WO2019004555A1 - FUNCTIONAL CRYSTALLINE SWEETENER - Google Patents
FUNCTIONAL CRYSTALLINE SWEETENER Download PDFInfo
- Publication number
- WO2019004555A1 WO2019004555A1 PCT/KR2018/001830 KR2018001830W WO2019004555A1 WO 2019004555 A1 WO2019004555 A1 WO 2019004555A1 KR 2018001830 W KR2018001830 W KR 2018001830W WO 2019004555 A1 WO2019004555 A1 WO 2019004555A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crystals
- crystal
- ray
- temperature
- spectrum
- Prior art date
Links
- 235000003599 food sweetener Nutrition 0.000 title claims abstract description 23
- 239000003765 sweetening agent Substances 0.000 title claims abstract description 23
- 239000013078 crystal Substances 0.000 claims description 174
- 238000000034 method Methods 0.000 claims description 50
- 239000000956 alloy Substances 0.000 claims description 39
- 229910045601 alloy Inorganic materials 0.000 claims description 39
- 238000001228 spectrum Methods 0.000 claims description 24
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 19
- 239000002689 soil Substances 0.000 claims description 18
- 238000004458 analytical method Methods 0.000 claims description 14
- 239000011449 brick Substances 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 239000013081 microcrystal Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 238000000441 X-ray spectroscopy Methods 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 235000013325 dietary fiber Nutrition 0.000 claims description 5
- 229920001542 oligosaccharide Polymers 0.000 claims description 5
- 150000002482 oligosaccharides Chemical class 0.000 claims description 4
- 150000005846 sugar alcohols Chemical class 0.000 claims description 4
- 150000002016 disaccharides Chemical class 0.000 claims description 3
- 150000002772 monosaccharides Chemical class 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims 8
- 238000002083 X-ray spectrum Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- 150000001720 carbohydrates Chemical class 0.000 abstract description 6
- 238000002425 crystallisation Methods 0.000 description 40
- 230000008025 crystallization Effects 0.000 description 39
- 239000000843 powder Substances 0.000 description 25
- 239000000243 solution Substances 0.000 description 24
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 15
- 239000002245 particle Substances 0.000 description 13
- 235000000346 sugar Nutrition 0.000 description 13
- 239000007787 solid Substances 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 229930091371 Fructose Natural products 0.000 description 9
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 9
- 239000005715 Fructose Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 239000006188 syrup Substances 0.000 description 9
- 235000020357 syrup Nutrition 0.000 description 9
- 238000000746 purification Methods 0.000 description 8
- 238000004566 IR spectroscopy Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 235000009508 confectionery Nutrition 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- HSJKGGMUJITCBW-UHFFFAOYSA-N 3-hydroxybutanal Chemical compound CC(O)CC=O HSJKGGMUJITCBW-UHFFFAOYSA-N 0.000 description 4
- 229940037003 alum Drugs 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- -1 fructose Oligosaccharides Chemical class 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000012452 mother liquor Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000010183 spectrum analysis Methods 0.000 description 4
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 244000228451 Stevia rebaudiana Species 0.000 description 2
- 239000004376 Sucralose Substances 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 238000010170 biological method Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 235000008504 concentrate Nutrition 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- HELXLJCILKEWJH-NCGAPWICSA-N rebaudioside A Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HELXLJCILKEWJH-NCGAPWICSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 235000019408 sucralose Nutrition 0.000 description 2
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- FTLYMKDSHNWQKD-UHFFFAOYSA-N (2,4,5-trichlorophenyl)boronic acid Chemical compound OB(O)C1=CC(Cl)=C(Cl)C=C1Cl FTLYMKDSHNWQKD-UHFFFAOYSA-N 0.000 description 1
- PKAUICCNAWQPAU-UHFFFAOYSA-N 2-(4-chloro-2-methylphenoxy)acetic acid;n-methylmethanamine Chemical compound CNC.CC1=CC(Cl)=CC=C1OCC(O)=O PKAUICCNAWQPAU-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 1
- JPLATTLXZFUKRQ-UHFFFAOYSA-N Agarobiose Natural products OCC1OC(OC2C(O)COC2C(O)C=O)C(O)C(O)C1O JPLATTLXZFUKRQ-UHFFFAOYSA-N 0.000 description 1
- 235000005340 Asparagus officinalis Nutrition 0.000 description 1
- 244000003416 Asparagus officinalis Species 0.000 description 1
- 108010011485 Aspartame Proteins 0.000 description 1
- 229910014033 C-OH Inorganic materials 0.000 description 1
- 241000555825 Clupeidae Species 0.000 description 1
- UDIPTWFVPPPURJ-UHFFFAOYSA-M Cyclamate Chemical compound [Na+].[O-]S(=O)(=O)NC1CCCCC1 UDIPTWFVPPPURJ-UHFFFAOYSA-M 0.000 description 1
- 229910014570 C—OH Inorganic materials 0.000 description 1
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 206010056474 Erythrosis Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UQZIYBXSHAGNOE-USOSMYMVSA-N Stachyose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO[C@@H]2[C@@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O2)O1 UQZIYBXSHAGNOE-USOSMYMVSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000004383 Steviol glycoside Substances 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 235000010358 acesulfame potassium Nutrition 0.000 description 1
- 229960004998 acesulfame potassium Drugs 0.000 description 1
- 239000000619 acesulfame-K Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000015218 chewing gum Nutrition 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 239000000625 cyclamic acid and its Na and Ca salt Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 235000021255 galacto-oligosaccharides Nutrition 0.000 description 1
- 150000003271 galactooligosaccharides Chemical class 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002951 idosyl group Chemical class C1([C@@H](O)[C@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000012844 infrared spectroscopy analysis Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 235000014109 instant soup Nutrition 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 210000003866 melanoblast Anatomy 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000001144 powder X-ray diffraction data Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 229930188195 rebaudioside Natural products 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 229960000329 ribavirin Drugs 0.000 description 1
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 1
- 229940085605 saccharin sodium Drugs 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229960001462 sodium cyclamate Drugs 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- UQZIYBXSHAGNOE-XNSRJBNMSA-N stachyose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)O2)O)O1 UQZIYBXSHAGNOE-XNSRJBNMSA-N 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 235000019411 steviol glycoside Nutrition 0.000 description 1
- 229930182488 steviol glycoside Natural products 0.000 description 1
- 150000008144 steviol glycosides Chemical class 0.000 description 1
- 235000019202 steviosides Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H3/00—Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
- C07H3/02—Monosaccharides
Definitions
- the present invention relates to a functional saccharide having a specific crystallinity, a process for producing the same, and a functional sweetener containing the crystalline saccharide.
- Sugar and starch sugar are the biggest markets around 65 trillion worldwide, but as consumers' needs for health-oriented functionalities and premium products around the world become stronger, it is becoming more common for sugar alcohols, fructose Oligosaccharides such as oligosaccharides, and functional sugars such as crystalline fructose.
- Functional sweeteners such as sucralose and asparagus, are growing.
- Sweeteners which collectively refers to seasonings and food additives that make them feel sweet.
- sugar, glucose, and fructose are most widely distributed as natural components in foods, and are also widely used in the manufacture of processed foods.
- a functional alternative sweetener that can be used in place of sugar has attracted attention.
- the present invention provides a method for producing a specific crystalline allylose, producing the crystalline allyl at a high yield and a high purity, and to provide various uses of the specific crystalline allylus.
- the X-ray spectroscopic spectra show diffraction angles (2 &thetas;) of 15.24, 18.78, 30.84 and 31.87 at diffraction angles (2 &thetas; 0.2) of 15.24, 18.78, 30.84 and 28.37 in X- Master
- Alloy crystals according to an embodiment of the present invention may have a Tm temperature of 125.8 ° C soil 5 ° C or a melting enthalpy ( ⁇ H) of 200-220 J / g according to DSC analysis, and the Tm is 125.8 ° C soil 3 ° C.
- the allyl crystal according to an embodiment of the present invention may be an aluminum oxide having at least one characteristic selected from the group consisting of the above-mentioned (1) to (5)
- the ratio of the length (micrometer) of the long diameter to the short diameter of the aluminum crystal is in the range of 1.0 to 8.0.
- a further example of the present invention relates to a sweetener composition
- a sweetener composition comprising an allyl crystal having at least one characteristic selected from the group consisting of the above-mentioned (1) to (5).
- Yet another example of the present invention includes foods, beverages, feeds, medicines or cosmetics containing the above-mentioned allolin crystals.
- the Alloy crystal crystallized in an example of the present invention may have one or more properties selected from the group consisting of the following (1) to (5):
- the powder X-ray spectral analysis of the Alloys crystals according to the present invention may have a powder X-ray spectroscopy spectrum having peaks at diffraction angles (2 ⁇ ) soil 0.2 of 15.24, 18.78, and 30.84.
- the crystals have a diffraction angle (2 ⁇ ) of 0.25 at 15.24, 18.78, 30.84 and 31.87 at a diffraction angle (2 ⁇ ) of 0.2 at 15.24, 18.78, 30.84 and 28.37, or diffraction angles of 15.24, 18.78, 30.84 and 47.06 Ray diffraction spectrum with a peak at each (2 ⁇ ) soil 0.2. More specifically, the X-ray spectroscopic spectra were recorded at 15.24, 18.78, 30.84, 27.37, 47.06 and 31.87 And may have a peak at a diffraction angle (2 ⁇ ) of 0.2.
- the diffraction peak value at the above-mentioned diffraction angle (2 &thetas;) may indicate a slight measurement error due to the measuring instrument or measurement condition or the like.
- the measurement error may be in the range of soil 0.2, preferably soil 0.1, and more preferably soil 0.06.
- the Alloy crystal according to the present invention can be analyzed by thermal analysis, specifically, differential scanning calorimetry (DSC).
- the melting temperature (Tm) of the Alloy crystal according to the present invention may have a temperature of 125.8 ° C soil 5 ° C, preferably 3.0 ° C soil, more preferably 1.0 ° C soil.
- the melting temperature of the alumina crystal may be 200 to 220 J / g, for example, 212.7 J / g, as measured by DSC analysis.
- Differential Scanning Calorimetry (DSC) is a measure of the energy provided to keep the temperature increase of the Alloy powder sample at 2: 5 depending on the silver gradient. In the DSC analysis of crystals, it can be predicted that the higher the heat capacity, the easier the dissolution is, and the higher the heat capacity and the narrower the width of the endothermic peak, the more uniform and harder the crystal is formed.
- the Alloy crystal according to the present invention may have an average short diameter of crystals of 50 or more to 1,000, preferably 50 or more to 500 / zm, and an average long diameter of 350 or more, preferably 350 to 2, 000, and more preferably 400 micrometers or more to 2,000.
- the Allox crystal according to the present invention is a pure crystal grain and has a rectangular hexahedron or a structure close thereto.
- the more uniform the crystals produced in the crystallization process of the Alloys the higher the crystal strength and the smaller the particle breakage, The flowability can be improved.
- the uniformity is low, it is undifferentiated due to breakage of the crystal grains in the drying and transferring stages, and may melt relatively easily, adversely affecting the quality of the product.
- purity of crystal means the purity of the crystals of alum.
- the physical properties including the purity of the crystals of the present invention can be obtained by methods such as X-ray powder diffraction analysis, differential scanning calorimetry (DSC) analysis, infrared spectroscopy (FTIR) analysis, HPLC analysis, LC / MS analysis , And the purity can be specifically analyzed by HPLC chromatography.
- the purity of the crystals of the present invention may be 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, further preferably 95% by weight or more and most preferably 98% by weight or more. Purity within this range is desirable for quality assurance.
- the Alloy crystal of the present invention has better flowability than the powder of the powder of the non-powder type, is not stable in caking, is stable in storage, and has characteristics of easy circulation and handling.
- the aldolose powder has a calorie lower than that of sugar and has characteristics similar to sweet sugar, it is easy to produce a sweet sweetener, solid sweet syrup sweet chocolate, chewing gum, instant juice, instant soup, granule, .
- the alreul Los crystal powder is contained in the various compositions, such as sikeumryopum symbol water, feed and feed i cosmetics, and pharmaceuticals can be used, methods of incorporating the saccharide is exemplified by the process until the ssepum is complete Known methods such as stirring, mixing, dissolving, melting, immersion, penetration, spraying, coating, coating, spraying, injection, crystallization and solidification can be appropriately selected. , And a specific example of the present invention can provide a sweetener composition comprising the aldolose crystal powder.
- the sweetener composition may contain a lotus crystal powder having various contents, and may further include at least one selected from the group consisting of high sweetness sweeteners, monosaccharides except for allyose, disaccharides, sugar alcohols, dietary fibers and oligosaccharides have.
- the monosaccharides and disaccharides may be selected from the group consisting of aloses; Deoxiribosu, Erythrose, Galactose, Idose, Mannose, Ribose, Solbos, Tagatos, Eritrose, Fructos Gentiobios, Gentio Biodoros, Isomaltos, Isomar Roth, Koji Bios, , Melanoblast, melibios, melibius, nigerros, raffinose, mannose, mannoseose, mannose, crossroads, Ruti North, Ruti pressing can be at least one member selected from the group consisting of loss, stachyose, trehalose, trehalose, Tre halreul Ross, two Lanos, a xylene agarobiose, fructose, glucose, and alreul loss. '
- the sugar alcohol is selected from the group consisting of xylitol, maltitol, erythritol, mannitol, lactitol, inosine and sorbic acid. Or more.
- the dietary fiber may be a water-soluble dietary fiber, and the water-soluble dietary fiber may be at least one selected from the group consisting of polytextrose, indigestible maltodextrin and pectin.
- the oligosaccharides include fructooligosaccharides, isomaltooligosaccharides, maltooligosaccharides And galacto-oligosaccharides.
- the high-sweetening sweetener is one selected from the group consisting of aspartame, acesulfame potassium, sodium cyclamate, saccharin sodium, sucralose, stevia sweetener (steviol glycoside, enzyme-treated stevia), dicin, tau martin, Ribavirin, rebaudioside, and monelin. ≪ / RTI >
- the method for producing an allrozole crystal according to the present invention can be carried out by various methods, and preferably by the grating method.
- the method for preparing the above-mentioned all-round crystals comprises the step of mixing at least 90wt% of rosin with 60-85 bricks of Alloy solution at 20-40 ° C or 30-40 ° C, Stirring the solution at a temperature of 35 DEG C slowly to produce crystal nuclei, and cooling the solution to a temperature of i (rc) to grow crystals, for example, an Alloy solution at 35 to 10 It is preferable to keep the cooling rate at 0.01 to 20 ° C / min, and if the cooling rate is low, the productivity of the co-crystal may be low due to the long formation time of the co-crystal When the angular velocity is high, crystals having a small particle size are formed and it may be difficult to recover the crystals.
- the method for producing the above-mentioned alumina crystals comprises 90% by weight or more of alumina, 60 to 85 Bricks and
- the method may include the steps of forming a crystal nucleus in an Alloy solution having an electrical conductivity of 1, 000 LiS / cm or less, and cooling the temperature of the solution to grow crystals. Specifically, Slowly stirring an allylose solution containing 80 to 83 Bricks of allylose in an amount of at least 90% by weight at 35 ° C to produce crystal nuclei, and growing crystals by agitating the solution to KC .
- the method may further include one or more times of increasing the temperature of the solution to a range of 20 to 40 ° C, preferably 30 to 35 ° C, to redissolve the microcrystals produced during cooling.
- the method for producing the allylose crystal may further include a step of adding the seed.
- the seedling addition step and the redissolution step may be optionally included in the method for producing the allolose crystal, or may include both of the above two steps.
- the Alloy solution for crystallization may be a high purity Alloy solution containing Alloy in an amount of 90 wt% or more, for example, 95 wt% or more.
- the viscosity of the composition may be from 2 cps to 200 cps at a temperature of 45 ° C and the electrical conductivity is 1000 uS / cm or less, for example, 0.01 to 1000 uS / cm, preferably 30 LiS / cm or less, 1 to 30 uS / cm.
- the Alloy solution for the crystallization may have a solids content of 60 or greater to 85 Bricks or less, such as greater than 60 Bricks to 80 Bricks, 65-85 Bricks, 65-80 Bricks, or 68-85 Bricks.
- both the seed crystal classified by the transfer process and the present crystallization process must be performed.
- the crystallization process according to the present invention can easily produce crystals of comparatively large size at a high yield even in a one-step process.
- the crystallization process may be performed in the crystal growth process .
- a process of dissolving the microcrystals can be performed by raising the temperature of the solution to 30 to 35 ° C in order to redissolve the microcrystals produced during the agglomeration.
- the crystal growth process and the microcrystalline dissolution process can be repeated at least once or more.
- seeds may be further added for the purpose of increasing the crystal generation rate and size.
- the Alloy crystal comprises an Alloy sol based on solids content of 90% by weight or more and a total solids content of 60 to 85 Bricks at 20 to 40 ° C, preferably 30 to 40 ° C Deg.] C, for example, at 35 [ deg.] C to produce a small amount of crystal nuclei, followed by decreasing the temperature by rc to degrade at a temperature of 10 [ deg.] C.
- Microcrystals By remelting repeating at least once the step of increasing the temperature of the solution to 30 to 35? Dissolve the microcrystals to, it can 'be prepared alreul LOS determined.
- a method for producing an aldolose crystal comprises the steps of: a second ion purification of an allyl fraction obtained in an SMB chromatographic separation step; a step of concentrating the ion-purified allyl fraction; To obtain an Alloy crystal, and may optionally further include a recovery process, a washing process and a drying process for the Alloy crystals.
- Specific examples of the preparation of the alumina crystals may include a first ion purification, an SMB chromatography separation, a secondary ion purification, a concentration and a crystallization process.
- the purification process, or both the activated carbon treatment process and the ion purification process can be performed.
- the method of preparing an allrozole crystal according to the present invention can crystallize by controlling the temperature and concentration of an alcohol concentrate solution. Specifically, the supersaturated state required for crystallization can be obtained by lowering the temperature of the allolose solution or by adjusting the D- Alloy in solution. Can be maintained by varying the concentration of D-allose.
- the crystallization process is monitored by collecting a sample at a predetermined interval in the crystallization step and observing the concentration of the supernatant obtained by visual observation or microscopic observation or by centrifugation of the sample, Depending on the result, the temperature or the concentration of the D-allose can be controlled.
- rapid cooling to a temperature range of 10 to 25 ° C through a heat exchanger, followed by repeated heating and cooling have.
- the method for producing an allrox crystal according to the present invention is characterized by further comprising the steps of recovering the allyl crystals obtained in the crystallization step by various solid-liquid separation methods, for example, centrifugal separation, washing with deionized water, and drying .
- the drying step may be performed in a fluid bed dryer or a vacuum dryer . But is not limited thereto.
- the allyl contained in the alumina crystals may be 94 wt% or more, 95 wt% or more, 96 wt% or more, 97 wt% or more, 98 wt% or more, or 99 wt% or more based on the total solid content of 100 wt% have. ⁇ Effects of the Invention ⁇
- the allrose crystal and the method for producing the same according to the present invention can produce allodyne crystals with high yield and high purity.
- the method for producing the allodolite crystals can be applied to various foods and beverages including the sweetener.
- Figs. 1 to 3 are optical microscopic photographs of the alumina powder obtained in Examples 1 to 3 of the present invention at a magnification X100.
- SEM scanning electron microscope
- a high-purity allyl containing 94.6% by weight of allylose based on 100% by weight of solid content was concentrated to a concentration of 82.6 Bx (w / w%) to prepare a syrup for crystallization having an electrical conductivity of 8 uS / cm .
- the crystals were crystallized at a temperature of 35 ° C at which the supersaturated state of the syrup was formed at a temperature of 1 ° C.
- the crystals were gradually grown at 35 ° C. and a small amount of crystals After the nucleus is formed, the crystal is grown by decreasing the temperature by 1 ° C per hour.
- the solution is raised to 30-35 ° C
- the crystallization was performed by repeating the above crystal growth process and the microcrystalline melting process at least once or more.
- the allyl crystals prepared in this manner were prepared by removing the mother liquor by centrifugal dehydration, The crystals were washed with cooling water, then dried and recovered.
- the obtained primary crystals were dissolved in water to prepare an 81.6 Brix Alloy lysine solution having an Alloy 99.5% solids content on the basis of a solid content of 100 wt%.
- the purity of the above-prepared alumina crystal was determined by the following HPLC analysis.
- Example 2 Manufacture of alallose crystals
- High-purity alum containing 94.6% by weight of allylose based on 100% by weight of solid content, was concentrated to 82.6 Bx concentration to prepare a crystallization allyl for crystallization with an electrical conductivity of 16 uS / cm.
- the crystals were cooled to a temperature of 35 ° C at which the supersaturated state of the syrup was cooled to a temperature of rc to slowly crystallize the crystals, the resulting crystals were slowly stirred at 35 ° C to obtain a small amount of crystals
- the temperature of the solution is raised to 30 to 35 ° C in order to redissolve the microcrystals produced during the crystallization step in the crystal growth process.
- the crystallization was performed by repeating the above-mentioned crystal growth process and microcrystalline melting process at least once.
- the allyl crystals prepared in this case were removed by centrifugal dehydration to remove the mother liquor, and the crystals were washed with distilled water After that, it was dried and recovered.
- a high-purity allyl containing 91.5% by weight of allylose based on 100% by weight of solid content was concentrated to a concentration of 81.2 Bx to prepare a crystallized allyl syrup having an electrical conductivity of 21 uS / cm.
- Crystallization was carried out by gradually cooling the prepared allylose syrup for crystallization to a supersaturated state at a temperature of 35 ° C to a temperature of C degrees . At this time, the aldolose seeds were added and slowly stirred at a temperature of 35 ° C to produce a small amount of crystal nuclei, and the crystal was grown by decreasing the temperature by 1 ° C per hour.
- the temperature of the solution is raised to 30 to 35 ° C to dissolve the microcrystals.
- the crystallization process and the microcrystalline dissolution process are repeated at least once The crystallization was repeatedly performed.
- the columnar crystals prepared here were removed by centrifugal dehydration to remove the mother liquor, and the crystals were washed with cooling water, and then dried and recovered.
- Example 1 the purity of the crystals obtained by the crystallization process of Alloy syrup twice and the yield of crystals of the crystals were higher than that of Example 2 in which the crystallization process was performed once.
- the purity of crystals and the yield of crystals were higher in Example 1 and Example 2 in which the purity of the crystallization stock solution was high than in Example 3 in which the crystallization stock solution having a relatively low purity was used.
- Example 4 Analysis of Alloy Crystal Characteristic
- the particle size distributions of the alallose crystals obtained from 1 and 3 were confirmed by using standard mesh of Mesh.
- Mesh si ze of the standard net was 20, 30, 40, 60, 80, 100mesh, and the size of the hole of the standard net, The distribution was measured.
- the standard mesh size is 850, 600, 425, 250, 180, and 150 ⁇ 1.
- Each sample was weighed at a weight of 100 g, placed in a standard mesh of mesh size, and vibrated for 3 minutes to pass through a standard mesh. The weight of the sample remaining in the sieve according to each mesh size is determined and the percentage value is shown in Table 1.
- Table 1 the particle size distribution of each mesh shows the weight percentage of the particles.
- the allylose crystals of Example 1 exhibit a very narrow distribution of 90.2% by weight of the particle distribution, while the allyl crystals of Example 3 have the largest distribution at 40 ⁇ , 80 ⁇ , 60 ⁇ , 40 ⁇ , and 30 ⁇ . It was confirmed that the fineness of the product was relatively low and the particle size distribution was uniform as the ratio of the long diameter to the short diameter was small and the crystal grains were solid as in Example 1. Further, particles having a large diameter / small diameter ratio and a low uniformity are undifferentiated due to particle breakage during drying and transportation, and the particle size becomes uneven, so that a wide range of particle size distribution can be obtained. 4-2: Crystalline morphology and crystal grain size analysis
- FIG. 1 to 3 show photographs of the optical microscope photographs obtained by measuring the magnifications X100 of the all-round crystals obtained in Examples 1 to 3.
- Fig. 1 to 3 show photographs of the optical microscope photographs obtained by measuring the magnifications X100 of the all-round crystals obtained in Examples 1 to 3.
- the Alloy crystal according to the present invention has a rectangular hexahedron or a crystal structure close thereto.
- Example 6 Infrared Absorption (IR) Spectrum Analysis
- Scan range 800 - 4,000 ctrf 1 and averaged at. 4 cm -1 resolution.
- infrared absorption (IR) spectral analysis showed that the functional groups -0H and C-0-C, CC, C-OH, And it was confirmed that the crystals of Examples 1 to 3 had the same structure as that of the Alloose molecule.
- the IR analysis spectrum is shown in Fig. Example 7: X-ray diffraction analysis (XRD ' ) analysis
- Tube voltage 45 kV I tube current: 200 mA
- Scan range: 5 to 80 ° 2 ⁇
- Step size 0.0 ⁇
- Example 1 As shown in Table 4 above, the Alloy crystals obtained in Example 1 had 2? Values of 15.24, 18.78, and 30.84 on a powder X-ray spectroscopic spectrum; 15.24, 18.78, 30.84, and 28.37; or 15.24, 18.78, 30.84, and 31.87;
- Example 8 Measurement of Flowability of Alloy Crystal
- the crystal powders of Examples 1 and 3 were passed through a funnel fixed at a constant height of 20 cm on a perfectly flat reference plate to form a three-dimensional The angle of repose was measured at different points.
- Embodiment the angle of repose of the crystals obtained from Example 1 is 42 .6 °, 43 .3 °, 42.2 ° ⁇ 0.2 ° and the mean value of the angle of repose of 42 .7 ⁇ crystals obtained was 0.2 °, the third embodiment is 46.0 °, 45.3 ° , 46 .2 ° ⁇ 0.2 ° and the average value was 45.8 ° + 0 .2 °.
- the angle of repose is the shape created by the natural fall of the powder on the horizontal plane, which has a great influence on the flowability. Generally, if the angle of repose is small, it can be judged that the flowability of the powder is good.
- sugar average particle size 420
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【명세서】 【Specification】
【발명의 명칭】 Title of the Invention
결정형 '기능성 감미료 【기술분야】 Crystalline type ' functional sweetener [Technical field]
본 발명은 특정 결정성을 갖는 기능성 당류, 이의 제조방법 및 상기 결정성 당류를 포함하는 기능성 감미료에 관한 것이다. The present invention relates to a functional saccharide having a specific crystallinity, a process for producing the same, and a functional sweetener containing the crystalline saccharide.
【배경기술】 BACKGROUND ART [0002]
설탕 및 전분당으로 대변되는 일반 당류가 전세계 약 65조 정도로 가장 큰 시장을 형성하고 있지만, 전세계적으로 건강지향 기능성 및 프리미엄 제품으로 소비자 니즈 (needs )가 강해지면서, 자일리를 같은 당알콜류, 프락토 올리고당과 같은 올리고당류, 그리고 결정 과당과 같은 기능성 당류. 수크랄로스나 아스파팜과 같은 감미료 등의 기능성 감미료 시장이 성장하고 있다. Sugar and starch sugar are the biggest markets around 65 trillion worldwide, but as consumers' needs for health-oriented functionalities and premium products around the world become stronger, it is becoming more common for sugar alcohols, fructose Oligosaccharides such as oligosaccharides, and functional sugars such as crystalline fructose. Functional sweeteners, such as sucralose and asparagus, are growing.
단맛을 느끼게 하는 조미료 및 식품첨가물을 총칭하는 감미료. 수많은 감미료 중에서 설탕, 포도당, 과당 등은 식품 중의 자연성분으로 가장 널리 분포하고 있으며, 가공식품 제조 시에도 .가장 널리 사용되고 있다. 그러나 '설탕 '이 층치, 비만, 당뇨병 등을 유발한다는 부정적안 측면이 부각되면서 세계적으로 설탕을 대신하여 사용할 수 있는 기능성 대체 감미료가 주목받고 있다. Sweeteners, which collectively refers to seasonings and food additives that make them feel sweet. Among many sweeteners, sugar, glucose, and fructose are most widely distributed as natural components in foods, and are also widely used in the manufacture of processed foods. However, as a negative aspect of 'sugar' causing laxity, obesity, and diabetes, a functional alternative sweetener that can be used in place of sugar has attracted attention.
최근, 기능성 감미료로서 설탕 또는 과당 등을 대체할 수 있는 당류로서 각광받는 당류 중 하나로서 알를로스가 있다. 알를로스는 화학적 또는 생물학적 방법으로 제조될 수 있으나, 생산물 중 알를로스 함량이 낮기 때문에 정제 및 농축하는 공정이 필요하다. 그러나 농축된 시럽의 경우. 그 적용의 한계가 있으므로, 결정 분말에 대한 요구가 높으나, 알를로스는 결정성이 낮아 결'정화하기 어렵다. In recent years, there has been known as one of the saccharides which can be substituted for sugars or fructose as a functional sweetener, as a sugar. Allo Ross can be produced by chemical or biological methods, but it requires a process of purification and concentration because of the low content of aldehyde in the product. But in the case of concentrated syrup . Due to the limitations of its application, high but demand for crystalline powder, Los alreul is difficult to purify low crystalline grain.
또한, 알를로스 전환 효소 또는 상기 효소를 생산하는 균주를 이용한 생물학적 방법으로 알를로스를 생산하는 경우에도, 낮은 전환율로 인해 D- 알롤로스의 순도를 높힌 후, 결정화하지 않으면 안되어 D-알를로스의 공업적 이용을 목적으로 했을 경우, 정제 공정이나 정제 수율 결정화 수율 등에 미해결의 과제가 남아 있다. 【발명의 상세한 설명】 In addition, even in the case of producing allelose by a biological method using an allelosyltransferase or a strain producing the enzyme, it is necessary to increase the purity of D-allose due to low conversion and then crystallize it. There is still a problem to be solved in the purification process and the yield of crystallization yield of the purification yield. DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】 [Technical Problem]
본 발명의 목적은 특정 결정성의 알를로스를 제공하고, 또한 상기 결정성 알를로스를 고수율 및 고순도로 제조하는 방법을 제공하는 것이다. 또한, 본 발명의 목적은 결정성 알롤로스를 포함하는 감미료, 상기 감미료를 적용한 다양한 식품 및 음료 등을 제공하는 것이다. It is an object of the present invention to provide a process for producing a specific crystalline alum and also for producing the crystalline alum with high yield and high purity. It is also an object of the present invention to provide a sweetener containing crystalline allylose, various foods and beverages to which the sweetener is applied, and the like.
【기술적 해결방법】 [Technical Solution]
본 발명은 특정 결정형의 알를로스를 제공하고, 상기 결정성 알를로스를 고수율 및 고순도로 제조하는 방법 및 상기 특정 결정성 알를로스의 다양한 용도를 제공하는 것이다. The present invention provides a method for producing a specific crystalline allylose, producing the crystalline allyl at a high yield and a high purity, and to provide various uses of the specific crystalline allylus.
본 발명의 일예에 따른 알를로스 결정은 X—선 분광 스펙트럼에서 The Alloy crystals according to an embodiment of the present invention are characterized by X-ray spectroscopy
15.24, 18.78, 및 30.84의 회절각 (2Θ) 土 0.2에서 피크를 갖는 X-선 분광 스펙트럼을 갖는 알를로스 결정일 수 있다. '본 발명의 일예에서, 상기 X-선 분광 스펙트럼은 X-선 분광 스펙트럼에서 15.24, 18.78, 30.84 및 28.37의 회절각 (2Θ) 士 0.2에서, 15.24, 18.78, 30.84 및 31.87의 회절각 (2Θ) 士15.24, 18.78, and 30.84 at diffraction angle (2 &thetas;) soil 0.2. In one embodiment of the present invention, the X-ray spectroscopic spectra show diffraction angles (2 &thetas;) of 15.24, 18.78, 30.84 and 31.87 at diffraction angles (2 &thetas; 0.2) of 15.24, 18.78, 30.84 and 28.37 in X- Master
0.2에서 또는 15.24, 18.78, 30.84 및 47.06의 회절각 (2Θ) 土 0.2에서 피크를 갖는 X-선 분광 스펙트럼을 갖는 알를로스 결정일 수 있다. 상기 알를로스 결정의 갖는 X-선 분광 스펙트럼에서 피크를 갖는 회절각은 X선 회절 분석 결과를 상위 (Relative Intensity %) 주요 피크 및 형태 특이적인 피크를 선정하여 표시한 것이다. Ray spectroscopic spectrum having a peak at 0.2 or a diffraction angle (2 &thetas;) of 0.2 at 15.24, 18.78, 30.84 and 47.06. The diffraction angles having peaks in the X-ray spectroscopic spectrum of the above-mentioned all-round crystals are shown by selecting X-ray diffraction analysis results of the peak (Relative Intensity%) main peak and shape-specific peak.
본 발명의 일예에 따른 알를로스 결정은 DSC 분석에 따라 125.8 °C 土 5°C의 Tm 온도 또는 200 내지 220 J/g 의 용융 엔탈피 (ΔΗ)를 가질 수 있으며, 상기 Tm은 125.8 °C 土 3°C일 수 있다. Alloy crystals according to an embodiment of the present invention may have a Tm temperature of 125.8 ° C soil 5 ° C or a melting enthalpy (ΔH) of 200-220 J / g according to DSC analysis, and the Tm is 125.8 ° C soil 3 ° C.
본 발명의 일예에 따른 알를로스 결정의 단직경에 대한 장직경 길이 C마이크로미터)의 비율 (=장직경 /단직경 )이 1.0 내지 8.0일 수 .있다. 본 발명의 일예에 따른 알를로스 결정은 상기 (1) 내지 (5)으로 이루어지는 군에서 선택된 1종 이상의 특성을 갖는 알를로스 결정일 수 있다: (Long diameter / short diameter) of the long diameter (length C micrometer) to the short diameter of the all-round crystal according to an embodiment of the present invention may be 1.0 to 8.0. The allyl crystal according to an embodiment of the present invention may be an aluminum oxide having at least one characteristic selected from the group consisting of the above-mentioned (1) to (5)
(1) 분말 X—선 분광 스펙트럼 상에서 15.24, 18.78, 및 30.84의 회절각 (2Θ) 土 0.2에서 피크를 갖는 분말 X-선 분광 스펙트럼을 갖는 것, (1) having a powder X-ray spectroscopy spectrum with a peak at diffraction angle (2Θ) soil 0.2 of 15.24, 18.78, and 30.84 on a powder X-ray spectroscopy spectrum,
(2) 시차주사열량분석 (DSC)에 따라 125.8°C 士 5°C의 Tm 온도를 갖는 것, (3) 시차주사열량분석에 따라 200 내지 220 J/g 의 용융 엔탈피 (ΔΗ)를 갖는 것 , (2) having a Tm temperature of 125.8 ° C and 5 ° C according to differential scanning calorimetry (DSC) (3) having a melting enthalpy (? H) of 200 to 220 J / g according to differential scanning calorimetry,
(4) 350 이상, 바람직하게는 350 내지 2,000/m 의 평균 장직경을 갖는 것, 및 (4) having an average long diameter of 350 or more, preferably 350 to 2,000 / m, and
(5) 알를로스 결정의 단직경에 대한 장직경 길이 (마이크로미터)의 비율 (=장직경 /단직경)이 1.0 내지 8.0 범위인 것. (5) The ratio of the length (micrometer) of the long diameter to the short diameter of the aluminum crystal (= long diameter / short diameter) is in the range of 1.0 to 8.0.
본 발명의 추가 예는, 상기 (1) 내지 (5)으로 이루어지는 군에서 선택된 1종 이상의 특성을 갖는 알를로스 결정을 포함하는 감미료 조성물에 관한 것이다. 본 발명의 또 다른 예는, 상기 알롤로스 결정을 포함하는 식품, 음료, 사료, 의약품 또는 화장품을 포함한다. A further example of the present invention relates to a sweetener composition comprising an allyl crystal having at least one characteristic selected from the group consisting of the above-mentioned (1) to (5). Yet another example of the present invention includes foods, beverages, feeds, medicines or cosmetics containing the above-mentioned allolin crystals.
이하ᅵ, 본 발명을 더욱 자세히 설명하고자 한다. Than i, it is intended to describe the invention in more detail.
본 발명의 일예에 파른 알를로스 결정은 하기 (1) 내지 (5)으로 이루어지는 군에서 선택된 1종 하나 이상의 특성을 갖는 것일 수 있다: The Alloy crystal crystallized in an example of the present invention may have one or more properties selected from the group consisting of the following (1) to (5):
(1) 분말 X-선 분광 스펙트럼 상에서 15.24, 18.78, 및 30.84의 회절각 (2Θ) ± .0.2에서 피크를 갖는 분말 Xᅳ선 분광 스펙트럼을 갖는 것, (1) with a powder X-ray spectroscopy spectrum having peaks at diffraction angles (2Θ) ± 0.2 at 15.24, 18.78, and 30.84 on a powder X-ray spectroscopy spectrum,
(2) 시차주사열량분석 (DSC)에 따라 125.8°C 土 5°C의 Ttn 온도를 갖는 것, (2) having a Ttn temperature of 125.8 ° C soil 5 ° C according to differential scanning calorimetry (DSC)
(3) 시차주사열량분석에 따라 200 내지 220 J/g 의 용융 엔탈피 (ΔΗ)를 갖는 것, (3) having a melting enthalpy (? H) of 200 to 220 J / g according to differential scanning calorimetry,
(4) 350卿이상, 350 내지 2000 의 평균 장직경을 갖는 것, 및 (4) those having an average long diameter of 350 to 2000 or more, and
(5) 알를로스 결정의 단직경에 대한 장직경 길이 (마이크로미터)의 비율 (=장직경 /단직경)이 1.0 내지 8.0 범위인 것, 및 본 발명에 따른 알를로스 결정은 다양한 결정화 방법으로 얻어질 수 있으나, 넁각법에 의해'제조한알를로스 결정으로 측정한 특성일 수 있다. 본 발명에 따른 알를로스 결정의 분말 X—선 분광 스펙트럼 분석에 의하면, 15.24, 18.78, 및 30.84의 회절각 (2Θ) 土 0.2에서 피크를 갖는 분말 X-선 분광 스펙트럼을 갖는 것일 수 있다. 바람직하게는 상기 결정은 15.24, 18.78, 30.84 및 28.37의 회절각 (2Θ) 士 0.2에서, 15.24, 18.78, 30.84 및 31.87의 회절각 (2Θ) 土 0.2에서, 또는 15.24, 18.78, 30.84 및 47.06의 회절각 (2Θ) 土 0.2에서 피크를 갖는 분말 X—선 분광 스펙트럼을 갖는 것일 수 있다. 더욱 자세하게는, 상기 Xᅳ선 분광 스펙트럼은 X-선 분광 스펙트럼에서 15.24, 18.78, 30.84, 27.37, 47.06 및 31.87의 회절각 (2Θ) 士 0.2에서 피크를 갖는 것일 수 있다. (= Long diameter / short diameter) of the length (micrometer) of the long diameter to the short diameter of the alumina crystal (5) is in the range of 1.0 to 8.0, and the alumite crystal according to the present invention is obtained by various crystallization methods It can be, but may be a characteristic measured by the "manufacturing hanalreul loss determined by the nyaeng gakbeop. The powder X-ray spectral analysis of the Alloys crystals according to the present invention may have a powder X-ray spectroscopy spectrum having peaks at diffraction angles (2Θ) soil 0.2 of 15.24, 18.78, and 30.84. Preferably, the crystals have a diffraction angle (2Θ) of 0.25 at 15.24, 18.78, 30.84 and 31.87 at a diffraction angle (2Θ) of 0.2 at 15.24, 18.78, 30.84 and 28.37, or diffraction angles of 15.24, 18.78, 30.84 and 47.06 Ray diffraction spectrum with a peak at each (2Θ) soil 0.2. More specifically, the X-ray spectroscopic spectra were recorded at 15.24, 18.78, 30.84, 27.37, 47.06 and 31.87 And may have a peak at a diffraction angle (2Θ) of 0.2.
상술한 회절각 (2Θ)에서 회절 피크 값은 측정기기 또는 측정 조건 등으로 인한 약간의 측정 오차를 나타낼 수도 있다. 구체적으로, 측정 오차는 土 0.2, 바람직하게는 土 0.1, 더욱 바람직하게는 土 0.06의 범위 내일 수 있다. The diffraction peak value at the above-mentioned diffraction angle (2 &thetas;) may indicate a slight measurement error due to the measuring instrument or measurement condition or the like. Specifically, the measurement error may be in the range of soil 0.2, preferably soil 0.1, and more preferably soil 0.06.
본 발명에 따른 알를로스 결정은 열분석법, 구체적으로 시차주사열량분석법 (DSC)으로 분석될 수 있다. DSC 분석에 의하면, 본 발명에 따른 알를로스 결정의 용융온도 (Tm)는 125.8°C 土 5°C , 바람직하게는 土 3.0 °C, 더욱 바람직하게는 土 1.0 °C을 가질 수 있다. 상기 알를로스 결정은 DSC 분석에 의한 용융 엔탈피 (ΔΗ)가 200 내지 220J/g, 예를 들면 212.7 J/g일 수 있다. 시차 주사 열량법 (DSC)은 은도 구배에 따라 2:작되며, 알를로스 분말 시료의 온도 증가를 유지하기 위해 제공된 에너지를 측정한 것이다. 결정의 DSC 분석에서 열용량이 높을 수록 쉽게 녹기 어려우며, 열용량이 높고 흡열 피크의 폭이 좁을수록 결정이 균일하고 단단하게 형성되어 있음을 예측할 수 있다. The Alloy crystal according to the present invention can be analyzed by thermal analysis, specifically, differential scanning calorimetry (DSC). According to the DSC analysis, the melting temperature (Tm) of the Alloy crystal according to the present invention may have a temperature of 125.8 ° C soil 5 ° C, preferably 3.0 ° C soil, more preferably 1.0 ° C soil. The melting temperature of the alumina crystal may be 200 to 220 J / g, for example, 212.7 J / g, as measured by DSC analysis. Differential Scanning Calorimetry (DSC) is a measure of the energy provided to keep the temperature increase of the Alloy powder sample at 2: 5 depending on the silver gradient. In the DSC analysis of crystals, it can be predicted that the higher the heat capacity, the easier the dissolution is, and the higher the heat capacity and the narrower the width of the endothermic peak, the more uniform and harder the crystal is formed.
본 발명에 따른 알를로스 결정은, 결정의 평균 단직경이 50 이상 내지 1,000 일 수 있으며, 바람직하게는 50 이상 내지 500/zm일 수 있으며, 평균 장직경이 350 이상, 바람직하게는 350 내지 2,000 , 더욱 바람직하게는 400 마이크로 미터 이상 내지 2,000 일 수 있다. The Alloy crystal according to the present invention may have an average short diameter of crystals of 50 or more to 1,000, preferably 50 or more to 500 / zm, and an average long diameter of 350 or more, preferably 350 to 2, 000, and more preferably 400 micrometers or more to 2,000.
또한, 본 발명에 따른 알를로스 결정의 단직경에 대한 장직경의 길이 (마이크로미터) 비율 (=장직경 /단직경)이, 1.0 내지 8.0, 1.0 내지 6.9, The length (micrometer) ratio (= long diameter / short diameter) of the long diameter to the short diameter of the allodynic crystal according to the present invention is preferably 1.0 to 8.0, 1.0 to 6.9,
1.0 내지 6.0, 1.0 내지 5.5, 1.0 내지 5.0, 1.1 내지 8.0, 1.1 내지 6.9,1.0 to 6.0, 1.0 to 5.5, 1.0 to 5.0, 1.1 to 8.0, 1.1 to 6.9,
1.1 내지 6.0, 1.1 내지 5.5, 1.1 내지 5.0, 1.3 내지 8.0, 1.3 내지 6.9, 1.3 내지 6.0, 1.3 내지 5.5, 1.3 내지 5.0, 1.5 내지 8.0, 1.1 내지 6.9, 1.5 내지 6.0, 1.5 내지 5.5, 1.5 내지 5.0, 2.0 내지 8.0, 2.0 내지 6.9,1.1 to 6.0, 1.1 to 5.5, 1.1 to 5.0, 1.3 to 8.0, 1.3 to 6.9, 1.3 to 6.0, 1.3 to 5.5, 1.3 to 5.0, 1.5 to 8.0, 1.1 to 6.9, 1.5 to 6.0, 1.5 to 5.5, 5.0, 2.0 to 8.0, 2.0 to 6.9,
2.0 내지 6.0, 2.0 내지 5.5, 2.0 내지 5.0일 수 있다. 2.0 to 6.0, 2.0 to 5.5, and 2.0 to 5.0.
본 발명에 따른 알를로스 결정에 대한 분말 XRD 패턴분석 결과에 의하면, 본 발명에 따른 알롤로스 결정은 순수한 결정 입자로서, 장방형 육면체 또는 이에 근접하는 구조를 갖는다. 본 발명의 결정 구조가 입방정계에 근접할 수록, 결정의 균일도와 견고함이 높아지므로 더욱 바람직하다. According to the result of the powder XRD pattern analysis on the Alloy crystal according to the present invention, the Allox crystal according to the present invention is a pure crystal grain and has a rectangular hexahedron or a structure close thereto. The closer the crystal structure of the present invention is to a cubic system, the more preferable is the uniformity and firmness of crystals.
또한, 알를로스의 결정화 공정에서 제조된 결정이 균일할수록, 결정의 강도가 높아지고 입자 깨짐이 최소화됨으로써 입도 분포가 균일해지고, 이로 인해 흐름성이 향상될 수 있다. 반면, 균일도가 낮올 경우, 건조 및 이송 단계에서 결정 입자의 깨짐에 의해 미분화 되고, 상대적으로 쉽게 녹을 수도 있어 제품의 품질에 악영향을 끼친다. Further, the more uniform the crystals produced in the crystallization process of the Alloys, the higher the crystal strength and the smaller the particle breakage, The flowability can be improved. On the other hand, when the uniformity is low, it is undifferentiated due to breakage of the crystal grains in the drying and transferring stages, and may melt relatively easily, adversely affecting the quality of the product.
본 발명에서, "결정체의 순도"는 알를로스의 결정의 순도를 의미한다. 본 발명의 결정체의 순도를 포함한 물성은, 예를 들면 X-선 분말 회절분석법, 시차주사 열량계 (DSC)분석법, 적외선분광 (FTIR) 분석, HPLC 분석 , LC/MS 분석법 등과 같은 방법에 의해 구할 수 있으며, 순도는 구체적으로 HPLC 크로마토그래피로 분석할 수 있다. In the present invention, " purity of crystal " means the purity of the crystals of alum. The physical properties including the purity of the crystals of the present invention can be obtained by methods such as X-ray powder diffraction analysis, differential scanning calorimetry (DSC) analysis, infrared spectroscopy (FTIR) analysis, HPLC analysis, LC / MS analysis , And the purity can be specifically analyzed by HPLC chromatography.
본 발명의 결정체의 순도는 70 중량 % 이상, 바람직하게는 80 중량 ¾> 이상, 더욱 바람직하게는 90 중량 % 이상, 더욱 바람직하게는 95 중량 ¾ 이상 가장 바람직하게는 98 중량 %이상이어도 된다. 이 범위 내의 순도가 품질 보장을 위해 바람직하다. The purity of the crystals of the present invention may be 70% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, further preferably 95% by weight or more and most preferably 98% by weight or more. Purity within this range is desirable for quality assurance.
본 발명의 알를로스 결정은 미분형의 분말에 비해 흐름성이 좋고, Caking이 잘 되지 않아 보관 시 안정하고, 유통 및 취급이 용이한 특성올 가진다. 또한, 상기 알롤로스 분말을 설탕보다 낮은 칼로리를 갖고, 감미는 설탕과 유사한 특성을 가지므로, 흔합 감미료, 고형 흔합 감미료 초콜릿, 추잉껌, 즉석 쥬스, 즉석 스프, 과립, 정제 등의 제조가 용이하게 유리하게 실시할 수 있다. 또한, 상기 알를로스 결정 분말은, 식음료품, 기호물, 사료, 사료ᅵ 화장품, 의약품 등의 각종 조성물에 함유되어 사용될 수 있으며 , 당질을 함유시키는 방법은 그 쎄품이 완성할 때까지의 공정으로 예를 들면 흔화, 믹싱, 용해, 융해, 침지, 침투, 살포, 도포, 피복, 분무, 주입, 결정화, 고화 등의 공지 방법이 적절히 선택될 수 있다. , 본 발명의 구체적 일예는, 상기 알롤로스 결정 분말을 포함하는 감미료 조성물을 제공할 수 있다. 감미료 조성물은 다양한 함량을 알를로스 결정 분말을 포함할 수 있으며 , 고감미 감미료, 알를로스를 제외한 단당류, 이당류, 당알코올류, 식이섬유류 및 올리고당류로 이루어진 군에서 선택된 1 이상을 추가로 포함할 수 있다. The Alloy crystal of the present invention has better flowability than the powder of the powder of the non-powder type, is not stable in caking, is stable in storage, and has characteristics of easy circulation and handling. In addition, since the aldolose powder has a calorie lower than that of sugar and has characteristics similar to sweet sugar, it is easy to produce a sweet sweetener, solid sweet syrup sweet chocolate, chewing gum, instant juice, instant soup, granule, . In addition, the alreul Los crystal powder is contained in the various compositions, such as sikeumryopum symbol water, feed and feed i cosmetics, and pharmaceuticals can be used, methods of incorporating the saccharide is exemplified by the process until the ssepum is complete Known methods such as stirring, mixing, dissolving, melting, immersion, penetration, spraying, coating, coating, spraying, injection, crystallization and solidification can be appropriately selected. , And a specific example of the present invention can provide a sweetener composition comprising the aldolose crystal powder. The sweetener composition may contain a lotus crystal powder having various contents, and may further include at least one selected from the group consisting of high sweetness sweeteners, monosaccharides except for allyose, disaccharides, sugar alcohols, dietary fibers and oligosaccharides have.
예를 들어 , 상기 단당류 및 이당류는 , 알로스 ; 데옥시리보스, 에리트를로스 , 갈락토스 , 이도스 , 만노스, 리보스, 솔보스 , 타가토스 , 에리트로스, 푸쿨로스 겐티오비오스, 겐티오비을로스, 이소말토스, 이소말를로스, 코지비오스 , 락를로스 , 알트로스 , 라미나리비오스 , 아라비노스 , 류크로스 푸코스 , 람노스 , 소르보스 , 말를로스, 만노비오스, 만노수크로스, 멜레지토스 , 멜리비오스, 멜리비울로스, 니게로스 , 라피노스 , 루티노스, 루티눌로스, 스타키오스, 트레오스, 트레할로스, 트레할를로스, 투라노스, 자일로비오스, 프룩토스', 글루코스, 및 알를로스로 이루어지는 군에서 선택된 1 종 이상일 수 있다. ' For example, the monosaccharides and disaccharides may be selected from the group consisting of aloses; Deoxiribosu, Erythrose, Galactose, Idose, Mannose, Ribose, Solbos, Tagatos, Eritrose, Fructos Gentiobios, Gentio Biodoros, Isomaltos, Isomar Roth, Koji Bios, , Melanoblast, melibios, melibius, nigerros, raffinose, mannose, mannoseose, mannose, crossroads, Ruti North, Ruti pressing can be at least one member selected from the group consisting of loss, stachyose, trehalose, trehalose, Tre halreul Ross, two Lanos, a xylene agarobiose, fructose, glucose, and alreul loss. '
상기 당알코올류는 자일리를, 말티틀, 에리스리를, 만니를, 락티틀, 이노시를 및 솔비를로 이루어지는 군에서 선택된 1종. 이상일 수 있다. 상기 식이섬유류는 수용성 식이석유일 수 있으며, 수용성 식이섬유는 폴리텍스트로스, 난소화성말토텍스트린 및 펙틴으로 이루어지는 군에서 선택된 1종 이상일 수 있다ᅳ 상기 올리고당류는 프락토올리고당, 이소말토올리고당, 말토올리고당 및 갈락토올리고당으로 이루어지는 군에서 선택된 1종 이상일 수 있다. Wherein the sugar alcohol is selected from the group consisting of xylitol, maltitol, erythritol, mannitol, lactitol, inosine and sorbic acid. Or more. The dietary fiber may be a water-soluble dietary fiber, and the water-soluble dietary fiber may be at least one selected from the group consisting of polytextrose, indigestible maltodextrin and pectin. The oligosaccharides include fructooligosaccharides, isomaltooligosaccharides, maltooligosaccharides And galacto-oligosaccharides.
상기 고감미 감미료는 상기 고감미감미료는 아스파탐, 아세설팜칼륨, 사이클라민산 나트륨, 사카린 나트륨, 수크랄로스, 스테비아 감미료 (스테비올 배당체, 효소처리 스테비아) , 둘신, 타우마틴, 토마틴, 네오탐, 리바우디오사이드 및 모넬린으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다. Wherein the high-sweetening sweetener is one selected from the group consisting of aspartame, acesulfame potassium, sodium cyclamate, saccharin sodium, sucralose, stevia sweetener (steviol glycoside, enzyme-treated stevia), dicin, tau martin, Ribavirin, rebaudioside, and monelin. ≪ / RTI >
본 발명에 따른 알를로스 결정의 제조방법은, 다양한 방법으로 수행할 수 있으며, 바람직하게는 넁각법으로 수행할 수 있다. 본 발명에 따른 넁각법와 일예는 , 상기 알를로스 결정의 제조방법은 알를로스 90중량 % 이상을 포함하며 60 내지 85 브릭스의 알를로스 용액을 20 내지 40 °C , 또는 30 내지 40 °C , 예를 들면 35°C 온도에서 천천히 교반하여 결정핵을 생성하는 단계, 및 상기 용액의 온도를 i(rc까지 냉각시켜 결정을 성장시키는 단계를 포함할 수 있다. 예를 들면, 알를로스 용액을 35 내지 10 °c 온도로 냉각시켜 과포화 상태를 유도하여 결정을 생성시킬 수 있다. 냉각속도는 0.01 내지 20 °C /분을 유지하는.것이 좋으며 , 냉각속도가 낮을 경우 공결정 형성시간이 길어서 생산성이 낮을 수 있고, 넁각속도가 높을 경우 작은 입자 크기의 결정이 형성되어 결정의 회수가 어려울 수 있다. 상기 알를로스 결정의 제조방법은 알를로스 90중량 % 이상을 포함하며 60 내지 85 브릭스 및 전기 전도도 1 , 000 LiS/cm 이하인 알를로스 용액에서 결정핵을 생성하는 단계, 및 상기 용액의 온도를 냉각시켜 결정을 성장시키는 단계를 포함할 수 있다. 구체적으로, 상기 알를로스 결정의 제조방법은 알를로스 90중량 % 이상을 포함하며 80 내지 83 브릭스의 알롤로스 용액을 35 °C 온도에서 천천히 교반하여 결정핵을 생성하는 단계, 및 상기 용액의 온도를 K C까지 넁각시켜 결정을 성장시키는 단계를 포함할 수 있다. 상기 방법은 용액의 온도를 20 내지 40 °C , 바람직하게는 30 내지 35 °C 범위로 증가시켜 냉각 도중 생성된 미세 결정을 재용해하는 단계를 1회 이상 추가로 포함할 수 있다. 상기 알롤로스 결정의 제조방법은 상기 종정 ( seed)을 첨가하는 공정을 추가로 포함할 수 있다. 상기 종정 첨가단계 및 재용해 단계는 각각 선택적으로 상기 알롤로스 결정의 제조방법에 포함되거나, 상기 두 단계를 모두 포함할 수 있다. The method for producing an allrozole crystal according to the present invention can be carried out by various methods, and preferably by the grating method. For example, the method for preparing the above-mentioned all-round crystals comprises the step of mixing at least 90wt% of rosin with 60-85 bricks of Alloy solution at 20-40 ° C or 30-40 ° C, Stirring the solution at a temperature of 35 DEG C slowly to produce crystal nuclei, and cooling the solution to a temperature of i (rc) to grow crystals, for example, an Alloy solution at 35 to 10 It is preferable to keep the cooling rate at 0.01 to 20 ° C / min, and if the cooling rate is low, the productivity of the co-crystal may be low due to the long formation time of the co-crystal When the angular velocity is high, crystals having a small particle size are formed and it may be difficult to recover the crystals. The method for producing the above-mentioned alumina crystals comprises 90% by weight or more of alumina, 60 to 85 Bricks and The method may include the steps of forming a crystal nucleus in an Alloy solution having an electrical conductivity of 1, 000 LiS / cm or less, and cooling the temperature of the solution to grow crystals. Specifically, Slowly stirring an allylose solution containing 80 to 83 Bricks of allylose in an amount of at least 90% by weight at 35 ° C to produce crystal nuclei, and growing crystals by agitating the solution to KC . The method may further include one or more times of increasing the temperature of the solution to a range of 20 to 40 ° C, preferably 30 to 35 ° C, to redissolve the microcrystals produced during cooling. The method for producing the allylose crystal may further include a step of adding the seed. The seedling addition step and the redissolution step may be optionally included in the method for producing the allolose crystal, or may include both of the above two steps.
상기 결정화를 위한 알를로스 용액은, 알를로스를 90중량 % 이상, 예를 들면 95 중량 % 이상 함량으로 포함하는 고순도 알를로스 용액일 수 있다. 상기 조성물의 점도는 온도 45°C에서 2 cps 내지 200 cps일 수 있으며, 전기전도도는 1000uS/cm 이하, 예를 들면 0.01 내지 1000uS/cm , 바람직하게는 30 LiS/cm 이하, 예를 들면 0. 1 내지 30 uS/cm일 수 있다. 상기 알를로스 결정화용 조성물의 전기 전도도는 낮을수록 결정화에 바람직하다. 상기 결정화를 위한 알를로스 용액은, 고형분 함량이 60 이상 내지 85 브릭스 이하, 예를 들면 60 브릭스 초과 내지 80브릭스, 65 내지 85 브릭스, 65 내지 80브릭스, 또는 68 내지 85브릭스일 수 있다. The Alloy solution for crystallization may be a high purity Alloy solution containing Alloy in an amount of 90 wt% or more, for example, 95 wt% or more. The viscosity of the composition may be from 2 cps to 200 cps at a temperature of 45 ° C and the electrical conductivity is 1000 uS / cm or less, for example, 0.01 to 1000 uS / cm, preferably 30 LiS / cm or less, 1 to 30 uS / cm. The lower the electric conductivity of the composition for crystallization of the alumina is, the more preferable it is for crystallization. The Alloy solution for the crystallization may have a solids content of 60 or greater to 85 Bricks or less, such as greater than 60 Bricks to 80 Bricks, 65-85 Bricks, 65-80 Bricks, or 68-85 Bricks.
통상의 경우 알롤로스 결정의 크기가 클수록 물성이 좋아지고 사용 편의성이 증가되는 것으로 알려져 있으며, 이러한 큰 크기의 결정을 제조하기 위해서는 이송공정으로 구분되는 종결정과 본결정화 공정을 모두 수행해야 하나, 본 발명에 따른 결정화 공정은 한 단계 공정으로도 비교적 큰 크기의 결정을 고수율로 용이하게 제조할 수 있다. In general, it is known that the greater the size of the alallose crystal is, the better the physical properties and the ease of use are. In order to produce such a large-sized crystal, both the seed crystal classified by the transfer process and the present crystallization process must be performed. The crystallization process according to the present invention can easily produce crystals of comparatively large size at a high yield even in a one-step process.
또한, 상기 결정화 공정은 상기 결정 성장 공정에서. 넁각 도중에 생성된 미세 결정을 재용해하기 위해 용액의 온도를 30 내지 35 °C까지 높여 미세 결정을 용해하는 공정을 수행할 수 있다. 본 발명에 따른 결정화 공정에서는, 결정 성장 공정과 미세결정 용해 공정을 적어도 1회 이상 반복하여 수행할 수 있다. The crystallization process may be performed in the crystal growth process . A process of dissolving the microcrystals can be performed by raising the temperature of the solution to 30 to 35 ° C in order to redissolve the microcrystals produced during the agglomeration. In the crystallization process according to the present invention, the crystal growth process and the microcrystalline dissolution process can be repeated at least once or more.
상기 결정을 제조하는 공정에 있어서, 결정 생성 속도 및 크기를 증가시킬 목적으로 종정 ( seed)을 추가로 첨가할 수 있다. In the step of producing the crystal, seeds may be further added for the purpose of increasing the crystal generation rate and size.
본 발명에 따른 구체적인 일예에서, 알를로스 결정은 고형분 기준으로 알를로스 90중량 % 이상으로 포함하며, 전체 고형분 함량이 60 내지 85 브릭스인 알를로스 용액을 20 내지 40 °C , 바람직하게는 30 내지 40 °C , 예를 들면 35 °C온도에서 교반하여 소량의 결정 핵이 생성시키게 한 후, 온도를 시간당 rc씩 감소시켜 온도 10°C까지 넁각시켜 결정을 성장시켜 제조하며, 선택적으로 냉각 도중에 생성된 미세 결정을 재용해하기 위해 용액의 온도를 30 내지 35?까지 높여 미세 결정을 용해하는 공정을 적어도 1회 이상 반복하여, 알를로스 결정을 제조할' 수 있다. In a specific example according to the present invention, the Alloy crystal comprises an Alloy sol based on solids content of 90% by weight or more and a total solids content of 60 to 85 Bricks at 20 to 40 ° C, preferably 30 to 40 ° C Deg.] C, for example, at 35 [ deg.] C to produce a small amount of crystal nuclei, followed by decreasing the temperature by rc to degrade at a temperature of 10 [ deg.] C. Microcrystals By remelting repeating at least once the step of increasing the temperature of the solution to 30 to 35? Dissolve the microcrystals to, it can 'be prepared alreul LOS determined.
본 발명의 일 구체예에서, 알롤로스 결정을 제조하는 방법은 SMB 크로마토그래피 분리 공정에서 얻어진 알를로스 분획을 제 2차 이온정제하는 단계, 상기 이온 정제된 알를로스 분획을 농축하는 단계, 상기 농축물로부터 알를로스를 결정화하여 알를로스 결정을 얻는 단계를 포함하며, 선택적으로 알를로스 결정의 회수 공정, 세척 공정 및 건조 공정을 추가로 포함할 수 있다. In one embodiment of the present invention, a method for producing an aldolose crystal comprises the steps of: a second ion purification of an allyl fraction obtained in an SMB chromatographic separation step; a step of concentrating the ion-purified allyl fraction; To obtain an Alloy crystal, and may optionally further include a recovery process, a washing process and a drying process for the Alloy crystals.
상기 알를로스 결정 제조의 구체적인 예는, 제 1차 이온정제, SMB 크로마토그래피 분리, 제 2차 이온정제, 농축 및 결정화 공정을 포함할 수 있으며, 선택적으로 알를로스 전환 반웅물을 활성탄 처리공정, 이온정제 공정, 또는 활성탄 처리공정과 이온정제 공정을 모두 수행할 수 있다. Specific examples of the preparation of the alumina crystals may include a first ion purification, an SMB chromatography separation, a secondary ion purification, a concentration and a crystallization process. Alternatively, The purification process, or both the activated carbon treatment process and the ion purification process can be performed.
본 발명에 따른 알를로스 결정을 제조하는 방법은 알를로스 농축물 용액의 온도 및 농도를 조절하여 결정화할 수 있으며, 구체적으로 결정화를 위해 요구되는 과포화 상태는 알롤로스 용액의 온도를 낮추거나 또는 D- 알를로스 용액 중 . D—알를로스의 농도를 변화시키는 것에 의해 유지될 수 있다. 본 발명의 일 구체예에서, 상기 결정화 단계에서 일정 간격으로 시료를 채취하여 육안이나 현미경으로 관찰하거나 또는 시료의 원심분리로부터 수득된 상층액 증 당 농도를 분석하는 것에 의해 결정화 경과를 모니터링하고, 그 결과에 따라 온도 또는 D-알를로스의 농도를 조절할 수 있다. 알를로스 결정을 제조하기 위해, 알를로스 농축 용액을 넁각시켜 결정화하는 경우, 열 교환기를 통하여 10 내지 25 °C온도 범위로 급속히 냉각시킨 후, 승온과 냉각을 반복적으로 수행하여 결정성장을 유도할 수 있다. The method of preparing an allrozole crystal according to the present invention can crystallize by controlling the temperature and concentration of an alcohol concentrate solution. Specifically, the supersaturated state required for crystallization can be obtained by lowering the temperature of the allolose solution or by adjusting the D- Alloy in solution. Can be maintained by varying the concentration of D-allose. In one embodiment of the present invention, the crystallization process is monitored by collecting a sample at a predetermined interval in the crystallization step and observing the concentration of the supernatant obtained by visual observation or microscopic observation or by centrifugation of the sample, Depending on the result, the temperature or the concentration of the D-allose can be controlled. In the case of crystallization by crystallization of an Alloy concentrate solution in order to produce an Alloy crystal, rapid cooling to a temperature range of 10 to 25 ° C through a heat exchanger, followed by repeated heating and cooling, have.
본 발명에 따른 알를로스 결정을 제조하는 방법은 상기 결정화 단계에서 수득된 알를로스 결정을 다양한 고액 분리 방법, 예를 들면 원심분리로 회수하는 단계 , 탈이온수로 세척하는 단계, 및 건조하는 단계를 더 포함할 수 있다. 상기 건조 단계는 유동층 건조기 또는 진공 건조기에서 수행될. 수 있으나 이에 제한되지 않는다. 상기 알를로스 결정에 포함된 알를로스는 고형분 총함량 100중량 %를 기준으로 94 중량 ¾>이상, 95 중량 %이상, 96 중량 %이상, 97 증량 %이상, 98 중량%이상 또는 99중량 %이상일 수 있다. 【발명의 효과】 The method for producing an allrox crystal according to the present invention is characterized by further comprising the steps of recovering the allyl crystals obtained in the crystallization step by various solid-liquid separation methods, for example, centrifugal separation, washing with deionized water, and drying . The drying step may be performed in a fluid bed dryer or a vacuum dryer . But is not limited thereto. The allyl contained in the alumina crystals may be 94 wt% or more, 95 wt% or more, 96 wt% or more, 97 wt% or more, 98 wt% or more, or 99 wt% or more based on the total solid content of 100 wt% have. 【Effects of the Invention】
본 발명에 따른 알를로스 결정과 이의 제조방법은 고수율 및 고순도로 알를로스 결정을 제조할 수 있으며, 상기 알롤로스 결정은 제조하는 방법을 감미료에 포함되어, 다양한 식품 및 음료 등에 적용될 수 있다. The allrose crystal and the method for producing the same according to the present invention can produce allodyne crystals with high yield and high purity. The method for producing the allodolite crystals can be applied to various foods and beverages including the sweetener.
【도면의 간단한 설명】 BRIEF DESCRIPTION OF THE DRAWINGS
도 1 내지 도 3은 본 발명의 실시예 1 내지 3에서 얻어진 알를로스 분말의 배율 X100으로 측정된 광학 현미경 사진이다. Figs. 1 to 3 are optical microscopic photographs of the alumina powder obtained in Examples 1 to 3 of the present invention at a magnification X100.
도 4 내지 도 6은 본 발명의 실시예 1 내지 3에서 얻어진 알를로스 분말의 배율 X50으로 측정된 주사전자현미경 (SEM)사진이다. 4 to 6 are scanning electron microscope (SEM) photographs of the alumina powder obtained in Examples 1 to 3 of the present invention at a magnification X50.
도 7은 본 발명의 실시예 1 내지 3에서 얻어진 알롤로스 결정의 적외선분광 분석 ( IR) 스펙트럼이다. 【발명의 실시를 위한 형태】 7 is an infrared spectroscopy (IR) spectrum of the aldol crystals obtained in Examples 1 to 3 of the present invention. DETAILED DESCRIPTION OF THE INVENTION
본 발명을 하기 실시예에 의해 더 상세하게 설명된다. 다만, 하기의 실시예는 본 발명의 바람직한 실시예 일뿐, 본 발명은 이에 한정되지 않는다. 실시예 1 : 알를로스 결정 제조 The invention is illustrated in more detail by the following examples. However, the following embodiments are merely preferred embodiments of the present invention, and the present invention is not limited thereto. Example 1: Alloy crystal preparation
고형분 함량 100중량 %를 기준으로 알를로스 94.6 중량 %을 포함하는 고순도 알를로스 시럽을 82.6Bx(w/w%) 농도로 농축시켜 8 uS/cm 의 전기 전도도를 갖는 결정화용 알를로스 시럽을 제조하였다. 상기 제조된 결정화용 알를로스 시럽의 과포화 상태가 되는 온도 35 °C에서 서서히 온도 1( C까지 넁각시켜 결정을 성장시켰다. 이 때 알를로스 종정을 첨가하고 온도 35°C에서 천천히 교반하여 소량의 결정 핵을 생성시키게 한 후, 온도를 시간당 1 °C씩 감소시켜 결정을 성장시켰으며, 상기 결정 성장 공정에서 넁각 도중에 생성된 미세 결정을 재용해 하기 위해 용액의 은도를 30 내지 35°C까지 높여 미세 결정을 용해하는 공정을 수행하였다. 상기 결정 성장공정과 미세결정 용해 공정을 적어도 1회 이상 반복하여 결정화를 수행하였다. 여기서 제조된 알를로스 결정은 원심 탈수에 의해 모액을 제거하고 1차 결정화로 얻은 결정을 냉각수로 세척한 후, 건조하여 회수하였다. 상기 얻어진 1차 결정을 물에 용해하여 고형분 함량 100중량 ¾>를 기준으로 알를로스 99.5%의 알를로스 용해액 81.6 Bx을 제조하였다. A high-purity allyl containing 94.6% by weight of allylose based on 100% by weight of solid content was concentrated to a concentration of 82.6 Bx (w / w%) to prepare a syrup for crystallization having an electrical conductivity of 8 uS / cm . The crystals were crystallized at a temperature of 35 ° C at which the supersaturated state of the syrup was formed at a temperature of 1 ° C. The crystals were gradually grown at 35 ° C. and a small amount of crystals After the nucleus is formed, the crystal is grown by decreasing the temperature by 1 ° C per hour. In order to redissolve the microcrystals produced during the crystal growth process in the crystal growth process, the solution is raised to 30-35 ° C The crystallization was performed by repeating the above crystal growth process and the microcrystalline melting process at least once or more. The allyl crystals prepared in this manner were prepared by removing the mother liquor by centrifugal dehydration, The crystals were washed with cooling water, then dried and recovered. The obtained primary crystals were dissolved in water to prepare an 81.6 Brix Alloy lysine solution having an Alloy 99.5% solids content on the basis of a solid content of 100 wt%.
상기 제조된 알를로스 용해액으로 상기 1차 결정화 방법과 실질적으로 동일한 방법으로 2차 결정화 공정을 수행하였다. 여기서 제조된 알롤로스 결정은 원심 탈수에 의해 모액올 제거하고 2차 결정화로 얻은 최종 결정을 넁각수로 세척한 후, 건조하여 회수하였다. Secondary crystallization was carried out using the prepared allyl lysate in substantially the same manner as the primary crystallization. The alallose crystals prepared here were removed by centrifugal dehydration to remove the mother liquor, and the final crystals obtained by the secondary crystallization were washed with 넁 water, dried and recovered.
상기 제조된 알를로스 결정의 순도는 하기 HPLC 분석을 수행하였으며, 분석 조건은 다음과 같다. The purity of the above-prepared alumina crystal was determined by the following HPLC analysis.
분석 컬럼 : Biol ad Aminex HPX-87C co lumn Analytical column: Biol ad Aminex HPX-87C column
이동상: 물 Mobile: Water
Flow rate : 0.6ml /min Flow rate: 0.6 ml / min
컬럼 온도: 80 °C Column temperature: 80 ° C
검출기: RI detector Detector: RI detector
상기 HLPC 분석 결과, 실시예 1에서 제조한 알를로스 결정의 알를로스 순도는 . 99.8중량 %이었고, 결정수율은 62.5%이었다. 상기 결정수율은 결정화를 위한 원료 알를로스 시럽의 고형분 중량 대비 회수된 알를로스 결정분말의 중량을 백분율로 표시한 것이다. 실시예 2 : 알롤로스 결정 제조 As a result of the above-mentioned HLPC analysis, the purity of the Alloy crystals prepared in Example 1 was as follows. 99.8% by weight, and the crystal yield was 62.5%. The crystal yield is calculated by dividing the weight of the raw material powder for crystallization by the percentage of the weight of the recovered crystalline powder to the weight of the solid content of the syrup. Example 2: Manufacture of alallose crystals
고형분 함량 100중량 %를 기준으로 알를로스 94.6 중량 %을 포함하는 고순도 알를로스 시럽을 82.6 Bx 농도로 농축시켜 16 uS/cm 의 전기 전도도를 갖는 결정화용 알를로스 시럽을 제조하였다. 상기 제조된 결정화용 알를로스 시럽의 과포화 상태가 되는 온도 35:C에서 서서히 온도 i(rc까지 냉각시켜 결정을 성장시켰다ᅳ 이 때 알를로스 종정을 첨가하고 온도 35°C에서 천천히 교반하여 소량의 결정 핵을 생성시키게 한 후, 온도를 시간당 rc씩 감소시켜 결정을 성장시켰으며, 상기 결정 성장 공정에서 넁각 도중에 생성된 미세 결정을 재용해 하기 위해 용액의 온도를 30 내지 35°C까지 높여 미세 결정을 용해하는 공정을 수행하였다. 상기 결정 성장공정과 미세결정 용해 공정을 적어도 1회 이상 반복하여 결정화를 수행하였다. 여기서 제조된 알를로스 결정은 원심 탈수에 의해 모액을 제거하고 결정을 넁각수로 세척한 후, 건조하여 회수하였다. High-purity alum, containing 94.6% by weight of allylose based on 100% by weight of solid content, was concentrated to 82.6 Bx concentration to prepare a crystallization allyl for crystallization with an electrical conductivity of 16 uS / cm. When the crystals were cooled to a temperature of 35 ° C at which the supersaturated state of the syrup was cooled to a temperature of rc to slowly crystallize the crystals, the resulting crystals were slowly stirred at 35 ° C to obtain a small amount of crystals The temperature of the solution is raised to 30 to 35 ° C in order to redissolve the microcrystals produced during the crystallization step in the crystal growth process. The crystallization was performed by repeating the above-mentioned crystal growth process and microcrystalline melting process at least once. The allyl crystals prepared in this case were removed by centrifugal dehydration to remove the mother liquor, and the crystals were washed with distilled water After that, it was dried and recovered.
상기 제조된 알를로스 결정의 순도 분석은 상기. 실시예 1과 동일한 방법으로 HPLC 분석을 수행하였으며, 실시예 2에서 제조한 알를로스 결정의 를로스 순도는 99.6 중량 ¾)이었고, 결정 수율은 52.8%이었다. 실시예 3 : 알를로스 결정 제조 The purity analysis of the above-prepared allylox crystal is performed as described above. The HPLC analysis was carried out in the same manner as in Example 1, By weight and the purity of the solution was 99.6% by weight), and the crystal yield was 52.8%. Example 3: Alloy crystal preparation
고형분 함량 100중량 %를 기준으로 알를로스 91.5 중량 %을 포함하는 고순도 알를로스 시럽을 81.2 Bx 농도로 농축시켜 21 uS/cm 의 전기 전도도를 갖는 결정화용 알를로스 시럽을 제조하였다. 상기 제조된 결정화용 알롤로스 시럽의 과포화 상태가 되는 온도 35°C에서 서서히 온도 C까지 냉각시켜 결정을 성장시켰다. 이 때 알롤로스 종정을 첨가하고 온도 35°C에서 천천히 교반하여 소량의 결정 핵을 생성시키게 한 후, 온도를 시간당 1 °C씩 감소시켜 결정을 성장시켰으며. 상기 결정 성장 공정에서 넁각 도중에 생성된 미세 결정을 재용해 하기 위해 용액의 온도를 30 내지 35°C까지 높여 미세 결정을 용해하는 공정을 수행하였다ᅳ 상기 결정 성장공정과 미세결정 용해 공정을 적어도 1회 이상 반복하여 결정화를 수행하였다. 여기서 제조된 알를로스 결정은 원심 탈수에 의해 모액을 제거하고 결정을 냉각수로 세척한 후, 건조하여 회수하였다. A high-purity allyl containing 91.5% by weight of allylose based on 100% by weight of solid content was concentrated to a concentration of 81.2 Bx to prepare a crystallized allyl syrup having an electrical conductivity of 21 uS / cm. Crystallization was carried out by gradually cooling the prepared allylose syrup for crystallization to a supersaturated state at a temperature of 35 ° C to a temperature of C degrees . At this time, the aldolose seeds were added and slowly stirred at a temperature of 35 ° C to produce a small amount of crystal nuclei, and the crystal was grown by decreasing the temperature by 1 ° C per hour. In order to redissolve microcrystals produced during the crystallization step, the temperature of the solution is raised to 30 to 35 ° C to dissolve the microcrystals. The crystallization process and the microcrystalline dissolution process are repeated at least once The crystallization was repeatedly performed. The columnar crystals prepared here were removed by centrifugal dehydration to remove the mother liquor, and the crystals were washed with cooling water, and then dried and recovered.
상기 제조된 알를로스 결정의 순도 분석은 상기 실시예 1과 동일한 방법으로 HPLC 분석을 수행하였으며, 실시예 3에서 제조한 알를로스 결정의 알를로스 순도는 99.6중량 %이었고, 결정 수율은 34 %이었다. The purity of the thus-prepared all-round crystals was analyzed by HPLC in the same manner as in Example 1, and the purity of the all-in-one crystals prepared in Example 3 was 99.6% by weight and the crystal yield was 34%.
상기 실시예 1 내지 3의 알를로스 결정의 제조에 따르면, 결정화 원료인 알를로스 순도가 낮을수록 알를로스 외 다른 성분들이 순수 알를로스의 결정 성장을 방해하는 불순물로싸 작용하기 때문에 결정 원액의 알를로스 순도에 따라 결정 수율의 차이가 발생하였다. 구체적으로, 실시예 1에서 알를로스 시럽을 2회 결정화 공정으로 얻어진 결정이, 1회 결정화 공정을 수행한 실시예 2에 비해 알를로스 결정의 순도 및 결정수율이 높게 나타났다. 결정화 원액의 알를로스 순도가 높은 실시예 1 및 실시예 2가, 상대적으로 낮은 순도의 결정화 원액을 사용한 실시예 3에 비해, 알를로스 결정의 순도 및 결정수율이 높게 나타났다. 실시예 4 : 알를로스 결정 특성 분석 According to the production of the all-round crystals of Examples 1 to 3, as the crystallization raw material purity is lower, the components other than Alloch act as pure impurities that interfere with the crystal growth of the los, There was a difference in crystal yield depending on the purity. Specifically, in Example 1, the purity of the crystals obtained by the crystallization process of Alloy syrup twice and the yield of crystals of the crystals were higher than that of Example 2 in which the crystallization process was performed once. The purity of crystals and the yield of crystals were higher in Example 1 and Example 2 in which the purity of the crystallization stock solution was high than in Example 3 in which the crystallization stock solution having a relatively low purity was used. Example 4 Analysis of Alloy Crystal Characteristic
4-1: 결정 입도 분포 분석 4-1: Analysis of grain size distribution
실시예 . 1과 3에서 얻어진 알롤로스 결정의 입도 분포는 Mesh별 표준망체를 이용하여 확인 하였다. 표준망체의 Mesh s i ze는 20 , 30 , 40 , 60 , 80 , lOOmesh를 사용하였고, 표준망체의 구멍의 사이즈로 결정 입자의 크기 분포를 측정하였다. Examples. The particle size distributions of the alallose crystals obtained from 1 and 3 were confirmed by using standard mesh of Mesh. Mesh si ze of the standard net was 20, 30, 40, 60, 80, 100mesh, and the size of the hole of the standard net, The distribution was measured.
각 메쉬 (mesh)별 표준 망체의 구멍 사이즈는 850 , 600, 425 , 250 , 180 , 150^1 이다. 각 샘플별 100g의 무게를 취하여 Mesh 크기별 표준망체에 넣고 3분간 진동을 가하여 표준망체를 통과시켜 주었다. 각 mesh 크기별로 체에 남아있는 샘플의 무게를 재어 백분율 값을 표 1에 기재하였다 하기 표 1에서 각 메쉬별 입도 분포는 입자의 중량 %를 수치로 나타냈다. For each mesh, the standard mesh size is 850, 600, 425, 250, 180, and 150 ^ 1. Each sample was weighed at a weight of 100 g, placed in a standard mesh of mesh size, and vibrated for 3 minutes to pass through a standard mesh. The weight of the sample remaining in the sieve according to each mesh size is determined and the percentage value is shown in Table 1. In Table 1, the particle size distribution of each mesh shows the weight percentage of the particles.
【표 1】 [Table 1]
상기 표 1에 나타낸 바와 같이, 실시예 1의 알롤로스 결정은 입자 분포가 90.2 중량 %가 집중되어 매우 좁은 분포를 나타내며 , 실시예 3의 알를로스 결정은 40†에서 .가장 많은 분포를 보이기는 하지만, 80† , 60† , 40† , 및 30†에서 고르게 분포하여 입자 분포가 넓게 퍼져 있는 것으로 확인하였다. 실시예 1과 같이 장직경 /단직경의 비율이 작고 견고한 결정 입자일 수록, 제품의 미분함량이 상대적으로 낮고, 균일한 입도 분포를 갖고 있음을 확인하였다. 또한 장직경 /단직경의 비율이 크고 낮은 균일도의 입자일수록, 건조 및 이송 과정에서 입자 깨짐에 의해 미분화되고, 입도가 불균일하게 되어 넓은 범위의 입도 분포를 갖게 될 수 있다. 4-2: 결정 형태 및 결정 입자 크기 분석 As shown in Table 1, the allylose crystals of Example 1 exhibit a very narrow distribution of 90.2% by weight of the particle distribution, while the allyl crystals of Example 3 have the largest distribution at 40 캜 , 80 †, 60 †, 40 †, and 30 †. It was confirmed that the fineness of the product was relatively low and the particle size distribution was uniform as the ratio of the long diameter to the short diameter was small and the crystal grains were solid as in Example 1. Further, particles having a large diameter / small diameter ratio and a low uniformity are undifferentiated due to particle breakage during drying and transportation, and the particle size becomes uneven, so that a wide range of particle size distribution can be obtained. 4-2: Crystalline morphology and crystal grain size analysis
실시예 1 내지 3에서 얻어진 알를로스 결정의 배율 X100으로 측정된 광학 현미경 사진을 도 1 내지 도 3에 나타냈다. 실시예 1 내지 3에서 얻어진 알를로스 결정의 배율 X100으로 측정된 주사전자현미경 (SEM)사진을 도 4 내지 도 6에 나타냈다. 1 to 3 show photographs of the optical microscope photographs obtained by measuring the magnifications X100 of the all-round crystals obtained in Examples 1 to 3. Scanning electron micrograph (SEM) photographs of the aluminum crystals obtained in Examples 1 to 3, which were measured at a magnification X100, are shown in Figs. 4 to 6. Fig.
또한 실시예 1 내지 3에서 얻어진 알를로스 결정 9개 시료에 대해 장직경 (세로) 및 단직경 (가로)을 측정하고, 입자 직경 비율 (=장직경 /단직경)을 얻어 하기 표 1에 나타냈다. 구체적으로, 5개 결정에 대해서, 단직경 길이뉘을 1로 기준으로 , 장직경의 길이 ( ) 비율을 나타냈다. Further, with respect to nine samples of the allodyne crystals obtained in Examples 1 to 3 The long diameter (length) and the short diameter (width) were measured, and the particle diameter ratio (= long diameter / short diameter) was obtained. Specifically, for the five crystals, the ratio of the length () of the long diameter to the length of the short diameter (1) was shown.
【표 2】 [Table 2]
도 4 내지 도 6에 나타낸 바와 같이, 본 발명에 따른 알를로스 결정은 장방형 육면체 또는 이에 근접한 결정구조를 가진다. 상기 표 2에 나타낸 결정의 단직경 길이 ( )을 1로 기준하여 나타낸 장직경의 길이 ) 비율은, 실시예 1의 경우 평균 1 .6 , 실시예 2의 결정은 평균 4.3 , 및 실시예 3의 결정은 평균 7.6으로서, 상대적으로 실시예 1의 결정이 실시예 2와 3의 결정보다 각각의 결정면이 균일하게 성장하여 정방형에 가까운 사방정계의 결정형태를 형성하고 있다. 또한, 결정면이 균일하게 성장할 수록 장직경 /단직경 비율이 감소하는 경향을 나타남을 확인할 수 있었다. 이는 결정화 원료의 알를로스 순도가 낮을수록, 알를로스 외 다른 성분들이 순수 알를로스의 결정 성장을 방해하는 불순물로써 작용하기 때문에 결정 모양에 영향을 미친 것으로 해석된다. 실시예 5 : 시차주사열량계법 (DSC)분석 As shown in Figs. 4 to 6, the Alloy crystal according to the present invention has a rectangular hexahedron or a crystal structure close thereto. The length of the long diameter indicated by the length () of the short axis of the crystals shown in Table 2 as 1), the average of 1.6 in Example 1, the average of 4.3 crystals of Example 2, The crystals have an average of 7.6, and the crystals of Example 1 are grown more uniformly than the crystals of Examples 2 and 3, forming an orthorhombic crystal form close to a square. Also, it was confirmed that as the crystal surface grows uniformly, the ratio of long diameter / short diameter tends to decrease. It is considered that, as the purity of the crystallization raw material is lower, the influence of the other components on the crystal shape is caused by the fact that other components act as impurities which interfere with the crystal growth of the pure aluminum. Example 5: Differential scanning calorimetry (DSC) analysis
실시예 1 내지 3에서 얻어진 알를로스 결정의 DSC분석을 수행하였으며 구체적인 DSC 분석조건은 다음과 같다. DSC analysis of the Alloy crystals obtained in Examples 1 to 3 was carried out, and specific DSC analysis conditions were as follows.
장비명 : DSC[di f ferent i a l scanni ng cal or imet ry] 게조人]": Perk in Elmer Equipment name: DSC [di f ferent ial scanner ng cal or imet ry] ": Perk in Elmer
방법 : 30 내지 250 °C, 10t/min숭온, N2 gas purge Method: 30 to 250 ° C, 10 t / min Souton, N2 gas purge
(기준 방법: ASTM D 3418 참고) (Reference method: see ASTM D 3418)
상기 알를로스 결정의 DSC분석 결과를 하기 표 3에 나타냈다. The DSC analysis results of the above-mentioned all-round crystals are shown in Table 3 below.
【표 3] [Table 3]
상기 DSC 분석 결과, 실시예 1의 결정에서 Tm값이 가장 높고, 열용량도 가장 높게 측정되었다. 결정의 DSC 분석에서 열용량이 높을수록 쉽게 녹기 어려우며, 열용량이 높고 흡열 피크의 폭이 좁올수록 결정이 균일하고 단단하게 형성되어 있음을 예측할 수 있다. 상기 실시예 1 내지 3의 열용량과 흡열 피크 엔탈피 값올 고려할 때, 샬시예 1의 결정이 상대적으로 더욱 균일하고 단단하게 형성되어 있음을 확인하였다. 실시예 6: 적외선흡수 (IR) 스펙트럼 분석 As a result of the DSC analysis, the Tm value was the highest and the heat capacity was the highest in the crystals of Example 1. In the DSC analysis of crystals, it can be predicted that the higher the heat capacity, the easier the dissolution is, and the higher the heat capacity and the narrower the width of the endothermic peak, the more homogeneous and harder the crystals are formed. When the heat capacity and the endothermic peak enthalpy values of Examples 1 to 3 were taken into consideration, it was confirmed that the crystals of Shirishi Example 1 were formed more uniformly and firmly. Example 6 Infrared Absorption (IR) Spectrum Analysis
상기 제조된 알롤로스 결정을 확인하고자, 실시예 1 내지 3의 결정에 대해 적외선흡수 (IR) 스펙트럼 분석을 수행하였으며, 측정 조건은 다음과 같다. The infrared absorption (IR) spectral analysis of the crystals of Examples 1 to 3 was carried out in order to confirm the aldol crystals prepared above, and the measurement conditions were as follows.
분석 기기: TENSOR II with Platinum ATR, 제조사; Bruker (German) 검줄기': highly sensitive photovoltaic MCT detector with liquid ni trogen cool ing. Analytical Instruments: TENSOR II with Platinum ATR, manufacturer; Bruker (German) stem sword ': highly sensitive photovoltaic MCT detector with liquid ni trogen cool ing.
스캔 (Scan) 횟수: 64 scans at 20 kHz Number of scans: 64 scans at 20 kHz
스캔 (Scan) 범위: 800 - 4,000 ctrf1 and averaged at. 4 cm-1 resolut ion. Scan range: 800 - 4,000 ctrf 1 and averaged at. 4 cm -1 resolution.
적외선흡수 (IR) 스펙트럼 분석 결과에 따르면, 본 발명에 따른 알를로스 결정에 대한 적외선 분광 스펙트럼 분석 결과에 따르면, 알를로스 분자 구조 내에 작용기 -0H 와 C-0— C, C-C, C-0H 등으로 구성되어 있어 알롤로스 분자만의 고유한 구조 특성을 가지는 것임을 확인할 수 있어, 미에 실시예 .1 내지 3의 결정은 동일한 알를로스 결정임을 확인하였다. 상기 IR 분석 스펙트럼을 도 7에 나타냈다. 실시예 7: X—선 회절 분석법 (XRD') 분석 According to the results of infrared absorption (IR) spectral analysis, infrared spectroscopic analysis of the Alloy crystal according to the present invention showed that the functional groups -0H and C-0-C, CC, C-OH, And it was confirmed that the crystals of Examples 1 to 3 had the same structure as that of the Alloose molecule. The IR analysis spectrum is shown in Fig. Example 7: X-ray diffraction analysis (XRD ' ) analysis
실시예 1 내지 3에서 얻어진 알롤로스. 결정을 '하기 구체적 분석조건에 따라 X-선 회절 분석법을 수행하였으며 실시예 1 내지 3에서 얻어진 알롤로스 결정의 X선 회절 분석 결과를 상위 (Relative Intensity %) 5개 피크 및 형태 특이적인 피크를 선정하여 표 4에 나타냈다 The aldolose obtained in Examples 1 to 3. To "the crystal higher the X- ray diffraction analysis was carried out for Example 1 X-ray of alrol Los crystals obtained in 1-3 diffraction analysis according to the specific assay conditions (Relative Intensity%) selected for the five peak shape and specific peak Are shown in Table 4
분석기기: D/MAX-2200 Ultima/PC Analytical instrument: D / MAX-2200 Ultima / PC
제조 1": Rigaku International Corporat ion(Japan) Manufacture 1 ": Rigaku International Corporation (Japan)
X-ray sauce system target: sealed tube Cu X-ray sauce system target: sealed tube Cu
관 전압: 45 kV I관 전류: 200 mA Tube voltage: 45 kV I tube current: 200 mA
Scan range: 5 내지 80° 2Θ Scan range: 5 to 80 ° 2Θ
Step size: 0.0Γ Step size: 0.0Γ
Scan speed: 5° /min Scan speed: 5 ° / min
【표 4】 [Table 4]
상기 표 4에 나타낸 바와 같이, 실시예 1에서 얻어진 알를로스 결정은, 분말 X—선 분광 스펙트럼 상에서 2Θ값이 15.24, 18.78 및 30.84; 15.24, 18.78, 30.84, 및 28.37; 또는 15.24, 18.78, 30.84 및 31.87;에서 특이적인 피크를 갖는 것임을 확인하였다. As shown in Table 4 above, the Alloy crystals obtained in Example 1 had 2? Values of 15.24, 18.78, and 30.84 on a powder X-ray spectroscopic spectrum; 15.24, 18.78, 30.84, and 28.37; or 15.24, 18.78, 30.84, and 31.87;
Xᅳ선 분광 스펙트럼 상에서 , 실시예 1 내지 3의 결정이 동일범위의 Angle 2-Theta degree 값을 갖는 것으로 보아 동일한 결정 격자 구조를 이루고 있음을 확인하였다. 다만 실시예 1의 결정이 실시예 2와 3의 결정과는 외형적인 결정의 형태가 다소 상이하여 결정 격자들의 배향성의 차이가 있을 수 있어, 이로 인해 Intens i ty%값의 차이가 나는 것으로 유추할 수 있다. 실시예 8 : 알를로스 결정의 흐름성 측정 On the X-ray spectroscopic spectrum, it is confirmed that the crystals of Examples 1 to 3 have the same range of Angle 2-Theta degree values, and thus have the same crystal lattice structure. However, since the crystals of Example 1 are somewhat different from the crystals of Examples 2 and 3 in appearance, the orientation of the crystal lattices There may be a difference, which can be deduced from the difference in Intensity values. Example 8: Measurement of Flowability of Alloy Crystal
알를로스 결정의 흐름성을 분석하고자, 상기 실시계 1과 실시예 3의 결정 분말의 안식각을 측정하였다. In order to analyze the flowability of the Alloy crystals, the angle of repose of the crystal powders of the yarn watches 1 and 3 was measured.
구체적으로, 실시예 1과 3의 결정 분말을 완전 평면인 기준판 위에 20cm로 일정한 높이에 고정된 깔대기를 통해 일정 부피를 통과시켜 수평면과 산처럼 산처럼 싸여 미끄러져 내리지 않는 경사면을 기준으로 3개의 상이한 지점에서 안식각을 측정하였다. Specifically, the crystal powders of Examples 1 and 3 were passed through a funnel fixed at a constant height of 20 cm on a perfectly flat reference plate to form a three-dimensional The angle of repose was measured at different points.
실시예 1에서 얻는 결정의 안식각은 42 .6° , 43 .3° , 42.2° 士 0.2° 이었으며 평균 값은 42 .7土 0.2° 이었고, 실시예 3에서 얻은 결정의 안식각은 46.0° , 45.3° , 46 .2° 士 0.2° 이고 평균 값은 45.8° + 0 .2° 이었다. 안식각은 수평면에 분말의 자연낙하에 의해서 만들어진 모양이며, 이는 흐름성에 많은 영향을 미친다. 일반적으로 안식각이 작으면, 분말의 흐름성이 좋다고 판단할 수 있다. 상기 알를로스 결정의 안식각 측정방법과 동일한 방법으로 설탕 (평균 입경 420 )과 결정과당 (평균 입경Embodiment the angle of repose of the crystals obtained from Example 1 is 42 .6 °, 43 .3 °, 42.2 °士0.2 ° and the mean value of the angle of repose of 42 .7土crystals obtained was 0.2 °, the third embodiment is 46.0 °, 45.3 ° , 46 .2 °士0.2 ° and the average value was 45.8 ° + 0 .2 °. The angle of repose is the shape created by the natural fall of the powder on the horizontal plane, which has a great influence on the flowability. Generally, if the angle of repose is small, it can be judged that the flowability of the powder is good. In the same manner as in the method of measuring the angle of repose of the above-mentioned alumina crystals, sugar (average particle size 420) and crystalline fructose
341 )의 안식각을 측정한 결과 설탕의 안식각 평균값은 41.2° 土341), the mean value of the angle of repose of sugar was 41.2 ° soil
0 .2° 이고, 결정과의 안식각 평균값은 41 .8° 土 0.2° 이었다. 상기 설탕과 결정과당와 안식각과 비교할 때, 알를로스 결정 과당도 이들과 동등한 정도의 분말 흐름성을 가짐을 확인하였다. And the average angle of repose with crystals was 41.8 ° soil 0.2 ° . When compared with the sugar, the fructose and the angle of repose, it was confirmed that the fructose of fructose has the same degree of powder flowability.
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2019015757A MX2019015757A (en) | 2017-06-30 | 2018-02-12 | Functional crystalline sweetener. |
EP18824244.0A EP3647317A4 (en) | 2017-06-30 | 2018-02-12 | FUNCTIONAL CRYSTALLINE SWEETENER |
US16/620,947 US11771120B2 (en) | 2017-06-30 | 2018-02-12 | Functional crystalline sweetener |
JP2019569276A JP2020523377A (en) | 2017-06-30 | 2018-02-12 | Crystalline functional sweetener |
CN201880044261.XA CN110869379A (en) | 2017-06-30 | 2018-02-12 | Functional crystalline sweetener |
JP2021196486A JP2022033889A (en) | 2017-06-30 | 2021-12-02 | Crystalline functional sweetener |
AU2023201795A AU2023201795A1 (en) | 2017-06-30 | 2023-03-22 | Functional crystalline sweetener |
US18/236,463 US20230389586A1 (en) | 2017-06-30 | 2023-08-22 | Functional crystalline sweetener |
JP2024014962A JP2024054191A (en) | 2017-06-30 | 2024-02-02 | Crystalline functional sweeteners |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170083906 | 2017-06-30 | ||
KR10-2017-0083906 | 2017-06-30 | ||
KR1020170184905A KR101988442B1 (en) | 2017-06-30 | 2017-12-29 | Crystalline functional sweetener |
KR10-2017-0184905 | 2017-12-29 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/620,947 A-371-Of-International US11771120B2 (en) | 2017-06-30 | 2018-02-12 | Functional crystalline sweetener |
AU2023201795A Division AU2023201795A1 (en) | 2017-06-30 | 2023-03-22 | Functional crystalline sweetener |
US18/236,463 Continuation US20230389586A1 (en) | 2017-06-30 | 2023-08-22 | Functional crystalline sweetener |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019004555A1 true WO2019004555A1 (en) | 2019-01-03 |
Family
ID=64742299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/001830 WO2019004555A1 (en) | 2017-06-30 | 2018-02-12 | FUNCTIONAL CRYSTALLINE SWEETENER |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019004555A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263670A (en) * | 2004-03-17 | 2005-09-29 | Kagawa Univ | L-psicose crystal, method for producing the same, and sugar reagent kit |
KR20110108185A (en) * | 2010-03-26 | 2011-10-05 | 씨제이제일제당 (주) | How to Make D-Pycosy Crystals |
KR20160062349A (en) * | 2014-11-25 | 2016-06-02 | 씨제이제일제당 (주) | A method of manufacturing high purity d-psicose |
KR20170032899A (en) * | 2014-07-21 | 2017-03-23 | 로께뜨프레르 | Sugar compositions for tableting by direct compression |
KR20170072849A (en) * | 2017-06-14 | 2017-06-27 | 씨제이제일제당 (주) | A method of manufacturing a d-psicose crystal |
-
2018
- 2018-02-12 WO PCT/KR2018/001830 patent/WO2019004555A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005263670A (en) * | 2004-03-17 | 2005-09-29 | Kagawa Univ | L-psicose crystal, method for producing the same, and sugar reagent kit |
KR20110108185A (en) * | 2010-03-26 | 2011-10-05 | 씨제이제일제당 (주) | How to Make D-Pycosy Crystals |
KR20170032899A (en) * | 2014-07-21 | 2017-03-23 | 로께뜨프레르 | Sugar compositions for tableting by direct compression |
KR20160062349A (en) * | 2014-11-25 | 2016-06-02 | 씨제이제일제당 (주) | A method of manufacturing high purity d-psicose |
KR20170072849A (en) * | 2017-06-14 | 2017-06-27 | 씨제이제일제당 (주) | A method of manufacturing a d-psicose crystal |
Non-Patent Citations (1)
Title |
---|
See also references of EP3647317A4 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101988442B1 (en) | Crystalline functional sweetener | |
TWI713821B (en) | Method of preparing crystalline functional sweetener | |
US12098163B2 (en) | Method for producing functional crystalline sweetener | |
TW201137129A (en) | Method of producing D-psicose crystals | |
CN116789718A (en) | High-purity crystalline D-tagatose, compositions containing the same, and preparation methods and uses | |
US11401292B2 (en) | Method for producing functional crystalline sweetener | |
WO2019004555A1 (en) | FUNCTIONAL CRYSTALLINE SWEETENER | |
AU2023201795A1 (en) | Functional crystalline sweetener | |
CN115052488A (en) | Solid form of glucose and method for producing solid form of glucose | |
KR102666581B1 (en) | Kestose in crystalline form | |
WO2024249338A1 (en) | Alternative allulose crystal process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18824244 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019569276 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018824244 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018824244 Country of ref document: EP Effective date: 20200130 |