WO2019153413A1 - 多自由度激光加工设备 - Google Patents
多自由度激光加工设备 Download PDFInfo
- Publication number
- WO2019153413A1 WO2019153413A1 PCT/CN2018/078792 CN2018078792W WO2019153413A1 WO 2019153413 A1 WO2019153413 A1 WO 2019153413A1 CN 2018078792 W CN2018078792 W CN 2018078792W WO 2019153413 A1 WO2019153413 A1 WO 2019153413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- degree
- freedom
- laser processing
- light guide
- mirror
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/201—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser with beam delivery through a hollow tube, e.g. forming an articulated arm ; Hand-pieces therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C1/00—Dental machines for boring or cutting ; General features of dental machines or apparatus, e.g. hand-piece design
- A61C1/0046—Dental lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/10—Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
- B23K26/103—Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam the laser beam rotating around the fixed workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00184—Moving parts
- A61B2018/00202—Moving parts rotating
- A61B2018/00208—Moving parts rotating actively driven, e.g. by a motor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00321—Head or parts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00321—Head or parts thereof
- A61B2018/00327—Ear, nose or throat
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00601—Cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/0066—Sensing and controlling the application of energy without feedback, i.e. open loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
- A61B2018/00708—Power or energy switching the power on or off
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00982—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
- A61B2018/20353—Scanning in three dimensions [3D]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
- A61B2018/20359—Scanning mechanisms by movable mirrors, e.g. galvanometric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20553—Beam shaping or redirecting; Optical components therefor with special lens or reflector arrangement
Definitions
- the present invention relates to the medical field or the industrial field, and in particular to a multi-degree of freedom laser processing apparatus.
- the existing medical robots used to assist the surgical procedure fall into two broad categories: master-slave operation and automatic control.
- the master-slave operating robot is represented by the DaVinci system. It has been used in clinical practice and is suitable for a variety of operations.
- the domestically-developed master-slave operating robot "Make" is conducting clinical experiments.
- Automated control robots are used in clinical orthopedics and neurosurgery.
- the existing surgical robot system can improve the quality of surgery to a certain extent, reduce the fatigue of doctors, and eliminate the hand shake of doctors.
- the following limitations and problems still exist: First, there is no complete robot system capable of simultaneously achieving teeth and jaws. Simultaneous and precise cutting of hard tissues and soft tissues such as cartilage; Second, the robotic system used for surgery adopts the master-slave control mode, that is, the robot can only be completed under the control of a doctor, and has no intelligent planning and autonomous operation capability.
- CN10546151A discloses a numerical control laser automatic tooth preparation method and apparatus, which can realize an automatic tooth preparation operation of three degrees of freedom, and also avoids a high speed turbine by using femtosecond laser technology.
- the sound and mechanical vibrations give the patient a sense of discomfort.
- the three-degree-of-freedom movement cannot achieve precise cutting of any part or any tissue in the lumen of the mouth and throat, and it cannot be extended to other medical fields such as ophthalmology and orthopedics, and cannot meet the application requirements of a large range and multiple types of diseases.
- the invention provides a multi-degree-of-freedom laser processing device, which can solve at least the limited range of action caused by the three-degree-of-freedom of the numerical control laser automatic tooth preparation device in the related art, and can not meet the application requirements of a large range and multiple types of diseases.
- the problem can be found at least the limited range of action caused by the three-degree-of-freedom of the numerical control laser automatic tooth preparation device in the related art, and can not meet the application requirements of a large range and multiple types of diseases. The problem.
- a multi-degree-of-freedom laser processing apparatus includes a base body, and a three-degree-of-freedom processing unit and a light guide tube disposed on the base body, the end portion of the light guide tube being provided with a first reflection a three-degree-of-freedom processing unit for adjusting a focal length of the laser to adjust a focus plane of the laser knife and controlling movement of the laser knife on the focal plane, the multi-degree-of-freedom laser processing apparatus further comprising: being disposed on the substrate a rotating electric machine and a first transmission mechanism; wherein
- the light guide tube is rotatably disposed on a light guide tube frame connected to the base body; the light guide tube receives driving of the rotary electric machine through the first transmission mechanism, and the light guide tube frame Controlled rotation.
- the first transmission mechanism includes: a driving wheel disposed on an output shaft of the rotating electrical machine, a driven wheel disposed on the light guiding tube, and transmitting rotation of the driving wheel to the The drive assembly of the driven wheel.
- the diameter of the driven wheel is larger than the diameter of the driving wheel.
- the multi-degree-of-freedom laser processing apparatus further includes: a linear motor disposed on the base body and a second transmission mechanism; wherein
- the first mirror mount is hinged to an end of the light guide tube
- the first mirror mount receives the driving of the linear motor through the second transmission mechanism, and is controlled to rotate about the hinged shaft.
- the second transmission mechanism includes: a sliding sleeve, a first bearing, a sliding sleeve, a bearing retaining ring, a sliding rod and a connecting rod structure, wherein
- the sliding sleeve and the bearing retaining ring are fixedly connected, and the inner sleeve of the sliding sleeve and the bearing retaining ring are matched with the light guiding tube;
- the inner ring of the first bearing is in transitional engagement with the outer surface of the slider sleeve
- the outer ring of the sliding sleeve is distributed with a plurality of sliding rails in the axial direction, and the outer ring of the sliding sleeve and the plurality of sliding rails are matched with the light guiding tube frame;
- the inner ring of the sliding sleeve is
- the outer ring of the first bearing has an interference fit;
- the protruding end of the sliding sleeve is fixedly connected with the moving rod of the linear motor;
- One end of the sliding rod is fixedly connected to the bearing retaining ring or the sliding sleeve, and the other end is hinged to the first mirror base through the connecting rod structure.
- the light guide tube is disposed on the light guide tube frame connected to the base body through a second bearing, wherein
- An inner ring of the second bearing is interference fit with an outer wall of the light guide tube
- the outer ring of the second bearing is in an interference fit with the light guide tube frame.
- the substrate is disposed on a work platform that is controllably movable along the axial direction of the light pipe.
- the multi-degree-of-freedom laser processing apparatus further includes: a laser processing monitoring unit, the laser processing monitoring unit includes: a CCD camera frame disposed on the base body, and a CCD camera mounted on the CCD camera frame , mirror, beam combiner; among them,
- the mirror surface of the beam combining mirror is disposed at an angle to the axial direction of the light guide tube at a laser incident end of the light guide tube, and the mirror is disposed on the base body and cooperates with the beam combining mirror to
- the auxiliary light irradiated on the processing surface is reflected by the beam combining mirror and the mirror and injected into the CCD camera to form an image.
- the mirror-facing side of the laser beam is coated with a laser anti-reflection film
- the mirror surface of the combination mirror is coated with an auxiliary light high-reflection film on the side of the auxiliary light.
- the multi-degree-of-freedom laser processing apparatus further includes: an electromechanical control system, wherein the electromechanical control system is electrically connected to the three-degree-of-freedom processing unit, the rotating electrical machine, the linear motor, the CCD camera, and the working platform, To achieve control or monitoring functions.
- an electromechanical control system wherein the electromechanical control system is electrically connected to the three-degree-of-freedom processing unit, the rotating electrical machine, the linear motor, the CCD camera, and the working platform, To achieve control or monitoring functions.
- the multi-degree-of-freedom laser processing apparatus adopts a rotating electrical machine and a first transmission mechanism disposed on the base body; the light guiding tube is rotatably disposed on the light guiding tube frame connected to the base body; the light guiding tube passes The first transmission mechanism receives the driving of the rotating electric machine and is controlled to rotate on the light guiding tube frame, thereby increasing the degree of freedom of laser processing, and solving the related art, the numerical control laser automatic tooth preparation device can only achieve three degrees of freedom. The scope of action is limited, and it cannot meet the application requirements of large-scale and multi-species.
- FIG. 1 is a schematic structural view of a multi-degree-of-freedom laser processing apparatus according to an embodiment of the present invention
- FIG. 2 is a two-degree-of-freedom XY plane processing structure diagram of a three-degree-of-freedom laser processing unit according to an embodiment of the invention
- FIG. 3 is a Z-direction laser focal plane adjustment structure diagram of a three-degree-of-freedom laser processing unit according to an embodiment of the invention
- FIG. 4 is a schematic overall structural view of a two-degree-of-freedom laser adjusting unit according to an embodiment of the invention.
- Figure 5 is a partial cross-sectional view of a two degree of freedom laser adjustment unit in accordance with an embodiment of the present invention.
- FIG. 6 is a diagram showing an internal structure of a pitch adjustment in a two-degree-of-freedom laser adjusting unit according to an embodiment of the present invention
- FIG. 7 is a partial exploded view of a pitch adjustment structure in a two-degree-of-freedom laser adjustment unit according to an embodiment of the invention.
- FIG. 8 is another exploded view of a pitch adjustment structure in a two-degree-of-freedom laser adjustment unit according to an embodiment of the present invention.
- FIG. 9 is a diagram showing an internal structure of roll adjustment in a two-degree-of-freedom laser adjusting unit according to an embodiment of the present invention.
- Figure 10 is an exploded view of a roll adjustment structure in a two degree of freedom laser adjustment unit in accordance with an embodiment of the present invention.
- FIG. 11 is a structural diagram of a laser processing monitoring unit according to an embodiment of the present invention.
- FIG. 12 is a schematic diagram of laser three-degree-of-freedom processing according to an embodiment of the present invention.
- FIG. 13 is a schematic diagram of laser two-degree-of-freedom pitch adjustment according to an embodiment of the present invention.
- FIG. 14 is a schematic diagram of laser two-degree-of-freedom roll adjustment according to an embodiment of the present invention.
- Figure 15 is a schematic illustration of laser two degree of freedom pitch + roll adjustment in accordance with an embodiment of the present invention.
- 16 is a schematic diagram of a laser processing monitoring optical path in accordance with an embodiment of the present invention.
- FIG. 1 is a schematic structural view of a multi-degree-of-freedom laser processing apparatus according to an embodiment of the present invention. Embodiments of the present invention will be described below with reference to FIG. 1.
- the four-degree-of-freedom laser processing apparatus includes: a base 1, and a three-degree-of-freedom processing unit (10, 11, 14) disposed on the base 1, and a light guide 37, the end of the light guide 37 being provided a first mirror mount 48, a three-degree-of-freedom processing unit for adjusting a focal length of the laser to adjust a focus plane of the laser cutter (ie, a working plane of the laser cutter) and controlling movement of the laser cutter on the focus plane, the four-degree-of-freedom laser processing apparatus further comprising: a rotary electric machine 8 and a first transmission mechanism disposed on the base body 1; wherein the light guide tube 37 is rotatably disposed on the light guide tube frame 1-1 connected to the base body 1; the light guide tube 37 is received by the first transmission mechanism The drive of the rotary electric machine 8 is controlled to rotate on the light guide tube holder 1-1.
- a housing is also mounted on the base 1.
- the housing structure shown in FIG. 1 includes a side cover 2, an upper cover 3, an upper rear cover 4, and a lower rear cover 5.
- the housing structure allows the housing to be easily disassembled for maintenance or access to equipment. It will be apparent to those skilled in the art that the above described housing structure is merely a preferred housing configuration.
- the above three-degree-of-freedom laser processing unit comprises: an X galvanometer motor 10, a Y galvanometer motor 11, a first linear motor 14 and a component thereof, and the XY galvanometer motor realizes laser XY plane processing by driving the galvanometer, the first straight line
- the motor 14 changes the laser focus plane by driving the lens, thereby realizing laser three-dimensional processing.
- FIG. 2 it is a two-degree-of-freedom XY plane processing structure diagram of a three-degree-of-freedom laser processing unit.
- the laser is incident from the light entrance 1-A of the base body, and is reflected by the first galvanometer 10-1 and the second galvanometer 11-1.
- the first galvanometer is driven to swing by the X galvanometer motor, and the second galvanometer is rotated by the Y oscillating mirror.
- the mirror motor drives the oscillating motion to achieve XY plane machining.
- the X galvanometer motor is mated by the face 10-A and the face 9-B of the galvanometer motor mount 9 and fixed by the screw 9-2; the Y galvanometer motor is matched by the face 11-A and the face 9-A of the galvanometer motor mount And the screw 9-1 is fixed; the galvanometer motor base is fixed to the base by the screw 1-1.
- FIG. 3 it is a Z-direction laser focal plane adjustment structure diagram of a three-degree-of-freedom laser processing unit.
- the first linear motor stationary coil 14 is connected to the first linear motor base 12 via a screw 12-1, and is connected to the base body by screws 1-2; the first linear motor moving coil 13 passes through the motor-lens connection frame 15 and the lens
- the holder 16 is connected; the lens 23 is fixed in the lens holder by the lens fixing ring 17 and the fixing ring stopper 18, and the lens holder is mounted on the slider 29, moves along the slide rail 28, and the slide rail passes the screw.
- 28-1 is connected to the base; the first linear motor drives the lens to slide along the slide rail to change the position of the lens, thereby changing the focus plane of the laser.
- the device reads the scale 20 as feedback information, thereby precisely controlling the sliding displacement of the lens.
- the grating scale is fixed to the lens holder through the grating base 19, and the scale reading head 22 is mounted on the grating base 21, and the grating scale is connected to the base body by screws 1-3.
- the above-mentioned four-degree-of-freedom laser processing apparatus including the rotary electric machine 8 and the first transmission mechanism disposed on the base body 1 is capable of rotating around the axis of the light guide tube 37 with respect to the three-degree-of-freedom processing apparatus, so that the working plane of the laser cutter is also
- the ability to rotate around the axis increases the freedom of the laser knife and expands the range of use of laser processing equipment to meet the needs of more applications.
- the first transmission mechanism includes: a driving wheel 33 disposed on an output shaft of the rotary electric machine 8, a driven wheel 34 disposed on the light guiding tube 37, and a transmission transmitting the rotation of the driving wheel 33 to the driven wheel 34.
- the diameter of the driven wheel 34 is greater than the diameter of the drive wheel 33.
- a four-degree-of-freedom laser processing apparatus is also provided, which is basically the same as Embodiment 1, except that the present embodiment is compared with the four-degree-of-freedom laser processing apparatus described in Embodiment 1.
- the four-degree-of-freedom laser processing apparatus provided by the example does not include the rotary electric machine 8 and the first transmission mechanism, but includes: a linear motor 30 and a second transmission mechanism disposed on the base body 1; wherein, the first mirror holder 48 and the light guide The end of the tube 37 is hinged; the first mirror mount 48 is driven by the linear motor 30 via a second transmission mechanism and is controlled to rotate about the hinged shaft.
- the second transmission mechanism comprises: a sliding sleeve 43, a first bearing 40, a sliding sleeve 41, a bearing retaining ring 42, a sliding rod 44 and a connecting rod structure 45, wherein the sliding sleeve 41 and the bearing retaining ring 42 are fixed
- the inner ring of the sliding sleeve 41 and the bearing retaining ring 42 are matched with the light guiding tube 37;
- the inner ring of the first bearing 40 is matched with the outer ring of the sliding sleeve 41;
- the outer ring of the sliding sleeve 43 is distributed along the outer ring
- the plurality of axial slide rails 43-B, the outer ring of the sliding sleeve 43 and the plurality of slide rails 43-B are matched with the light guide tube frame;
- the inner ring of the sliding sleeve 43 is interference-fitted with the outer ring of the first bearing 40
- the light guide tube 37 is disposed on the light guide tube frame 1-1 connected to the base body 1 through the second bearing 38, wherein the inner ring of the second bearing 38 is interference fit with the outer wall of the light guide tube 37; The outer ring of the two bearings 38 is in interference fit with the light guide tube frame 1-1.
- the above-described four-degree-of-freedom laser processing apparatus including the linear motor 30 and the second transmission mechanism disposed on the base body 1 is capable of rotating the first mirror housing 48 about the rotation axis of the hinge with respect to the three-degree-of-freedom processing apparatus, so that the laser knife
- the working plane can also rotate around the hinge axis, which increases the degree of freedom of the laser knife and expands the range of use of the laser processing equipment, which can meet the application requirements of more types of processing.
- the sliding of the sliding sleeve is directly driven by the second linear motor; based on the above embodiments, those skilled in the art can easily imagine that the rotating electric motor + cylindrical cam can also be used.
- the equivalent function of the motor + rocker slider mechanism replaces the linear motor in this embodiment to achieve the same function.
- a five-degree-of-freedom laser processing apparatus is also provided, which is basically the same as Embodiment 1, except that the present embodiment is compared with the four-degree-of-freedom laser processing apparatus described in Embodiment 1.
- the five-degree-of-freedom laser processing apparatus provided by the example further includes: a linear motor 30 disposed on the base 1 and a second transmission mechanism; wherein the first mirror mount 48 is hinged to the end of the light guide tube 37; the first mirror mount 48 receives the drive of the linear motor 30 through the second transmission mechanism, and is controlled to rotate about the hinged shaft.
- the rotary electric machine 8 and the first transmission mechanism, as well as the linear motor 30 and the second transmission mechanism, and the structure that cooperates with the above structure are referred to as a two-degree-of-freedom laser adjustment unit in this embodiment. That is, the two-degree-of-freedom laser adjustment unit includes: a rotary electric machine 8 and its components, a second linear motor 30 and its components, a first mirror base 48 and its components, and the rotary electric machine 8 passes through a transmission mechanism (for example, a gear transmission, a belt transmission or The wire rope drive realizes the 360 degree roll of the first mirror, and the second linear motor realizes the pitch of the first mirror by a four-bar linkage mechanism (for example, 0-110 degrees), thereby realizing the two degrees of freedom of the light knife and the large angle. Position adjustment.
- a transmission mechanism for example, a gear transmission, a belt transmission or
- the wire rope drive realizes the 360 degree roll of the first mirror
- the second linear motor realizes the pitch of the first mirror by a four-bar
- FIG. 4 it is an overall structural view of a two-degree-of-freedom laser adjusting unit
- FIG. 5 is a partial cross-sectional view thereof.
- the second linear motor 30 is fixed on the second linear motor base 6, and the second linear motor base is connected to the base body via a screw 6-1, and the link 32 connects the second linear motor moving rod 30-1 and the bearing sliding sleeve 43.
- the second linear motor can drive the sliding sleeve of the bearing;
- the rotating motor 8 is fixed on the rotating motor base 7, and the rotating motor base is connected to the base body by the screw 7-1, and the driving wheel 33 is fixed on the output shaft of the rotating electrical machine through the transmission component (for example: gear transmission, belt drive, rope drive, chain drive, etc.) drive the driven wheel 34 to rotate.
- the transmission component For example: gear transmission, belt drive, rope drive, chain drive, etc.
- the laser beam pitch angle adjustment is achieved by rotation of the first mirror mount 48 about the axis 48-A, and the rotation of the shaft 48-A is accomplished by the slider rocker mechanism.
- the sliding sleeve 43 is engaged with the sliding groove on the base body through the 43-B, so that the sliding sleeve and the base body can slide relative to each other.
- the sliding sleeve protruding end 43-A passes through the base body, and is fixedly connected to the second linear motor moving rod through the connecting rod, so that the second linear motor driving sliding sleeve and the base body slide relative to each other.
- the outer ring of the first bearing 40 cooperates with the sliding sleeve, and the inner ring of the first bearing cooperates with the sliding sleeve 41 to realize relative rotation of the sliding sleeve and the sliding sleeve through the first bearing.
- the sliding rod 44 passes through the hole 37-A of the light guide tube 37 and the hole 42-A of the first bearing retaining ring 42 and is inserted into the sliding sleeve hole 41-A.
- the sliding rod is fixedly connected with the sliding rod sleeve.
- the first bearing retaining ring is coupled to the slider sleeve by a screw 42-1 to define the axial position of the first bearing.
- the slider hole 44-A cooperates with the first bearing 49 surface 49-A
- the first bearing hole 49-B cooperates with the connecting rod 45 surface 45-B
- the first retaining spring 50 is stuck in the connecting rod groove.
- 45-C thereby realizing the rotation of the slider relative to the link and defining the axial position of the slider
- the link hole 45-A is matched with the face 46-A of the second bearing 46, the second bearing hole 46-B and the first mirror
- the 48-side 48-B is engaged, and the second circlip 47 is caught in the first mirror holder slot 48-C, thereby realizing the rotation of the link relative to the first mirror holder
- the light tube 37 hole 37-B cooperates to realize the relative rotation of the first mirror base and the light guide tube.
- the relative rotation of the slide bar and the link shown in Fig. 8 is realized by the bush; however, the structure for realizing the above relative rotation is not limited to the one shown in Fig. 8.
- a rotary bearing such as a deep groove ball
- Bearing achieves the same function.
- the pitch of the first mirror mount is achieved by the slider rocker mechanism; in other embodiments, the same effect can be achieved using a rotary motor + rope drive.
- the laser light knife pitch adjustment process is realized: the second linear motor moving rod drives the sliding sleeve to slide along the base groove 1-C, that is, the sliding pair is formed, thereby driving the first bearing to slide, and the first bearing passes the first bearing retaining ring and the sliding rod
- the sleeve is relatively fixed, so the slider sleeve is also driven to slide, the slider sleeve (equivalent to the slider), the connecting rod, the first mirror holder (equivalent to the rocker), and the light guide tube form a slider rocker four-bar mechanism
- the sliding sleeve is slid by the second linear motor, the first mirror base is driven to rotate relative to the light guide tube, thereby changing the pitch angle of the laser light cutter.
- the output shaft of the rotary electric machine 8 is connected with the driving wheel 33 through a top wire, and the driving wheel drives the driven wheel 34 to rotate through a transmission mechanism (for example, belt transmission, gear transmission, chain transmission, wire rope transmission, etc.);
- the driven wheel 34-A cooperates with the light guiding tube groove 37-D, and is fixed by the axial position of the top wire;
- the inner ring of the second bearing 38 is matched with the light guiding tube surface 37-C, and the second bearing outer ring and the base body 1 -B fit;
- the second shaft retaining ring 39 bears against the inner ring of the second bearing and is fixed to the light guide tube by the top wire;
- the end cover 35 is connected to the base body by the screw 35-1, and the extended end 35-A is pressed against the first end Two bearing outer ring.
- the above design realizes that the light guide tube is installed in the base body through the second bearing and can rotate relative to the base body, and the second bearing retaining ring and the end cover limit the axial position of the second bearing, and also limit the axis of the light guide tube. To the location.
- the cooperation of 34-A and 37-D drives the light pipe to rotate relative to the base body, thereby causing the first mirror base to roll, and the rolling angle of the laser light knife is adjusted.
- the second linear motor 30 is fixed on the second linear motor base 6, the second linear motor base is connected to the base body by the screw 6-1, and the second linear motor moving rod is connected to the link 32 30-1 is connected with the bearing sleeve 43, so that the second linear motor can drive the bearing sleeve to slide;
- the rotary motor 8 is fixed on the rotating motor base 7, and the rotating motor base is connected to the base body by the screw 7-1, and the driving wheel 33 is fixed at On the output shaft of the rotating electric machine, the driven wheel 34 is driven to rotate by a transmission mechanism (gear transmission, belt transmission, rope transmission, chain transmission, etc.).
- the laser light knife of the embodiment adjusts the two degrees of freedom to be relatively independent and does not interfere with each other.
- the first mirror base, the connecting rod, the sliding rod, the sliding rod sleeve and the inner ring of the first bearing are rotated together, and at the same time, the second linear motor can push the sliding sleeve and the second bearing
- the sliding sleeve and the sliding rod slide along the base groove (ie, the groove of the matching sliding rail 43-B), thereby realizing the rotation and rolling of the first mirror base.
- a multi-degree-of-freedom laser processing apparatus is provided, which is substantially the same as any one of the embodiments 1-3, except that the substrate 1 of the multi-degree-of-freedom laser processing apparatus in this embodiment is It is disposed on a work platform that can be controlled to move along the axial direction of the light guide tube 37, thereby adding a sixth degree of freedom to the original four-degree-of-freedom laser processing apparatus or five-degree-of-freedom laser processing apparatus.
- the base body 1 is disposed on the working platform that can be controlled to move along the axial direction of the light guide tube 37 by the embodiment, thereby realizing the sixth degree of freedom of the laser knife adjustment; the main function is to provide the adjustment function when the lens adjustment is insufficient. . With this embodiment, the position of the laser knife can be made deeper.
- a multi-degree-of-freedom laser processing apparatus is provided, which is the same as any one of the embodiments 1-5, except that the multi-degree of freedom provided by the embodiment
- the laser processing equipment further comprises: a laser processing monitoring unit, the laser processing monitoring unit comprises: a CCD camera frame (25, 26) disposed on the base body, a CCD camera mounted on the CCD camera frame, a mirror, and a beam combining mirror; wherein The mirror surface of the beam combiner is disposed at an angle to the axial direction of the light guide tube at the laser incident end of the light guide tube, and the mirror is disposed on the base body and cooperates with the beam combiner to enable the auxiliary light to be irradiated on the machined surface. The reflection of the beam mirror and the mirror is injected into the CCD camera for imaging.
- FIG. 11 it is a structural diagram of the laser processing monitoring unit.
- the combining mirror 52 is mounted on the combining mirror mount 36, the combined mirror mount is connected to the base end cover by a screw 36-1, the second mirror 51 is mounted on the second mirror mount 24, and the second mirror mount is passed through the screw 24-1 is connected to the base, and the CCD camera connector 26 can be slid in the slot 25-A of the CCD camera support frame 25 to adjust the position of the CCD camera 27, thereby obtaining a relatively clear monitoring video.
- the processing surface (infrared, visible light, etc.) is irradiated onto the processing surface, and the reflected auxiliary light passes through the first mirror (a double-layer film, which can reflect both the processing laser and the monitoring light) and passes through the light guide tube.
- the combined mirror 52 (plates coated on different sides, laser-coated surface coated with laser, coated with auxiliary light high-reflection film for auxiliary light) is reflected by the second mirror 51 and injected into the industrial lens 27 -A, finally hit the CCD camera 27, through the data transmission, the signal is transmitted to the receiving platform, and the monitoring software (window) displays the real-time processing of the laser, so that in the event of an emergency, the operator can power off and break in time. Light, protect processed objects, equipment, etc.
- a multi-degree-of-freedom laser processing apparatus is also provided, and the optical part of the multi-degree-of-freedom laser processing apparatus is the same as any one of the embodiments 1-6, except that the embodiment provides
- the multi-degree-of-freedom laser processing equipment further includes: an electromechanical control system, the electromechanical control system is electrically connected with the three-degree-of-freedom processing unit, the rotary motor, the linear motor, the CCD camera, and the working platform to realize the control or monitoring function.
- Figure 12 is a schematic diagram of laser three degrees of freedom processing.
- the galvanometer XY controls the laser XY plane two-dimensional scanning surface, and the lens movement controls the laser Z direction stepping.
- the laser is incident from the entrance of the substrate into the optical port, reflected by the XY galvanometer, then focused by the lens, reflected by the first mirror onto the surface I of the object to be processed, and the laser processing path designed by CAD/CAM system is used to precisely control the XY vibration.
- Mirrors and lenses for pre-designed shapes.
- Figure 13 is a schematic diagram of laser two-degree-of-freedom pitch adjustment.
- the pitch angle of the first mirror mount is adjusted according to the relative position of the object to be processed and the device, so that the laser can accurately reach the target position of the object to be processed.
- Figure 13 shows one of the cases where the laser can reach any position of the curved surface C when the pitch angle changes, thus meeting different needs.
- Figure 14 is a schematic diagram of laser two-degree-of-freedom roll adjustment. According to the relative position of the object to be processed and the device, the rolling angle of the first mirror base is adjusted, so that the laser can accurately reach the target position of the object to be processed. Figure 14 shows one of the cases where the laser can reach any position on the circumferential surface D when the roll angle changes to meet different needs.
- Figure 15 is a schematic diagram of laser two-degree-of-freedom pitch + roll adjustment. According to the relative position of the object to be processed and the device, the pitch and roll angle of the first mirror mount are adjusted, so that the laser can accurately reach the target position of the object to be processed.
- Figure 16 is a schematic diagram of the laser processing monitoring optical path.
- the auxiliary light is reflected from the surface of the object to be processed, and is injected into the CCD camera through the first mirror, the combination mirror and the second mirror.
- the CCD camera can adjust the position of the camera according to the position of the auxiliary light, so that the CCD image is completely clear.
- the operator can power off and stop the light in time.
- the multi-degree-of-freedom laser processing apparatus can complete precise cutting of any shape of the diseased tissue and surface modification and precision preparation of the diseased tissue with high stability and no vibration.
- the multi-degree-of-freedom laser processing equipment is equipped with a laser, and the three-dimensional processing of the spot is realized by the galvanometer + lens, and the 360° rotation of the optical knife and the pitch of about 0-110° are realized by the two-dimensional laser adjustment unit, and the mobile platform is added by adding a degree of freedom to the substrate. Widely change the position of the laser knife.
- Each degree of freedom has a position sensor as a closed-loop control feedback for high-speed, accurate and efficient machining.
- the equipment is suitable for surgical operations (especially small and deep cavity) in various fields such as oral cavity, throat, ophthalmology, orthopedics, surgery, etc., as well as industrial fields such as surface modification, treatment and precision preparation.
- the device is small in size, but integrated with an optical system such as galvanometer, lens, mirror and other electromechanical systems that control the movement of the system, and integrated real-time monitoring device; the device can control the laser to achieve Flexible movement with six degrees of freedom to achieve cutting of any lesion in any direction.
- an optical system such as galvanometer, lens, mirror and other electromechanical systems that control the movement of the system, and integrated real-time monitoring device; the device can control the laser to achieve Flexible movement with six degrees of freedom to achieve cutting of any lesion in any direction.
- the device can precisely control the six-degree-of-freedom movement of the laser and the fine cutting of the laser, so that the device can control the laser to accurately cut the diseased tissue; at the same time, it is equipped with a monitoring device and a high-precision position sensor to achieve safety. control.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Electromagnetism (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Otolaryngology (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Laser Beam Processing (AREA)
Abstract
一种多自由度激光加工设备。该多自由度激光加工设备相对于现有的激光加工设备而言,还包括:设置在基体上的旋转电机(8)及第一传动机构;导光管(37)可转动地设置在与基体连接的导光管架(1-1)上;导光管通过第一传动机构接受旋转电机(8)的驱动,而在导光管架上受控转动。该设备增加了激光加工的自由度,解决了相关技术中数控激光自动化牙体预备装置仅能实现三自由度而导致的作用范围有限,不能满足范围大、多术种的应用需求的问题。
Description
本发明涉及医学领域或工业领域,具体而言,涉及一种多自由度激光加工设备。
在人类口腔及喉部这种狭小深腔内,手工进行大量重复、费力的微细操作,人眼视觉偏差、人手定位控制误差很难避免,导致临床牙体预备精度效率较低、临床操作规范和相关标准难于实现;口腔及喉部的医生在进行手术操作时,几乎保持同一姿势,易导致疲劳;同时,由于医生的情绪、疲劳、操作技术不熟练等,难免会出现人为因素造成的医源性损伤;口腔治疗所用的高速涡轮机在操作时产生的声音及机械振动,均会使患者产生不适感。
现有的用于辅助手术过程的医疗机器人分两大类:主从操作和自动控制。主从操作机器人以DaVinci系统为代表,目前已应用于临床,适用于多种手术,国内自主研发的主从操作机器人“妙手”正在开展临床实验。自动控制机器人应用于临床的有骨科和神经外科。
现有手术机器人系统可以在一定程度上提高手术质量、减轻医生的疲劳、消除医生手抖动,但仍然存在以下局限和问题:一、尚没有一套完整的机器人系统能够同时实现牙齿、颌骨及软骨等硬组织及软组织的同步精准切割;二、用于手术的机器人系统均采用主从控制形式,即机器人只能在医生操控下完成,尚不具备智能规划及自主操作能力。
为了突破以上局限,公开号为CN104546151A的专利申请中公开了一种数控激光自动化牙体预备方法及装置,能够实现三自由度的自动牙体预备操作,同时使用飞秒激光技术也避免了高速涡轮机的声音和机械振动给患者带来的不适感。但是三自由度的运动无法实现口腔及喉部管腔内任意 部位、任意组织的精准切割,更无法延伸至眼科、骨科等其它医学领域的应用,不能满足范围大、多术种的应用需求。
发明内容
本发明提供了一种多自由度激光加工设备,以至少解决相关技术中数控激光自动化牙体预备装置仅能实现三自由度而导致的作用范围有限,不能满足范围大、多术种的应用需求的问题。
根据本发明的一个方面,提供了一种多自由度激光加工设备,包括基体,以及设置在基体上的三自由度加工单元和导光管,所述导光管的端部设置有第一反射镜座,所述三自由度加工单元用于调整激光的焦距以调整激光刀的聚焦平面以及控制激光刀在所述聚焦平面上的运动,所述多自由度激光加工设备还包括:设置在所述基体上的旋转电机及第一传动机构;其中,
所述导光管可转动地设置在与所述基体连接的导光管架上;所述导光管通过所述第一传动机构接受所述旋转电机的驱动,而在所述导光管架上受控转动。
可选地,所述第一传动机构包括:设置在所述旋转电机的输出轴上的主动轮、设置在所述导光管上的从动轮,以及将所述主动轮的转动传递到所述从动轮的传动组件。
可选地,所述从动轮的直径大于所述主动轮的直径。
可选地,所述多自由度激光加工设备还包括:设置在所述基体上的直线电机及第二传动机构;其中,
所述第一反射镜座与所述导光管的端部铰接;
所述第一反射镜座通过所述第二传动机构接受所述直线电机的驱动,而绕铰接的转轴受控转动。
可选地,所述第二传动机构包括:滑套、第一轴承、滑杆套、轴承挡圈、滑杆和连杆结构,其中,
所述滑杆套和所述轴承挡圈固定连接,所述滑杆套和所述轴承挡圈的内圈均与导光管间隙配合;
所述第一轴承的内圈与所述滑杆套的外表面过渡配合;
所述滑套的外圈分布有沿轴向的多个滑轨,所述滑套的外圈以及所述多个滑轨与导光管架间隙配合;所述滑套的内圈与所述第一轴承的外圈过盈配合;
所述滑套的伸出端与所述直线电机的动杆固定连接;
所述滑杆的一端与所述轴承挡圈或者所述滑杆套固定连接,另一端通过所述连杆结构与所述第一反射镜座铰接。
可选地,所述导光管通过第二轴承设置在与所述基体连接的导光管架上,其中,
所述第二轴承的内圈与所述导光管的外壁过盈配合;
所述第二轴承的外圈与所述导光管架过盈配合。
可选地,所述基体设置在可沿所述导光管的轴向受控移动的工作平台上。
可选地,所述多自由度激光加工设备还包括:激光加工监控单元,所述激光加工监控单元包括:设置在所述基体上的CCD摄像头架、安装在所述CCD摄像头架上的CCD摄像头、反射镜、合束镜;其中,
所述合束镜的镜面与导光管轴向呈一定角度地设置在所述导光管的激光入射端,所述反射镜设置在所述基体上并与所述合束镜相互配合,以使照射在加工表面的辅助光经所述合束镜和所述反射镜的反射后射入所述CCD摄像头中成像。
可选地,所述合束镜的镜面迎激光的一面镀有激光增透膜,所述合束镜的镜面迎辅助光的一面镀有辅助光高反膜。
可选地,所述多自由度激光加工设备还包括:机电控制系统,所述机电控制系统与所述三自由度加工单元、所述旋转电机、直线电机、CCD摄像头、工作平台电性连接,以实现控制或者监控功能。
通过本发明实施例提供的多自由度激光加工设备,采用设置在基体上的旋转电机及第一传动机构;导光管可转动地设置在与基体连接的导光管架上;导光管通过第一传动机构接受旋转电机的驱动,而在导光管架上受控转动,从而增加了激光加工的自由度,解决了相关技术中数控激光自动化牙体预备装置仅能实现三自由度而导致的作用范围有限,不能满足范围大、多术种的应用需求的问题。
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种多自由度激光加工设备的结构示意图;
图2是根据本发明实施例的一种三自由度激光加工单元的二自由度XY平面加工结构图;
图3是根据本发明实施例的一种三自由度激光加工单元的Z方向激光焦平面调节结构图;
图4是根据本发明实施例的一种二自由度激光调整单元整体结构图;
图5是根据本发明实施例的一种二自由度激光调整单元局部剖视图;
图6是根据本发明实施例的一种二自由度激光调整单元中俯仰调整内部结构图;
图7是根据本发明实施例的一种二自由度激光调整单元中俯仰调整结构一局部的分解图;
图8是根据本发明实施例的一种二自由度激光调整单元中俯仰调整结构另一局部的分解图;
图9是根据本发明实施例的一种二自由度激光调整单元中滚转调整内部结构图;
图10是根据本发明实施例的一种二自由度激光调整单元中滚转调整 结构分解图。
图11是根据本发明实施例的一种激光加工监控单元结构图;
图12是根据本发明实施例的激光三自由度加工示意图;
图13是根据本发明实施例的激光二自由度俯仰调节示意图;
图14是根据本发明实施例的激光二自由度滚转调节示意图;
图15是根据本发明实施例的激光二自由度俯仰+滚转调节示意图;
图16是根据本发明实施例的激光加工监控光路示意图。
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
图1是根据本发明实施例的一种多自由度激光加工设备的结构示意图。下面将结合图1对本发明实施例进行说明。
实施例1
在本实施例中提供了一种四自由度激光加工设备。参考图1,该四自由度激光加工设备包括:基体1,以及设置在基体1上的三自由度加工单元(10、11、14)和导光管37,导光管37的端部设置有第一反射镜座48,三自由度加工单元用于调整激光的焦距以调整激光刀的聚焦平面(即激光刀的工作平面)以及控制激光刀在聚焦平面上的运动,四自由度激光加工设备还包括:设置在基体1上的旋转电机8及第一传动机构;其中,导光管37可转动地设置在与基体1连接的导光管架1-1上;导光管37通过第一传动机构接受旋转电机8的驱动,而在导光管架1-1上受控转动。
参考图1,为了能够使得设备内部结构能够得到保护并达到防尘效果,在基体1上还安装有壳体。在图1中示出的壳体结构包括侧盖2、上盖3、上后盖4、下后盖5。该壳体结构使得壳体能够方便拆卸而便于维护或者检修设备。显然,本领域技术人员应当清楚,上述壳体结构仅仅是一种优选的壳体结构。
上述的三自由度激光加工单元包括:X振镜电机10、Y振镜电机11、第一直线电机14及其组件,XY振镜电机通过驱动振镜实现激光XY平面加工,第一直线电机14通过驱动透镜改变激光聚焦平面,从而实现激光三维加工。
如图2所示,为三自由度激光加工单元的二自由度XY平面加工结构图。激光从基体的入光口1-A射入,经第一振镜10-1和第二振镜11-1反射,第一振镜由X振镜电机驱动摆动,第二振镜由Y振镜电机驱动摆动,从而实现XY平面加工。X振镜电机通过面10-A和振镜电机座9的面9-B配合,并由螺钉9-2固定;Y振镜电机通过面11-A和振镜电机座的面9-A配合,并有螺钉9-1固定;振镜电机座通过螺钉1-1与基座连接固定。
如图3所示,为三自由度激光加工单元的Z方向激光焦平面调节结构图。第一直线电机静圈14通过螺钉12-1与第一直线电机座12连接,并通过螺钉1-2与基体连接;第一直线电机动圈13通过电机-透镜连接架15与透镜支座16连接;透镜23被透镜固定环17和固定环挡块18由螺钉18-1固定于透镜支座中,透镜支座安装在滑块29上,沿滑轨28移动,滑轨通 过螺钉28-1与基体连接;第一直线电机驱动透镜沿滑轨滑动,改变透镜位置,从而改变激光聚焦平面,本装置通过光栅尺20读数作为反馈信息,从而精确控制透镜滑动位移。光栅尺通过光栅尺座19与透镜支座固连,光栅尺读数头22安装在光栅尺座21上,光栅尺座由螺钉1-3与基体连接。
上述包括设置在基体1上的旋转电机8及第一传动机构的四自由度激光加工设备,相对于三自由度加工设备而言,由于导光管37能够绕轴旋转,使得激光刀的工作平面也能够绕轴转动,从而增加了激光刀的自由度,扩展了激光加工设备的使用范围,能够满足更多术种的应用需求。
可选地,第一传动机构包括:设置在旋转电机8的输出轴上的主动轮33、设置在导光管37上的从动轮34,以及将主动轮33的转动传递到从动轮34的传动组件。可选地,从动轮34的直径大于主动轮33的直径。
实施例2
在本实施例中还提供了一种四自由度激光加工设备,该设备与实施例1基本相同,不同之处在于:相对于实施例1中描述的四自由度激光加工设备而言,本实施例提供的四自由度激光加工设备不设置旋转电机8及第一传动机构,但是包括了:设置在基体1上的直线电机30及第二传动机构;其中,第一反射镜座48与导光管37的端部铰接;第一反射镜座48通过第二传动机构接受直线电机30的驱动,而绕铰接的转轴受控转动。
可选地,第二传动机构包括:滑套43、第一轴承40、滑杆套41、轴承挡圈42、滑杆44和连杆结构45,其中,滑杆套41和轴承挡圈42固定连接,滑杆套41和轴承挡圈42的内圈均与导光管37间隙配合;第一轴承40的内圈与滑杆套41的外圈间隙配合;滑套43的外圈分布有沿轴向的多个滑轨43-B,滑套43的外圈以及多个滑轨43-B与导光管架间隙配合;滑套43的内圈与第一轴承40的外圈过盈配合;滑套43的伸出端与直线电机30的动杆固定连接;滑杆44的一端与轴承挡圈42或者滑杆套41固定连接,另一端通过连杆结构45与第一反射镜座48铰接。
可选地,导光管37通过第二轴承38设置在与基体1连接的导光管架1-1上,其中,第二轴承38的内圈与导光管37的外壁过盈配合;第二轴 承38的外圈与导光管架1-1过盈配合。
上述包括设置在基体1上的直线电机30及第二传动机构的四自由度激光加工设备,相对于三自由度加工设备而言,由于第一反射镜座48能够绕铰链的转轴转动,使得激光刀的工作平面也能够绕铰链的转轴转动,从而增加了激光刀的自由度,扩展了激光加工设备的使用范围,能够满足更多术种的应用需求。
需要说明的是,在本实施例中,滑套滑动是通过第二直线电机直接驱动;本领域技术人员在上述实施方式的基础上,能够轻易想到本发明还可以使用旋转电机+圆柱凸轮、旋转电机+摇杆滑块机构等等效方式替代本实施例中的直线电机而实现相同的功能。
实施例3
在本实施例中还提供了一种五自由度激光加工设备,该设备与实施例1基本相同,不同之处在于:相对于实施例1中描述的四自由度激光加工设备而言,本实施例提供的五自由度激光加工设备还包括:设置在基体1上的直线电机30及第二传动机构;其中,第一反射镜座48与导光管37的端部铰接;第一反射镜座48通过第二传动机构接受直线电机30的驱动,而绕铰接的转轴受控转动。
旋转电机8及第一传动机构,以及直线电机30及第二传动机构,以及与上述结构相配合的结构,在本实施例中被称为二自由度激光调整单元。即:二自由度激光调整单元包括:旋转电机8及其组件、第二直线电机30及其组件、第一反射镜座48及其组件,旋转电机8通过传动机构(例如齿轮传动、带传动或钢丝绳传动)实现第一反射镜360度滚转,第二直线电机通过四连杆机构实现第一反射镜一定角度范围(例如0-110度)俯仰,从而实现光刀两自由度大范围、大角度位置调整。
如图4所示,为二自由度激光调整单元整体结构图,图5为其局部剖视图。第二直线电机30固定在第二直线电机座6上,第二直线电机座通过螺钉6-1与基体连接,连杆器32将第二直线电机动杆30-1和轴承滑套43连接,从而第二直线电机可以驱动轴承滑套滑动;旋转电机8固定在旋 转电机座7上,旋转电机座通过螺钉7-1与基体连接,主动轮33固定在旋转电机输出轴上,通过传动组件(例如:齿轮传动、带传动、绳传动、链传动等)带动从动轮34转动。
如图6和图7所示,激光光束俯仰角度调节通过第一反射镜座48绕轴48-A转动实现,轴48-A转动通过滑块摇杆机构实现。滑套43通过43-B与基体上的滑槽配合,从而滑套与基体可以相对滑动。滑套伸出端43-A穿过基体,通过连杆器与第二直线电机动杆固连,实现第二直线电机驱动滑套与基体相对滑动。第一轴承40外圈与滑套配合,第一轴承内圈与滑杆套41配合,从而通过第一轴承实现滑套与滑杆套相对转动。滑杆44穿过导光管37孔37-A和第一轴承挡圈42孔42-A,插入滑杆套孔41-A,滑杆与滑杆套固连。第一轴承挡圈通过螺钉42-1与滑杆套连接,实现第一轴承轴向位置限定。
如图8所示,滑杆孔44-A与第一轴瓦49面49-A配合,第一轴瓦孔49-B与连杆45面45-B配合,第一卡簧50卡在连杆槽45-C,从而实现滑杆相对连杆转动,并限定滑杆轴向位置;连杆孔45-A与第二轴瓦46面46-A配合,第二轴瓦孔46-B与第一反射镜座48面48-B配合,第二卡簧47卡在第一反射镜座卡槽48-C里,从而实现连杆相对第一反射镜座转动;第一反射镜座轴48-A与导光管37孔37-B配合,实现第一反射镜座与导光管的相对转动。
图8中示出的滑杆与连杆的相对转动是通过轴瓦实现;但是实现上述相对转动的结构并不限于图8所示的一种结构,例如,也可以使用转动轴承(比如深沟球轴承)实现相同的功能。在图8所示的实施方式中,第一反射镜座的俯仰通过滑块摇杆机构实现;在其他实施例中,也可以使用旋转电机+绳索传动的方式来实现相同的效果。
激光光刀俯仰调节实现过程:第二直线电机动杆带动滑套沿基体槽1-C滑动,即形成滑动副,从而带动第一轴承滑动,又由于第一轴承通过第一轴承挡圈与滑杆套相对固连,所以滑杆套也被带动滑动,滑杆套(相当与滑块)、连杆、第一反射镜座(相当与摇杆)、导光管形成滑块摇杆四杆机构,当滑杆套滑动被第二直线电机带动滑动时,驱动第一反射镜座相对导光管转动,从而改变激光光刀俯仰角度。
如图9和图10所示,旋转电机8输出轴与主动轮33通过顶丝连接,主动轮经传动机构(例如:带传动、齿轮传动、链传动、钢丝绳传动等)带动从动轮34转动;从动轮34-A与导光管槽37-D配合,并用顶丝将从动轮轴向位置固定;第二轴承38内圈与导光管面37-C配合,第二轴承外圈与基体1-B配合;第二轴挡圈39顶住第二轴承内圈,并用顶丝固定到导光管上;端盖35通过螺钉35-1与基体连接,其伸出端35-A顶住第二轴承外圈。以上设计实现了导光管通过第二轴承装在基体里,并与基体能相对转动,第二轴承挡圈和端盖即限制了第二轴承的轴向位置,也限制了导光管的轴向位置。当从动轮被主动轮带动转动时,通过34-A和37-D的配合,带动导光管相对基体转动,从而带动第一反射镜座发生滚转,让激光光刀滚转角度发生调节。
上述的五自由度激光加工设备中,第二直线电机30固定在第二直线电机座6上,第二直线电机座通过螺钉6-1与基体连接,连杆器32将第二直线电机动杆30-1和轴承滑套43连接,从而第二直线电机可以驱动轴承滑套滑动;旋转电机8固定在旋转电机座7上,旋转电机座通过螺钉7-1与基体连接,主动轮33固定在旋转电机输出轴上,通过传动机构(齿轮传动、带传动、绳传动、链传动等)带动从动轮34转动。本实施例的激光光刀调整二自由度相对独立,互不干涉。当导光管相对基体转动时,会带动第一反射镜座、连杆、滑杆、滑杆套、第一轴承内圈一起转动,同时,第二直线电机又能推动滑套、第二轴承、滑杆套、滑杆沿基体槽(即配合滑轨43-B的槽)滑动,从而实现第一反射镜座的旋转和滚转。
实施例4
在本实施例中还提供了一种多自由度激光加工设备,该设备与实施例1-3中任一种基本相同,不同之处在于,本实施例中多自由度激光加工设备的基体1设置在可沿导光管37的轴向受控移动的工作平台上,从而在原有的四自由度激光加工设备或者五自由度激光加工设备之上,还增加了第六自由度。
考虑到只是调节导光管37伸缩,不仅结构复杂(需与俯仰和滚转两 自由度解耦),而且会改变激光焦平面位置,若不想改变激光焦平面,需透镜移动配合。而通过本实施例将基体1设置在可沿导光管37的轴向受控移动的工作平台上,从而实现了激光刀调整的第六自由度;其主要作用是当透镜调节不够时提供调节功能。采用本实施例可以使得激光刀作用位置更深。
实施例5
在本实施例中还提供了一种多自由度激光加工设备,该多自由度激光加工设备与实施例1-5中的任一种相同,不同之处在于,本实施例提供的多自由度激光加工设备还包括:激光加工监控单元,激光加工监控单元包括:设置在基体上的CCD摄像头架(25、26)、安装在CCD摄像头架上的CCD摄像头、反射镜、合束镜;其中,合束镜的镜面与导光管轴向呈一定角度地设置在导光管的激光入射端,反射镜设置在基体上并与合束镜相互配合,以使照射在加工表面的辅助光经合束镜和反射镜的反射后射入CCD摄像头中成像。
如图11所示,为激光加工监控单元结构图。合束镜52装在合束镜座36上,合束镜座通过螺钉36-1与基体端盖连接,第二反射镜51装在第二反射镜座24上,第二反射镜座通过螺钉24-1与基体连接,CCD摄像头连接架26可以在CCD摄像头支撑架25槽25-A滑动,以便调节CCD摄像头27的位置,从而得到比较清晰的监控视频,当激光加工时,会有辅助光源(红外、可见光等)照射到加工表面上,反射的辅助光经第一反射镜(镀双层膜,既能反射加工用的激光,又能反射监控用的光),穿过导光管,经合束镜52(两面镀不同的膜,迎激光的面镀激光增透膜,迎辅助光的面镀辅助光高反膜)反射,再经第二反射镜51反射,射入工业镜头27-A,最终射到CCD摄像头27上,通过数据传输,将信号传到接受平台上,由监控软件(窗口)显示激光实时加工情况,以便遇到紧急情况时,操作人员能及时断电、断光,保护加工物件、设备等。
实施例6
在本实施例中还提供了一种多自由度激光加工设备,该多自由度激光加工设备的光学部分与实施例1-6中的任一种相同,不同之处在于,本实施例提供的多自由度激光加工设备还包括:机电控制系统,机电控制系统与三自由度加工单元、旋转电机、直线电机、CCD摄像头、工作平台电性连接,以实现控制或者监控功能。
下面将结合附图,对上述实施例提供的激光加工设备的激光刀调节自由度的效果进行说明。
图12为激光三自由度加工示意图。振镜XY控制激光XY平面二维扫面,透镜移动控制激光Z方向步进。激光从基体入光口入射,经XY振镜反射,然后有透镜聚焦,经第一反射镜反射照到被加工物体表面Ⅰ上,使用CAD/CAM系统设计好的激光加工路径,精确控制XY振镜和透镜,加工出预先设计好的形体。
图13为激光二自由度俯仰调节示意图。根据被加工物体与该装置的相对位置,调节第一反射镜座的俯仰角度,从而使激光能准确的照到被加工物体目标位置。图13展示了其中一种情况,当俯仰角度发生变化时,激光可以到达曲面C任意位置,从而满足不同的需求。
图14为激光二自由度滚转调节示意图。根据被加工物体与该装置的相对位置,调节第一反射镜座的滚转角度,从而使激光能准确的照到被加工物体目标位置。图14展示了其中一种情况,当滚转角度发生变化时,激光可以到达圆周面D任意位置,从而满足不同的需求。
图15为激光二自由度俯仰+滚转调节示意图。根据被加工物体与该装置的相对位置,调节第一反射镜座的俯仰与滚转角度,从而使激光能准确的照到被加工物体目标位置。
图16为激光加工监控光路示意图。辅助光从被加工物体表面反射,先后经第一反射镜、合束镜、第二反射镜,射入CCD摄像头中,CCD摄像头可以根据出射辅助光的位置,调整摄像头位置,使CCD成像清晰完全,从而实时监控激光加工过程,当发生紧急状况后,操作人员可以及时停电、停光。
综上所述,本发明实施例提供的上述的多自由度激光加工设备能以高度稳定无抖动完成病变组织任意形状的精确切割以及材料表面改性和精准制备。该多自由度激光加工设备搭载激光器,通过振镜+透镜实现光斑的三维加工,通过二维激光调整单元实现光刀360°旋转和约0-110°的俯仰,通过在基体上增加一自由度移动平台大范围改变激光刀位置。每个自由度均有位置传感器作为闭环控制反馈,以实现高速准确有效地加工切削。
本发明提供的实施例中至少有一种实施例能够实现以下之一的有益效果:
1、应用范围广:该设备适用于口腔、咽喉部、眼科、骨科、外科等医学多个领域的手术操作(特别是狭小深腔)以及材料表面改性、处理、精准制备等工业领域。
2、高度灵巧:该设备尺寸微小,但集成了振镜、透镜、反射镜等光学系统以及控制该系统运动的多个电机机构组成的机电系统,并整合实时监控装置;该设备能控制激光实现六自由度灵活运动,实现任意方向任意病变部位的切削。
3、精准、安全切削:该设备能精确控制激光的六自由度运动,以及激光的精细切削,从而实现该设备控制激光精准切削病变组织;同时配备监控装置以及高精度位置传感器等,以实现安全控制。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,比如俯仰角度变成0~120度,传动方式发生变化,均应包含在本发明的保护范围之内。
Claims (10)
- 一种多自由度激光加工设备,包括基体,以及设置在基体上的三自由度加工单元和导光管,所述导光管的端部设置有第一反射镜座,所述三自由度加工单元用于调整激光的焦距以调整激光刀的聚焦平面以及控制激光刀在所述聚焦平面上的运动,其特征在于,所述多自由度激光加工设备还包括:设置在所述基体上的旋转电机及第一传动机构;其中,所述导光管可转动地设置在与所述基体连接的导光管架上;所述导光管通过所述第一传动机构接受所述旋转电机的驱动,而在所述导光管架上受控转动。
- 根据权利要求1所述的多自由度激光加工设备,其特征在于,所述第一传动机构包括:设置在所述旋转电机的输出轴上的主动轮、设置在所述导光管上的从动轮,以及将所述主动轮的转动传递到所述从动轮的传动组件。
- 根据权利要求2所述的多自由度激光加工设备,其特征在于,所述从动轮的直径大于所述主动轮的直径。
- 根据权利要求1所述的多自由度激光加工设备,其特征在于,所述多自由度激光加工设备还包括:设置在所述基体上的直线电机及第二传动机构;其中,所述第一反射镜座与所述导光管的端部铰接;所述第一反射镜座通过所述第二传动机构接受所述直线电机的驱动,而绕铰接的转轴受控转动。
- 根据权利要求1所述的多自由度激光加工设备,其特征在于,所述第二传动机构包括:滑套、第一轴承、滑杆套、轴承挡圈、滑杆和连杆结构,其中,所述滑杆套和所述轴承挡圈固定连接,所述滑杆套和所述轴承挡圈的内圈均与导光管间隙配合;所述第一轴承的内圈与所述滑杆套的外表面过渡配合;所述滑套的外圈分布有沿轴向的多个滑轨,所述滑套的外圈以及所述多个滑轨与导光管架间隙配合;所述滑套的内圈与所述第一轴承的外圈过盈配合;所述滑套的伸出端与所述直线电机的动杆固定连接;所述滑杆的一端与所述轴承挡圈或者所述滑杆套固定连接,另一端通过所述连杆结构与所述第一反射镜座铰接。
- 根据权利要求1所述的多自由度激光加工设备,其特征在于,所述导光管通过第二轴承设置在与所述基体连接的导光管架上,其中,所述第二轴承的内圈与所述导光管的外壁过盈配合;所述第二轴承的外圈与所述导光管架过盈配合。
- 根据权利要求1所述的多自由度激光加工设备,其特征在于,所述基体设置在可沿所述导光管的轴向受控移动的工作平台上。
- 根据权利要求1至7中任一项所述的多自由度激光加工设备,其特征在于,所述多自由度激光加工设备还包括:激光加工监控单元,所述激光加工监控单元包括:设置在所述基体上的CCD摄像头架、安装在所述CCD摄像头架上的CCD摄像头、反射镜、合束镜;其中,所述合束镜的镜面与导光管轴向呈一定角度地设置在所述导光管的激光入射端,所述反射镜设置在所述基体上并与所述合束镜相互配合,以使照射在加工表面的辅助光经所述合束镜和所述反射镜的反射后射入所述CCD摄像头中成像。
- 根据权利要求8所述的多自由度激光加工设备,其特征在于,所述合束镜的镜面迎激光的一面镀有激光增透膜,所述合束镜的镜面迎辅助光的一面镀有辅助光高反膜。
- 根据权利要求1至9中任一项所述的多自由度激光加工设备,其特征在于,所述多自由度激光加工设备还包括:机电控制系统,所述机电控制系统与所述三自由度加工单元、所述旋转电机、直线电机、CCD 摄像头、工作平台电性连接,以实现控制或者监控功能。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18905159.2A EP3722043B1 (en) | 2018-02-09 | 2018-03-13 | Multi-degree of freedom laser processing device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810135368.7 | 2018-02-09 | ||
CN201810135368.7A CN108145309B (zh) | 2018-02-09 | 2018-02-09 | 多自由度激光加工设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019153413A1 true WO2019153413A1 (zh) | 2019-08-15 |
Family
ID=62457239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/078792 WO2019153413A1 (zh) | 2018-02-09 | 2018-03-13 | 多自由度激光加工设备 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3722043B1 (zh) |
CN (1) | CN108145309B (zh) |
WO (1) | WO2019153413A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112935675A (zh) * | 2021-03-15 | 2021-06-11 | 成都焊研威达科技股份有限公司 | 一种腹板角钢组件角钢拱度成型点焊专机 |
CN113855289A (zh) * | 2021-11-15 | 2021-12-31 | 北京航空航天大学 | 一种空间五自由度牙齿种植体植入器 |
CN116275592A (zh) * | 2023-04-28 | 2023-06-23 | 华南智能机器人创新研究院 | 一种激光切割头姿态变换装置及其控制系统 |
US11864727B2 (en) | 2016-01-26 | 2024-01-09 | Cyberdontics (Usa), Inc. | Automated dental treatment system |
US12029619B2 (en) | 2020-09-03 | 2024-07-09 | Perceptive Technologies, Inc. | Method and apparatus for CNA analysis of tooth anatomy |
CN119635025A (zh) * | 2025-02-20 | 2025-03-18 | 四川福摩斯工业技术有限公司 | 一种机器手辅助传动机构 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109820608B (zh) * | 2019-03-25 | 2024-01-12 | 北京大学口腔医学院 | 牙根管治疗机器人 |
CN109820604B (zh) | 2019-04-08 | 2024-02-27 | 北京大学口腔医学院 | 一种内置光学元件和防污染的激光手术或加工设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6438305B1 (en) * | 1997-12-29 | 2002-08-20 | J. Morita Manufacturing Corporation | Laser transmitting system and hand instrument having such system for use with laser device |
CN102715956A (zh) * | 2012-06-12 | 2012-10-10 | 北京航空航天大学 | 一种激光式口腔内微型牙体预备自动切削装置 |
JP2014061214A (ja) * | 2012-09-24 | 2014-04-10 | Yoshida Dental Mfg Co Ltd | レーザハンドピース |
CN104546151A (zh) * | 2013-10-09 | 2015-04-29 | 北京大学口腔医学院 | 数控激光自动化牙体预备方法及装备 |
CN106424286A (zh) * | 2016-10-20 | 2017-02-22 | 江苏理工学院 | 基于激光加热旋压成形方法及装置 |
CN206343764U (zh) * | 2016-12-27 | 2017-07-21 | 江苏维力安智能科技有限公司 | 一种激光导光臂 |
CN207930150U (zh) * | 2018-02-09 | 2018-10-02 | 北京大学口腔医学院 | 多自由度激光加工设备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5846080A (en) * | 1995-12-20 | 1998-12-08 | W&H Dentalwerk Gmbh | Laser dental devices and methods |
EP0827719B1 (de) * | 1996-09-06 | 2002-06-05 | Kaltenbach & Voigt Gmbh & Co. | Medizinisches oder zahnmedizinisches Laserinstrument, insbesondere für Zahn-Wurzelkanalbehandlungen |
DE19907105A1 (de) * | 1999-02-19 | 2000-08-31 | Volkswagen Ag | Verfahren und Vorrichtung zum Herstellen von verschleißfesten, tribologischen Zylinderlaufflächen |
JP2003164467A (ja) * | 2001-12-03 | 2003-06-10 | Yoshida Dental Mfg Co Ltd | 医療用スキャニング装置 |
KR100602413B1 (ko) * | 2004-11-23 | 2006-07-20 | 학교법인단국대학 | 각도 가변 미러를 이용한 치과용 레이저 핸드피스 |
EP1716963B1 (de) * | 2005-04-26 | 2008-10-22 | Highyag Lasertechnologie GmbH | Optische Anordnung für die Remote-Laser-Materialbearbeitung zur Erzeugung eines dreidimensionalen Arbeitsraumes |
CN202053024U (zh) * | 2011-05-14 | 2011-11-30 | 天津禾山机械有限公司 | 两维激光切割机的切割头改造成两维半切割头 |
CN203031124U (zh) * | 2013-01-05 | 2013-07-03 | 深圳市大族激光科技股份有限公司 | 焦点可调式激光焊接头 |
CN103800083B (zh) * | 2013-12-11 | 2017-04-19 | 北京航空航天大学 | 一种口腔内微型自动牙体预备的切削装置 |
DE102013224207B4 (de) * | 2013-11-27 | 2016-08-18 | Trumpf Laser- Und Systemtechnik Gmbh | Laserbearbeitungsmaschine |
CN104162741B (zh) * | 2014-07-31 | 2016-06-01 | 北京万恒镭特机电设备有限公司 | 激光加工装置及其方法 |
CN205008740U (zh) * | 2015-09-08 | 2016-02-03 | 上海嘉强自动化技术有限公司 | 一种内部可通激光束的类scara机器人 |
-
2018
- 2018-02-09 CN CN201810135368.7A patent/CN108145309B/zh active Active
- 2018-03-13 WO PCT/CN2018/078792 patent/WO2019153413A1/zh unknown
- 2018-03-13 EP EP18905159.2A patent/EP3722043B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6438305B1 (en) * | 1997-12-29 | 2002-08-20 | J. Morita Manufacturing Corporation | Laser transmitting system and hand instrument having such system for use with laser device |
CN102715956A (zh) * | 2012-06-12 | 2012-10-10 | 北京航空航天大学 | 一种激光式口腔内微型牙体预备自动切削装置 |
JP2014061214A (ja) * | 2012-09-24 | 2014-04-10 | Yoshida Dental Mfg Co Ltd | レーザハンドピース |
CN104546151A (zh) * | 2013-10-09 | 2015-04-29 | 北京大学口腔医学院 | 数控激光自动化牙体预备方法及装备 |
CN106424286A (zh) * | 2016-10-20 | 2017-02-22 | 江苏理工学院 | 基于激光加热旋压成形方法及装置 |
CN206343764U (zh) * | 2016-12-27 | 2017-07-21 | 江苏维力安智能科技有限公司 | 一种激光导光臂 |
CN207930150U (zh) * | 2018-02-09 | 2018-10-02 | 北京大学口腔医学院 | 多自由度激光加工设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3722043A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11864727B2 (en) | 2016-01-26 | 2024-01-09 | Cyberdontics (Usa), Inc. | Automated dental treatment system |
US12029619B2 (en) | 2020-09-03 | 2024-07-09 | Perceptive Technologies, Inc. | Method and apparatus for CNA analysis of tooth anatomy |
CN112935675A (zh) * | 2021-03-15 | 2021-06-11 | 成都焊研威达科技股份有限公司 | 一种腹板角钢组件角钢拱度成型点焊专机 |
CN112935675B (zh) * | 2021-03-15 | 2023-04-25 | 成都焊研威达科技股份有限公司 | 一种腹板角钢组件角钢拱度成型点焊专机 |
CN113855289A (zh) * | 2021-11-15 | 2021-12-31 | 北京航空航天大学 | 一种空间五自由度牙齿种植体植入器 |
CN116275592A (zh) * | 2023-04-28 | 2023-06-23 | 华南智能机器人创新研究院 | 一种激光切割头姿态变换装置及其控制系统 |
CN119635025A (zh) * | 2025-02-20 | 2025-03-18 | 四川福摩斯工业技术有限公司 | 一种机器手辅助传动机构 |
Also Published As
Publication number | Publication date |
---|---|
EP3722043B1 (en) | 2022-06-01 |
CN108145309A (zh) | 2018-06-12 |
EP3722043A4 (en) | 2021-04-07 |
CN108145309B (zh) | 2024-07-05 |
EP3722043A1 (en) | 2020-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019153413A1 (zh) | 多自由度激光加工设备 | |
JP2022037183A (ja) | 医療器具の製造方法 | |
KR101536997B1 (ko) | 눈 수술 장치 및 방법 | |
JP6949021B2 (ja) | 伸縮ノーズ機構を有する手術器具 | |
EP2665450B1 (en) | Pneumatically driven ophthalmic scanning endoprobe | |
EP2926715B1 (en) | Counter-rotating ophthalmic scanner drive mechanism | |
US20130158392A1 (en) | Reciprocating Drive Optical Scanner for Surgical Endoprobes | |
CN209464087U (zh) | 一种腹腔镜机械持镜手臂 | |
US20130158393A1 (en) | Concentric Drive Scanning Probe | |
JPH02108489A (ja) | 多関節型レーザロボットの手首機構 | |
CN207930150U (zh) | 多自由度激光加工设备 | |
Eugster et al. | Miniature parallel robot with submillimeter positioning accuracy for minimally invasive laser osteotomy | |
Wang et al. | A 5-DOFs robot for posterior segment eye microsurgery | |
CN113455990A (zh) | 内窥镜接头、机器人手术系统及内窥镜接头的旋转位置调整方法 | |
Deibel et al. | A compact, efficient, and lightweight laser head for CARLO: integration, performance, and benefits | |
US12232806B2 (en) | Compact laser-steering end effector | |
CN109045485B (zh) | 一种激光治疗机器人系统 | |
CN219307130U (zh) | 眼科激光器物镜扫描装置及激光系统 | |
Yamamoto et al. | Towards the development of a tendon-actuated galvanometer for endoscopic surgical laser scanning | |
Kundrat | A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation | |
WO2025057608A1 (ja) | カップリング装置並びに医療ロボット装置 | |
CN115778588A (zh) | 一种具有水冷激光头的种植机器人系统及其种植方法 | |
Wang¹⁴ et al. | A 5-DOFs Robot for Posterior Segment Eye Microsurgery | |
AU2012207229A1 (en) | Counter-rotating ophthalmic scanner drive mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18905159 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018905159 Country of ref document: EP Effective date: 20200706 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |