby improving the image quality of the side viewing angle.
- the display panel is a liquid crystal display panel.
- the included angle between the divergence direction of the incident light generated by the backlight module and the direction perpendicular to the display panel is less than 30 °.
- Figure 1 is an exploded view of a polarized structure
- FIG. 2 is a schematic diagram of refraction of incident light by a polarizing structure
- 3A is a perspective structural view of an optical compensation film in an embodiment
- 3B is a schematic perspective view of an optical compensation film in another embodiment
- FIG. 4 is a diagram illustrating the dimensions of a raised structure in an embodiment
- FIG. 5 is a partial cross-sectional view of a polarizing structure in an embodiment
- FIG. 6 is a partial cross-sectional view of a polarizing structure in another embodiment
- FIG. 7 is a schematic diagram of a polarized light structure in an embodiment.
- FIG. 8 is a schematic structural diagram of a display device according to an embodiment
- FIG. 9 is a schematic structural diagram of a display panel according to an embodiment.
- the polarizing structure includes a phase compensation film 100, a polarizing film 200, and an optical compensation film 300 stacked in this order.
- the phase compensation film 100 has a light incident surface 100A and a light exit surface 100B.
- the light surface 100A is the side that receives the incident light.
- the light enters the phase compensation film 100 from the light incident surface 100A and is phase-compensated. Then, the light exits from the light output surface 100B. Due to the phase delay of the light after passing through the liquid crystal, the phase compensation film 100 can Correct the light phase.
- the phase-compensated light enters the polarizing film 200.
- the polarizing film 200 is used to polarize the light to form linearly polarized light.
- the polarizing film 200 may be a polyvinyl alcohol film.
- the polyvinyl alcohol film has high transparency, high elongation performance, and light resistance. With polarizing effect.
- the optical compensation film 300 is located on the top layer of the polarizing structure, and a plurality of convex structures 301 are formed on the side in contact with the air.
- the angle ⁇ formed by at least part of the surface of each convex structure 301 and the light incident surface 100A is an acute angle, which satisfies 0 ° ⁇ ⁇ ⁇ 90 °.
- the optical compensation film 300 has a first refractive index n1, and the first refractive index n1 is larger than the air refractive index n2.
- the display device since most of the light is perpendicularly incident into the polarized structure, that is, most of the light is perpendicular to the light incident surface 100A. If the layers of the polarized structure are flat and free of protrusions, the vertically incident light still passes through the polarized structure. For vertical emission, most of the light energy is concentrated at the front viewing angle of the panel, so the picture quality of the front viewing angle is better, while the side viewing angle has less light energy, which leads to the poor quality of the side viewing angle.
- an optical compensation film 300 having a refractive index greater than that of air is provided on the top layer of the polarizing structure, and a convex structure 301 is formed on the side of the optical compensation film 300 that is in contact with the air.
- the incident angle of the vertically incident light on the surface of each convex structure 301 is ⁇ , 0 ⁇ ⁇ 90 °, so The light will be refracted with a refraction angle of ⁇ . Since the light enters from the dense to the light, ⁇ is greater than ⁇ , that is, the light propagation path changes, the light deviates from the original perpendicular incidence direction and diverges to the side, so there will be more The light enters the side, improving the quality of the side viewing angle.
- the optical compensation film 300 is formed with a plurality of convex structures 301.
- Each convex structure 301 is an elongated convex structure and has an arc-shaped curved surface.
- the curved surface may be an arc-shaped curved surface.
- Each convex structure 301 can be arranged side by side.
- the included angle between the curved surface and the light incident surface 100A is the angle between the cut surface of the curved surface and the light incident surface 100A, and the included angle For acute angles.
- each convex structure 301 may also have a spherical curved surface.
- Each convex structure 301 is arranged in a two-dimensional matrix array.
- the included angle between the spherical curved surface and the light incident surface 100A is a cut surface of the spherical curved surface and the light incident surface 100A.
- the included angle is an acute angle. Because in the display device, most of the light generated by the backlight module is incident on the display panel vertically, that is, most of the light incident on the phase compensation film 100 is perpendicular to the light incident surface 100A of the phase compensation film 100.
- each optical film If the surface of each optical film is flat and perpendicular to the normal incident light, the normal incident light will not change its propagation direction when it penetrates the polarizing plate, that is, the light is still emitted perpendicularly when it is incident perpendicularly, causing the light to be concentrated at the front view angle, making the front view direction
- the display quality is better, but the side view angle is poor due to the weak light.
- the convex structure 301 since the convex structure 301 has a curved surface, it can refract perpendicularly incident light, and the light deviates from the original normal incidence direction and diverges to the side. Therefore, more light enters the side and improves the side viewing angle. Quality.
- the convex structure 301 When the convex structure 301 has a curved surface and the convex structures 301 are arranged side by side, refraction occurs only in one dimension, so that light is scattered to both sides of the curved surface; when the convex structure 301 has a spherical curved surface and the convex structure 301 When arranged in a two-dimensional rectangular array, refraction occurs in a two-dimensional plane, causing light to diverge to various angles of the two-dimensional plane, so that each angle of view can present better image quality.
- the protruding structure 301 may also have a beveled surface and other shapes of surfaces, so as to refract the light incident perpendicularly.
- the radius of the curved surface is R
- the height of the convex structure 301 is D
- the relationship between the radius R and the height D may be R ⁇ 2D, so that the curvature radius of the curved surface is reduced when the film layer is thin.
- each protruding structure 301 is a left-right symmetrical structure
- the width of each protruding structure 301 is 2r
- the center distance between adjacent protruding structures 301 is P, P ⁇ 2r.
- the center-to-center distance between adjacent convex structures 301 is less than or equal to 10 ⁇ m, that is, smaller than the opening width of a general pixel, that is, each pixel opening corresponds to at least one convex structure 301 to deflect light from the pixel.
- the gap width is X, and X is smaller than or close to the wavelength of the incident light.
- the light traveling to the convex structure 301 of the optical compensation film 300 may be refracted, deflecting the light to the side viewing angle, and the light traveling to the gap between adjacent convex structures 301 may be diffracted. It can also deflect light to the side viewing angle. Refraction combined with diffraction can make more perpendicular incident light deflect to the side viewing angle to enhance the image quality of the side viewing angle.
- the value range of X is specifically 300 nm ⁇ X ⁇ 1000 nm.
- the polarizing film 200 has an absorption axis and a transmission axis, and polarized light having an electric field direction parallel to the transmission axis can pass through the polarizing film 200.
- the optical compensation film 300 should be made of a transparent or translucent material that can transmit light and has the function of optical compensation, and the optical compensation may specifically be phase compensation.
- the optical compensation film 300 is filled with liquid crystal, and the liquid crystal is a birefringent material. When light enters the liquid crystal, it is generally refracted into two kinds of normal light and abnormal light. The refractive index of the normal light is the normal refractive index.
- the refractive index of anomalous light is anomalous refractive index
- the direction of anomalous refraction is the direction in which the direction of the optical electric field is parallel to the optical axis of the liquid crystal
- the direction of normal refraction is the direction in which the optical field is perpendicular to the optical axis of the liquid crystal
- the direction of the anomalous refraction is perpendicular to the direction of normal refraction.
- the optical compensation film 300 is a single optical axis C-compensating film.
- the single optical axis C-compensating film can be filled with a dish-shaped liquid crystal 302, and the optical axis of the dish-shaped liquid crystal 302 is perpendicular to the optical axis.
- the normal refraction direction of the dish-shaped liquid crystal 302 is the directions in which the direction of the optical field is perpendicular to the optical axis of the dish-shaped liquid crystal 302, that is, the direction of the light field for normal refraction of the dish-shaped liquid crystal 302 may be each parallel to the light-incident surface 100A.
- the corresponding normal refractive index is n1 o .
- the first refractive index is the normal refractive index n1 o of the C-compensation film. After the polarization of the polarizing film 200, the light becomes linearly polarized light.
- the direction of the electric field of the linearly polarized light is parallel to the transmission axis, that is, the direction of the electric field of the linearly polarized light is perpendicular to the optical axis of the optical compensation film 300. Only normal refraction occurs in the film 300.
- the first refractive index is selected from the normal refractive index n1 o of the optical compensation film 300, and n1 o is greater than the refractive index n2 of the air.
- the optical compensation film 300 is a single optical axis A-compensation film, and the single optical axis A-compensation film may be filled with a nematic liquid crystal 304 and an optical axis of the nematic liquid crystal 304.
- the abnormal refraction direction of the nematic liquid crystal 304 is the direction of the optical electric field parallel to the optical axis of the nematic liquid crystal 304, that is, the abnormal refraction of the nematic liquid crystal 304.
- the direction of the optical electric field is parallel to the transmission axis of the polarizing film 200 and the corresponding abnormal refractive index is n1 e .
- the first refractive index is the abnormal refractive index n1 e of the A-compensation film.
- the light becomes linearly polarized light.
- the direction of the electric field of the linearly polarized light is parallel to the transmission axis, that is, the direction of the electric field of the linearly polarized light is parallel to the optical axis of the optical compensation film 300.
- the refractive index of the first optical compensation film 300 select extraordinary refractive index n1 e, n1 e greater than the refractive index of air n2.
- a support film 400 is further provided between the optical compensation film 300 and the polarizing film 200.
- the support film 400 may be a triacetate cellulose (TAC) support film, or may be a polymer pair.
- TAC triacetate cellulose
- PET Polyethylene phthalate
- PMMA polymethyl methacrylate
- polyvinyl alcohol is usually used as the polarizing film 200, and polyvinyl alcohol has extremely strong hydrophilicity, and a support film 400 is provided to protect the physical characteristics of the polarizing film 200.
- the optical compensation film 300 is directly attached to the light-emitting surface of the polarizing film 200, that is, there is no support film provided between the optical compensation film 300 and the polarizing film 200.
- the compensation film 300 and the optical compensation film 300 can not only deflect light, but also serve as a protective layer to protect the polarizing film 200. Therefore, the supporting film on the light-emitting side of the polarizing film 200 can be omitted in the polarizing plate, which is beneficial to the thin design of the product. It should be noted that the optical compensation film 300 needs to have a proper thickness to achieve the protective effect on the polarizing film 200.
- the resin particles 303 with anti-glare function can be doped in the optical compensation film 300, which can reduce the light reflection phenomenon of the display panel without increasing the thickness of the polarizing structure, and improve the user.
- the optical compensation film 300 can reduce the light reflection phenomenon of the display panel without increasing the thickness of the polarizing structure, and improve the user.
- the present invention also relates to a polarizing structure.
- the polarizing structure includes a phase compensation film 100, a polarizing film 200, and an optical compensation film 300 which are sequentially stacked.
- the phase compensation film 100 has a light incident surface 100A and a light emitting surface 100B.
- the optical compensation film 300 is located on the top layer of the polarizing structure, and a plurality of convex structures 301 are formed on the side of the optical compensation film 300 in contact with the air.
- the angle ⁇ formed by at least part of the surface of each of the convex structures 301 and the light incident surface 100A is an acute angle. , Satisfy 0 ° ⁇ ⁇ 90 °.
- the optical compensation film 300 has a first refractive index n1, and the first refractive index n1 is larger than the air refractive index n2.
- the first refractive index n1 is larger than the air refractive index n2.
- Each convex structure 301 has a curved surface at the top, and the radius of each curved surface is less than or equal to twice the height of each convex structure 301, so that the curvature radius of the curved surface is reduced when the film layer is thin.
- the smaller the radius of curvature the more obvious the refraction effect.
- the anti-glare resin particles 303 can be doped in the optical compensation film 300, and the light reflection phenomenon of the display panel can be reduced without increasing the thickness of the polarizing structure.
- the present application also discloses a display device.
- the display device includes a backlight module 2 and a display panel 1 disposed on one side of the backlight module 2.
- the display panel 1 includes the polarized structure described above.
- the backlight module 2 is configured to provide a light source, and the light source generates incident light, which is incident on the display panel 1 in a concentrated manner, that is, a small angle is formed between a divergent direction of the incident light and a direction perpendicular to the direction of the display panel 1.
- the small angle ⁇ may be Less than 30 °. Most of the light received by the display panel 1 is vertically incident light.
- the backlight module 20 includes a side-type light source 2A and a light guide plate 2B opposite to the side-type light source 2A.
- the upper and lower surfaces of the light guide plate 2B are each provided with a long V-shaped groove, and the side of the V-shaped groove on the lower surface of the light guide plate.
- the wall is parallel to the side-type light source, and the length direction of the V-shaped groove on the upper surface of the light guide plate and the length direction of the V-shaped groove on the lower surface are perpendicular to each other.
- the display panel 1 is a liquid crystal display panel.
- the display panel includes an upper polarizing plate 10, a lower polarizing plate 30, and a liquid crystal layer sandwiched between the upper polarizing plate 10 and the lower polarizing plate 30. 20.
- the liquid crystal layer 20 includes a glass substrate and liquid crystal molecules interposed between the glass substrate. The incident light passes through the lower polarizing plate and becomes linearly polarized light. The liquid crystal layer 20 can reverse the polarization direction of the linearly polarized light and allow the linearly polarized light to pass through the upper polarizing plate to display a picture on the display panel.
- the upper polarizing plate 10 includes Polarizing structure introduced above.
- the upper polarizing plate further includes a pressure-sensitive adhesive layer stacked on the light incident surface of the phase compensation film 100, and the polarizing plate can be pasted on the glass substrate through the pressure-sensitive adhesive.
- the display panel may also be an organic light-emitting diode (OLED) display panel, a quantum dot light emitting diode (QLED) display panel, or a curved display panel, and the above-mentioned polarized light panel is included. Structure of other display panels.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
一种偏光结构和显示装置,包括依次叠设的相位补偿膜(100)、偏光膜(200)和光学补偿膜(300),其中,相位补偿膜(100)包括入光面(100A)和出光面(100B),光学补偿膜(300)位于顶层且光学补偿膜与空气接触的一面形成有凸起结构(301),凸起结构(301)至少部分表面与入光面(100A)所形成的角度为锐角(α),且光学补偿膜(300)的折射率大于空气折射率。
Description
相关申请
本申请要求于2018年9月30日提交中国专利局的,申请号为201811163390.9、申请名称为“偏光结构及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及显示领域,特别是涉及一种偏光结构及显示装置。
随着显示技术的发展,显示装置因具有高画质、省电、机身薄等优点被广泛应用于这种电子产品中,其中,画质的好坏是影响消费者体验的最主要的因素。显示装置一般由背光模组和置于背光模组上的显示面板构成,背光模组为显示面板提供入射光,该入射光通常是集中垂直入射至显示面板,因此在正视方向观看显示屏时,能获取较好的显示画质,但是在侧视方向观看显示屏时,画质较差,色偏比较严重,使得正常显示的视角较小。
发明内容
根据本申请的各种实施例提供一种偏光结构。
一种偏光结构,包括:
相位补偿膜,所述相位补偿膜具有入光面和与所述入光面相对的出光面;
偏光膜,设于所述相位补偿膜的所述出光面上;以及
光学补偿膜,设于所述偏光膜上且位于所述偏光结构的顶层,所述光学补偿膜具有第一折射率,所述第一折射率大于空气折射率,所述光学补偿膜与空气接触的一面形成有凸起结构,所述凸起结构至少部分表面与所述入光面所形成的角度为锐角。
在其中一个实施例中,所述凸起结构为长条形凸起结构且具有圆弧曲面,所述光学补偿膜形成有多个所述凸起结构且各所述长条形凸起结构并排设置。
在其中一个实施例中,所述凸起结构具有球型曲面,所述光学补偿膜形成有多个所述凸起结构且各所述凸起结构呈二维矩阵阵列排列。
在其中一个实施例中,所述曲面的半径小于或等于所述凸起结构的高度的两倍。
在其中一个实施例中,所述曲面的半径小于或等于所述凸起结构高度的两倍。
在其中一个实施例中,所述光学补偿膜形成有多个所述凸起结构且相邻凸起结构的中心间距小于或等于10μm。
在其中一个实施例中,所述光学补偿膜为单光轴C-补偿膜,所述第一折射率为所述C-补偿膜的正常折射率。
在其中一个实施例中,所述偏光膜具有穿透轴,所述光学补偿膜为单光轴A补偿膜,所述单光轴A-补偿膜的光轴与所述穿透轴平行,所述第一折射率为所述单光轴A-补偿膜的反常折射率。
在其中一个实施例中,所述光学补偿膜内掺杂有抗炫功能的树酯颗粒。
在其中一个实施例中,所述偏光膜包括聚乙烯醇膜。
在其中一个实施例中,所述光学补偿膜形成有多个所述凸起结构且相邻凸起结构之间存在间隙,所述间隙的宽度小于或接近入射光的波长。
在其中一个实施例中,所述间隙的宽度大于或等于300nm,且小于或等于1000nm。
在其中一个实施例中,所述偏光膜与所述光学补偿膜之间还设有支撑膜。
在其中一个实施例中,所述支撑膜包括聚对苯二甲酸乙二醇酯支撑膜。
在其中一个实施例中,所述支撑膜包括聚甲基丙烯酸甲酯支撑膜。
在其中一个实施例中,所述支撑膜包括三醋酸纤维素支撑膜。
由于在显示装置中,背光模组产生的大部分光线是垂直入射至偏光结构,若偏光结构各层膜表面平整且与垂直入射光方向垂直,大部分入射光垂直入射至显示面板时仍然垂直射出,导致显示面板正视角画质较好而侧视角画质较差。在本方案中,由于设有光学补偿膜,光学补偿膜位于偏光结构的顶层且具有第一折射率,第一折射率大于空气折射率,即光穿透光学补偿膜进入空气时,是从光密质进入光疏质的过程,结合光学补偿膜上形成有凸起结构, 该凸起结构至少部分表面与入光面形成的夹角为锐角,垂直入射光进入光学补偿膜后,在凸起结构的表面形成的入射角小于90°,因此会发生折射,使垂直入射光发生偏转,从而使正视角能量分配到侧视角,提高侧视角的画质。
根据本申请的各种实施例提供另一种偏光结构。
一种偏光结构,依次包括:
相位补偿膜,所述相位补偿膜具有入光面和与所述入光面相对的出光面;
偏光膜,设于所述相位补偿膜的出光面上;以及
光学补偿膜,设于所述偏光膜上且位于所述偏光结构的顶层,所述光学补偿膜具有第一折射率,所述第一折射率大于空气折射率,所述光学补偿膜与空气接触的一面形成有凸起结构,所述凸起结构顶部包含曲面,所述曲面的半径小于或等于所述凸起结构高度的两倍,所述光学补偿膜内掺杂有抗炫功能的树酯颗粒。
上述偏光结构,可以使大部分垂直入射至显示面板的光线向侧视角偏转,将正视角能量分配到侧视角,从而提高侧视角的画质,且可以在不增加偏光结构的厚度的前提下减少反光现象。
根据本申请的各种实施例提供一种显示装置。
一种显示装置,包括:
背光模组,设置为提供光源;以及
显示面板,置于所述背光模组一侧,设置为显示画面;
其中,所述显示面板包含偏光结构,所述偏光结构包括:
相位补偿膜,所述相位补偿膜具有入光面和与所述入光面相对的出光面;
偏光膜,设于所述相位补偿膜的所述出光面上;以及
光学补偿膜,设于所述偏光膜上且位于所述偏光结构的顶层,所述光学补偿膜具有第一折射率,所述第一折射率大于空气折射率,所述光学补偿膜与空气接触的一面形成有凸起结构,所述凸起结构至少部分表面与所述入光面所形成的角度为锐角。
上述显示装置的显示面板包含有偏光结构,可以使背光模组垂直入射至显示面板的光线向侧视角偏转,将正视角能量分配到侧视角,从而提高侧视角的画质。
在其中一个实施例中,所述显示面板为液晶显示面板。
在其中一个实施例中,所述背光模组产生的入射光的发散方向与垂直于显示面板方向的夹角小于30°。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一副或多副附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为偏光结构爆炸图;
图2为偏光结构对入射光的折射示意图;
图3A为一实施例中光学补偿膜的立体结构图;
图3B为另一实施例中光学补偿膜的立体示意图;
图4为对一实施例中凸起结构的尺寸说明图;
图5为一实施例中偏光结构局部剖视图;
图6为另一实施例中偏光结构局部剖视图;
图7为一实施例中偏光结构示意图。
图8为一实施例中显示装置结构示意图;
图9为一实施例中显示面板结构示意图。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
为了彻底理解本申请,将在下列的描述中提出详细步骤以及结构,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
在一实施例中,如图1所示,偏光结构包括依次叠设的相位补偿膜100、偏光膜200、光学补偿膜300,其中,相位补偿膜100具有入光面100A和出光面100B,入光面100A为接收入射光的一面,光线从入光面100A进入相位补偿膜100进行相位补偿后从出光面100B射出,由于光线经过液晶后会出现相位延迟的现象,通过相位补偿膜100,可以对光线相位进行修正。经过相位补偿的光线进入偏光膜200,偏光膜200用于对光线进行偏振处理以形成线性偏振光,偏光膜200可为聚乙烯醇膜,聚乙烯醇膜具有高透明、高延展性能并且对光线具有偏振作用。光学补偿膜300位于偏光结构的顶层,且与空气接触的一面形成有多个凸起结构301,各凸起结构301至少部分表面与入光面100A所形成的角度α为锐角,满足0°<α<90°。光学补偿膜300具有第一折射率n1,第一折射率n1大于空气折射率n2。当光穿透光学补偿膜300进入空气时,是从光密质进入光疏质的过程,又由于各凸起结构301至少部分表面与入光面100A的夹角α为锐角,当光线垂直入射至该偏光结构时,即垂直入射至入光面100A时,会发生折射现象,垂直入射光朝侧视角偏转。
在显示装置中,由于绝大部分光线是垂直入射至偏光结构中,即绝大部分光线垂直于入光面100A,若偏光结构各膜层平整无凸起,则垂直入射光经过偏光结构后仍然垂直射出,大部分光能量集中在面板正视角,因此正视角的画质较好,而侧视角由于光能量较少,导致侧视角的画质较差。本方案通 过在偏光结构的顶层设置折射率大于空气折射率的光学补偿膜300并在光学补偿膜300上与空气接触的一面形成凸起结构301,垂直入射光从光学补偿膜300入射至空气时,会在各凸起结构301处发生折射,改变垂直入射光的传播路径,使光线发生偏转,从而使正视角光型能量分配到大视角,提高侧视角的画质。
结合图2所示,当光线1或光线2垂直入射并穿透光学补偿膜300进入空气时,垂直入射光在各凸起结构301表面处的入射角为β,0<β<90°,因此光线会发生折射,折射角为γ,由于光线是从光密质进入光疏质,γ大于β,即光线传播路径发生改变,光线偏离原来垂直入射方向,向侧边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。可以理解的,第一折射率n1与空气折射率n2的差异越大,发生折射时的折射角度越大,越容易将正视光型能量分配到大视角。在一实施例中,第一折射率n1的取值范围为1.0<n1<2.5,空气折射率n2为n2=1.0。在一实施例中,若m=n1-n2,m的取值范围为0.01<m<1.5。
如图3A所示,光学补偿膜300形成有多个凸起结构301,各凸起结构301为长条形凸起结构且具有弧形曲面,该曲面可为圆弧曲面。各凸起结构301可并排设置,当各凸起结构301具有弧形曲面时,弧形曲面与入光面100A的夹角为弧形曲面的切面与入光面100A的夹角,该夹角为锐角。如图3B所示,各凸起结构301也可具有球型曲面,各凸起结构301呈二维矩阵阵列排列,球形曲面与入光面100A的夹角为球形曲面的切面与入光面100A的夹角,该夹角为锐角。由于在显示装置中,背光模组生成的光线大部分是集中垂直入射至显示面板,即入射至相位补偿膜100的光线大部分垂直于相位补偿膜100的入光面100A。若各光学薄膜的表面平整且与垂直入射光相互垂直,垂直入射光穿透偏光板时不会改变其传播方向,即光线垂直入射时仍然垂直射出,造成光线集中在正视角度,使得正视方向的显示画质较好,而侧视角度由于光线较弱,侧视角度的画质较差。在本实施例中,由于凸起结构301具有曲面,可以对垂直入射光线进行折射,光线偏离原来垂直入射方向,向侧 边发散,因此会有更多的光线射入侧边,提高侧视角度的画质。当凸起结构301具有弧形曲面且凸起结构301并排排列时,仅在一维方向发生折射,使光线发散到弧形曲面的两侧;当凸起结构301具有球形曲面且凸起结构301呈二维矩形阵列排列时,会在二维平面内发生折射,使光线发散至二维平面的各个角度,从而使各个视角都能呈现较好的画质。在其他的实施例中,凸起结构301也可具有斜面及其他形态的表面,能使垂直入射的光线发生折射即可。
在一实施例中,如图4所示,上述曲面为圆弧曲面或圆球曲面时,曲面的半径为R,凸起结构301的高度为D,半径R和高度D之间的关系可为R≤2D,使得在膜层较薄时减小曲面的曲率半径,曲率半径越小,折射效果越明显,可以分配到大视角的能量范围就越多。
在一实施例中,相邻两凸起结构301之间存在间隙,也可不存在间隙。如图4所示,在一实施例中,各凸起结构301为左右对称结构,各凸起结构301的宽度为2r,相邻凸起结构301的中心间距为P,P≥2r。在一实施例中,相邻凸起结构301的中心间距小于或等于10μm,即小于一般像素的开口宽度,即满足每个像素开口对应有至少一个凸起结构301对该像素光线进行偏转。
在一实施例中,相邻两凸起结构301之间存在间隙,如图4所示,间隙宽度为X,X小于或接近入射光的波长。光线入射至光学补偿膜300时,传播至光学补偿膜300的凸起结构301处的光线可发生折射,使光线向侧视角偏转,同时传播至相邻凸起结构301间隙处的光线可发生衍射,也可使光线向侧视角偏转,折射作用结合衍射作用,可使得更多垂直入射光向侧视角偏转以增强侧视角的画质。在一实施例中,X的取值范围具体为300nm≤X≤1000nm。
偏光膜200具有吸收轴和穿透轴,电场方向与穿透轴平行的偏振光能通过偏光膜200。在本方案中,光学补偿膜300应为可透光的透明或半透明材料制成且具有光学补偿的功能,光学补偿具体可为相位补偿。在一实施例中, 光学补偿膜300内填充有液晶,液晶为双折射材料,光线进入液晶时一般会折射成正常光和反常光两条光线,其中,正常光的折射率为正常折射率,反常光的折射率为反常折射率,反常折射方向为光电场方向与液晶光轴平行的方向,正常折射方向为光电场与液晶光轴垂直的方向,反常折射方向与正常折射方向垂直。在本实施例中,如图5所示,光学补偿膜300为单光轴C-补偿膜,单光轴C-补偿膜内可填充碟状液晶302,碟状液晶302的光轴垂直于入光面100A,碟状液晶302的正常折射方向为光电场方向与碟状液晶302光轴垂直的各个方向,即碟状液晶302的正常折射的光电场方向可为与入光面100A平行的各个方向,对应的正常折射率为n1
o,在本实施例中,第一折射率为C-补偿膜的正常折射率n1
o。光线经过偏光膜200的偏振处理后变为线偏振光,该线偏振光的电场方向与穿透轴平行,即该线偏振光的电场方向与光学补偿膜300的光轴垂直,因此在光学补偿膜300内只发生正常折射,第一折射率选取光学补偿膜300的正常折射率n1
o,n1
o大于空气折射率n2。
在另一实施例中,如图6所示,光学补偿膜300为单光轴A-补偿膜,单光轴A-补偿膜内可填充向列相液晶304,向列相液晶304的光轴平行于入光面100A且平行于偏光膜200的穿透轴,向列相液晶304的反常折射方向为光电场方向与向列相液晶304光轴平行,即向列相液晶304的反常折射的光电场方向与偏光膜200的穿透轴平行,对应的反常折射率为n1
e,在本实施例中,第一折射率为A-补偿膜反常折射率n1
e。光线经过偏光膜200的偏振处理后变为线偏振光,该线偏振光的电场方向与穿透轴平行,即该线偏振光的电场方向与光学补偿膜300的光轴平行,因此在光学补偿膜300内只发生反常折射,第一折射率选取光学补偿膜300的反常折射率n1
e,n1
e大于空气折射率n2。
在一实施例中,如图7所示,在光学补偿膜300与偏光膜200之间还设有支撑膜400,支撑膜400可为三醋酸纤维素(TAC)支撑膜,也可为聚对苯二甲酸乙二醇酯(PET)支撑膜,还可为聚甲基丙烯酸甲酯(PMMA)支撑膜。在偏光结构中,通常使用聚乙烯醇作为偏光膜200,而聚乙烯醇具有极 强的亲水性,设置支撑膜400,能保护偏光膜200的物理特性。在另一实施例中,光学补偿膜300直接贴合于偏光膜200的出光面上,即光学补偿膜300与偏光膜200之间不设置支撑膜,由于在偏光膜200的一侧设有光学补偿膜300,光学补偿膜300既能对光线进行偏转,也可以充当保护层来保护偏光膜200,因此在偏光板中可以省略偏光膜200出光侧的支撑膜,有利于产品的薄型化设计。需要说明的是,光学补偿膜300需具有合适的厚度以实现对偏光膜200的保护作用。
在一实施例中,如图5所示,在光学补偿膜300内可掺杂抗炫功能的树酯颗粒303,在不增加偏光结构厚度的情况下可减小显示面板光反射现象,提升用户体验。
本发明还涉及一种偏光结构,结合图1和图5所示,偏光结构包含依次叠设的相位补偿膜100、偏光膜200、光学补偿膜300。其中,相位补偿膜100具有入光面100A和出光面100B。光学补偿膜300位于偏光结构的顶层,且在光学补偿膜300与空气接触的一面形成有多个凸起结构301,各凸起结构301至少部分表面与入光面100A所形成的角度α为锐角,满足0°<α<90°。光学补偿膜300具有第一折射率n1,第一折射率n1大于空气折射率n2。当光穿透光学补偿膜300进入空气时,是从光密质进入光疏质的过程,又由于各凸起结构301至少部分表面与入光面100A的夹角α为锐角,当光线垂直入射至该偏光结构时,即垂直入射至入光面100A时,会发生折射现象,垂直入射光朝侧视角偏转。各凸起结构301顶部具有曲面,各曲面的半径小于或等于各凸起结构301高度的两倍,使得在膜层较薄时减小曲面的曲率半径,曲率半径越小,折射效果越明显,可以分配到大视角的能量范围就越多。在光学补偿膜300内可掺杂抗炫功能的树酯颗粒303,在不增加偏光结构厚度的情况下可减小显示面板光反射现象。
本申请还公开一种显示装置,如图8所示,包括背光模组2以及置于背光模组2一侧的显示面板1,其中,显示面板1包含上文介绍的偏光结构。背光模组2设置为提供光源,光源产生入射光,该入射光集中入射至显示面 板1,即入射光的发散方向与垂直于显示面板1的方向的夹角呈小角度,该小角度θ可小于30°。显示面板1接收到的大部分光为垂直入射光,由于显示面板1中的偏光结构顶层为光学补偿膜300且光学补偿膜300形成有凸起结构301,在各凸起结构301的表面通过折射可以将垂直入射光进行偏转,从而将将正视角能量分配到侧视角,提高侧视角的画质。显示面板中的偏光结构已在上文介绍,此处不再赘述。其中,背光模组20中包括侧入式光源2A和与侧入式光源2A相对的导光板2B,导光板2B的上下表面均设有长条V型槽,导光板下表面V型槽的侧壁与侧入式光源平行,导光板上表面的V型槽的长度方向与下表面的V型槽的长度方向相互垂直。
在一实施例中,如图9所示,显示面板1为液晶显示面板,显示面板包括上偏光板10、下偏光板30以及夹设于上偏光板10和下偏光板30之间的液晶层20,液晶层20包括玻璃基板和夹设于玻璃基板之间的液晶分子。入射光经过下偏光板后变为线偏振光,液晶层20可扭转线偏振光的偏振方向,使线偏振光从上偏光板中通过,从而在显示面板上显示画面,其中上偏光板10包含上文介绍的偏光结构。在一实施例中,上偏光板除包含有上述偏光结构外,还包含叠设于相位补偿膜100入光面的压敏胶层,通过压敏胶可以将偏光板粘贴于玻璃基板上。在其他实施例中,显示面板也可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板、量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)显示面板或者曲面显示面板,以及包含上述偏光结构的其他显示面板。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围 应以所附权利要求为准。
Claims (20)
- 一种偏光结构,包括:相位补偿膜,所述相位补偿膜具有入光面和与所述入光面相对的出光面;偏光膜,设于所述相位补偿膜的所述出光面上;以及光学补偿膜,设于所述偏光膜上且位于所述偏光结构的顶层,所述光学补偿膜具有第一折射率,所述第一折射率大于空气折射率,所述光学补偿膜与空气接触的一面形成有凸起结构,所述凸起结构至少部分表面与所述入光面所形成的角度为锐角。
- 如权利要求1所述的偏光结构,其中,所述凸起结构为长条形凸起结构且具有圆弧曲面,所述光学补偿膜形成有多个所述凸起结构且各所述长条形凸起结构并排设置。
- 如权利要求1所述的偏光结构,其中,所述凸起结构具有球型曲面,所述光学补偿膜形成有多个所述凸起结构且各所述凸起结构呈二维矩阵阵列排列。
- 如权利要求2所述的偏光结构,其中,所述曲面的半径小于或等于所述凸起结构的高度的两倍。
- 如权利要求3所述的偏光结构,其中,所述曲面的半径小于或等于所述凸起结构高度的两倍。
- 如权利要求1所述的偏光结构,其中,所述光学补偿膜形成有多个所述凸起结构且相邻凸起结构的中心间距小于或等于10μm。
- 如权利要求1所述的偏光结构,其中,所述光学补偿膜为单光轴C-补偿膜,所述第一折射率为所述C-补偿膜的正常折射率。
- 如权利要求1所述的偏光结构,其中,所述偏光膜具有穿透轴,所述光学补偿膜为单光轴A补偿膜,所述单光轴A-补偿膜的光轴与所述穿透轴平行,所述第一折射率为所述单光轴A-补偿膜的反常折射率。
- 如权利要求1所述的偏光结构,其中,所述光学补偿膜内掺杂有抗炫功能的树酯颗粒。
- 如权利要求1所述的偏光结构,其中,所述偏光膜包括聚乙烯醇膜。
- 如权利要求1所述的偏光结构,其中,所述光学补偿膜形成有多个所述凸起结构且相邻凸起结构之间存在间隙,所述间隙的宽度小于或接近入射光的波长。
- 如权利要求11所述的偏光结构,其中,所述间隙的宽度大于或等于300nm,且小于或等于1000nm。
- 如权利要求1所述的偏光结构,其中,所述偏光膜与所述光学补偿膜之间还设有支撑膜。
- 如权利要求13所述的偏光结构,其中,所述支撑膜包括聚对苯二甲酸乙二醇酯支撑膜。
- 如权利要求13所述的偏光结构,其中,所述支撑膜包括聚甲基丙烯酸甲酯支撑膜。
- 如权利要求13所述的偏光结构,其中,所述支撑膜包括三醋酸纤维素支撑膜。
- 一种偏光结构,依次包括:相位补偿膜,所述相位补偿膜具有入光面和与所述入光面相对的出光面;偏光膜,设于所述相位补偿膜的出光面上;以及光学补偿膜,设于所述偏光膜上且位于所述偏光结构的顶层,所述光学补偿膜具有第一折射率,所述第一折射率大于空气折射率,所述光学补偿膜与空气接触的一面形成有凸起结构,所述凸起结构顶部包含曲面,所述曲面的半径小于或等于所述凸起结构高度的两倍,所述光学补偿膜内掺杂有抗炫功能的树酯颗粒。
- 一种显示装置,包括:背光模组,设置为提供光源;以及显示面板,置于所述背光模组一侧,设置为显示画面;其中,所述显示面板包含偏光结构,所述偏光结构包括:相位补偿膜,所述相位补偿膜具有入光面和与所述入光面相对的出光面;偏光膜,设于所述相位补偿膜的所述出光面上;以及光学补偿膜,设于所述偏光膜上且位于所述偏光结构的顶层,所述光学补偿膜具有第一折射率,所述第一折射率大于空气折射率,所述光学补偿膜与空气接触的一面形成有凸起结构,所述凸起结构至少部分表面与所述入光面所形成的角度为锐角。
- 如权利要求18所述的显示装置,其中,所述显示面板为液晶显示面板。
- 如权利要求18所述的显示装置,其中,所述背光模组产生的入射光的发散方向与垂直于显示面板方向的夹角小于30°。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811163390.9 | 2018-09-30 | ||
CN201811163390.9A CN109143447A (zh) | 2018-09-30 | 2018-09-30 | 偏光结构及显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020062561A1 true WO2020062561A1 (zh) | 2020-04-02 |
Family
ID=64810677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/119263 WO2020062561A1 (zh) | 2018-09-30 | 2018-12-05 | 偏光结构及显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109143447A (zh) |
WO (1) | WO2020062561A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109143674A (zh) * | 2018-09-30 | 2019-01-04 | 惠科股份有限公司 | 偏光结构及显示装置 |
CN113140590B (zh) * | 2020-01-16 | 2022-10-04 | 昆山国显光电有限公司 | Oled器件、显示面板及显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101158778A (zh) * | 2007-11-14 | 2008-04-09 | 友达光电(苏州)有限公司 | 广视角膜与应用该广视角膜的液晶显示装置 |
CN201314990Y (zh) * | 2008-12-19 | 2009-09-23 | 上海纽发利商贸有限公司 | 广视角镜片及利用广视角镜片的偏光板和液晶显示装置 |
CN201935118U (zh) * | 2010-12-29 | 2011-08-17 | 京东方科技集团股份有限公司 | 棱镜片、背光源及其液晶显示装置 |
CN102483474A (zh) * | 2009-11-25 | 2012-05-30 | 夏普株式会社 | 光扩散偏光片、光扩散偏光片的制造方法和显示装置 |
JP2013205752A (ja) * | 2012-03-29 | 2013-10-07 | Dainippon Printing Co Ltd | 光拡散フィルム、偏光板、及び液晶表示装置 |
CN203273560U (zh) * | 2013-05-30 | 2013-11-06 | 京东方科技集团股份有限公司 | 一种背光模组及其显示设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1977192B (zh) * | 2004-06-29 | 2010-05-12 | 夏普株式会社 | 相位差片、偏振片、液晶显示装置以及相位差片的设计方法 |
CN204228992U (zh) * | 2014-09-12 | 2015-03-25 | 深圳市盛波光电科技有限公司 | 一种va型液晶电视用偏光片 |
CN104950375A (zh) * | 2015-06-19 | 2015-09-30 | 南京中电熊猫液晶显示科技有限公司 | 一种液晶显示器用的上偏光板、液晶显示器 |
US10983388B2 (en) * | 2017-03-15 | 2021-04-20 | Lg Display Co., Ltd. | Display device |
-
2018
- 2018-09-30 CN CN201811163390.9A patent/CN109143447A/zh active Pending
- 2018-12-05 WO PCT/CN2018/119263 patent/WO2020062561A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101158778A (zh) * | 2007-11-14 | 2008-04-09 | 友达光电(苏州)有限公司 | 广视角膜与应用该广视角膜的液晶显示装置 |
CN201314990Y (zh) * | 2008-12-19 | 2009-09-23 | 上海纽发利商贸有限公司 | 广视角镜片及利用广视角镜片的偏光板和液晶显示装置 |
CN102483474A (zh) * | 2009-11-25 | 2012-05-30 | 夏普株式会社 | 光扩散偏光片、光扩散偏光片的制造方法和显示装置 |
CN201935118U (zh) * | 2010-12-29 | 2011-08-17 | 京东方科技集团股份有限公司 | 棱镜片、背光源及其液晶显示装置 |
JP2013205752A (ja) * | 2012-03-29 | 2013-10-07 | Dainippon Printing Co Ltd | 光拡散フィルム、偏光板、及び液晶表示装置 |
CN203273560U (zh) * | 2013-05-30 | 2013-11-06 | 京东方科技集团股份有限公司 | 一种背光模组及其显示设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109143447A (zh) | 2019-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI659247B (zh) | Liquid crystal display device | |
US9261640B2 (en) | Liquid crystal display apparatus | |
WO2020062584A1 (zh) | 偏光结构及显示装置 | |
WO2020062563A1 (zh) | 偏光结构及显示装置 | |
US11209694B2 (en) | Polarizing structure and display device | |
US7880824B2 (en) | Surface emitting device, liquid crystal display, and optical sheet combination | |
WO2020087620A1 (zh) | 光学复合膜、显示面板和显示装置 | |
WO2020062593A1 (zh) | 偏光结构及显示装置 | |
US20200233145A1 (en) | Lighting device and display device | |
WO2020062591A1 (zh) | 偏光板及显示装置 | |
US20140009960A1 (en) | Backlight device | |
WO2020062559A1 (zh) | 偏光结构及显示装置 | |
WO2020062558A1 (zh) | 偏光结构及显示装置 | |
WO2020062565A1 (zh) | 偏光结构及显示装置 | |
WO2020062587A1 (zh) | 偏光板及显示装置 | |
US11262621B2 (en) | Optical film layer and display device | |
WO2020062600A1 (zh) | 偏光结构及显示装置 | |
WO2020062603A1 (zh) | 偏光结构及显示装置 | |
WO2020062577A1 (zh) | 偏光片和显示装置 | |
US20100253887A1 (en) | Liquid crystal display device and polarizing plate with a condensing element | |
WO2020062578A1 (zh) | 偏光结构及显示装置 | |
WO2020062561A1 (zh) | 偏光结构及显示装置 | |
JP2001147329A (ja) | 導光板、面光源装置及び液晶表示装置 | |
WO2020062588A1 (zh) | 偏光板及显示装置 | |
WO2020062568A1 (zh) | 偏光结构及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18934838 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/07/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18934838 Country of ref document: EP Kind code of ref document: A1 |