[go: up one dir, main page]

WO2019157752A1 - 随机接入方法及装置 - Google Patents

随机接入方法及装置 Download PDF

Info

Publication number
WO2019157752A1
WO2019157752A1 PCT/CN2018/076897 CN2018076897W WO2019157752A1 WO 2019157752 A1 WO2019157752 A1 WO 2019157752A1 CN 2018076897 W CN2018076897 W CN 2018076897W WO 2019157752 A1 WO2019157752 A1 WO 2019157752A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
service
transmitted
network device
attribute
Prior art date
Application number
PCT/CN2018/076897
Other languages
English (en)
French (fr)
Inventor
于映辉
罗林杰奥黛尔
单宝堃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18906027.0A priority Critical patent/EP3745802B1/en
Priority to PCT/CN2018/076897 priority patent/WO2019157752A1/zh
Priority to CN201880088793.3A priority patent/CN111713166B/zh
Publication of WO2019157752A1 publication Critical patent/WO2019157752A1/zh
Priority to US16/992,649 priority patent/US11611988B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a random access method and apparatus.
  • the Internet of Things is a component of 5G, and its market demand is growing rapidly.
  • solutions are proposed for the characteristics of the Internet of Things, such as the Narrow Band-Internet of Things (NB-IoT) network and the Machine-Type Communications (MTC) network, both of which utilize The characteristics of narrowband technology to carry IoT services.
  • NB-IoT Narrow Band-Internet of Things
  • MTC Machine-Type Communications
  • the NB-IoT network and the MTC network optimize the small packet transmission characteristics of the Internet of Things, and propose the Early Data Transmission (EDT) technology for data transmission during the random access process.
  • EDT Early Data Transmission
  • the system specifically reserves a part of the access resources for the EDT, such as a physical random access channel (PRACH) resource, and the terminal that initiates the EDT service can use the EDT pre- This resource left to inform the base station that the transmission initiated this time is an EDT transmission.
  • PRACH physical random access channel
  • a large number of terminals use EDT-dedicated access resources to transmit data, which causes congestion of EDT resources and reduces the success rate of EDT.
  • the base station since the base station cannot obtain the size of the signaling or the data packet to be transmitted by the user, the base station can only perform blind scheduling. In order to ensure the success rate of the data, the blind scheduling of the base station will try to schedule large resources. EDT technology will occupy more resources, and resources are exchanged for optimization of delay and power consumption.
  • the present application provides a random access method and apparatus for solving the problem of excessive resource consumption caused by EDT.
  • the application provides a random access method, including:
  • a service attribute of the data to be transmitted includes one or more of the following: a service type attribute, a service data package attribute, and a service delay attribute;
  • the terminal sends a random access request to the network device by using the early dedicated resource.
  • the service attribute includes the service type attribute
  • the terminal determines a service attribute of the data to be transmitted, including:
  • the terminal determines, according to the type identifier of the data to be transmitted, the service type attribute of the data to be transmitted, including:
  • the terminal sends a random access request to the network device by using the early dedicated resource, including:
  • the terminal sends a random access request to the network device by using the early transmission dedicated resource to the network device.
  • the service attribute includes a service data packet attribute
  • the terminal determines a service attribute of the data to be transmitted, including:
  • the terminal determines, according to the data packet type of the data to be transmitted, the service type attribute of the data to be transmitted, including:
  • the terminal sends a random access request to the network device by using the early dedicated resource, including:
  • the terminal sends a random access request to the network device by using the early transmission dedicated resource to the network device.
  • the service attribute includes a service delay attribute
  • the terminal determines a service attribute of the data to be transmitted, including:
  • the terminal determines, according to the service delay identifier of the data to be transmitted, the service type attribute of the data to be transmitted, including:
  • the terminal sends a random access request to the network device by using the early dedicated resource, including:
  • the terminal sends a random access request to the network device by using the early-transmission dedicated resource to the network device.
  • the service attribute includes a service data packet attribute, and if the service attribute satisfies a preset data early transmission condition, the terminal sends a random access request to the network device by using the early transmission dedicated resource, including:
  • the terminal sends a random access request to the network device by using the downlink early transmission dedicated resource to the network device.
  • the service attribute includes a service delay attribute. If the service attribute satisfies a preset data early transmission condition, the terminal sends a random access request to the network device by using the early dedicated resource, including:
  • the terminal sends a random access request to the network device by using the downlink early transmission dedicated resource to the network device.
  • the downlink early transmission dedicated resource is a part of the early transmission dedicated resource.
  • the method further includes:
  • the terminal receives the to-be-transmitted data sent by the network device.
  • the method further includes:
  • the terminal receives the early transmission dedicated resource indication information sent by the network device, and the early transmission dedicated resource indication information is one of a broadcast message, a dedicated signaling, and a paging message.
  • the application provides a random access method, including:
  • the network device receives a random access request sent by the terminal through the early transmission dedicated resource after determining that the service attribute of the data to be transmitted meets the preset data early transmission condition, and the service attribute includes one or more of the following: service type attribute, service Packet attributes, business delay attributes;
  • the network device sends a random access response to the terminal, and the random access response allocates an uplink transmission resource to the terminal.
  • the method further includes:
  • the network device acquires a service attribute of the service data to be transmitted.
  • the network device acquires service attributes of the service data to be transmitted, including:
  • the service attribute indication information is used to indicate a service attribute of the service data to be transmitted.
  • the network device sends a random access response to the terminal, and after the random access response allocates an uplink transmission resource to the terminal, the method further includes:
  • the network device sends a random access response to the terminal, and after the random access response allocates an uplink transmission resource to the terminal, the method further includes:
  • the network device sends the to-be-transmitted data to the terminal.
  • the network device receiving, by the terminal, a random access request sent by the early transmission dedicated resource after determining that the service attribute of the data to be transmitted meets the preset data early transmission condition includes:
  • the network device receives a random access request sent by the terminal through the downlink early transmission dedicated resource after determining that the service attribute of the data to be transmitted meets the preset data early transmission condition, where the downlink early transmission dedicated resource is dedicated to the early transmission Part of the resources of the resource.
  • the present application provides a random access device, the device comprising means or means for performing the method provided by the first or second aspect and the various implementations of the first or second aspect (means ).
  • the present application provides a random access device, the device comprising a processor and a memory, wherein the memory is used to store a program, and the processor calls a program stored in the memory to perform the method provided by any one of the first aspects of the present application.
  • the device may be a terminal or a chip on the terminal.
  • the present application provides a random access device, the device comprising a processor and a memory, the memory is configured to store a program, and the processor calls a program stored in the memory to perform the method provided by any one of the second aspects of the present application.
  • the device may be a network device or a chip on the network device.
  • the present application provides a computer storage medium for storing a program for performing any one of the methods described in the first or second aspect above.
  • the terminal determines the service attribute of the data to be transmitted. If the service attribute satisfies the preset data early transmission condition, the terminal sends a random access request to the network device by using the early dedicated resource. After the service attribute satisfies the preset data early transmission condition, the early transmission is initiated, which reduces the situation of initiating the early transmission, thereby saving resources; in addition, the success rate of the early transmission can also be improved.
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • FIG. 2 is a schematic flowchart of a random access method according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a random access method according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a random access device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a random access device according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a random access apparatus according to still another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the embodiments of the present application can be applied to a wireless communication system.
  • the wireless communication system mentioned in the embodiments of the present application includes but is not limited to: Narrow Band-Internet of Things (NB-IoT), global mobile Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access (CDMA) 2000 System (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE) and next-generation 5G mobile communication systems
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000 System
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • next-generation 5G mobile communication systems Three major application scenarios:
  • FIG. 1 is a schematic structural diagram of a communication system provided by the present application.
  • the communication system 01 includes a network device 101, a terminal 102, and a Mobility Management Entity (MME) 03.
  • MME Mobility Management Entity
  • the network device 101 can also be connected to the core network.
  • Network device 101 may also be in communication with an Internet Protocol (IP) network 200, such as the Internet, a private IP network, or other data network.
  • IP Internet Protocol
  • Network devices provide services to terminals within coverage.
  • network device 101 provides wireless access to one or more terminals within range of network device 101.
  • network devices can communicate with each other.
  • the Non-Access Stratum (NAS) of the MME and the NAS of the terminal may be peer-to-peer, and perform information transmission at the NAS layer.
  • the MME and the network device can communicate with each other.
  • the terminal device 102 includes but is not limited to a mobile station (MS, Mobile Station), a mobile terminal, a mobile telephone, a handset, and a portable device. And so on, the terminal can communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal can be a mobile phone (or "cellular" phone), and has wireless communication capabilities.
  • RAN Radio Access Network
  • the terminal 102 can also be a portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile device or device.
  • Network device 101 may be a device for communicating with terminal 102.
  • it may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station (Evolved Node B, eNB) in an LTE system.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolved Node B, eNB evolved base station
  • the network device may also be a relay station, an access point, an in-vehicle device, or the like.
  • D2D Device to Device
  • the network device may also be a terminal functioning as a base station.
  • the present application proposes a random access method to determine which terminals, or under which circumstances, initiate EDT access to better conserve resources.
  • FIG. 2 is a schematic flowchart of a random access method according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes:
  • the terminal determines a service attribute of the data to be transmitted.
  • the service attribute may include one or more of the following: a service type attribute, a service data package attribute, and a service delay attribute.
  • the service type attribute can distinguish different types of services, such as user data and non-user data.
  • the non-user data may refer to request resources for UL signalling, uplink SMS (MO SMS), uplink signaling, and the like.
  • the service data packet attribute can distinguish different data packet transmission types, for example: (1) Single packet transmission, specifically, uplink single data packet transmission or downlink single data packet transmission; (2) a pair of data packets
  • the terminal may send an uplink data packet to the network device, and then the network device sends a corresponding downlink data packet to the terminal, or the network device sends the downlink data packet to the terminal, and then the terminal sends the corresponding uplink to the network device.
  • Multiple packet transmissions which may include one uplink data packet transmission, corresponding multiple downlink data packet transmissions, or one downlink data packet transmission, corresponding multiple uplink data packet transmissions, or more
  • the secondary uplink data packet transmission, the corresponding multiple downlink data packet transmission, and the like are not limited in this application.
  • the service delay attribute can distinguish data transmission with different delay requirements, and can include: delay non-sensitive data transmission and delay-sensitive service data transmission.
  • delay non-sensitive data transmission for IoT applications, for example, alarm services, smart street lights, and shared bicycles are delay-sensitive service data transmissions.
  • the end-to-end delay requirement needs to be less than a few seconds, such as less than 5 seconds.
  • services such as sensor information reporting, meter reporting, and water meter reporting are delay-non-sensitive data transmissions.
  • the terminal sends a random access request message to the network device by using the early dedicated resource.
  • the random access request may be carried by message 1 (MSG1).
  • MSG1 message 1
  • the network device allocates the uplink transmission resource in the random access response message.
  • the physical uplink shared channel (PUSCH) resource used by the user signaling is allocated, and the terminal can send a downlink data transmission request or the like through the allocated PUSCH resource.
  • the uplink is early transmission, that is, the terminal sends data to the network device, after receiving the random access request, the network device allocates the PUSCH resource for transmitting the uplink data in the random access response message, and the terminal may use the allocated PUSCH resource to The network device sends data.
  • PUSCH physical uplink shared channel
  • the random access response message described above may be carried by message 2 (MSG2).
  • the above-mentioned early transmission dedicated resources may be configured by the network device as a terminal, or may be specified by a standard. That is, the network device may indicate a part of a physical random access channel (PRACH) resource as a pre-transmission dedicated resource.
  • PRACH physical random access channel
  • the terminal may acquire the foregoing early transmission dedicated resource indicated by the network device, where the early transmission dedicated resource is indicated by one of a broadcast message, a dedicated signaling, and a paging message, which is not limited in this embodiment.
  • the early-time dedicated resource may be indicated by the scheduling information of the paging message, or may be indicated by the RRC information of the paging message, which is not limited herein.
  • the terminal initiates the early transmission after determining that the service attribute satisfies the preset data early transmission condition.
  • the early transmission dedicated resource may be further divided into a downlink early transmission dedicated resource and an uplink early transmission dedicated resource; wherein, the downlink early transmission dedicated resource may also be part of the early transmission dedicated resource, wherein the indication is MT dedicated. PRACH resources.
  • the downlink early transmission dedicated resource may also be a PRACH resource indicating that the MSG3 bears less than N bits. That is, when the terminal accesses the PRACH resource, the network side allocates a PUSCH resource of less than N bits to the terminal for transmitting a downlink data transmission request (MSG3) for initiating downlink early transmission.
  • N is greater than 0, and the N bits are less than or equal to the minimum number of bits required for uplink user data transmission, such as 320 bits, or 400 bits, or other number of bits, which is not limited in this application.
  • the terminal determines the service attribute of the data to be transmitted. If the service attribute satisfies the preset data early transmission condition, the terminal sends a random access request to the network device by using the early dedicated resource. After the service attribute satisfies the preset data early transmission condition, the early transmission is initiated, which reduces the situation of initiating the early transmission, thereby saving resources; in addition, the success rate of the early transmission can also be improved.
  • the data to be transmitted may be uplink or downlink data to be transmitted, and when the data to be transmitted is uplink data to be transmitted:
  • the business attributes include the business type attributes described above.
  • the terminal can determine the service type attribute of the data to be transmitted according to the type identifier of the data to be transmitted.
  • the type identifier is set in this embodiment, and the type identifier of the data may be pre-configured to the terminal, or may be specified by a standard, and is not limited herein.
  • the service attribute of the data to be transmitted can be distinguished by the NAS of the terminal.
  • the service attributes corresponding to each type of identifier may be pre-configured.
  • user data and non-user data are distinguished by 1 bit, “1” identifies user data, and “0" identifies non-user data.
  • “1” identifies non-user data and "0” identifies user data.
  • “true” means user data
  • “false” means non-user data, or vice versa.
  • the user data, the request information of the uplink signaling application resource, and the uplink short message are distinguished by 2 bits.
  • MO SMS 01: request information of the uplink signaling application resource, 10: user data, 11: reserved bits;
  • the NAS of the terminal notifies the access layer (AS) of the type of the data to be transmitted to the access layer (AS) of the terminal, and the AS checks to check whether the service attribute of the data to be transmitted satisfies the preset data early transmission condition, that is, determines Is it an early pass?
  • the terminal determines, according to the type identifier of the data to be transmitted, whether the data to be transmitted is user data.
  • the terminal sends a random access request to the network device by using the early dedicated resource or the uplink early transmission dedicated resource. After receiving the random access request, the network device allocates an uplink transmission resource in the random access response message. The terminal sends the to-be-transmitted data to the network device on the allocated uplink transmission resource.
  • the terminal selects the early transmission dedicated resource to send a random access request (MSG1) message, and receives the PUSCH resource allocated by the network device in the random access response message MSG2, and allocates the network device in the network device.
  • the data to be transmitted is transmitted on the PUSCH resource.
  • the terminal selects another normal PRACH resource to send a random access request.
  • the network device allocates an uplink transmission resource in the random access response message. The terminal sends the to-be-transmitted data to the network device on the allocated uplink transmission resource.
  • the terminal when the data to be transmitted is user data, it is determined to initiate EDT access.
  • the terminal first sends the MSG1 through the early transmission dedicated resource or the uplink early transmission dedicated resource, which carries the random access request, and then receives the PUSCH resource allocated by the network device, and sends the foregoing to be transmitted data to the network device by using the PUSCH resource allocated by the network device, specifically
  • the data to be transmitted is carried by message 3 (MSG3).
  • the signaling for transmitting the MSG3 may be one of the following: a radio resource control (RRC), an RRC Early Data Request, an RRC connection resume request, and a connectionless data request (Connection). Less Data Request), One Shot Data Request, etc.
  • the terminal requests to establish/restore the RRC connection through an RRC Connection Request or an RRC Connection Recovery Request.
  • the terminal further sends the type identifier of the data to be transmitted to the network device.
  • the terminal carries the above type identifier in MSG3.
  • the MME sends the type identifier of the to-be-transmitted data to the network device.
  • the MME may send the type identifier of the to-be-transmitted data to the network device by using one of the following information: UE Information Transfer, UE context resume response, and connection establishment indication (Connection) Establishment indication), downlink NAS transport signaling, etc.
  • the network device determines the attribute information of the to-be-transmitted data according to the type identifier of the to-be-transmitted data sent by the terminal or the MME.
  • the network device determines that the attribute information of the data to be transmitted meets the preset data early transmission condition, for example, the data to be transmitted is user data
  • the network device returns a response message after receiving the user data.
  • the response message can be message 4 (MSG4).
  • the signaling for transmitting the MSG4 may be one of the following: an RRC Early Data Response (RRC Early Data Response), an RRC Connection Recovery Response (RRC Connection Resume), a Connectionless Data Response (Connection Less Data Response), and a single data.
  • RRC Early Data Response RRC Early Data Response
  • RRC Connection Resume RRC Connection Recovery Response
  • Connectionless Data Response Connection Less Data Response
  • the network device establishes/restores the RRC connection in response to the RRC connection request of the terminal or the RRC connection recovery request.
  • the business attributes include business data package attributes.
  • an attribute of a traffic profile that is, a service data packet attribute indicating data to be transmitted, may be added.
  • the service data packet attribute can be written to the terminal as subscription information, and can also be written as a subscription information to a Home Subscriber Server (HSS).
  • the subscription information can indicate the type of packet.
  • the terminal determines the service attribute of the data to be transmitted, and may be: the terminal determines the service type attribute of the data to be transmitted according to the type of the data packet to be transmitted.
  • the terminal determines, according to the data packet type of the data to be transmitted, whether the data to be transmitted is a single data packet transmission or a pair of data packet transmission. For the data transmitted in the uplink, if the data to be transmitted is a single data packet transmission or a pair of data packet transmission, the terminal sends a random access request to the network device through the early transmission dedicated resource or the uplink early transmission dedicated resource, and the network device receives the random access. After the request, the uplink transmission resource is allocated in the random access response message. The terminal sends the to-be-transmitted data to the network device on the allocated uplink transmission resource.
  • the terminal selects another normal PRACH resource to send a random access request. Similarly, after receiving the random access request, the network device allocates an uplink transmission resource in the random access response message. The terminal sends the to-be-transmitted data to the network device on the allocated uplink transmission resource.
  • the terminal In the random access process, if the data to be transmitted is a single data packet transmission or a pair of data packet transmission, the terminal first sends the MSG1 through the early transmission dedicated resource, which carries the random access request, and then receives the uplink transmission allocated by the network device.
  • the data, the data to be transmitted is sent to the network device by using the uplink transmission resource allocated by the network device, and specifically, the data to be transmitted is carried by the message 3 (MSG3).
  • the signaling for transmitting the MSG3 may be one of the following: an RRC early transmission data request, an RRC connection recovery request, a connectionless data request, a single data request, and the like.
  • the terminal requests to establish/restore an RRC connection through an RRC connection request or an RRC connection recovery request.
  • the MME may obtain the service data packet attribute of the to-be-transmitted data according to the subscription information of the terminal.
  • the network device may receive the service data packet attribute indication information sent by the MME to indicate the service data packet attribute of the data to be transmitted.
  • the MME may send the foregoing service data packet attribute indication information to the network device by using one of the following information: terminal information transmission signaling, terminal context recovery response, connection establishment indication, downlink NAS layer transmission signaling, and the like.
  • the terminal sends the service data packet attribute indication information to the network device, which is not limited in this application.
  • the network device determines, according to the service data packet attribute indication information, that the data to be transmitted meets the preset data early transmission condition, for example, the data to be transmitted is a single data packet transmission or a pair of data packet transmission, then the network device receives the data to be transmitted after receiving the data to be transmitted. , reply to the response message.
  • the response message can be message 4 (MSG4).
  • the signaling for transmitting the MSG4 may be one of the following: an RRC early transmission response, an RRC connection recovery response, a connectionless data response, and a single data transmission response.
  • the MME sends an end indication to the network device to indicate that the network device is quickly released. connection.
  • the MME may determine, according to a Release Assistant indication (RAI) indication, that there is no subsequent data packet transmission or only one downlink data packet transmission (ie, no uplink data is present). Packet), the MME sends an end indication to the network device to instruct the network device to quickly release the connection.
  • RAI Release Assistant indication
  • the MME may send the foregoing end indication to the network device by using one of the following information: terminal information transmission signaling, terminal context recovery response, connection establishment indication, downlink NAS layer transmission signaling, and the like.
  • the network device establishes/restores the RRC connection in response to the RRC connection request of the terminal or the RRC connection recovery request.
  • the service attribute includes: a service delay attribute.
  • the terminal determines the service attribute of the data to be transmitted, and the terminal may determine the service type attribute of the data to be transmitted according to the service delay identifier of the data to be transmitted.
  • the embodiment adds a service delay identifier.
  • the service delay identifier may be implemented by a QoS Class Identifier (QCI).
  • QCI QoS Class Identifier
  • QCI can be defined in the manner of Table 1, for example.
  • Non-GBR means that the network does not provide the lowest Guaranteed Bit Rate (GBR).
  • the QCI field is a value of 0-255, except for the already occupied QCI values such as Enhanced Mobile Broadband (eMBB) and vehicle to everything (V2X) (such as 1-9, 65-67). , 69, 70, 75, 79, 80, 82-83), one of the remaining reserved values can be used as the service delay identifier of the Internet of Things to distinguish between delay-sensitive business data and delay-insensitive data.
  • eMBB Enhanced Mobile Broadband
  • V2X vehicle to everything
  • the EDT also has a certain improvement on the delay.
  • the delay-sensitive service data is allowed to initiate the EDT.
  • the terminal determines, according to the service delay identifier of the data to be transmitted, whether the data to be transmitted is delay-sensitive service data. Specifically, the terminal may determine, according to the QCI corresponding to the data to be transmitted, whether the data to be transmitted is delay-sensitive service data.
  • the terminal sends a random access request to the network device by using the early-time dedicated resource or the uplink early-use dedicated resource, and after receiving the random access request, the network device allocates the random access response message. Uplink transmission resources. The terminal sends the to-be-transmitted data to the network device on the allocated uplink transmission resource.
  • the terminal selects another normal PRACH resource to send a random access request. Similarly, after receiving the random access request, the network device allocates an uplink transmission resource in the random access response message. The terminal sends the to-be-transmitted data to the network device on the allocated uplink transmission resource.
  • the terminal sends the MSG1 to the network device by using the early-transmission dedicated resource, which carries the random access request, and then receives the uplink transmission resource allocated by the network device, and sends the data to be transmitted to the network device by using the uplink transmission resource allocated by the network device, which may be specifically
  • the above data to be transmitted is carried by message 3 (MSG3).
  • the signaling for transmitting the MSG3 may be one of the following: an RRC early transmission data request, an RRC connection recovery request, a connectionless data request, a single data request, and the like.
  • the terminal applies for establishing/restoring the RRC connection through an RRC connection request or an RRC connection recovery request.
  • the MME may obtain the service delay identifier (for example, the QCI) of the to-be-transmitted data through the NAS of the terminal, and determine, according to the service delay identifier of the data to be transmitted, that the data to be transmitted is a delay-non-sensitive service. After the data, the MME sends the service delay identifier to the network device, so that the network device determines the content of the response message.
  • the service delay identifier for example, the QCI
  • the MME may send the foregoing service delay identifier to the network device by using one of the following information: terminal information transmission signaling, terminal context recovery response, connection establishment indication, downlink NAS layer transmission signaling, and the like.
  • the terminal sends the foregoing service delay identifier to the network device, which is not limited in this application.
  • the network device After the network device determines that the data to be transmitted is delay-sensitive service data according to the service delay identifier, that is, the data to be transmitted meets the preset data early transmission condition. Then, after receiving the data to be transmitted, the network device responds with a response message.
  • the response message can be MSG4.
  • the signaling for transmitting the MSG4 may be one of the following: an RRC early transmission response, an RRC connection recovery response, a connectionless data response, and a single data transmission response.
  • the network device establishes/restores the RRC connection in response to the RRC connection request of the terminal or the RRC connection recovery request.
  • the early transmission service initiated by the foregoing may also be a downlink early transmission service (DL EDT). That is, the data to be transmitted is downlink data. Similarly, the terminal first acquires the service attribute with the transmitted data.
  • DL EDT downlink early transmission service
  • the terminal determines whether the service attribute of the data to be transmitted is a preset data early transmission condition, and may determine whether the service attribute of the data to be transmitted satisfies the condition of downlink early transmission. If it is determined that the service attribute of the data to be transmitted satisfies the condition of downlink early transmission, the terminal sends a random access request to the network device by using the downlink early transmission dedicated resource.
  • the downlink early transmission dedicated resource may also be part of the above-mentioned early transmission dedicated resource.
  • the network device does not know whether the terminal is to initiate the uplink early transmission or the downlink early transmission.
  • the network device distinguishes the resources that the terminal sends by using the random access request. Specifically, when the network device allocates the early transmission dedicated resource, the part of the early transmission dedicated resource may be allocated as the uplink early transmission dedicated resource. When the uplink early transmission is to be initiated, the terminal sends the random access request by using the uplink early transmission dedicated resource. In addition, the part of the early transmission dedicated resource may be further used as the downlink early transmission dedicated resource, and when the terminal initiates the downlink early transmission, the random access request is sent by using the downlink early transmission dedicated resource. In this way, the network device can know whether the early transmission initiated by the terminal is an uplink early transmission or a downlink early transmission.
  • the downlink early transmission dedicated resource may be indicated by the early transmission dedicated resource indication information together with the early transmission dedicated resource, and the early transmission dedicated resource indication information is one of a broadcast message, a dedicated signaling, and a paging message.
  • the specific indication may indicate the location information of the downlink early transmission dedicated resource and the early transmission dedicated resource.
  • the network device may notify the terminal of the resource used by the downlink early transmission by the dedicated signaling. Therefore, the terminal that the network device considers to use the random access resource to access is a terminal that needs to initiate downlink early transmission data transmission.
  • the business attributes include business data package attributes.
  • the terminal sends a random access request to the network device by using the early transmission dedicated resource, which may be: if the downlink data to be transmitted is a single data packet transmitted in the downlink, the terminal passes the downlink early transmission.
  • the dedicated resource sends a random access request to the network device.
  • the terminal sends a random access request to the network device by using the early transmission dedicated resource, which may be: if the downlink data to be transmitted is a delay-sensitive service for downlink transmission Data, the terminal sends a random access request to the network device by using the downlink early transmission dedicated resource.
  • downlink early transmission may be initiated.
  • the difference from the uplink early transmission is that the terminal does not send data after receiving the uplink transmission resource allocated by the network device, but sends a downlink transmission request, specifically, the establishment cause value of the called (mobile terminated, MT),
  • the NAS signaling of the service request carries the downlink transmission request.
  • the network device allocates the downlink transmission request resource to the terminal, which is much smaller than the resource allocated to the terminal to send the uplink data.
  • the downlink early transmission dedicated resource may also be part of the early transmission dedicated resource, where the indication is an MT dedicated PRACH resource.
  • the early transmission dedicated resource may also be a PRACH resource indicating that the MSG3 carries less than N bits. That is, when the terminal accesses the PRACH resource, the network side allocates a PUSCH resource of less than N bits to the terminal for transmitting a downlink data transmission request (MSG3) for initiating downlink early transmission.
  • N is greater than 0, and the N bits are less than or equal to the minimum number of bits required for uplink user data transmission, such as 320 bits, or 400 bits, or other number of bits, which is not limited in this application.
  • FIG. 3 is a schematic flowchart of a random access method according to another embodiment of the present disclosure. As shown in FIG. 3, based on a random access procedure, the method includes:
  • the terminal determines that the service attribute of the data to be transmitted meets the preset early transmission condition.
  • the terminal sends the MSG1 to the network device by using the early dedicated resource, and the MSG1 carries the random access request.
  • the terminal may first send a random access request to the network device, and request to initiate downlink early transmission.
  • the network device sends the MSG2 to the terminal.
  • MSG2 allocates uplink transmission resources.
  • S304 The terminal sends the MSG3 by using an uplink transmission resource, where the MSG3 carries the data to be transmitted.
  • the network device sends the MSG4 to the terminal, and responds to the data to be transmitted.
  • the terminal sends the MSG3 by using an uplink transmission resource, where the MSG3 carries a downlink data transmission request.
  • the network device sends the MSG4 to the terminal, where the MSG4 carries the data to be transmitted.
  • the signaling for transmitting the MSG3 may be one of the following: an RRC early transmission data request, an RRC connection recovery request, a connectionless data request, a single data request, and the like.
  • the signaling for transmitting the MSG4 may be one of the following: an RRC early transmission response, an RRC connection recovery response, a connectionless data response, and a single data transmission response.
  • the network device After receiving the random access request, the network device replies to the random access response if it does authorize the early transmission, for example, carries the random access response through message 2 (MSG2).
  • MSG2 message 2
  • the network device allocates 1000 bits of PUSCH transmission uplink data to the terminal. Then, for the case of the downlink early transmission, the MSG3 does not carry the service data, and thus the random access response may indicate the PUSCH resource carrying the smaller number of bits, for example, the 120-bit PUSCH resource is used as the transmission resource of the downlink data transmission request.
  • the MME determines the service attribute of the data to be transmitted. For details, refer to the foregoing embodiment, determining whether the data to be transmitted is delay sensitive according to the service delay identifier of the data to be transmitted. Business data. Or determining whether the data to be transmitted is a single data packet transmission according to a data packet attribute of the data to be transmitted.
  • the MME determines that the data to be transmitted meets the preset early transmission condition, for example, the data to be transmitted is a single data packet for downlink transmission, and/or the delay sensitive service data for downlink transmission, the MME sends the service attribute indication information to the network device.
  • the service attribute indication information may include a service delay identifier, and/or a packet attribute.
  • the MME may send the foregoing service attribute indication information to the network device by using the following information: terminal information transmission signaling, terminal context recovery response, connection establishment indication, downlink NAS layer transmission signaling, and the like.
  • the network device determines, according to the service attribute indication information, that the data to be transmitted meets the preset early transmission condition, and then sends the data to the terminal.
  • the downlink early transmission resource indication information is used to indicate part of the allocated early transmission dedicated resources as the downlink early transmission resource.
  • the downlink early transmission resource indication information includes downlink early transmission random access resource information.
  • the terminal sends a random access request by using the downlink early transmission resource indicated by the network device, and receives the PUSCH resource allocated by the network device in the random access response.
  • the terminal transmits a downlink transmission request through the MSG3 on the allocated PUSCH resource.
  • the signaling for transmitting the MSG3 may be one of the following: an RRC early transmission data request, an RRC connection recovery request, a connectionless data request, a single data request, and the like.
  • the network device After receiving the downlink transmission request, the network device sends the data to be transmitted on the Physical Downlink Shared Channel (PDSCH) resource.
  • the signaling for transmitting the MSG4 may be one of the following: an RRC early transmission response, an RRC connection recovery response, a connectionless data response, and a single data transmission response.
  • FIG. 4 is a schematic structural diagram of a random access device according to an embodiment of the present disclosure, where the device may be integrated into a terminal, or a chip of a terminal. As shown in FIG. 4, the device includes: a determining module 401, and a sending module 402, where:
  • the determining module 401 is configured to determine a service attribute of the data to be transmitted, where the service attribute includes one or more of the following: a service type attribute, a service data package attribute, and a service delay attribute.
  • the sending module 402 is configured to send a random access request to the network device by using the early transmission dedicated resource if the service attribute satisfies the preset data early transmission condition.
  • the determining module 401 is specifically configured to determine a service type attribute of the to-be-transmitted data according to the type identifier of the to-be-transmitted data.
  • the determining module 401 is specifically configured to determine, according to the type identifier of the data to be transmitted, whether the data to be transmitted is user data.
  • the sending module 402 is specifically configured to: if the data to be transmitted is user data, send a random access request to the network device by using the early dedicated resource.
  • the service attribute includes a service data packet attribute
  • the determining module 401 is configured to determine, according to the data packet type of the data to be transmitted, a service type attribute of the data to be transmitted.
  • the determining module 401 is specifically configured to determine, according to the data packet type of the data to be transmitted, whether the data to be transmitted is a single data packet transmission or a pair of data packet transmission.
  • the sending module 402 is specifically configured to: if the data to be transmitted is a single data packet transmission or a pair of data packet transmission, send a random access request to the network device by using the early transmission dedicated resource to the network device.
  • the service attribute includes a service delay attribute
  • the determining module 401 is specifically configured to determine, according to the service delay identifier of the to-be-transmitted data, a service type attribute of the to-be-transmitted data.
  • the determining module 401 is specifically configured to determine, according to the service delay identifier of the to-be-transmitted data, whether the data to be transmitted is delay-sensitive service data.
  • the sending module 402 is specifically configured to: if the to-be-transmitted data is delay-sensitive service data, send a random access request to the network device by sending the dedicated resource to the network device.
  • the service attribute includes a service packet attribute
  • the sending module 402 is specifically configured to send, by using the downlink early transmission dedicated resource, a random access request to the network device, if the data to be transmitted is a single data packet for downlink transmission.
  • the service attribute includes a service delay attribute
  • the sending module 402 is configured to: if the to-be-transmitted data is the delay-sensitive service data of the downlink transmission, send, by using the downlink early transmission dedicated resource, the network device to send the random connection to the network device. Into the request.
  • the downlink early transmission dedicated resource is part of the early transmission dedicated resource.
  • FIG. 5 is a schematic structural diagram of a random access device according to another embodiment of the present disclosure.
  • the device may further include: a receiving module 501.
  • the receiving module 501 is configured to receive a random access response sent by the network device, where the random access response indicates an uplink transmission resource.
  • the sending module 402 is further configured to send a downlink data transmission request to the network device by using the uplink transmission resource.
  • the receiving module 501 receives the data to be transmitted sent by the network device.
  • the receiving module 501 is configured to receive early transmission dedicated resource indication information sent by the network device, where the early transmission dedicated resource indication information is one of a broadcast message, a dedicated signaling, and a paging message.
  • FIG. 6 is a schematic structural diagram of a random access device according to still another embodiment of the present application, where the device may be integrated into a network device or a chip of a network device. As shown in FIG. 6, the device includes: a receiving module 601, and a sending module 602, where
  • the receiving module 601 is configured to receive, by the terminal, a random access request that is sent by the early transmission dedicated resource after the service attribute of the data to be transmitted meets the preset data early transmission condition, where the service attribute includes one or more of the following: Type attribute, business packet attribute, business delay attribute.
  • the sending module 602 is configured to send a random access response to the terminal, where the random access response allocates an uplink transmission resource to the terminal.
  • the receiving module 601 is further configured to acquire a service attribute of the service data to be transmitted.
  • the receiving module 601 is specifically configured to receive the service attribute indication information sent by the MME, or receive the service attribute indication information sent by the terminal.
  • the service attribute indication information is used to indicate a service attribute of the service data to be transmitted.
  • the receiving module 601 is further configured to receive the to-be-transmitted data that is sent by the terminal by using the uplink resource.
  • the receiving module 601 is further configured to receive a downlink data transmission request sent by the terminal by using the uplink resource.
  • the sending module 602 is further configured to send the to-be-transmitted data to the terminal.
  • the receiving module 601 is specifically configured to: receive, by the receiving terminal, a random access request sent by using a downlink early transmission dedicated resource after determining that the service attribute of the data to be transmitted meets the preset data early transmission condition, where The downlink early transmission dedicated resource is part of the resource of the early transmission dedicated resource.
  • each module of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure. As shown in FIG. 7, the terminal may include: a memory 701 and a processor 702.
  • the memory 701 can be a separate physical unit and can be coupled to the processor 702 via a bus.
  • the memory 701 and the processor 702 can also be integrated together, implemented by hardware or the like.
  • the memory 701 is configured to store an implementation of the above method, and the processor 702 calls the program to perform the operations of the method embodiment performed by the terminal.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 8, the network device may include: a memory 801 and a processor 802.
  • the memory 801 can be a separate physical unit and can be coupled to the processor 802 via a bus.
  • the memory 801 and the processor 802 can also be integrated together, implemented by hardware or the like.
  • the memory 801 is configured to store an implementation of the above method, and the processor 802 calls the program to perform the operations of the method embodiment performed by the network device.
  • the random access device may also include only the processor.
  • the memory for storing the program is located outside the above device, and the processor is connected to the memory through the circuit/wire for reading and executing the program stored in the memory.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory may also include a combination of the above types of memories.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种随机接入方法及装置,该方法包括:终端确定待传输数据的业务属性,所述业务属性包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性;若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求。实现了在业务属性满足预设数据早传条件后,再发起早传,这样就会减少发起早传的情况,从而节约资源;另外,也可以提高早传的成功率。

Description

随机接入方法及装置 技术领域
本申请涉及无线通信领域,尤其涉及一种随机接入方法及装置。
背景技术
移动通信已经深刻地改变了人们的生活,但人们对更高性能移动通信的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量的设备连接、不断涌现的各类新业务和应用场景,第五代移动通信(5G)系统将应运而生。物联网(Internet of Things,IoT)作为5G的组成部分,其市场需求增长迅猛。目前基于蜂窝网络,针对物联网的特点提出了解决方案,比如窄带物联网(Narrow Band–Internet of Things,NB-IoT)网络和机器通信(Machine-Type Communications,MTC)网络,二者均利用了窄带技术的特点,来承载IoT业务。
在Rel-15版本中,NB-IoT网络和MTC网络对物联网的小数据包传输特点进行优化,提出了随机接入过程中进行的数据传输的数据早传(Early Data Transmission,EDT)技术。具体地,在当前的EDT设计中,系统为EDT专门预留了一部分的接入资源,例如物理随机接入信道(Physical Random Access Channel,PRACH)资源,要发起EDT业务的终端可以使用为EDT预留的这个资源通知基站这次发起的传输为EDT传输。大量的终端使用EDT专用的接入资源传输数据,会导致EDT资源的拥塞,使得EDT的成功率降低。
另外,由于基站无法获得用户待传输的信令或者数据包的大小,基站只能进行盲调度,为了保证数据造成成功率,基站的盲调度会尽量调度大的资源。EDT技术会占用较多的资源,是以资源来换取时延和功耗的优化。
发明内容
本申请提供一种随机接入方法及装置,用于解决EDT导致的资源消耗过大的问题。
第一方面,本申请提供一种随机接入方法,包括:
终端确定待传输数据的业务属性,所述业务属性包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性;
若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求。
一种可能的设计方式中,所述业务属性包括所述业务类型属性,
所述终端确定待传输数据的业务属性,包括:
所述终端根据所述待传输数据的类型标识,确定所述待传输数据的业务类型属性。
一种可能的设计方式中,所述终端根据所述待传输数据的类型标识,确定所述待传输数据的业务类型属性,包括:
所述终端根据所述待传输数据的类型标识,确定所述待传输数据是否为用户数据;
相应地,所述若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
若所述待传输数据为用户数据,所述终端通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
一种可能的设计方式中,所述业务属性包括业务数据包属性,
所述终端确定待传输数据的业务属性,包括:
所述终端根据所述待传输数据的数据包类型,确定所述待传输数据的业务类型属性。
一种可能的设计方式中,所述终端根据所述待传输数据的数据包类型,确定所述待传输数据的业务类型属性,包括:
所述终端根据所述待传输数据的数据包类型,确定所述待传输数据是否为单数据包传输或一对数据包传输;
相应地,所述若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
若所述待传输数据为单数据包传输或一对数据包传输,所述终端通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
一种可能的设计方式中,所述业务属性包括业务时延属性,
所述终端确定待传输数据的业务属性,包括:
所述终端根据所述待传输数据的业务时延标识,确定所述待传输数据的业务类型属性。
一种可能的设计方式中,所述终端根据所述待传输数据的业务时延标识,确定所述待传输数据的业务类型属性,包括:
所述终端根据所述待传输数据的业务时延标识,确定所述待传输数据是否为时延敏感业务数据;
相应地,所述若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
若所述待传输数据为时延敏感业务数据,所述终端通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
一种可能的设计方式中,所述业务属性包括业务数据包属性,若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
若所述待传输数据为下行传输的单数据包,所述终端通过下行早传专用资源向所述网络设备发送向网络设备发送随机接入请求。
一种可能的设计方式中,所述业务属性包括业务时延属性,若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
若所述待传输数据为下行传输的时延敏感业务数据,所述终端通过下行早传专用资源向所述网络设备发送向网络设备发送随机接入请求。
一种可能的设计方式中,所述下行早传专用资源为所述早传专用资源的部分资源。
一种可能的设计方式中,所述终端通过早传专用资源向网络设备发送随机接入请求之后,还包括:
所述终端接收所述网络设备发送的随机接入响应,所述随机接入响应指示上行传输资源;
所述终端通过所述上行传输资源向所述网络设备发送下行数据传输请求;
所述终端接收所述网络设备发送的所述待传输数据。
一种可能的设计方式中,所述方法还包括:
所述终端接收所述网络设备发送的早传专用资源指示信息,所述早传专用资源指示信息为广播消息、专用信令、寻呼消息中的一种。
第二方面,本申请提供一种随机接入方法,包括:
网络设备接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过早传专用资源发送的随机接入请求,所述业务属性包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性;
所述网络设备向所述终端发送随机接入响应,所述随机接入响应为所述终端分配上行传输资源。
一种可能的设计方式中,所述方法还包括:
所述网络设备获取所述待传输业务数据的业务属性。
一种可能的设计方式中,所述网络设备获取所述待传输业务数据的业务属性,包括:
所述网络设备接收MME发送的业务属性指示信息;或者,
所述设备接收终端发送的业务属性指示信息;
其中,所述业务属性指示信息用于指示所述待传输业务数据的业务属性。
一种可能的设计方式中,所述网络设备向所述终端发送随机接入响应,所述随机接入响应为所述终端分配上行传输资源之后,还包括:
所述网络设备接收终端通过所述上行资源发送的所述待传输数据
一种可能的设计方式中,所述网络设备向所述终端发送随机接入响应,所述随机接入响应为所述终端分配上行传输资源之后,还包括:
所述网络设备接收终端通过所述上行资源发送的下行数据传输请求;
所述网络设备向所述终端发送所述待传输数据。
一种可能的设计方式中,所述网络设备接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过早传专用资源发送的随机接入请求,包括:
所述网络设备接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过下行早传专用资源发送的随机接入请求,其中,所述下行早传专用资源为所述早传专用资源的部分资源。
第三方面,本申请提供一种随机接入装置,所述装置包括用于执行上述第一或第二方面以及第一或第二方面的各种实现方式所提供的方法的模块或手段(means)。
第四方面,本申请提供一种随机接入装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面中任一个提供的方法,所述装置可以为终端,也可以为终端上的芯片。
第五方面,本申请提供一种随机接入装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第二方面中任一个提供的方法,所述装置可以为网络设备,也可以为网络设备上的芯片。
第六方面,本申请提供一种计算机存储介质,该计算机存储介质用于存储程序,该程序用于执行上述第一或第二方面所述的任意一种方法。
本申请提供的随机接入方法及装置中,终端确定待传输数据的业务属性,若上述业务属性满足预设数据早传条件,终端通过早传专用资源向网络设备发送随机接入请求。实现了在业务属性满足预设数据早传条件后,再发起早传,这样就会减少发起早传的情况,从而节约资源;另外,也可以提高早传的成功率。
附图说明
图1为本申请提供的一种通信系统结构示意图;
图2为本申请一实施例提供的随机接入方法流程示意图;
图3为本申请另一实施例提供的随机接入方法流程示意图;
图4为本申请一实施例提供的随机接入装置结构示意图;
图5为本申请另一实施例提供的随机接入装置结构示意图;
图6为本申请再一实施例提供的随机接入装置结构示意图;
图7为本申请一实施例提供的终端结构示意图;
图8为本申请一实施例提供的网络设备结构示意图。
具体实施方式
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(TimeDivision-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及下一代5G移动通信系统的三大应用场景增强型移动宽带(Enhanced Mobile Broad Band,eMBB)、URLLC以及大规模机器通信(Massive Machine-Type Communications,mMTC)。
图1为本申请提供的一种通信系统结构示意图。
如图1所示,通信系统01包括网设备101、终端102以及移动性管理实体(Mobility Management Entity,MME)03。当无线通信网络01包括核心网时,该网络设备101还可以与核心网相连。网络设备101还可以与互联网协议(Internet Protocol,IP)网络200进行通信,例如,因特网(internet),私有的IP网,或其它数据网等。
网络设备为覆盖范围内的终端提供服务。例如,参见图1所示,网络设备101为网络设备101覆盖范围内的一个或多个终端提供无线接入。另外,网络设备之间还可 以互相通信。
MME的非接入层(Non-Access Stratum,NAS)与终端的NAS可以是对等的,进行NAS层的信息传输。另外,MME与网络设备之间可以互相通信。
在本申请实施例中,终端(terminal device)102包括但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该终端可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,终端可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端102还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置或设备。
网络设备101可以是用于与终端102进行通信的设备。例如,可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolved Node B,eNB或eNodeB)或未来5G网络中的网络侧设备等。或者该网络设备还可以是中继站、接入点、车载设备等。在终端对终端(Device to Device,D2D)通信系统中,该网络设备还可以是担任基站功能的终端。
本申请提出一种随机接入方法,以确定哪些终端、或者哪些情况下发起EDT接入,以更好地节约资源。
图2为本申请一实施例提供的随机接入方法流程示意图,如图2所示,该方法包括:
S201、终端确定待传输数据的业务属性。
该业务属性可以包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性。
其中,业务类型属性可以区分不同类型的业务,例如用户数据和非用户数据。具体地,非用户数据可以指为上行信令申请资源的请求信息(request resources for UL signalling)、上行短信(MO SMS)、上行信令等。
业务数据包属性可以区分不同的数据包传输类型,例如:(1)单数据包传输(Single packet transmission),具体可以是上行单数据包传输或下行单数据包传输;(2)一对数据包传输(Dual packet transmission),具体可以终端向网络设备发送上行数据包、随后网络设备向终端发送相应的下行数据包,或者,网络设备向终端发送下行数据包、随后终端向网络设备发送相应的上行数据包;多个数据包传输(Multiple packet transmissions),具体可以包括一次上行数据包传输、对应多次下行数据包传输,或者,一次下行数据包传输、对应多次上行数据包传输,或者,多次上行数据包传输、对应多次下行数据包传输等,本申请不作限制。
业务时延属性可以区分不同时延需求的数据传输,可以包括:时延非敏感数据传输和时延敏感业务数据传输。对于物联网应用而言,例如:报警类业务、智能路灯、共享单车等业务属于时延敏感业务数据传输,端到端的时延需求需要小于几秒预设时长,比如小于5秒。又例如:传感器信息上报、电表上报、水表上报等业务属于时延非敏感数据传输。
S202、若上述业务属性满足预设数据早传条件,终端通过早传专用资源向网络设 备发送随机接入请求消息。
可选地,随机接入请求可以由消息1(MSG1)携带。
相应地,如果是下行早传,即网络设备给终端发送数据,那么网络设备收到随机接入请求后,在随机接入响应消息中分配上行传输资源。例如,分配用户信令使用的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源,终端可以通过分配的PUSCH资源发送下行数据传输请求等。或者,如果是上行早传,即终端给网络设备发送数据,那么网络设备收到随机接入请求后,在随机接入响应消息中分配传输上行数据的PUSCH资源,终端可以通过分配的PUSCH资源向网络设备发送数据。
上述随机接入响应消息可以通过消息2(MSG2)携带。
上述早传专用资源可以是网络设备为终端配置的,也可以是标准规定的。即网络设备可以指示一部分物理随机接入信道(Physical Random Access Channel,PRACH)资源作为早传专用资源。
可选地,S202之前,终端可以获取网络设备指示的上述早传专用资源,其中,早传专用资源通过广播消息、专用信令、寻呼消息中的一种指示,本实施例不作限制。
一种具体地实现方式中,上述早传专用资源可以由寻呼消息的调度信息指示,或者,通过寻呼消息的RRC信息指示,在此不作限制。
具体地,终端在确定业务属性满足预设数据早传条件后,才会发起早传。
可选地,早传专用资源可以进一步分为下行早传专用资源和上行早传专用资源;其中,下行早传专用资源还可以为所述早传专用资源的部分资源,其中指示为MT专用的PRACH资源。
或者,下行早传专用资源还可以为指示MSG3承载小于N比特的PRACH资源。也就是说,当终端使用该PRACH资源接入时,网络侧据此在MSG2为终端分配小于N比特的PUSCH资源,用于传输发起下行早传的下行数据传输请求(MSG3)。N大于0,该N比特为小于或等于上行用户数据传输需要的最小的比特数,比如320比特,或者400比特,或者其他的比特数,在本申请中不做限定。
本实施例中,终端确定待传输数据的业务属性,若上述业务属性满足预设数据早传条件,终端通过早传专用资源向网络设备发送随机接入请求。实现了在业务属性满足预设数据早传条件后,再发起早传,这样就会减少发起早传的情况,从而节约资源;另外,也可以提高早传的成功率。
上述待传输数据可以为上行或下行待传输数据,当待传输数据为上行待传输数据时:
一种实施例中,业务属性包括上述业务类型属性。相应地,终端可以根据待传输数据的类型标识,确定待传输数据的业务类型属性。
即本实施例中提出了类型标识,数据的类型标识可以预先配置给终端,也可以由标准进行规定,在此不作限制。
具体可以由终端的NAS区分待传输数据的业务属性。具体可以预先配置各类型标识对应的业务属性。
例如由1比特来区分用户数据和非用户数据,“1”标识用户数据、“0”标识非用户数据。或者,“1”标识非用户数据、“0”标识用户数据。或者使用一个布尔参 量,“true”表示是用户数据,“false”表示是非用户数据,或者反之。
或者由2比特来区分用户数据、上行信令申请资源的请求信息、上行短信。例如:
00:用户数据、01:上行信令申请资源的请求信息、10:MO SMS、11:保留位;
00:用户数据、01:MO SMS、10:上行信令申请资源的请求信息、11:保留位;
00:上行信令申请资源的请求信息、01:用户数据、10:MO SMS、11:保留位;
00:上行信令申请资源的请求信息、01:MO SMS、10:用户数据、11:保留位;
00:MO SMS、01:上行信令申请资源的请求信息、10:用户数据、11:保留位;
00:MO SMS、01:用户数据、10:上行信令申请资源的请求信息、11:保留位。
终端的NAS将待传输数据的类型标识通知给终端的接入层(AS),AS在传输该待传输数据之前进行检查,确定待传输数据的业务属性是否满足预设数据早传条件,即确定是不是发起早传。
具体地,终端根据待传输数据的类型标识,确定待传输数据是否为用户数据。
若上述待传输数据为用户数据,终端通过早传专用资源或上行早传专用资源向网络设备发送随机接入请求。网络设备收到随机接入请求后,在随机接入响应消息中分配上行传输资源。终端在该分配的上行传输资源上向网络设备发送上述待传输数据。
也就是说,上述待传输数据为用户数据的话,终端选择早传专用资源发送随机接入请求(MSG1)消息,并接收网络设备在随机接入响应消息MSG2中分配的PUSCH资源,在网络设备分配的PUSCH资源上发送待传输数据。否则,终端选择其他正常的PRACH资源发送随机接入请求,类似地,网络设备收到随机接入请求后,在随机接入响应消息中分配上行传输资源。终端在该分配的上行传输资源上向网络设备发送上述待传输数据。
例如随机接入过程中,上述待传输数据为用户数据时,则确定发起EDT接入。终端先通过早传专用资源或上行早传专用资源发送MSG1,其中携带随机接入请求,进而接收网络设备分配的PUSCH资源,通过网络设备分配的PUSCH资源向网络设备发送上述待传输数据,具体可以是通过消息3(MSG3)携带上述待传输数据。传输MSG3的信令可以是下述一种:无线资源控制(Radio Resource Control,RRC)早传数据请求(RRC Early Data Request)、RRC连接恢复请求(RRC connection resume request)、无连接数据请求(Connection Less Data Request)、单次数据请求(One Shot Data Request)等。
如果上述待传输数据为非用户数据时,终端通过RRC连接请求(RRC Connection request)或者RRC连接恢复请求申请建立/恢复RRC连接。
一种可能地方式中,终端还向网络设备发送上述待传输数据的类型标识。例如,终端在MSG3中携带上述类型标识。
或者,另一种可能地方式中,MME向网络设备发送上述待传输数据的类型标识。具体地,MME可以通过下述一种信息向网络设备发送上述待传输数据的类型标识:终端信息传输信令(UE Information Transfer)、终端上下文恢复响应(UE context resume response)、连接建立指示(Connection establishment indication)、下行NAS层传输信令(Downlink NAS transport)等。
网络设备根据终端或MME发送的上述待传输数据的类型标识,确定上述待传输 数据的属性信息。
如果网络设备确定上述待传输数据的属性信息满足预设数据早传条件,例如上述待传输数据为用户数据,那么网络设备在收到该用户数据后,回复响应消息。该响应消息可以是消息4(MSG4)。
相应地,传输MSG4的信令可以是下述一种:RRC早传响应(RRC Early Data Response)、RRC连接恢复响应(RRC Connection Resume)、无连接数据响应(Connection Less Data Response)、单次数据传输响应(One Shot Data Response)。
如果上述待传输数据为非用户数据,网络设备响应于终端的RRC连接请求或者RRC连接恢复请求,建立/恢复RRC连接。
另一实施例中,业务属性包括业务数据包属性。
可选地,本实施例中可以增加传输特性(traffic profile)的属性,即指示待传输数据的业务数据包属性。
该业务数据包属性可以作为签约信息写入终端,还可以作为签约信息写入归属用户服务器(Home Subscriber Server,HSS)。该签约信息可以指示数据包类型。
终端确定待传输数据的业务属性,可以是:终端根据待传输数据的数据包类型,确定待传输数据的业务类型属性。
可选地,终端根据待传输数据的数据包类型,确定待传输数据是否为单数据包传输或一对数据包传输。对于上行传输的数据,若待传输数据为单数据包传输或一对数据包传输,终端通过早传专用资源或上行早传专用资源向网络设备发送随机接入请求,网络设备收到随机接入请求后,在随机接入响应消息中分配上行传输资源。终端在该分配的上行传输资源上向网络设备发送上述待传输数据。
否则,终端选择其他正常的PRACH资源发送随机接入请求,类似地,网络设备收到随机接入请求后,在随机接入响应消息中分配上行传输资源。终端在该分配的上行传输资源上向网络设备发送上述待传输数据。
应用于随机接入过程中,若上述待传输数据为单数据包传输或一对数据包传输,终端先通过早传专用资源发送MSG1,其中携带随机接入请求,进而接收网络设备分配的上行传输资源,通过网络设备分配的上行传输资源向网络设备发送上述待传输数据,具体可以是通过消息3(MSG3)携带上述待传输数据。传输MSG3的信令可以是下述一种:RRC早传数据请求、RRC连接恢复请求、无连接数据请求、单次数据请求等。
若上述待传输数据为多数据包传输,终端通过RRC连接请求或者RRC连接恢复请求申请建立/恢复RRC连接。
一种可能地方式中,MME可以根据终端的签约信息获取上述待传输数据的业务数据包属性。进而网络设备可以接收MME发送的业务数据包属性指示信息,以指示上述待传输数据的业务数据包属性。
具体地,MME可以通过下述一种信息向网络设备发送上述业务数据包属性指示信息:终端信息传输信令、终端上下文恢复响应、连接建立指示、下行NAS层传输信令等。
或者,终端向网络设备发送业务数据包属性指示信息,本申请不做限制。
当网络设备根据业务数据包属性指示信息确定上述待传输数据满足预设数据早传条件,例如上述待传输数据为单数据包传输或一对数据包传输,那么网络设备在收到待传输数据后,回复响应消息。该响应消息可以是消息4(MSG4)。
相应地,传输MSG4的信令可以是下述一种:RRC早传响应、RRC连接恢复响应、无连接数据响应、单次数据传输响应。
对于上述待传输数据为单数据包传输这种情况,可选地,在终端向网络设备发送上述待传输数据(即上行数据包)后,MME向网络设备发送结束指示,以指示网络设备快速释放连接。
更具体地,MME获取终端发送的上行数据包后,MME可以根据释放辅助标识(Release Assistant indication,RAI)指示,确定后续没有数据包传输或者后续只有一个下行数据包传输(即不再有上行数据包),MME向网络设备发送结束指示,以指示网络设备快速释放连接。
可选地,MME可以通过下述一种信息向网络设备发送上述结束指示:终端信息传输信令、终端上下文恢复响应、连接建立指示、下行NAS层传输信令等。
如果上述待传输数据为多数据包传输,网络设备响应于终端的RRC连接请求或者RRC连接恢复请求,建立/恢复RRC连接。
又一实施例中,业务属性包括:业务时延属性。
终端确定待传输数据的业务属性,可以是:终端根据待传输数据的业务时延标识,确定所述待传输数据的业务类型属性。
即本实施例增加了业务时延标识。可选地,业务时延标识可以通过质量等级标识(QoS Class Identifier,QCI)来实现。
具体可以以表1为例的方式定义QCI,
表1
QCI 资源类型 优先级 数据包时延预算 误包丢失率 服务举例
XX Non-GBR 2 5秒 10 -6 IoT传输
其中,Non-GBR指网络不提供最低的传输速率保证(Guaranteed Bit Rate,GBR)。
其中QCI域是一个0-255的值,除了目前已经被增强移动宽带(Enhance Mobile Broadband,eMBB)和车联网(vehicle to everything,V2X)等已经占用的QCI值(比如1-9、65-67、69、70、75、79、80、82-83)外,剩下的预留值中可以使用其中的一个作为物联网的业务时延标识,以区分时延敏感业务数据、时延非敏感数据。
EDT对于时延也有一定的改善,本实施例中允许时延敏感业务数据发起EDT。
可选地,终端根据待传输数据的业务时延标识,确定待传输数据是否为时延敏感业务数据。具体地,终端可以根据待传输数据对应的QCI确定待传输数据是否为时延敏感业务数据。
若待传输数据为时延敏感业务数据,终端通过早传专用资源或上行早传专用资源向网络设备发送随机接入请求,网络设备收到随机接入请求后,在随机接入响应消息中分配上行传输资源。终端在该分配的上行传输资源上向网络设备发送上述待传输数据。
否则,终端选择其他正常的PRACH资源发送随机接入请求,类似地,网络设备 收到随机接入请求后,在随机接入响应消息中分配上行传输资源。终端在该分配的上行传输资源上向网络设备发送上述待传输数据。
例如随机接入过程中,上述待传输数据为时延敏感业务数据,则确定发起EDT接入。具体地,终端先通过早传专用资源发送MSG1,其中携带随机接入请求,进而接收网络设备分配的上行传输资源,通过网络设备分配的上行传输资源向网络设备发送上述待传输数据,具体可以是通过消息3(MSG3)携带上述待传输数据。传输MSG3的信令可以是下述一种:RRC早传数据请求、RRC连接恢复请求、无连接数据请求、单次数据请求等。
若待传输数据为时延非敏感业务数据,终端通过RRC连接请求或者RRC连接恢复请求申请建立/恢复RRC连接。
一种可能地方式中,MME可以通过终端的NAS获取上述待传输数据的业务时延标识(例如QCI),如果MME根据该待传输数据的业务时延标识确定待传输数据为时延非敏感业务数据后,MME向网络设备发送该业务时延标识,以便网络设备确定响应消息的内容。
可选地,MME可以通过下述一种信息向网络设备发送上述业务时延标识:终端信息传输信令、终端上下文恢复响应、连接建立指示、下行NAS层传输信令等。
或者,终端向网络设备发送上述业务时延标识,本申请不做限制。
当网络设备根据业务时延标识确定待传输数据为时延敏感业务数据后,即上述待传输数据满足预设数据早传条件。那么网络设备在收到待传输数据后,回复响应消息。该响应消息可以是MSG4。
相应地,传输MSG4的信令可以是下述一种:RRC早传响应、RRC连接恢复响应、无连接数据响应、单次数据传输响应。
如果上述待传输数据为时延非敏感业务数据,网络设备响应于终端的RRC连接请求或者RRC连接恢复请求,建立/恢复RRC连接。
进一步地,上述发起的早传业务,还可以是下行早传业务(DL EDT)。即上述待传输数据为下行数据。类似地,终端先获取带传输数据的业务属性。
相应地,终端确定待传输数据的业务属性是否预设数据早传条件,可以是确定待传输数据的业务属性是否满足下行早传的条件。若确定待传输数据的业务属性满足下行早传的条件,终端通过下行早传专用资源向网络设备发送随机接入请求。
下行早传专用资源还可以是上述早传专用资源的部分资源。
需要说明的是,网络设备并不知道终端要发起的是上行早传还是下行早传,本实施例中,网络设备通过终端发送随机接入请求的资源进行区分。具体地,网络设备分配早传专用资源时,可以分配部分的早传专用资源作为上行早传专用资源,当要发起上行早传时,终端使用该上行早传专用资源发送随机接入请求。另外还可以再指示早传专用资源中的部分作为下行早传专用资源,终端发起下行早传时,通过下行早传专用资源发送随机接入请求。这样,网络设备就可以知道终端所发起早传是上行早传还是下行早传。
可选地,下行早传专用资源可以和早传专用资源一起通过早传专用资源指示信息来指示,早传专用资源指示信息为广播消息、专用信令、寻呼消息中的一种。具体指 示时可以指示下行早传专用资源、早传专用资源的位置信息。
当网络设备在配置上没有区分上行早传专用资源和下行早传专用资源时,网络设备可以通过专用信令通知终端其下行早传的随机接入使用的资源。借此,网络设备认为使用该随机接入资源进行接入的终端为需要发起下行早传数据传输的终端。
一种实施例中,业务属性包括业务数据包属性。
上述若业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,可以为:若待传输下行数据为下行传输的单数据包,终端通过下行早传专用资源向网络设备发送随机接入请求。
又一实施例中,若业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,可以为:若待传输下行数据为下行传输的时延敏感业务数据,终端通过下行早传专用资源向网络设备发送随机接入请求。
即本申请中,对于下行传输的单数据包、和/或下行传输的时延敏感业务数据,可以发起下行早传。
与上行早传的区别在于,终端收到网络设备分配的上行传输资源后,并不发送数据,而是发送下行传输请求,具体地,可以通过被叫(mobile terminated,MT)的建立原因值、服务请求(service request)的NAS信令来携带下行传输请求。
需要说明的是,由于发送下行传输请求所需的资源比传输数据小很多,为了节约资源,网络设备分配给终端发送下行传输请求资源比分配给终端发送上行数据的资源小很多。
其中,下行早传专用资源还可以为所述早传专用资源的部分资源,其中指示为MT专用的PRACH资源。
或者,早传专用资源还可以为指示MSG3承载小于N比特的PRACH资源。也就是说,当终端使用该PRACH资源接入时,网络侧据此在MSG2为终端分配小于N比特的PUSCH资源,用于传输发起下行早传的下行数据传输请求(MSG3)。N大于0,该N比特为小于或等于上行用户数据传输需要的最小的比特数,比如320比特,或者400比特,或者其他的比特数,在本申请中不做限定。
图3为本申请另一实施例提供的随机接入方法流程示意图,如图3所示,基于随机接入过程,该方法包括:
S301、终端确定待传输数据的业务属性满足预设早传条件。
S302、终端通过早传专用资源向网络设备发送MSG1,MSG1携带随机接入请求。
即具体实现过程中,终端可以先向网络设备发送随机接入请求,用于请求发起下行早传。
S303、网络设备向终端发送MSG2。MSG2分配上行传输资源。
若待传输数据为上行数据,则执行S304~S305;若待传输数据为下行数据,则执行S306~S307。
S304、终端通过上行传输资源发送MSG3,MSG3携带上述待传输数据。
S305、网络设备向终端发送MSG4,响应上述待传输数据。
S306、终端通过上行传输资源发送MSG3,MSG3携带下行数据传输请求。
S307、网络设备向终端发送MSG4,MSG4携带上述待传输数据。
传输MSG3的信令可以是下述一种:RRC早传数据请求、RRC连接恢复请求、无连接数据请求、单次数据请求等。传输MSG4的信令可以是下述一种:RRC早传响应、RRC连接恢复响应、无连接数据响应、单次数据传输响应。
网络设备收到随机接入请求后,如果确实授权早传,就回复随机接入响应,例如通过消息2(MSG2)携带随机接入响应。
假设网络设备为终端分配了可以传输1000比特(bit)PUSCH传输上行数据。那么对于下行早传的情况,MSG3不携带业务数据,因而随机接入响应可以指示承载更少比特数的PUSCH资源,例如承载120bit的PUSCH资源作为下行数据传输请求的传输资源。
对于下行早传,可选地另一种实施方式中,MME判断待传输数据的业务属性,具体可以参见前述实施例,根据待传输数据的业务时延标识,确定待传输数据是否为时延敏感业务数据。或者,根据待传输数据的数据包属性,确定上述待传输数据是否为单数据包传输。
若MME确定待传输数据满足预设早传条件,例如上述待传输数据为下行传输的单数据包、和/或下行传输的时延敏感业务数据,则MME向网络设备发送业务属性指示信息。业务属性指示信息可以包括业务时延标识、和/或数据包属性。
可选的,MME可以通过下述一种信息向网络设备发送上述业务属性指示信息:终端信息传输信令、终端上下文恢复响应、连接建立指示、下行NAS层传输信令等。
网络设备根据业务属性指示信息确定待传输数据满足预设早传条件后,向终端发送。下行早传资源指示信息,以指示分配的早传专用资源中的部分资源作为下行早传资源。可选地,下行早传资源指示信息包含下行早传随机接入资源信息。
进而终端通过网络设备指示的下行早传资源发送随机接入请求,并接收网络设备在随机接入响应中分配的PUSCH资源。
进而终端在分配的PUSCH资源上通过MSG3发送下行传输请求。可选地,传输MSG3的信令可以是下述一种:RRC早传数据请求、RRC连接恢复请求、无连接数据请求、单次数据请求等。网络设备收到下行传输请求后,会在物理下行共享信道(Physical Downlink Shared Channel,PDSCH)资源上发送待传输数据。传输MSG4的信令可以是下述一种:RRC早传响应、RRC连接恢复响应、无连接数据响应、单次数据传输响应。
图4为本申请一实施例提供的随机接入装置结构示意图,该装置可以集成于终端,或终端的芯片。如图4所示,该装置包括:确定模块401、发送模块402,其中:
确定模块401,用于确定待传输数据的业务属性,所述业务属性包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性。
发送模块402,用于若所述业务属性满足预设数据早传条件,通过早传专用资源向网络设备发送随机接入请求。
可选地,业务属性包括所述业务类型属性时,确定模块401,具体用于根据所述待传输数据的类型标识,确定所述待传输数据的业务类型属性。
进一步地,确定模块401,具体用于根据所述待传输数据的类型标识,确定所述 待传输数据是否为用户数据。
相应地,发送模块402,具体用于若所述待传输数据为用户数据,则通过早传专用资源向网络设备发送随机接入请求。
可选地,业务属性包括业务数据包属性,确定模块401,具体用于根据所述待传输数据的数据包类型,确定所述待传输数据的业务类型属性。
进一步地,确定模块401,具体用于根据所述待传输数据的数据包类型,确定所述待传输数据是否为单数据包传输或一对数据包传输。
相应地,发送模块402,具体用于若所述待传输数据为单数据包传输或一对数据包传输,则通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
可选地,业务属性包括业务时延属性,确定模块401,具体用于根据所述待传输数据的业务时延标识,确定所述待传输数据的业务类型属性。
进一步地,确定模块401,具体用于根据所述待传输数据的业务时延标识,确定所述待传输数据是否为时延敏感业务数据。
相应地,发送模块402,具体用于若所述待传输数据为时延敏感业务数据,则通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
另一实施方案中,业务属性包括业务数据包属性,
发送模块402,具体用于若所述待传输数据为下行传输的单数据包,则通过下行早传专用资源向所述网络设备发送向网络设备发送随机接入请求。
业务属性包括业务时延属性,发送模块402,具体用于若所述待传输数据为下行传输的时延敏感业务数据,则通过下行早传专用资源向所述网络设备发送向网络设备发送随机接入请求。
可选地,所述下行早传专用资源为所述早传专用资源的部分资源。
图5为本申请另一实施例提供的随机接入装置结构示意图,在图4的基础上,该装置还可以包括:接收模块501。
一实施例中,接收模块501,用于接收所述网络设备发送的随机接入响应,所述随机接入响应指示上行传输资源。
发送模块402,还用于通过所述上行传输资源向所述网络设备发送下行数据传输请求。接收模块501,接收所述网络设备发送的所述待传输数据。
另一实施例中,接收模块501,用于接收所述网络设备发送的早传专用资源指示信息,所述早传专用资源指示信息为广播消息、专用信令、寻呼消息中的一种。
上述实施例中终端执行的方法由该装置实现,实现原理和技术效果类似,在此不再赘述。
图6为本申请再一实施例提供的随机接入装置结构示意图,该装置可以集成于网络设备,或网络设备的芯片。如图6所示,该装置包括:接收模块601、发送模块602,其中,
接收模块601,用于接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过早传专用资源发送的随机接入请求,所述业务属性包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性。
发送模块602,用于向所述终端发送随机接入响应,所述随机接入响应为所述终 端分配上行传输资源。
进一步地,接收模块601,还用于获取所述待传输业务数据的业务属性。
具体地,接收模块601,具体用于接收MME发送的业务属性指示信息;或者,接收终端发送的业务属性指示信息。
其中,所述业务属性指示信息用于指示所述待传输业务数据的业务属性。
可选地,接收模块601,还用于接收终端通过所述上行资源发送的所述待传输数据。
进一步地,接收模块601,还用于接收终端通过所述上行资源发送的下行数据传输请求。
发送模块602,还用于向所述终端发送所述待传输数据。
一种可选地方式中,接收模块601,具体用于接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过下行早传专用资源发送的随机接入请求,其中,所述下行早传专用资源为所述早传专用资源的部分资源。
上述实施例中网络设备执行的方法由该装置实现,实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图7为本申请一实施例提供的终端结构示意图,如图7所示,该终端可以包括:存储器701和处理器702。
存储器701可以是独立的物理单元,与处理器702可以通过总线连接。存储器701、处理器702也可以集成在一起,通过硬件实现等。
存储器701用于存储实现以上方法实施例,处理器702调用该程序,执行以上终端执行的方法实施例的操作。
图8为本申请一实施例提供的网络设备结构示意图,如图8所示,该网络设备可 以包括:存储器801和处理器802。
存储器801可以是独立的物理单元,与处理器802可以通过总线连接。存储器801、处理器802也可以集成在一起,通过硬件实现等。
存储器801用于存储实现以上方法实施例,处理器802调用该程序,执行以上网络设备执行的方法实施例的操作。
可选地,当上述实施例的随机接入方法中的部分或全部通过软件实现时,随机接入装置也可以只包括处理器。用于存储程序的存储器位于上述装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。

Claims (36)

  1. 一种随机接入方法,其特征在于,包括:
    终端确定待传输数据的业务属性,所述业务属性包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性;
    若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求。
  2. 根据权利要求1所述的方法,其特征在于,所述业务属性包括所述业务类型属性,
    所述终端确定待传输数据的业务属性,包括:
    所述终端根据所述待传输数据的类型标识,确定所述待传输数据的业务类型属性。
  3. 根据权利要求2所述的方法,其特征在于,所述终端根据所述待传输数据的类型标识,确定所述待传输数据的业务类型属性,包括:
    所述终端根据所述待传输数据的类型标识,确定所述待传输数据是否为用户数据;
    相应地,所述若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
    若所述待传输数据为用户数据,所述终端通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
  4. 根据权利要求1所述的方法,其特征在于,所述业务属性包括业务数据包属性,
    所述终端确定待传输数据的业务属性,包括:
    所述终端根据所述待传输数据的数据包类型,确定所述待传输数据的业务类型属性。
  5. 根据权利要求4所述的方法,其特征在于,所述终端根据所述待传输数据的数据包类型,确定所述待传输数据的业务类型属性,包括:
    所述终端根据所述待传输数据的数据包类型,确定所述待传输数据是否为单数据包传输或一对数据包传输;
    相应地,所述若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
    若所述待传输数据为单数据包传输或一对数据包传输,所述终端通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
  6. 根据权利要求1所述的方法,其特征在于,所述业务属性包括业务时延属性,
    所述终端确定待传输数据的业务属性,包括:
    所述终端根据所述待传输数据的业务时延标识,确定所述待传输数据的业务类型属性。
  7. 根据权利要求6所述的方法,其特征在于,所述终端根据所述待传输数据的业务时延标识,确定所述待传输数据的业务类型属性,包括:
    所述终端根据所述待传输数据的业务时延标识,确定所述待传输数据是否为时延敏感业务数据;
    相应地,所述若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
    若所述待传输数据为时延敏感业务数据,所述终端通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
  8. 根据权利要求1所述的方法,其特征在于,所述业务属性包括业务数据包属性,若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
    若所述待传输下行数据为下行传输的单数据包,所述终端通过下行早传专用资源向所述网络设备发送向网络设备发送随机接入请求。
  9. 根据权利要求1所述的方法,其特征在于,所述业务属性包括业务时延属性时,若所述业务属性满足预设数据早传条件,所述终端通过早传专用资源向网络设备发送随机接入请求,包括:
    若所述待传输下行数据为下行传输的时延敏感业务数据,所述终端通过下行早传专用资源向所述网络设备发送向网络设备发送随机接入请求。
  10. 根据权利要求8或9所述的方法,其特征在于,所述下行早传专用资源为所述早传专用资源的部分资源。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述终端通过早传专用资源向网络设备发送随机接入请求之后,还包括:
    所述终端接收所述网络设备发送的随机接入响应,所述随机接入响应指示上行传输资源;
    所述终端通过所述上行传输资源向所述网络设备发送下行数据传输请求;
    所述终端接收所述网络设备发送的所述待传输数据。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述网络设备发送的早传专用资源指示信息,所述早传专用资源指示信息为广播消息、专用信令、寻呼消息中的一种。
  13. 一种随机接入方法,其特征在于,包括:
    网络设备接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过早传专用资源发送的随机接入请求,所述业务属性包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性;
    所述网络设备向所述终端发送随机接入响应,所述随机接入响应为所述终端分配上行传输资源。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述网络设备获取所述待传输业务数据的业务属性。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备获取所述待传输业务数据的业务属性,包括:
    所述网络设备接收MME发送的业务属性指示信息;或者,
    所述设备接收终端通过早传专用资源发送的业务属性指示信息;
    其中,所述业务属性指示信息用于指示所述待传输业务数据的业务属性。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述网络设备向所述终端发送随机接入响应,所述随机接入响应为所述终端分配上行传输资源之后,还包括:
    所述网络设备接收终端通过所述上行资源发送的所述待传输数据。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述网络设备向所述终端发送随机接入响应,所述随机接入响应为所述终端分配上行传输资源之后,还包括:
    所述网络设备接收终端通过所述上行资源发送的下行数据传输请求;
    所述网络设备向所述终端发送所述待传输数据。
  18. 根据权利要求17所述的方法,其特征在于,所述网络设备接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过早传专用资源发送的随机接入请求,包括:
    所述网络设备接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过下行早传专用资源发送的随机接入请求,其中,所述下行早传专用资源为所述早传专用资源的部分资源。
  19. 一种随机接入装置,其特征在于,包括:
    确定模块,用于确定待传输数据的业务属性,所述业务属性包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性;
    发送模块,用于若所述业务属性满足预设数据早传条件,通过早传专用资源向网络设备发送随机接入请求。
  20. 根据权利要求19所述的装置,其特征在于,所述业务属性包括所述业务类型属性,
    所述确定模块,具体用于根据所述待传输数据的类型标识,确定所述待传输数据的业务类型属性。
  21. 根据权利要求20所述的装置,其特征在于,所述确定模块,具体用于根据所述待传输数据的类型标识,确定所述待传输数据是否为用户数据;
    相应地,所述发送模块,具体用于若所述待传输数据为用户数据,则通过早传专用资源向网络设备发送随机接入请求。
  22. 根据权利要求19所述的装置,其特征在于,所述业务属性包括业务数据包属性,
    所述确定模块,具体用于根据所述待传输数据的数据包类型,确定所述待传输数据的业务类型属性。
  23. 根据权利要求22所述的装置,其特征在于,所述确定模块,具体用于根据所述待传输数据的数据包类型,确定所述待传输数据是否为单数据包传输或一对数据包传输;
    相应地,所述发送模块,具体用于若所述待传输数据为单数据包传输或一对数据包传输,则通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
  24. 根据权利要求19所述的装置,其特征在于,所述业务属性包括业务时延属性,
    所述确定模块,具体用于根据所述待传输数据的业务时延标识,确定所述待传输数据的业务类型属性。
  25. 根据权利要求24所述的装置,其特征在于,所述确定模块,具体用于根据所述待传输数据的业务时延标识,确定所述待传输数据是否为时延敏感业务数据;
    相应地,所述发送模块,具体用于若所述待传输数据为时延敏感业务数据,则通过早传专用资源向网络设备发送向网络设备发送随机接入请求。
  26. 根据权利要求19所述的装置,其特征在于,所述业务属性包括业务数据包属性,所述发送模块,具体用于若所述待传输数据为下行传输的单数据包,则通过下行早传专用资源向所述网络设备发送向网络设备发送随机接入请求。
  27. 根据权利要求19所述的装置,其特征在于,所述业务属性包括业务时延属性,所述发送模块,具体用于若所述待传输数据为下行传输的时延敏感业务数据,则通过下行早传专用资源向所述网络设备发送向网络设备发送随机接入请求。
  28. 根据权利要求26或27所述的装置,其特征在于,所述下行早传专用资源为所述早传专用资源的部分资源。
  29. 根据权利要求26-28任一项所述的装置,其特征在于,还包括:接收模块;
    所述接收模块,用于接收所述网络设备发送的随机接入响应,所述随机接入响应指示上行传输资源;
    所述发送模块,还用于通过所述上行传输资源向所述网络设备发送下行数据传输请求;
    所述接收模块,还用于接收所述网络设备发送的所述待传输数据。
  30. 根据权利要求19-29任一项所述的装置,其特征在于,还包括:接收模块;
    所述接收模块,用于接收所述网络设备发送的早传专用资源指示信息,所述早传专用资源指示信息为广播消息、专用信令、寻呼消息中的一种。
  31. 一种随机接入装置,其特征在于,包括:
    接收模块,用于接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过早传专用资源发送的随机接入请求,所述业务属性包括下述一种或多种:业务类型属性、业务数据包属性、业务时延属性;
    发送模块,用于向所述终端发送随机接入响应,所述随机接入响应为所述终端分配上行传输资源。
  32. 根据权利要求31所述的装置,其特征在于,所述接收模块,还用于获取所述待传输业务数据的业务属性。
  33. 根据权利要求32述的装置,其特征在于,所述接收模块,具体用于接收MME发送的业务属性指示信息;或者,接收终端发送的业务属性指示信息;
    其中,所述业务属性指示信息用于指示所述待传输业务数据的业务属性。
  34. 根据权利要求31-33任一项所述的装置,其特征在于,所述接收模块,还用于接收终端通过所述上行资源发送的所述待传输数据。
  35. 根据权利要求31-34任一项所述的装置,其特征在于,所述接收模块,还用于接收终端通过所述上行资源发送的下行数据传输请求;
    所述发送模块,还用于向所述终端发送所述待传输数据。
  36. 根据权利要求35所述的装置,其特征在于,所述接收模块,具体用于接收终端在确定待传输数据的业务属性满足预设数据早传条件后通过下行早传专用资源发送的随机接入请求,其中,所述下行早传专用资源为所述早传专用资源的部分资源。
PCT/CN2018/076897 2018-02-14 2018-02-14 随机接入方法及装置 WO2019157752A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18906027.0A EP3745802B1 (en) 2018-02-14 2018-02-14 Random access method and device
PCT/CN2018/076897 WO2019157752A1 (zh) 2018-02-14 2018-02-14 随机接入方法及装置
CN201880088793.3A CN111713166B (zh) 2018-02-14 2018-02-14 随机接入方法及装置
US16/992,649 US11611988B2 (en) 2018-02-14 2020-08-13 Random access method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/076897 WO2019157752A1 (zh) 2018-02-14 2018-02-14 随机接入方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,649 Continuation US11611988B2 (en) 2018-02-14 2020-08-13 Random access method and apparatus

Publications (1)

Publication Number Publication Date
WO2019157752A1 true WO2019157752A1 (zh) 2019-08-22

Family

ID=67619105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076897 WO2019157752A1 (zh) 2018-02-14 2018-02-14 随机接入方法及装置

Country Status (4)

Country Link
US (1) US11611988B2 (zh)
EP (1) EP3745802B1 (zh)
CN (1) CN111713166B (zh)
WO (1) WO2019157752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651517A (zh) * 2019-11-07 2022-06-21 中兴通讯股份有限公司 在无线通信网络中上行链路和下行链路通信的功率高效建立的系统和方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769505B (zh) * 2018-07-26 2023-04-18 维沃移动通信有限公司 随机接入方法、终端及网络设备
CN112514528B (zh) * 2018-08-03 2024-05-14 瑞典爱立信有限公司 用于5g蜂窝物联网的用户平面优化
CN110831240B (zh) * 2018-08-07 2023-07-18 财团法人资讯工业策进会 在随机接入程序进行提早数据传输的基站与用户设备
WO2020086171A2 (en) * 2018-09-07 2020-04-30 Google Llc Uplink-enhanced idle mode
CN110958688B (zh) * 2018-09-26 2024-01-09 夏普株式会社 用户设备及其执行的方法、基站及其执行的方法
CN111511024B (zh) * 2019-01-31 2023-10-13 华为技术有限公司 一种传输方法和装置
CN111586501B (zh) * 2019-02-19 2024-05-28 中兴通讯股份有限公司 数据传输方法、装置、ap、onu pon、组网及存储介质
JP7385856B2 (ja) * 2020-09-24 2023-11-24 オフィノ, エルエルシー 少量データ送信手順でのリリースメッセージ
CN113207158B (zh) * 2021-04-21 2023-02-10 中国移动通信集团陕西有限公司 物联网接入的方法、装置、设备及存储介质
WO2023044863A1 (zh) * 2021-09-26 2023-03-30 北京小米移动软件有限公司 一种随机接入方法、随机接入装置及存储介质
WO2023077329A1 (zh) * 2021-11-03 2023-05-11 Oppo广东移动通信有限公司 通信方法及装置
EP4465739A4 (en) * 2022-01-10 2025-02-12 Beijing Xiaomi Mobile Software Co., Ltd. EARLY IDENTIFICATION METHOD AND APPARATUS, COMMUNICATION DEVICE AND STORAGE MEDIUM

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102398A (ja) * 2011-11-09 2013-05-23 Ntt Docomo Inc 無線通信システム、ユーザ端末及び無線通信方法
JP6496777B2 (ja) * 2016-06-28 2019-04-03 宏達國際電子股▲ふん▼有限公司 アップリンク送信を扱うための装置及び方法
US10397833B2 (en) * 2017-07-27 2019-08-27 Lg Electronics Inc. Method and apparatus for performing EDT
US11140589B2 (en) * 2017-08-08 2021-10-05 Lg Electronics, Inc Method and apparatus for handling failure of early data transmission in wireless communication system
US11350445B2 (en) * 2017-08-10 2022-05-31 Kyocera Corporation Communication control method for controlling a user equipment to perform early data transmission
EP4236400A3 (en) * 2017-08-10 2023-09-13 Kyocera Corporation Communication control method
WO2019064260A1 (en) * 2017-09-29 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) SYSTEMS AND METHODS PROVIDING A SLEEP-BASED EARLY DATA TRANSMISSION SOLUTION FOR ENERGY SAVING MODE
CN111149411B (zh) * 2017-11-15 2023-04-28 Lg电子株式会社 在无线通信系统中在随机接入过程期间执行早期数据传输的方法及其设备
CN111357381B (zh) * 2017-11-17 2024-12-17 日本电气株式会社 早期数据发送授权控制

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Early Data Transmission in RACH for NB-IoT", 3GPP TSG-RAN WG1 MEETING #90BIS, R1-1717724, 13 October 2017 (2017-10-13), XP051340909 *
HUAWEI ET AL.: "Early Data Transmission on Dedicated Resource for Rel-15 MTC", 3GPP TSG-RAN WG2 #99 MEETING, R2-1709334, 25 August 2017 (2017-08-25), XP051319093 *
HUAWEI ET AL.: "Introduction of Further NB-IoT Enhancements in TS 36.331", 3GPP TSG-RAN2 MEETING #100, R2-1714272, 1 December 2017 (2017-12-01), XP051372839 *
See also references of EP3745802A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651517A (zh) * 2019-11-07 2022-06-21 中兴通讯股份有限公司 在无线通信网络中上行链路和下行链路通信的功率高效建立的系统和方法

Also Published As

Publication number Publication date
EP3745802A4 (en) 2020-12-30
EP3745802B1 (en) 2025-01-22
US20200374927A1 (en) 2020-11-26
CN111713166A (zh) 2020-09-25
US11611988B2 (en) 2023-03-21
EP3745802A1 (en) 2020-12-02
CN111713166B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN111713166B (zh) 随机接入方法及装置
US11606786B2 (en) Data transmission method, terminal device, and access network device
US11064557B2 (en) Method and device for establishing radio resource control connection
CN110650461B (zh) 通信方法、装置和存储介质
TW201735697A (zh) 數據傳輸的方法、終端及基站
WO2019214135A1 (zh) 通信方法和设备
JP7342936B2 (ja) 通信方法、装置及び通信システム
KR20200019789A (ko) 무선 단말, 무선국, 코어 네트워크 노드, 및 그것들에서의 방법
WO2021031022A1 (zh) 链路切换的方法和通信设备
JP2022531050A (ja) サイドリンクレポートを処理する方法及び装置
US11259362B2 (en) Method for repeatedly transmitting data and device
WO2019223792A1 (zh) 数据传输方法、装置、基站、终端和可读存储介质
WO2017166139A1 (zh) 中继传输的方法和装置
CN116803193A (zh) Sdt失败上报的方法、终端设备和网络设备
CN115529662A (zh) 一种通信方法及装置
WO2021212372A1 (zh) 资源分配方法和终端
WO2023122889A1 (zh) 一种通信处理方法及装置、终端设备、接入网设备
CN116349259B (zh) 通信方法及装置
JP2024546479A (ja) 端末装置、通信装置及び端末装置の方法
WO2014181439A1 (ja) 通信システム、端末装置及び通信方法
WO2020124534A1 (zh) 数据传输的方法和设备
WO2019214074A1 (zh) 通信方法和终端
CN115942390A (zh) 一种切片信息上报方法及装置、终端设备、网络设备
CN116686329A (zh) 信号的发送和接收方法、装置和通信系统
JP6915129B2 (ja) データ伝送方法、端末及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018906027

Country of ref document: EP

Effective date: 20200824