WO2018211794A1 - Condensate demineralization device - Google Patents
Condensate demineralization device Download PDFInfo
- Publication number
- WO2018211794A1 WO2018211794A1 PCT/JP2018/008990 JP2018008990W WO2018211794A1 WO 2018211794 A1 WO2018211794 A1 WO 2018211794A1 JP 2018008990 W JP2018008990 W JP 2018008990W WO 2018211794 A1 WO2018211794 A1 WO 2018211794A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- condensate
- exchange resin
- ion exchanger
- chemical solution
- supply pipe
- Prior art date
Links
- 238000005115 demineralization Methods 0.000 title claims abstract description 17
- 230000002328 demineralizing effect Effects 0.000 title claims abstract description 17
- 150000002500 ions Chemical class 0.000 claims abstract description 43
- 150000001450 anions Chemical class 0.000 claims abstract description 12
- 150000001768 cations Chemical class 0.000 claims abstract description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical group C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 106
- 239000003729 cation exchange resin Substances 0.000 claims description 106
- 239000000126 substance Substances 0.000 claims description 88
- 239000003957 anion exchange resin Substances 0.000 claims description 85
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 77
- 239000007788 liquid Substances 0.000 claims description 29
- 230000008929 regeneration Effects 0.000 claims description 21
- 238000011069 regeneration method Methods 0.000 claims description 21
- 238000000605 extraction Methods 0.000 claims description 18
- 230000001172 regenerating effect Effects 0.000 claims description 14
- 238000011049 filling Methods 0.000 claims description 9
- 238000011084 recovery Methods 0.000 claims description 7
- 238000005342 ion exchange Methods 0.000 claims description 2
- 238000009434 installation Methods 0.000 abstract description 9
- 238000007599 discharging Methods 0.000 abstract description 3
- 239000011347 resin Substances 0.000 description 13
- 229920005989 resin Polymers 0.000 description 13
- 238000005406 washing Methods 0.000 description 12
- 238000005192 partition Methods 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011295 pitch Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000011033 desalting Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/02—Column or bed processes
- B01J47/026—Column or bed processes using columns or beds of different ion exchange materials in series
- B01J47/028—Column or bed processes using columns or beds of different ion exchange materials in series with alternately arranged cationic and anionic exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/02—Column or bed processes
- B01J47/04—Mixed-bed processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/05—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
- B01J49/08—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic and anionic exchangers in separate beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/05—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
- B01J49/09—Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds of mixed beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/50—Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
- B01J49/53—Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for cationic exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J49/00—Regeneration or reactivation of ion-exchangers; Apparatus therefor
- B01J49/50—Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
- B01J49/57—Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
Definitions
- the present invention relates to the configuration of a condensate demineralizer.
- a condensate demineralizer is used to demineralize the condensate.
- the demineralization tower of the condensate demineralizer is filled with a cation exchange resin and an anion exchange resin, and an anion component such as Na + and an anion component such as Cl ⁇ are removed.
- the cation exchange resin or anion exchange resin reaches a saturated state, the cation exchange resin or anion exchange resin is transferred to the regeneration tower of the condensate demineralizer, regenerated with a chemical solution, and returned to the desalting tower again.
- JP-A-8-82695 discloses a condensate demineralization apparatus in which a cation exchange resin tower filled with a cation exchange resin and an anion exchange resin tower filled with an anion exchange resin are connected in series. ing.
- the tower height becomes high because the cation exchange resin layer and the anion exchange resin layer are alternately laminated. . Also, in order to prevent reverse regeneration during resin regeneration, the cation exchange resin and anion exchange resin are extracted from the resin tower and regenerated separately, so that a separate regeneration tower, a line connecting the resin tower and the regeneration tower, etc. This will increase the cost of the condensate demineralizer and increase the installation area of the condensate demineralizer.
- the cation exchange resin is filled in the cation exchange resin tower and the anion exchange resin is filled in the anion exchange resin tower.
- the operation of separating is not necessary in principle. However, since it is necessary to install a cation exchange resin tower and an anion exchange resin tower, the cost of the condensate demineralizer increases, and the installation area of the condensate demineralizer increases.
- An object of the present invention is to provide a condensate desalination apparatus in which the ion exchanger can be easily regenerated and the installation area is reduced.
- the condensate demineralization apparatus of the present invention is an inner cylinder that forms an inner space filled with a first ion exchanger, and a container body that surrounds the inner cylinder, and is filled with at least a second ion exchanger.
- a container body that forms an outer space with the inner cylinder and forms a connection space that communicates with the outer space, a condensate supply pipe that supplies condensate to the inner space, and a second ion exchanger in the outer space
- a condensate discharge unit for discharging the condensate treated with the second ion exchanger.
- the condensate demineralization device of the present invention has a double cylindrical structure comprising an inner cylinder that forms an inner space and a container body that surrounds the inner cylinder and forms an outer space, and the first ion exchange is performed in the inner space.
- the body is filled with at least a second ion exchanger in the outer space. For this reason, an installation area can be reduced compared with the condensate demineralizer which charges a 1st ion exchanger and a 2nd ion exchanger to a separate tower.
- the first ion exchanger filled in the inner space does not require a separation operation.
- the condensate demineralizer 1, 101 of the present invention is mainly used in power plants. Steam that has worked in a turbine (not shown) is condensed in a condenser (not shown) to become condensate, filtered by a condensate filtration device (not shown), etc., and then a condensate demineralizer. Desalinated at 1,101 and supplied to a steam generator such as a boiler (not shown).
- FIG. 1A is a longitudinal sectional view of the condensate demineralizer 1 according to the first embodiment of the present invention
- FIG. 1B is a transverse sectional view taken along the line AA of FIG. 1A
- the condensate demineralizer 1 includes a container main body 2 constituting a pressure vessel and an inner cylinder 3 provided inside the container main body 2.
- the container body 2 has a cylindrical side wall 2a having a center line 2d in the vertical direction Z, a dome-shaped top plate 2b connected to the upper portion of the side wall 2a, a dome-shaped bottom plate 2c connected to the lower portion of the side wall 2a, It is composed of
- the inner cylinder 3 has a cylindrical shape and is arranged concentrically with the container body 2.
- the inner cylinder 3 is welded to the bottom plate 2c of the container body 2, and the upper portion of the inner cylinder 3 is covered with an inner partition plate 4 in which a plurality of openings having a size capable of preventing the ion exchanger from flowing out are formed. Therefore, the inner cylinder 3 forms an inner space 6 together with the inner partition plate 4 and the bottom plate 2 c of the container body 2.
- An outer space 7 is formed between the inner cylinder 3 and the container main body 2 (side wall 2a).
- the upper part of the container body 2 is a connection space 8 that communicates with the outer space 7.
- an outer partition plate 5 in which a plurality of openings having a size capable of preventing the outflow of the ion exchanger are formed, and the outer space 7 is interposed through the openings.
- the connection space 8 is communicated.
- the inner space 6 communicates with the connection space 8 through the opening of the inner partition plate 4.
- a manhole 9 is provided in the top plate 2b of the container body 2 and is used for maintenance purposes.
- a manhole 11 is also provided in the side wall 2 a of the container body 2.
- the inner surface of the container body 2 and the both surfaces of the inner cylinder 3 are lined because they are resin contact surfaces.
- the inner space 6 is filled with the first ion exchanger
- the outer space 7 is filled with the second ion exchanger.
- the first ion exchanger is a cation exchanger, preferably a cation exchange resin (hereinafter sometimes referred to as cation exchange resin layer C)
- the second ion exchanger is an anion exchanger, preferably an anion exchange. It is a resin (hereinafter sometimes referred to as an anion exchange resin single bed layer A).
- the anion exchange resin is supported by an annular support plate 12 provided at an intermediate position in the vertical direction Z of the outer space 7.
- the support plate 12 has a large number of openings large enough to allow condensate to pass through but retain the anion exchange resin.
- the condensate discharge part 13 is formed by a ring pipe 13 a having a large number of openings formed on the surface, and a through part 13 b connected to the ring pipe 13 a and penetrating the container body 2.
- the downstream space or the lower portion of the anion exchange resin single bed layer A in the outer space 7 is filled with a mixed cation exchange resin and an anion exchange resin (hereinafter sometimes referred to as a mixed layer M).
- the condensate discharge unit 13 is embedded in the mixed layer M.
- Most of the ionic components in the condensate are removed by the cation exchange resin layer C and the anion exchange resin single bed layer A, and as will be described later, the cation exchange resin layer C and the anion exchange resin single bed layer A are washed after regeneration with a chemical solution. Therefore, the load of the residual chemical solution is also small.
- the mixed layer M is provided for the purpose of finishing, and a small amount is sufficient and is periodically replaced without being regenerated.
- the mixed layer M can be omitted depending on the required water quality of the condensate.
- the first ion exchanger may be an anion exchange resin
- the second ion exchanger may be a cation exchange resin or a mixture of an anion exchange resin and a cation exchange resin. That is, the inner space 6 can be filled with an anion exchange resin, and the support plate 12 in the outer space 7 can be filled with a cation exchange resin or a mixed layer of a cation exchange resin and an anion exchange resin.
- the cation exchange resin is filled into the inner space 6, the anion exchange resin is filled onto the support plate 12 in the outer space 7, and the condensate is used as the cation exchange resin layer C and the anion exchange resin single bed. It is more preferable to flow in the order of layer A.
- the pH of condensate is adjusted to about 9.3 to 9.6 to prevent corrosion of system facilities.
- ammonia may be injected into the condensate. Since the cation exchange resin removes not only Na ions but also ammonia, a high load is applied. For this reason, the condensate demineralizer 1 is filled with more cation exchange resin than an anion exchange resin.
- the cation exchange resin filling amount of the cation exchange resin single bed layer C is about 6 m 3
- the anion exchange resin filling amount of the anion exchange resin single bed layer A is about 3 m. 3.
- the total filling amount of the cation exchange resin and the anion exchange resin in the mixed bed layer M is about 1 m 3 . Therefore, when an appropriate bed height Ch is taken into account, when the cation exchange resin is installed in the outer space 7, the planar size of the condensate demineralizer 1 tends to increase.
- the present embodiment is configured such that the cation exchange resin is filled in the inner space 6 and the condensate flows in the order of the cation exchange resin single bed layer C and the anion exchange resin single bed layer A.
- a ring-shaped first chemical supply pipe 26 for supplying a regenerated chemical solution of the cation exchange resin is provided above the cation exchange resin single bed layer C in the inner space 6.
- the first chemical liquid supply pipe 26 is connected to a pipe 27 that penetrates the container body 2 and the inner cylinder 3.
- a strongly acidic liquid such as HCl is preferably used as the regenerative chemical solution for the cation exchange resin.
- the regenerated chemical solution is extracted from a drain pipe (not shown) provided on the bottom plate 2c and collected.
- the drain pipe can also use the extraction port 22 and the condensate supply port 28.
- a ring-shaped second chemical liquid supply pipe 19 for supplying a regenerated chemical liquid of the anion exchange resin is provided above the anion exchange resin single bed layer A in the outer space 7.
- the second chemical liquid supply pipe 19 is connected to a pipe 20 that penetrates the container body 2.
- a chemical solution recovery port 21 that opens to the container body 2 and collects the regenerated chemical solution of the anion exchange resin is provided below the anion exchange resin.
- a strong alkaline liquid such as NaOH is preferably used as the regenerative chemical solution for the anion exchange resin.
- the extraction port 22 for extracting the cation exchange resin is provided below the cation exchange resin layer C of the container body 2.
- An extraction port 23 for extracting the anion exchange resin is provided below the anion exchange resin single bed layer A of the container body 2.
- an extraction port 24 for extracting the cation exchange resin and the anion exchange resin of the mixed bed layer M is provided below the mixed bed layer M of the container body 2.
- the extraction ports 22 and 24 are preferably provided as close to the center of the container body 2 as possible, and the extraction port 23 is preferably provided as close to the support plate 12 as possible.
- the bottom plate 2c of the container body 2 is provided with a condensate supply port 28 concentric with the center line 2d.
- Condensate is processed in the condensate demineralizer 1 as follows (see also FIG. 4A). First, the condensate flowing into the inner space 6 from the condensate supply port 28 flows upward, passes through the cation exchange resin single floor layer C, and flows out from the opening of the inner partition plate 4 into the connection space 8. The condensate then flows through the opening of the outer partition plate 5 between the outer space 7 and the connection space 8 and flows downward into the outer space 7. The condensate is once held in the outer partition plate 5 and then supplied to the outer space 7 through a number of openings in the outer partition plate 5.
- condensate is supplied uniformly in the circumferential direction and does not fall directly on the anion exchange resin, so that the anion exchange resin can be prevented from rising due to non-uniform flow and the anion exchange resin layer height can be kept constant. Can do.
- the condensate is supplied with an anion exchange resin single bed layer A from which an anion component is removed and supplied to the mixed bed layer M through the support plate 12.
- the cation component and the anion component contained in the condensate are further removed by the mixed bed layer M.
- the chemical solution that may remain during regeneration is also removed by the mixed bed layer M.
- the condensate thus treated with the cation exchange resin and the anion exchange resin is discharged from the condensate demineralizer 1 through the condensate discharge unit 13.
- the condensate demineralizer 1 is isolated from the condensate system of the power plant, the inside of the condensate demineralizer 1 is opened to the atmosphere, and the condensate is drained.
- the inner space 6 filled with the cation exchange resin is separated from the outer space 7 filled with the anion exchange resin, and condensate is prevented from flowing between the inner space 6 and the outer space 7.
- the regenerated chemical solution of the cation exchange resin is supplied to the inner space 6 from the first chemical solution supply pipe 26 connected in advance to a chemical solution tank (not shown) to regenerate the cation exchange resin.
- the regenerated chemical solution is collected from a drain pipe (not shown) branched from the condensate supply port 28.
- the chemical liquid supply pipe 26 is a ring pipe, the chemical liquid is evenly supplied to the cation exchange resin.
- the connection destination of the first chemical solution supply pipe 26 is switched to the wash water tank, and the wash water is supplied from the first chemical solution supply pipe 26 to the inner space 6.
- the wash water is collected from a drain pipe (not shown) branched from the condensate supply port 28.
- the cation exchange resin is washed with washing water to remove the regenerative chemical solution and impurities attached to the surface. Pure water can be used as the washing water.
- the anion exchange resin can be regenerated in the same manner.
- the second chemical liquid supply pipe 19 is connected in advance to a chemical tank (not shown).
- an anion exchange resin regenerative chemical solution is supplied from the second chemical solution supply pipe 19 to the outer space 7 to regenerate the anion exchange resin.
- the regenerated chemical solution is collected from the chemical solution collection port 21. Since the second chemical liquid supply pipe 19 is a ring pipe, the chemical liquid is evenly supplied to the anion exchange resin.
- the connection destination of the second chemical liquid supply pipe 19 is switched to the washing water tank, and the cleaning water is supplied from the second chemical liquid supply pipe 19 to the outer space 7. The washing water is collected from the chemical solution collection port 21.
- the anion exchange resin is washed with washing water to remove the regenerated chemical solution and impurities attached to the surface. Pure water can be used as the washing water.
- the regeneration and washing of the anion exchange resin can be performed in parallel with the regeneration and washing of the cation exchange resin, but may be performed sequentially.
- the condensate discharge unit 13 can be connected to a water source, and water can be supplied from the condensate discharge unit 13 toward the chemical liquid recovery port 21. At this time, it is desirable to adjust the flow rate so that the water level is approximately the same as that of the chemical solution recovery port 21.
- the chemical solution and water are simultaneously discharged from the chemical solution recovery port 21.
- the water supplied from the condensate discharge unit 13 prevents the chemical solution from flowing into the mixed bed layer M below the anion exchange resin single bed layer A.
- a chemical solution (such as NaOH) of an anion exchange resin flows into the mixed bed layer M, the cation exchange resin in the mixed bed layer M causes reverse regeneration. When the cation exchange resin is reversely regenerated, it becomes Na form, and Na ions are released during desalting, causing corrosion, scale, and the like.
- the cation exchange resin in the inner space 6 and the anion exchange resin in the outer space 7 are regenerated by the above-described method, they are usually not extracted from the condensate demineralizer 1, but are extracted when the resin reaches the end of its life. It is possible.
- the water in the tower is drained first.
- water is supplied from the condensate discharge unit 13 to loosen the mixed bed layer M, and air is supplied from an air supply means (not shown) connected to the condensate discharge unit 13 through the condensate discharge unit 13. Pressurize the inside.
- the valve (not shown) provided in the extraction port 24 is opened, and mixed bed resin is extracted. Since the bottom plate 2c of the container body 2 is inclined downward toward the center, the mixed bed layer M moves toward the center of the bottom plate 2c in combination with the pressure of air, and is pushed out (discharged) from the extraction port 24. ).
- the condensate demineralization apparatus 1 includes an inner space 6 provided with a cation exchange resin single bed layer C and an outer space provided with an anion exchange resin single bed layer A by a container body 2 and an inner cylinder 3. It is divided into seven. For this reason, an anion exchange resin and a cation exchange resin can be filled in one desalting tower, and the installation area of the condensate demineralizer 1 can be reduced. Since the cation exchange resin single bed layer C and the anion exchange resin single bed layer A are disposed adjacent to each other in the lateral direction, the total height of the condensate demineralizer 1 can be suppressed.
- the condensate demineralization apparatus 1 of this embodiment further has various advantages due to the ability to regenerate the cation exchange resin and the anion exchange resin internally.
- a regeneration tower for regenerating the cation exchange resin and the anion exchange resin is unnecessary.
- tower tanks such as two regeneration towers provided for regenerating each of the cation exchange resin and the anion exchange resin, and equipment such as a resin transfer pipe and a transfer pump associated therewith are not required. Therefore, the installation area of the facility is reduced, and the cost of the building can be reduced when installed indoors.
- FIG. 2 is a longitudinal sectional view of the condensate demineralizer 101 according to the second embodiment of the present invention
- FIG. 3A is a transverse sectional view taken along the line AA of FIG. 2
- FIG. 3B is a sectional view of FIG.
- FIG. 3C shows a cross-sectional view taken along line B
- FIG. 3C shows a cross-sectional view taken along line CC in FIG.
- FIG. 2 is a longitudinal sectional view taken along the line DD in FIGS. 3A to 3C.
- the same points as those in the first embodiment will be omitted, and differences from the first embodiment will be mainly described.
- a condensate supply pipe 14 extending in the vertical direction Z is provided in the inner space 6, a condensate supply pipe 14 extending in the vertical direction Z is provided.
- the condensate supply pipe 14 is provided substantially at the center of the inner space 6, that is, coaxially with the inner space 6 or the center line 2 d of the container body 2.
- the condensate supply pipe 14 passes through the bottom plate 2 c of the container main body 2, and the condensate is supplied to the condensate demineralizer 1 by an upward flow from below the condensate demineralizer 1.
- a plurality of condensate supply openings 14a are formed in the side wall 14b of the condensate supply pipe 14 so that the ion exchanger does not pass through.
- the condensate supply openings 14 a are provided substantially evenly in the circumferential direction of the condensate supply pipe 14, and are provided at substantially the same pitch in the vertical direction Z.
- the size of the condensate supply opening 14a increases toward the upper part of the condensate supply pipe 14 so that the condensate is supplied at almost the same flow rate from any position in the vertical direction Z of the condensate supply pipe 14. It may be. Instead of changing the size of the condensate supply opening 14 a in the vertical direction Z, the arrangement pitch in the vertical direction Z of the condensate supply opening 14 a may be reduced toward the upper part of the condensate supply pipe 14.
- Manholes 9 and 11 are respectively provided in the top plate 2b and the inner partition plate 4 of the container body 2, and are used for the purpose of installing and maintaining a condensate supply pipe 14 to be described later.
- the cation exchange resin is filled from the bottom surface of the inner space 6, that is, from the bottom surface of the container body 2 to just below the inner partition plate 4. For this reason, the cation exchange resin is filled at a high filling rate.
- the inner partition plate 4 is not provided with an opening through which condensate flows.
- a water collecting portion extending in the vertical direction Z is formed facing the condensate supply pipe 14.
- the water collecting portion is disposed in the circumferential direction along the inner wall surface of the inner cylinder 3.
- the water collecting section is composed of eight water collecting pipes 15 arranged at an equal pitch in the circumferential direction along the inner wall surface of the inner cylinder 3, but the number of the water collecting pipes 15 is not limited to this.
- Each water collecting pipe 15 faces the condensate supply pipe 14 with the cation exchange resin interposed therebetween.
- Each water collecting pipe 15 has a plurality of condensate water collecting openings 15 a which are provided on the side wall 15 c and do not allow the ion exchanger to pass therethrough, and a condensate outlet 15 b which communicates with the connection space 8.
- the plurality of condensate water collection openings 15a have the same diameter and are arranged at equal pitches in the vertical direction Z at positions facing the wall surface of the inner cylinder 3 of the container body 2 so that the cation exchange resin can be used effectively. Is preferred.
- the water collection pipe 15 collects the condensate treated with the cation exchange resin from the condensate water collection opening 15a, and causes the condensate to flow out to the connection space 8 from the condensate outlet 15b.
- a plurality of first chemical solution supply pipes 16 for supplying a regenerated chemical solution of the cation exchange resin are provided.
- the plurality of first chemical solution supply pipes 16 are provided at equal intervals along the inner wall surface of the inner cylinder 3 and are alternately provided with the water collection pipes 15.
- Each first chemical solution supply pipe 16 faces the water collection pipe 15 with the cation exchange resin interposed therebetween.
- eight first chemical liquid supply pipes 16 are arranged at equal intervals, and the first chemical liquid supply pipes 16 and the water collecting pipes 15 are also arranged at equal intervals. The number of the first chemical liquid supply pipes 16 and the positional relationship with the water collecting pipe 15 are not limited to this.
- the side wall 16b of the first chemical solution supply pipe 16 is provided with a plurality of chemical solution supply openings 16a having a size that does not allow the ion exchanger that supplies the regenerated chemical solution to pass therethrough.
- the plurality of chemical solution supply openings 16 a are preferably arranged at equal pitches in the vertical direction Z at positions facing the wall surface of the inner cylinder 3 of the container body 2.
- the plurality of first chemical liquid supply pipes 16 are branched from a ring-shaped header pipe 17 provided in the connection space 8, and the header pipe 17 is connected to a pipe 18 that penetrates the top plate 2 b of the container body 2.
- a strongly acidic liquid such as HCl is preferably used as the regenerative chemical solution for the cation exchange resin.
- Condensate is processed in the condensate demineralizer 101 as follows (see also FIG. 4B).
- the condensate that has flowed into the condensate supply pipe 14 circulates in the condensate supply pipe 14 in an upward flow. 6 is discharged.
- Condensate flows through the cation exchange resin layer C toward each water collecting pipe 15. For this reason, the condensate flows radially from the condensate supply pipe 14 toward each of the water collecting pipes 15 (radially outward) and in a generally horizontal direction. Since a plurality of the water collecting pipes 15 are provided along the inner wall surface of the inner cylinder 3, the condensate flows almost evenly in any angular direction around the center line 2 d of the container body 2. In this manner, the cation component is removed from the condensate by the cation exchange resin layer C.
- the condensate is introduced into the collecting pipe 15 from the condensate collecting opening 15a of the collecting pipe 15, and becomes an upward flow again and flows out from the condensate outlet 15b to the connection space 8. Thereafter, in the condensate, the anion component is removed by the anion exchange resin single bed layer A in the same manner as in the first embodiment, and the cation component and the anion component are further removed by the mixed bed layer M. Condensate is discharged from the condensate demineralizer 1 through the condensate discharge unit 13.
- the condensate circulates in the inner space 6 in the radial direction.
- the height of the cation exchange resin layer C is defined not in the vertical direction Z but in the horizontal direction.
- 4A shows a schematic cross-sectional view of the condensate demineralizer 1 of the first embodiment
- FIG. 4B shows a schematic cross-sectional view of the condensate demineralizer 101 of the second embodiment.
- FIG. 4A exaggerates the diameter for convenience of explanation. It is assumed that the volume of the cation exchange resin layer C is the same. In the figure, the thick line indicates the flow of condensate.
- the layer height Ch of the cation exchange resin layer C is defined in the radial direction or horizontal direction of the container body 2.
- the bed height Ch is required to be constant for ensuring the water quality of the condensate, and it is necessary to set it to an appropriate range in order to prevent excessive pressure loss.
- the cation exchange resin layer C and the anion exchange resin single bed layer A are partitioned by the inner cylinder 3 as in the second embodiment.
- the layer height Ch of the cation exchange resin layer C is defined in the vertical direction Z.
- the condensate demineralization apparatus 1 of the first embodiment tends to generate a space above the cation exchange resin layer C that is not filled with the cation exchange resin.
- the space utilization rate is high. Therefore, the condensate demineralizer 101 can be made compact, and the cost can be further suppressed as compared with the condensate demineralizer 1 of the first embodiment.
- the planar size of the condensate demineralizer 1 is also suppressed.
- the installation area of the condensate demineralizer 101 can be reduced, and the cost of the building where the condensate demineralizer 101 is installed can also be suppressed.
- the cation exchange resin layer C becomes a layer height, so that the differential pressure increases.
- the device is made compact.
- the differential pressure can be reduced.
- the condensate demineralizer 101 is isolated from the condensate system of the power plant, the interior of the condensate demineralizer 1 is opened to the atmosphere, and the condensate is drained.
- the inner space 6 filled with the cation exchange resin is separated from the outer space 7 filled with the anion exchange resin, and condensate is prevented from flowing between the inner space 6 and the outer space 7.
- the first chemical supply pipe 16 is connected to a chemical tank (not shown), and the condensate supply pipe 14 is connected to a drain pipe (not shown).
- the regenerated chemical solution of the cation exchange resin is supplied from the first chemical solution supply pipe 16 to the inner space 6, and the regenerated chemical solution is recovered by the condensate supply pipe 14 to regenerate the cation exchange resin.
- the regenerative chemical solution flows in the opposite direction to the condensate flow, that is, substantially horizontally toward the radially inner side of the container body 2 (countercurrent regeneration).
- countercurrent regeneration since the condensate flow is regenerated from the resin on the most downstream side (exit side) of the cation exchange resin layer C, stable water quality can be maintained.
- the connection destination of the first chemical liquid supply pipe 16 is switched to a cleaning water tank (not shown), and the cleaning water is supplied from the first chemical liquid supply pipe 16 to the inner space 6.
- the wash water flows in the direction opposite to the direction of the condensate.
- the cation exchange resin is washed with washing water to remove the regenerative chemical solution and impurities attached to the surface. Pure water can be used as the washing water. Since the washing water is also supplied from the most downstream side (exit side) of the cation exchange resin single bed layer C with respect to the condensate flow, the residual chemical solution flows to the anion exchange resin in the subsequent stage, and the anion exchange resin is reversely regenerated.
- anion exchange resin When the anion exchange resin is reversely regenerated, it becomes Cl type (SO 4 type when sulfuric acid is used as a regenerative chemical solution), and chlorine ions and sulfate ions are released during desalting, which causes corrosion, scale, and the like.
- the anion exchange resin can be regenerated in the same manner as in the first embodiment.
- the second embodiment of the present invention is not limited to this, and various modifications are possible.
- the condensate can be flowed radially inward of the condensate demineralizer 101, and the chemical solution and washing water can be flowed radially outward.
- connection space 8 may be provided in the lower part of the container body 2.
- the condensate is supplied to the condensate demineralizer 101 from above the condensate demineralizer 101 and is radially outward from the condensate supply pipe 14 toward the water collecting portion 15 as in the above embodiment.
- the cation component is removed by the cation exchange resin single bed layer C.
- the condensate flows downward in the water collecting portion 15 and flows into the connection space 8, and further flows upward through the anion exchange resin single bed layer A and mixed bed layer M in the outer space 7, and the upper part of the container body 2. Discharged from.
- the water collecting section is composed of a plurality of water collecting pipes 15, but the water collecting section can take various configurations as long as the condensate flows in the radial direction inside the cation exchange resin.
- FIG. 5 is a cross-sectional view similar to FIG. 3C, taken along line CC in FIG.
- a second inner cylinder 25 concentric with the inner cylinder 3 is provided inside the inner cylinder 3, and a flow path having an annular cross section is formed between the inner cylinder 3 and the second inner cylinder 25. Yes.
- a number of condensate water collection openings are formed in the second inner cylinder 25.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
The purpose of the invention is to easily separate a cation exchanger and an anion exchanger and control the installation area. A condensate demineralization device 1 has: an inner cylinder 3 defining an inner-side space 6 filled with a first ion exchanger; a container body 2 that encloses the inner cylinder 3, that defines, with the inner cylinder 3, an outer-side space 7 filled with at least a second ion exchanger, and that defines a connecting space 8 that communicates with the outer-side space 7; a condensate supply pipe 14 that supplies condensate to the inner-side space 6; and a condensate discharging unit 13 that is provided downstream of the second ion exchanger in the outer-side space 7 and that discharges the condensate having been treated with the second ion exchanger.
Description
本出願は、2017年5月19日出願の日本出願である特願2017-99996に基づき、かつ同出願に基づく優先権を主張する。この出願は、その全体が参照によって本出願に取り込まれる。
This application is based on Japanese Patent Application No. 2017-99996, filed on May 19, 2017, and claims priority based on this application. This application is incorporated herein by reference in its entirety.
本発明は、復水脱塩装置の構成に関する。
The present invention relates to the configuration of a condensate demineralizer.
発電所では復水の脱塩のために復水脱塩装置が用いられている。復水脱塩装置の脱塩塔にはカチオン交換樹脂とアニオン交換樹脂が充填され、Na+等のカチオン成分とCl-等のアニオン成分が除去される。カチオン交換樹脂やアニオン交換樹脂が飽和状態に達すると、カチオン交換樹脂やアニオン交換樹脂は復水脱塩装置の再生塔に移送され、薬液で再生されて再び脱塩塔に戻される。特開2005-296748号公報及び特開2007-98328号公報には、カチオン交換樹脂層とアニオン交換樹脂層が交互に積層され、その間を分離壁で区分された復水脱塩装置が開示されている。特開平8-82695号公報には、カチオン交換樹脂が充填されたカチオン交換樹脂塔と、アニオン交換樹脂が充填されたアニオン交換樹脂塔と、が直列に接続された復水脱塩装置が開示されている。
At the power plant, a condensate demineralizer is used to demineralize the condensate. The demineralization tower of the condensate demineralizer is filled with a cation exchange resin and an anion exchange resin, and an anion component such as Na + and an anion component such as Cl − are removed. When the cation exchange resin or anion exchange resin reaches a saturated state, the cation exchange resin or anion exchange resin is transferred to the regeneration tower of the condensate demineralizer, regenerated with a chemical solution, and returned to the desalting tower again. Japanese Patent Application Laid-Open Nos. 2005-296748 and 2007-98328 disclose a condensate demineralization apparatus in which a cation exchange resin layer and an anion exchange resin layer are alternately stacked and separated by a separation wall. Yes. JP-A-8-82695 discloses a condensate demineralization apparatus in which a cation exchange resin tower filled with a cation exchange resin and an anion exchange resin tower filled with an anion exchange resin are connected in series. ing.
特開2005-296748号公報及び特開2007-98328号公報に記載された復水脱塩装置では、カチオン交換樹脂層とアニオン交換樹脂層が交互に積層されるため、塔高が高くなってしまう。また、樹脂の再生にあたり、逆再生を防止するため、カチオン交換樹脂とアニオン交換樹脂を樹脂塔から抜き出して、それぞれを別々に再生することから、別途再生塔や樹脂塔と再生塔を繋ぐライン等が必要になり、復水脱塩装置のコストが上がるほか、復水脱塩装置の設置面積も増加する。特開平8-82695号公報に記載された復水脱塩装置では、カチオン交換樹脂がカチオン交換樹脂塔に、アニオン交換樹脂がアニオン交換樹脂塔に充填されるため、カチオン交換樹脂とアニオン交換樹脂を分離する操作が原理的に不要である。しかし、カチオン交換樹脂塔とアニオン交換樹脂塔を設置する必要があるため、復水脱塩装置のコストが上がるほか、復水脱塩装置の設置面積も増加する。
In the condensate demineralizer described in JP-A-2005-296748 and JP-A-2007-98328, the tower height becomes high because the cation exchange resin layer and the anion exchange resin layer are alternately laminated. . Also, in order to prevent reverse regeneration during resin regeneration, the cation exchange resin and anion exchange resin are extracted from the resin tower and regenerated separately, so that a separate regeneration tower, a line connecting the resin tower and the regeneration tower, etc. This will increase the cost of the condensate demineralizer and increase the installation area of the condensate demineralizer. In the condensate demineralizer described in JP-A-8-82695, the cation exchange resin is filled in the cation exchange resin tower and the anion exchange resin is filled in the anion exchange resin tower. The operation of separating is not necessary in principle. However, since it is necessary to install a cation exchange resin tower and an anion exchange resin tower, the cost of the condensate demineralizer increases, and the installation area of the condensate demineralizer increases.
本発明はイオン交換体の再生が容易であり、かつ設置面積が低減された復水脱塩装置を提供することを目的とする。
An object of the present invention is to provide a condensate desalination apparatus in which the ion exchanger can be easily regenerated and the installation area is reduced.
本発明の復水脱塩装置は、第1のイオン交換体が充填される内側空間を形成する内筒と、内筒を取り囲む容器本体であって、少なくとも第2のイオン交換体が充填される外側空間を内筒との間で形成するとともに、外側空間と連通する接続空間を形成する容器本体と、内側空間に復水を供給する復水供給管と、外側空間の第2のイオン交換体の下流に設けられ、第2のイオン交換体で処理された復水を排出する復水排出部と、を有する。
The condensate demineralization apparatus of the present invention is an inner cylinder that forms an inner space filled with a first ion exchanger, and a container body that surrounds the inner cylinder, and is filled with at least a second ion exchanger. A container body that forms an outer space with the inner cylinder and forms a connection space that communicates with the outer space, a condensate supply pipe that supplies condensate to the inner space, and a second ion exchanger in the outer space And a condensate discharge unit for discharging the condensate treated with the second ion exchanger.
本発明の復水脱塩装置は、内側空間を形成する内筒と、内筒を取り囲み外側空間を形成する容器本体と、からなる二重円筒構造を有し、内側空間に第1のイオン交換体が、外側空間に少なくとも第2のイオン交換体が充填される。このため、第1のイオン交換体と第2のイオン交換体を別々の塔に充填する復水脱塩装置と比べて設置面積を低減することができる。また、内側空間には第1のイオン交換体だけが充填されるため、内側空間に充填された第1のイオン交換体は分離操作が不要である。
The condensate demineralization device of the present invention has a double cylindrical structure comprising an inner cylinder that forms an inner space and a container body that surrounds the inner cylinder and forms an outer space, and the first ion exchange is performed in the inner space. The body is filled with at least a second ion exchanger in the outer space. For this reason, an installation area can be reduced compared with the condensate demineralizer which charges a 1st ion exchanger and a 2nd ion exchanger to a separate tower. Moreover, since only the first ion exchanger is filled in the inner space, the first ion exchanger filled in the inner space does not require a separation operation.
従って、本発明によれば、イオン交換体の再生が容易であり、かつ設置面積が低減された復水脱塩装置を提供することができる。
Therefore, according to the present invention, it is possible to provide a condensate demineralization apparatus in which the ion exchanger can be easily regenerated and the installation area is reduced.
上述した、およびその他の、本出願の目的、特徴、および利点は、本出願を例示した添付の図面を参照する以下に述べる詳細な説明によって明らかとなろう。
The above and other objects, features, and advantages of the present application will become apparent from the detailed description set forth below with reference to the accompanying drawings, which illustrate the present application.
1,104 復水脱塩装置
2 容器本体
3 内筒
6 内側空間
7 外側空間
8 接続空間
13 復水排出部
14 復水供給管
14a 復水供給開口
15 集水部(集水管)
15a 復水集水開口
15b 復水流出口
16,26 第1の薬液供給管
16a 薬液供給開口
19 第2の薬液供給管
21 薬液回収口
22 カチオン交換樹脂の抜き取り口
23 アニオン交換樹脂の抜き取り口
28 復水供給口
A アニオン交換樹脂単床層
C カチオン交換樹脂単床層
M 混床層 DESCRIPTION OF SYMBOLS 1,104Condensate demineralizer 2 Container body 3 Inner cylinder 6 Inner space 7 Outer space 8 Connection space 13 Condensate discharge part 14 Condensate supply pipe 14a Condensate supply opening 15 Collecting part (collection pipe)
15a Condensate water collection opening 15b Condensate outlet 16, 26 First chemical liquid supply pipe 16a Chemical liquid supply opening 19 Second chemical liquid supply pipe 21 Chemical liquid recovery port 22 Cation exchange resin extraction port 23 Anion exchange resin extraction port 28 Water supply port A Anion exchange resin single bed layer C Cation exchange resin single bed layer M Mixed bed layer
2 容器本体
3 内筒
6 内側空間
7 外側空間
8 接続空間
13 復水排出部
14 復水供給管
14a 復水供給開口
15 集水部(集水管)
15a 復水集水開口
15b 復水流出口
16,26 第1の薬液供給管
16a 薬液供給開口
19 第2の薬液供給管
21 薬液回収口
22 カチオン交換樹脂の抜き取り口
23 アニオン交換樹脂の抜き取り口
28 復水供給口
A アニオン交換樹脂単床層
C カチオン交換樹脂単床層
M 混床層 DESCRIPTION OF SYMBOLS 1,104
15a Condensate water collection opening 15b Condensate
以下、図面を参照して本発明のいくつかの実施形態に係る復水脱塩装置について説明する。本発明の復水脱塩装置1,101は主に発電所で用いられる。タービン(図示せず)で仕事を行った蒸気は復水器(図示せず)で凝縮されて復水となり、復水ろ過装置(図示せず)等でろ過された後、復水脱塩装置1,101で脱塩され、ボイラー(図示せず)等の蒸気発生装置に供給される。
Hereinafter, condensate demineralization apparatuses according to some embodiments of the present invention will be described with reference to the drawings. The condensate demineralizer 1, 101 of the present invention is mainly used in power plants. Steam that has worked in a turbine (not shown) is condensed in a condenser (not shown) to become condensate, filtered by a condensate filtration device (not shown), etc., and then a condensate demineralizer. Desalinated at 1,101 and supplied to a steam generator such as a boiler (not shown).
(第1の実施形態)
図1Aは本発明の第1の実施形態に係る復水脱塩装置1の縦断面図を、図1Bは図1AのA-A線からみた横断面図を示している。復水脱塩装置1は、圧力容器を構成する容器本体2と、容器本体2の内部に設けられた内筒3と、を有している。容器本体2は鉛直方向Zの中心線2dを有する円筒状の側壁2aと、側壁2aの上部に接続されたドーム状の頂板2bと、側壁2aの下部に接続されたドーム状の底板2cと、から構成されている。内筒3は円筒形の形状を有し、容器本体2と同心配置されている。内筒3は容器本体2の底板2cに溶接され、内筒3の上部はイオン交換体の流出を防ぐことができる大きさの開口が複数形成された内側仕切板4で覆われている。従って、内筒3は内側仕切板4及び容器本体2の底板2cとともに、内側空間6を形成する。内筒3と容器本体2(側壁2a)との間には外側空間7が形成されている。容器本体2の上部は外側空間7と連通する接続空間8となっている。外側空間7と接続空間8との間には、イオン交換体の流出を防ぐことができる大きさの開口が複数形成された外側仕切板5が設けられており、外側空間7はこの開口を介して接続空間8と連通している。また、内側空間6は内側仕切板4の開口を介して接続空間8と連通している。容器本体2の頂板2bにはマンホール9が設けられており、メンテナンスなどの目的で使用される。また、容器本体2の側壁2aにもマンホール11が設けられている。容器本体2の内面及び内筒3の両面は樹脂の接触面となるためライニングされている。 (First embodiment)
1A is a longitudinal sectional view of thecondensate demineralizer 1 according to the first embodiment of the present invention, and FIG. 1B is a transverse sectional view taken along the line AA of FIG. 1A. The condensate demineralizer 1 includes a container main body 2 constituting a pressure vessel and an inner cylinder 3 provided inside the container main body 2. The container body 2 has a cylindrical side wall 2a having a center line 2d in the vertical direction Z, a dome-shaped top plate 2b connected to the upper portion of the side wall 2a, a dome-shaped bottom plate 2c connected to the lower portion of the side wall 2a, It is composed of The inner cylinder 3 has a cylindrical shape and is arranged concentrically with the container body 2. The inner cylinder 3 is welded to the bottom plate 2c of the container body 2, and the upper portion of the inner cylinder 3 is covered with an inner partition plate 4 in which a plurality of openings having a size capable of preventing the ion exchanger from flowing out are formed. Therefore, the inner cylinder 3 forms an inner space 6 together with the inner partition plate 4 and the bottom plate 2 c of the container body 2. An outer space 7 is formed between the inner cylinder 3 and the container main body 2 (side wall 2a). The upper part of the container body 2 is a connection space 8 that communicates with the outer space 7. Between the outer space 7 and the connection space 8, there is provided an outer partition plate 5 in which a plurality of openings having a size capable of preventing the outflow of the ion exchanger are formed, and the outer space 7 is interposed through the openings. The connection space 8 is communicated. The inner space 6 communicates with the connection space 8 through the opening of the inner partition plate 4. A manhole 9 is provided in the top plate 2b of the container body 2 and is used for maintenance purposes. A manhole 11 is also provided in the side wall 2 a of the container body 2. The inner surface of the container body 2 and the both surfaces of the inner cylinder 3 are lined because they are resin contact surfaces.
図1Aは本発明の第1の実施形態に係る復水脱塩装置1の縦断面図を、図1Bは図1AのA-A線からみた横断面図を示している。復水脱塩装置1は、圧力容器を構成する容器本体2と、容器本体2の内部に設けられた内筒3と、を有している。容器本体2は鉛直方向Zの中心線2dを有する円筒状の側壁2aと、側壁2aの上部に接続されたドーム状の頂板2bと、側壁2aの下部に接続されたドーム状の底板2cと、から構成されている。内筒3は円筒形の形状を有し、容器本体2と同心配置されている。内筒3は容器本体2の底板2cに溶接され、内筒3の上部はイオン交換体の流出を防ぐことができる大きさの開口が複数形成された内側仕切板4で覆われている。従って、内筒3は内側仕切板4及び容器本体2の底板2cとともに、内側空間6を形成する。内筒3と容器本体2(側壁2a)との間には外側空間7が形成されている。容器本体2の上部は外側空間7と連通する接続空間8となっている。外側空間7と接続空間8との間には、イオン交換体の流出を防ぐことができる大きさの開口が複数形成された外側仕切板5が設けられており、外側空間7はこの開口を介して接続空間8と連通している。また、内側空間6は内側仕切板4の開口を介して接続空間8と連通している。容器本体2の頂板2bにはマンホール9が設けられており、メンテナンスなどの目的で使用される。また、容器本体2の側壁2aにもマンホール11が設けられている。容器本体2の内面及び内筒3の両面は樹脂の接触面となるためライニングされている。 (First embodiment)
1A is a longitudinal sectional view of the
内側空間6には第1のイオン交換体が、外側空間7には第2のイオン交換体が充填されている。ここでは、第1のイオン交換体はカチオン交換体、好ましくはカチオン交換樹脂(以下、カチオン交換樹脂層Cという場合がある)であり、第2のイオン交換体はアニオン交換体、好ましくはアニオン交換樹脂(以下、アニオン交換樹脂単床層Aという場合がある)である。アニオン交換樹脂は外側空間7の鉛直方向Z中間位置に設けられた環状の支持板12で支持されている。支持板12には、復水を通過させるがアニオン交換樹脂を保持する大きさの多数の開口が形成されている。支持板12の下方の容器本体2の底板2c付近には、復水を排出する復水排出部13が設けられている。復水排出部13は表面に多数の開口が形成されたリング配管13aと、リング配管13aに接続され容器本体2を貫通する貫通部13bと、から形成されている。
The inner space 6 is filled with the first ion exchanger, and the outer space 7 is filled with the second ion exchanger. Here, the first ion exchanger is a cation exchanger, preferably a cation exchange resin (hereinafter sometimes referred to as cation exchange resin layer C), and the second ion exchanger is an anion exchanger, preferably an anion exchange. It is a resin (hereinafter sometimes referred to as an anion exchange resin single bed layer A). The anion exchange resin is supported by an annular support plate 12 provided at an intermediate position in the vertical direction Z of the outer space 7. The support plate 12 has a large number of openings large enough to allow condensate to pass through but retain the anion exchange resin. Near the bottom plate 2c of the container body 2 below the support plate 12, a condensate discharge portion 13 for discharging condensate is provided. The condensate discharge part 13 is formed by a ring pipe 13 a having a large number of openings formed on the surface, and a through part 13 b connected to the ring pipe 13 a and penetrating the container body 2.
外側空間7のアニオン交換樹脂単床層Aの下流ないし下方にはカチオン交換樹脂とアニオン交換樹脂が混合された状態で充填されている(以下、混合層Mという場合がある)。復水排出部13は混合層Mに埋め込まれている。カチオン交換樹脂層Cとアニオン交換樹脂単床層Aによって復水中のイオン成分の多くが除去され、また後述するように、カチオン交換樹脂層Cとアニオン交換樹脂単床層Aは薬液で再生後洗浄されるため、残留薬液の負荷も小さい。このため、混合層Mは仕上げの目的で設けられ、少量で十分であるとともに、再生されることなく定期的に交換される。復水の要求水質によっては混合層Mを省略することもできる。
The downstream space or the lower portion of the anion exchange resin single bed layer A in the outer space 7 is filled with a mixed cation exchange resin and an anion exchange resin (hereinafter sometimes referred to as a mixed layer M). The condensate discharge unit 13 is embedded in the mixed layer M. Most of the ionic components in the condensate are removed by the cation exchange resin layer C and the anion exchange resin single bed layer A, and as will be described later, the cation exchange resin layer C and the anion exchange resin single bed layer A are washed after regeneration with a chemical solution. Therefore, the load of the residual chemical solution is also small. For this reason, the mixed layer M is provided for the purpose of finishing, and a small amount is sufficient and is periodically replaced without being regenerated. The mixed layer M can be omitted depending on the required water quality of the condensate.
第1のイオン交換体がアニオン交換樹脂であり、第2のイオン交換体がカチオン交換樹脂、またはアニオン交換樹脂とカチオン交換樹脂の混合物であってもよい。すなわち、内側空間6にアニオン交換樹脂を充填し、外側空間7の支持板12上にカチオン交換樹脂、またはカチオン交換樹脂とアニオン交換樹脂の混合層を充填することもできる。しかし、本実施形態のように、カチオン交換樹脂を内側空間6に充填し、アニオン交換樹脂を外側空間7の支持板12上に充填し、復水をカチオン交換樹脂層C、アニオン交換樹脂単床層Aの順で流すのがより好ましい。これは以下の理由による。一般に火力発電所等においては、系統設備の腐食防止のために復水のpHが9.3~9.6程度に調整されている。この目的で復水にはアンモニアが注入されることがある。カチオン交換樹脂はNaイオンなどだけでなく、アンモニアも除去するため、高い負荷がかかる。このため、復水脱塩装置1にはカチオン交換樹脂がアニオン交換樹脂より多く充填される。復水流量が730m3/hの条件における一例では、カチオン交換樹脂単床層Cのカチオン交換樹脂の充填量が約6m3、アニオン交換樹脂単床層Aのアニオン交換樹脂の充填量が約3m3、混床層Mのカチオン交換樹脂とアニオン交換樹脂の合計充填量が約1m3である。従って、適正な層高Chを考慮すると、カチオン交換樹脂を外側空間7に設置した場合、復水脱塩装置1の平面寸法が大きくなる傾向となる。また、カチオン交換樹脂を外側空間7に充填すると、後述するようにカチオン交換樹脂を抜き取る際、平面形状の支持板12上を移動させるのが困難となる場合がある。これはカチオン交換樹脂の比重がアニオン交換樹脂の比重より大きいためである。これに対しカチオン交換樹脂を内側空間6に充填した場合、容器本体2の底面の傾斜を利用することができるため、カチオン交換樹脂をよりスムーズに抜き取ることができる。さらに復水をカチオン交換樹脂、アニオン交換樹脂の順で流すほうが復水の水質が改善されることが分かっている。以上より、本実施形態はカチオン交換樹脂を内側空間6に充填し、復水をカチオン交換樹脂単床層C、アニオン交換樹脂単床層Aの順で流す構成としている。
The first ion exchanger may be an anion exchange resin, and the second ion exchanger may be a cation exchange resin or a mixture of an anion exchange resin and a cation exchange resin. That is, the inner space 6 can be filled with an anion exchange resin, and the support plate 12 in the outer space 7 can be filled with a cation exchange resin or a mixed layer of a cation exchange resin and an anion exchange resin. However, as in this embodiment, the cation exchange resin is filled into the inner space 6, the anion exchange resin is filled onto the support plate 12 in the outer space 7, and the condensate is used as the cation exchange resin layer C and the anion exchange resin single bed. It is more preferable to flow in the order of layer A. This is due to the following reason. Generally, in a thermal power plant or the like, the pH of condensate is adjusted to about 9.3 to 9.6 to prevent corrosion of system facilities. For this purpose, ammonia may be injected into the condensate. Since the cation exchange resin removes not only Na ions but also ammonia, a high load is applied. For this reason, the condensate demineralizer 1 is filled with more cation exchange resin than an anion exchange resin. In an example of the condition where the condensate flow rate is 730 m 3 / h, the cation exchange resin filling amount of the cation exchange resin single bed layer C is about 6 m 3 , and the anion exchange resin filling amount of the anion exchange resin single bed layer A is about 3 m. 3. The total filling amount of the cation exchange resin and the anion exchange resin in the mixed bed layer M is about 1 m 3 . Therefore, when an appropriate bed height Ch is taken into account, when the cation exchange resin is installed in the outer space 7, the planar size of the condensate demineralizer 1 tends to increase. Further, when the outer space 7 is filled with the cation exchange resin, it may be difficult to move on the planar support plate 12 when extracting the cation exchange resin as described later. This is because the specific gravity of the cation exchange resin is larger than that of the anion exchange resin. On the other hand, when the inner space 6 is filled with the cation exchange resin, the inclination of the bottom surface of the container body 2 can be used, so that the cation exchange resin can be extracted more smoothly. Furthermore, it has been found that the water quality of the condensate is improved by flowing the condensate in the order of cation exchange resin and anion exchange resin. As described above, the present embodiment is configured such that the cation exchange resin is filled in the inner space 6 and the condensate flows in the order of the cation exchange resin single bed layer C and the anion exchange resin single bed layer A.
内側空間6のカチオン交換樹脂単床層Cの上方には、カチオン交換樹脂の再生薬液を供給するリング状の第1の薬液供給管26が設けられている。第1の薬液供給管26は容器本体2と内筒3を貫通する配管27に接続されている。カチオン交換樹脂の再生薬液としてはHClなどの強酸性液体が好適に用いられる。再生薬液は、底板2cに設けられたドレン管(不図示)から抜き取り、回収される。ドレン管は、抜き取り口22や復水供給口28を利用することもできる。
A ring-shaped first chemical supply pipe 26 for supplying a regenerated chemical solution of the cation exchange resin is provided above the cation exchange resin single bed layer C in the inner space 6. The first chemical liquid supply pipe 26 is connected to a pipe 27 that penetrates the container body 2 and the inner cylinder 3. A strongly acidic liquid such as HCl is preferably used as the regenerative chemical solution for the cation exchange resin. The regenerated chemical solution is extracted from a drain pipe (not shown) provided on the bottom plate 2c and collected. The drain pipe can also use the extraction port 22 and the condensate supply port 28.
外側空間7のアニオン交換樹脂単床層Aの上方には、アニオン交換樹脂の再生薬液を供給するリング状の第2の薬液供給管19が設けられている。第2の薬液供給管19は容器本体2を貫通する配管20に接続されている。アニオン交換樹脂単床層Aの下方、正確には支持板12の直下には、容器本体2に開口しアニオン交換樹脂の再生薬液を回収する薬液回収口21が設けられている。アニオン交換樹脂の再生薬液としてはNaOHなどの強アルカリ性液体が好適に用いられる。
Above the anion exchange resin single bed layer A in the outer space 7, a ring-shaped second chemical liquid supply pipe 19 for supplying a regenerated chemical liquid of the anion exchange resin is provided. The second chemical liquid supply pipe 19 is connected to a pipe 20 that penetrates the container body 2. Below the anion exchange resin single-bed layer A, more specifically, directly below the support plate 12, a chemical solution recovery port 21 that opens to the container body 2 and collects the regenerated chemical solution of the anion exchange resin is provided. A strong alkaline liquid such as NaOH is preferably used as the regenerative chemical solution for the anion exchange resin.
容器本体2のカチオン交換樹脂層Cの下方にはカチオン交換樹脂を抜き取るための抜き取り口22が設けられている。容器本体2のアニオン交換樹脂単床層Aの下部には、アニオン交換樹脂を抜き取るための抜き取り口23が設けられている。さらに、容器本体2の混床層Mの下方には混床層Mのカチオン交換樹脂とアニオン交換樹脂を抜き取るための抜き取り口24が設けられている。抜き取り口22,24はできる限り容器本体2の中心寄りに設けることが望ましく、抜き取り口23はできる限り支持板12の近くに設けることが望ましい。容器本体2の底板2cには中心線2dと同心の復水供給口28が設けられている。
The extraction port 22 for extracting the cation exchange resin is provided below the cation exchange resin layer C of the container body 2. An extraction port 23 for extracting the anion exchange resin is provided below the anion exchange resin single bed layer A of the container body 2. Further, an extraction port 24 for extracting the cation exchange resin and the anion exchange resin of the mixed bed layer M is provided below the mixed bed layer M of the container body 2. The extraction ports 22 and 24 are preferably provided as close to the center of the container body 2 as possible, and the extraction port 23 is preferably provided as close to the support plate 12 as possible. The bottom plate 2c of the container body 2 is provided with a condensate supply port 28 concentric with the center line 2d.
復水脱塩装置1の内部で復水は以下のように処理される(図4Aも参照)。まず、復水供給口28から内側空間6に流入した復水は上向流となってカチオン交換樹脂単床層Cを通り、内側仕切板4の開口から接続空間8に流出する。復水は次に外側空間7と接続空間8の間の外側仕切板5の開口を通って、下向流となって外側空間7に流入する。復水は一旦外側仕切板5に保持され、その後外側仕切板5の多数の開口を通って外側空間7に供給される。このため、復水が周方向に均一に供給されるとともに、アニオン交換樹脂に直接落下しないため、不均一な流動によるアニオン交換樹脂の舞い上がりを防止し、アニオン交換樹脂層高を一定に保持することができる。復水はアニオン交換樹脂単床層Aでアニオン成分を除去され、支持板12を通って混床層Mに供給される。復水に含まれるカチオン成分とアニオン成分は混床層Mでさらに除去される。再生の際に残留する可能性のある薬液も混床層Mで除去される。このようにしてカチオン交換樹脂とアニオン交換樹脂で処理された復水は復水排出部13を通って復水脱塩装置1から排出される。
Condensate is processed in the condensate demineralizer 1 as follows (see also FIG. 4A). First, the condensate flowing into the inner space 6 from the condensate supply port 28 flows upward, passes through the cation exchange resin single floor layer C, and flows out from the opening of the inner partition plate 4 into the connection space 8. The condensate then flows through the opening of the outer partition plate 5 between the outer space 7 and the connection space 8 and flows downward into the outer space 7. The condensate is once held in the outer partition plate 5 and then supplied to the outer space 7 through a number of openings in the outer partition plate 5. For this reason, condensate is supplied uniformly in the circumferential direction and does not fall directly on the anion exchange resin, so that the anion exchange resin can be prevented from rising due to non-uniform flow and the anion exchange resin layer height can be kept constant. Can do. The condensate is supplied with an anion exchange resin single bed layer A from which an anion component is removed and supplied to the mixed bed layer M through the support plate 12. The cation component and the anion component contained in the condensate are further removed by the mixed bed layer M. The chemical solution that may remain during regeneration is also removed by the mixed bed layer M. The condensate thus treated with the cation exchange resin and the anion exchange resin is discharged from the condensate demineralizer 1 through the condensate discharge unit 13.
次に、復水脱塩装置1におけるカチオン交換樹脂とアニオン交換樹脂の再生方法を説明する。
Next, a method for regenerating the cation exchange resin and the anion exchange resin in the condensate demineralizer 1 will be described.
まず、復水脱塩装置1を発電所の復水系統から隔離し、復水脱塩装置1の内部を大気開放し、復水を排水する。この結果、カチオン交換樹脂が充填された内側空間6はアニオン交換樹脂が充填された外側空間7から分離され、内側空間6と外側空間7との間で復水が流通することが防止される。次に、あらかじめ薬液タンク(図示せず)に接続された第1の薬液供給管26から内側空間6に、カチオン交換樹脂の再生薬液を供給し、カチオン交換樹脂を再生する。再生薬液は復水供給口28から分岐されたドレン管(不図示)から回収される。第1の薬液供給管26がリング管であるため、カチオン交換樹脂に均等に薬液が供給される。カチオン交換樹脂の再生後、第1の薬液供給管26の接続先を洗浄水タンクに切り替え、第1の薬液供給管26から内側空間6に洗浄水を供給する。洗浄水は復水供給口28から分岐されたドレン管(不図示)から回収される。カチオン交換樹脂は洗浄水によって洗浄され、表面に付着した再生薬液や不純物が除去される。洗浄水としては純水を用いることができる。
First, the condensate demineralizer 1 is isolated from the condensate system of the power plant, the inside of the condensate demineralizer 1 is opened to the atmosphere, and the condensate is drained. As a result, the inner space 6 filled with the cation exchange resin is separated from the outer space 7 filled with the anion exchange resin, and condensate is prevented from flowing between the inner space 6 and the outer space 7. Next, the regenerated chemical solution of the cation exchange resin is supplied to the inner space 6 from the first chemical solution supply pipe 26 connected in advance to a chemical solution tank (not shown) to regenerate the cation exchange resin. The regenerated chemical solution is collected from a drain pipe (not shown) branched from the condensate supply port 28. Since the first chemical liquid supply pipe 26 is a ring pipe, the chemical liquid is evenly supplied to the cation exchange resin. After the regeneration of the cation exchange resin, the connection destination of the first chemical solution supply pipe 26 is switched to the wash water tank, and the wash water is supplied from the first chemical solution supply pipe 26 to the inner space 6. The wash water is collected from a drain pipe (not shown) branched from the condensate supply port 28. The cation exchange resin is washed with washing water to remove the regenerative chemical solution and impurities attached to the surface. Pure water can be used as the washing water.
アニオン交換樹脂も同様にして再生することができる。あらかじめ、第2の薬液供給管19を薬液タンク(図示せず)に接続しておく。次に、第2の薬液供給管19から外側空間7にアニオン交換樹脂の再生薬液を供給し、アニオン交換樹脂を再生する。再生薬液は薬液回収口21から回収される。第2の薬液供給管19がリング管であるため、アニオン交換樹脂に均等に薬液が供給される。アニオン交換樹脂の再生後、第2の薬液供給管19の接続先を洗浄水タンクに切り替え、第2の薬液供給管19から外側空間7に洗浄水を供給する。洗浄水は薬液回収口21から回収される。アニオン交換樹脂は洗浄水によって洗浄され、表面に付着した再生薬液や不純物が除去される。洗浄水としては純水を用いることができる。アニオン交換樹脂の再生及び洗浄は、カチオン交換樹脂の再生及び洗浄と並行して行うことができるが、順次行ってもよい。
The anion exchange resin can be regenerated in the same manner. The second chemical liquid supply pipe 19 is connected in advance to a chemical tank (not shown). Next, an anion exchange resin regenerative chemical solution is supplied from the second chemical solution supply pipe 19 to the outer space 7 to regenerate the anion exchange resin. The regenerated chemical solution is collected from the chemical solution collection port 21. Since the second chemical liquid supply pipe 19 is a ring pipe, the chemical liquid is evenly supplied to the anion exchange resin. After the regeneration of the anion exchange resin, the connection destination of the second chemical liquid supply pipe 19 is switched to the washing water tank, and the cleaning water is supplied from the second chemical liquid supply pipe 19 to the outer space 7. The washing water is collected from the chemical solution collection port 21. The anion exchange resin is washed with washing water to remove the regenerated chemical solution and impurities attached to the surface. Pure water can be used as the washing water. The regeneration and washing of the anion exchange resin can be performed in parallel with the regeneration and washing of the cation exchange resin, but may be performed sequentially.
アニオン交換樹脂を再生及び洗浄するときに、復水排出部13を水源に接続し、復水排出部13から薬液回収口21に向けて水を供給することができる。この際、水の水位が薬液回収口21と同程度となるように流量を調整することが望ましい。薬液回収口21からは薬液と水が同時に排出される。復水排出部13から供給される水はアニオン交換樹脂単床層Aの下方にある混床層Mに薬液が流れ込むことを防止する。アニオン交換樹脂の薬液(NaOH等)が混床層Mに流れ込むと、混床層Mのカチオン交換樹脂が逆再生を起こす。カチオン交換樹脂は逆再生されるとNa形となり、脱塩の際にNaイオンが放出され、腐食、スケールなどの原因となる。
When the anion exchange resin is regenerated and washed, the condensate discharge unit 13 can be connected to a water source, and water can be supplied from the condensate discharge unit 13 toward the chemical liquid recovery port 21. At this time, it is desirable to adjust the flow rate so that the water level is approximately the same as that of the chemical solution recovery port 21. The chemical solution and water are simultaneously discharged from the chemical solution recovery port 21. The water supplied from the condensate discharge unit 13 prevents the chemical solution from flowing into the mixed bed layer M below the anion exchange resin single bed layer A. When a chemical solution (such as NaOH) of an anion exchange resin flows into the mixed bed layer M, the cation exchange resin in the mixed bed layer M causes reverse regeneration. When the cation exchange resin is reversely regenerated, it becomes Na form, and Na ions are released during desalting, causing corrosion, scale, and the like.
次に、復水脱塩装置1からカチオン交換樹脂とアニオン交換樹脂を抜き取る方法を説明する。内側空間6のカチオン交換樹脂と外側空間7のアニオン交換樹脂は上述の方法で再生されるため、通常は復水脱塩装置1から抜き取ることはないが、樹脂が寿命に達した場合などに抜き取ることがありうる。
Next, a method for extracting the cation exchange resin and the anion exchange resin from the condensate demineralizer 1 will be described. Since the cation exchange resin in the inner space 6 and the anion exchange resin in the outer space 7 are regenerated by the above-described method, they are usually not extracted from the condensate demineralizer 1, but are extracted when the resin reaches the end of its life. It is possible.
内側空間6のカチオン交換樹脂を抜き取るときは、まず塔内の水抜きを行う。次に復水供給口28から水を供給してカチオン交換樹脂層をほぐし、第1の薬液供給管26に接続された空気供給手段(図示せず)から第1の薬液供給管26を通して空気を供給して塔内を加圧する。そして、抜き取り口22に設けられた弁(図示せず)を開いてカチオン交換樹脂の抜き取りを行う。容器本体2の底板2cは中心に向かって下り傾斜となっているため、カチオン交換樹脂は空気の加圧力と相まって底板2cの中心に向かって移動し、抜き取り口22から押し出される(排出される)。
When draining the cation exchange resin from the inner space 6, first drain the water in the tower. Next, water is supplied from the condensate supply port 28 to loosen the cation exchange resin layer, and air is supplied from the air supply means (not shown) connected to the first chemical solution supply pipe 26 through the first chemical solution supply pipe 26. Supply and pressurize the inside of the tower. And the valve (not shown) provided in the extraction port 22 is opened, and cation exchange resin is extracted. Since the bottom plate 2c of the container body 2 is inclined downward toward the center, the cation exchange resin moves toward the center of the bottom plate 2c together with the pressure of air and is pushed out (discharged) from the extraction port 22. .
外側空間7のアニオン交換樹脂を抜き取るときは、まず塔内の水抜きを行う。次に復水排出部13から水を供給してアニオン交換樹脂層をほぐし、第2の薬液供給管19に接続された空気供給手段(図示せず)から第2の薬液供給管19を通して空気を供給して塔内を加圧する。そして、抜き取り口23に設けられた弁(図示せず)を開いてアニオン交換樹脂の抜き取りを行う。支持板12は水平であるが、アニオン交換樹脂はカチオン交換樹脂と比べて軽量であるため、空気の加圧力だけでアニオン交換樹脂を動かすことができる。このようにして、アニオン交換樹脂は抜き取り口23から押し出される(排出される)。
When draining the anion exchange resin in the outer space 7, first drain the water in the tower. Next, water is supplied from the condensate discharge unit 13 to loosen the anion exchange resin layer, and air is supplied from the air supply means (not shown) connected to the second chemical solution supply pipe 19 through the second chemical solution supply pipe 19. Supply and pressurize the inside of the tower. And the valve (not shown) provided in the extraction port 23 is opened, and anion exchange resin is extracted. Although the support plate 12 is horizontal, since the anion exchange resin is lighter than the cation exchange resin, the anion exchange resin can be moved only by the pressure of air. In this way, the anion exchange resin is pushed out (discharged) from the extraction port 23.
カチオン交換樹脂とアニオン交換樹脂の混床層Mを抜き取るときは、まず塔内の水抜きを行う。次に復水排出部13から水を供給して混床層Mをほぐし、復水排出部13に接続された空気供給手段(図示せず)から復水排出部13を通して空気を供給して塔内を加圧する。そして、抜き取り口24に設けられた弁(図示せず)を開いて混床樹脂の抜き取りを行う。容器本体2の底板2cは中心に向かって下り傾斜となっているため、混床層Mは空気の加圧力と相まって底板2cの中心に向かって移動し、抜き取り口24から押し出される(排出される)。
When extracting the mixed bed layer M of the cation exchange resin and the anion exchange resin, the water in the tower is drained first. Next, water is supplied from the condensate discharge unit 13 to loosen the mixed bed layer M, and air is supplied from an air supply means (not shown) connected to the condensate discharge unit 13 through the condensate discharge unit 13. Pressurize the inside. And the valve (not shown) provided in the extraction port 24 is opened, and mixed bed resin is extracted. Since the bottom plate 2c of the container body 2 is inclined downward toward the center, the mixed bed layer M moves toward the center of the bottom plate 2c in combination with the pressure of air, and is pushed out (discharged) from the extraction port 24. ).
本実施形態の復水脱塩装置1は、容器本体2と内筒3によって、カチオン交換樹脂単床層Cが設けられた内側空間6と、アニオン交換樹脂単床層Aが設けられた外側空間7とに仕切られている。このため、一つの脱塩塔にアニオン交換樹脂とカチオン交換樹脂を充填することができ、復水脱塩装置1の設置面積を低減することができる。カチオン交換樹脂単床層Cとアニオン交換樹脂単床層Aが横方向に隣接して配置されるため復水脱塩装置1の全高を抑えることもできる。
The condensate demineralization apparatus 1 according to this embodiment includes an inner space 6 provided with a cation exchange resin single bed layer C and an outer space provided with an anion exchange resin single bed layer A by a container body 2 and an inner cylinder 3. It is divided into seven. For this reason, an anion exchange resin and a cation exchange resin can be filled in one desalting tower, and the installation area of the condensate demineralizer 1 can be reduced. Since the cation exchange resin single bed layer C and the anion exchange resin single bed layer A are disposed adjacent to each other in the lateral direction, the total height of the condensate demineralizer 1 can be suppressed.
本実施形態の復水脱塩装置1はさらに、カチオン交換樹脂とアニオン交換樹脂の再生を内部で行うことができることによる様々な利点を有している。まず、カチオン交換樹脂とアニオン交換樹脂の再生を行うための再生塔が不要である。従来、カチオン交換樹脂とアニオン交換樹脂それぞれの再生を行うために設けられていた2つの再生塔などの塔槽類と、これに付随する樹脂の移送配管、移送ポンプなどの設備も不要となる。そのため、設備の設置面積が少なくなり、屋内に設置する場合は、建屋のコストも削減が可能である。
The condensate demineralization apparatus 1 of this embodiment further has various advantages due to the ability to regenerate the cation exchange resin and the anion exchange resin internally. First, a regeneration tower for regenerating the cation exchange resin and the anion exchange resin is unnecessary. Conventionally, tower tanks such as two regeneration towers provided for regenerating each of the cation exchange resin and the anion exchange resin, and equipment such as a resin transfer pipe and a transfer pump associated therewith are not required. Therefore, the installation area of the facility is reduced, and the cost of the building can be reduced when installed indoors.
本実施形態では樹脂の分離、移送、復水脱塩装置1への再充填などの操作が不要であるため、再生に要する時間も短縮される。従来の復水脱塩装置は2つの再生塔で並行して樹脂の再生を行っているが、本実施形態の復水脱塩装置1でもカチオン交換樹脂とアニオン交換樹脂の再生を並行して実施できるため、樹脂の再生自体に要する時間に大きな差異はない。さらに、樹脂の分離や移送に要する水も不要となるため、使用水量及び廃液量も削減される。
In this embodiment, operations such as resin separation, transfer, and refilling into the condensate demineralizer 1 are not required, so that the time required for regeneration is also shortened. The conventional condensate demineralizer regenerates the resin in parallel in two regeneration towers, but the condensate demineralizer 1 of this embodiment also regenerates the cation exchange resin and the anion exchange resin in parallel. Therefore, there is no significant difference in the time required for resin regeneration itself. Furthermore, since the water required for the separation and transfer of the resin becomes unnecessary, the amount of water used and the amount of waste liquid are also reduced.
(第2の実施形態)
図2は本発明の第2の実施形態に係る復水脱塩装置101の縦断面図を、図3Aは図2のA-A線からみた横断面図を、図3Bは図2のB-B線からみた横断面図を、図3Cは図2のC-C線からみた横断面図を示している。図2は図3A~3CのD-D線に沿った縦断面図である。以下、第1の実施形態と同様の点については省略し、第1の実施形態と異なる点を中心に述べる。 (Second Embodiment)
2 is a longitudinal sectional view of thecondensate demineralizer 101 according to the second embodiment of the present invention, FIG. 3A is a transverse sectional view taken along the line AA of FIG. 2, and FIG. 3B is a sectional view of FIG. FIG. 3C shows a cross-sectional view taken along line B, and FIG. 3C shows a cross-sectional view taken along line CC in FIG. FIG. 2 is a longitudinal sectional view taken along the line DD in FIGS. 3A to 3C. Hereinafter, the same points as those in the first embodiment will be omitted, and differences from the first embodiment will be mainly described.
図2は本発明の第2の実施形態に係る復水脱塩装置101の縦断面図を、図3Aは図2のA-A線からみた横断面図を、図3Bは図2のB-B線からみた横断面図を、図3Cは図2のC-C線からみた横断面図を示している。図2は図3A~3CのD-D線に沿った縦断面図である。以下、第1の実施形態と同様の点については省略し、第1の実施形態と異なる点を中心に述べる。 (Second Embodiment)
2 is a longitudinal sectional view of the
内側空間6には、鉛直方向Zに延びる復水供給管14が設けられている。復水供給管14は内側空間6のほぼ中心、すなわち内側空間6ないし容器本体2の中心線2dと同軸に設けられている。復水供給管14は容器本体2の底板2cを貫通しており、復水は復水脱塩装置1の下方から上向流で復水脱塩装置1に供給される。復水供給管14の側壁14bにはイオン交換体が通過しない大きさの複数の復水供給開口14aが形成されている。復水供給開口14aは復水供給管14の周方向にほぼ均等に設けられ、かつ鉛直方向Zに関しほぼ同じピッチで設けられている。復水が復水供給管14の鉛直方向Zのどの位置からもほぼ同程度の流量で供給されるように、復水供給開口14aの大きさは復水供給管14の上部に向かって大きくなっていてもよい。復水供給開口14aの大きさを鉛直方向Zに変化させる代わりに、復水供給開口14aの鉛直方向Zの配列ピッチが復水供給管14の上部に向かって小さくなるようにしてもよい。容器本体2の頂板2bと内側仕切板4にはそれぞれマンホール9,11が設けられており、後述する復水供給管14の設置、メンテナンスなどの目的で使用される。カチオン交換樹脂は内側空間6の底面、すなわち容器本体2の底面から内側仕切板4の直下まで充填されている。このため、カチオン交換樹脂は高い充填率で充填される。内側仕切板4には第1の実施形態と異なり、復水が流通する開口が設けられていない。
In the inner space 6, a condensate supply pipe 14 extending in the vertical direction Z is provided. The condensate supply pipe 14 is provided substantially at the center of the inner space 6, that is, coaxially with the inner space 6 or the center line 2 d of the container body 2. The condensate supply pipe 14 passes through the bottom plate 2 c of the container main body 2, and the condensate is supplied to the condensate demineralizer 1 by an upward flow from below the condensate demineralizer 1. A plurality of condensate supply openings 14a are formed in the side wall 14b of the condensate supply pipe 14 so that the ion exchanger does not pass through. The condensate supply openings 14 a are provided substantially evenly in the circumferential direction of the condensate supply pipe 14, and are provided at substantially the same pitch in the vertical direction Z. The size of the condensate supply opening 14a increases toward the upper part of the condensate supply pipe 14 so that the condensate is supplied at almost the same flow rate from any position in the vertical direction Z of the condensate supply pipe 14. It may be. Instead of changing the size of the condensate supply opening 14 a in the vertical direction Z, the arrangement pitch in the vertical direction Z of the condensate supply opening 14 a may be reduced toward the upper part of the condensate supply pipe 14. Manholes 9 and 11 are respectively provided in the top plate 2b and the inner partition plate 4 of the container body 2, and are used for the purpose of installing and maintaining a condensate supply pipe 14 to be described later. The cation exchange resin is filled from the bottom surface of the inner space 6, that is, from the bottom surface of the container body 2 to just below the inner partition plate 4. For this reason, the cation exchange resin is filled at a high filling rate. Unlike the first embodiment, the inner partition plate 4 is not provided with an opening through which condensate flows.
復水供給管14と対向して鉛直方向Zに延びる集水部が形成されている。集水部は内筒3の内側壁面に沿って周方向に配置されている。本実施形態では集水部は内筒3の内側壁面に沿って周方向に等ピッチで配置された8本の集水管15からなるが、集水管15の本数はこれに限定されない。各集水管15はカチオン交換樹脂を挟んで復水供給管14と対向している。各集水管15は、側壁15cに設けられ、イオン交換体が通過しない大きさの複数の復水集水開口15aと、接続空間8と連通する復水流出口15bと、を有している。複数の復水集水開口15aは同じ径を有し、カチオン交換樹脂を有効に使用できるよう、容器本体2の内筒3の壁面を向く位置に鉛直方向Zに等ピッチで配列されているのが好ましい。集水管15は復水集水開口15aからカチオン交換樹脂で処理された復水を集水し、その復水を復水流出口15bから接続空間8に流出させる。
A water collecting portion extending in the vertical direction Z is formed facing the condensate supply pipe 14. The water collecting portion is disposed in the circumferential direction along the inner wall surface of the inner cylinder 3. In the present embodiment, the water collecting section is composed of eight water collecting pipes 15 arranged at an equal pitch in the circumferential direction along the inner wall surface of the inner cylinder 3, but the number of the water collecting pipes 15 is not limited to this. Each water collecting pipe 15 faces the condensate supply pipe 14 with the cation exchange resin interposed therebetween. Each water collecting pipe 15 has a plurality of condensate water collecting openings 15 a which are provided on the side wall 15 c and do not allow the ion exchanger to pass therethrough, and a condensate outlet 15 b which communicates with the connection space 8. The plurality of condensate water collection openings 15a have the same diameter and are arranged at equal pitches in the vertical direction Z at positions facing the wall surface of the inner cylinder 3 of the container body 2 so that the cation exchange resin can be used effectively. Is preferred. The water collection pipe 15 collects the condensate treated with the cation exchange resin from the condensate water collection opening 15a, and causes the condensate to flow out to the connection space 8 from the condensate outlet 15b.
復水脱塩装置101の内側空間6にはカチオン交換樹脂の再生薬液を供給する複数の第1の薬液供給管16が設けられている。複数の第1の薬液供給管16は内筒3の内側壁面に沿って等間隔で設けられ、かつ集水管15と交互に設けられている。各第1の薬液供給管16はカチオン交換樹脂を挟んで集水管15と対向している。本実施形態では8本の第1の薬液供給管16が等間隔で配置されており、かつ第1の薬液供給管16と集水管15も等間隔で配置されている。第1の薬液供給管16の本数や集水管15との位置関係はこれに限定されない。第1の薬液供給管16の側壁16bには再生薬液を供給するイオン交換体が通過しない大きさの複数の薬液供給開口16aが設けられている。複数の薬液供給開口16aは、容器本体2の内筒3の壁面を向く位置に鉛直方向Zに等ピッチで配列されているのが好ましい。複数の第1の薬液供給管16は接続空間8に設けられたリング状のヘッダ配管17から分岐しており、ヘッダ配管17は容器本体2の頂板2bを貫通する配管18と接続されている。カチオン交換樹脂の再生薬液としてはHClなどの強酸性液体が好適に用いられる。
In the inner space 6 of the condensate demineralizer 101, a plurality of first chemical solution supply pipes 16 for supplying a regenerated chemical solution of the cation exchange resin are provided. The plurality of first chemical solution supply pipes 16 are provided at equal intervals along the inner wall surface of the inner cylinder 3 and are alternately provided with the water collection pipes 15. Each first chemical solution supply pipe 16 faces the water collection pipe 15 with the cation exchange resin interposed therebetween. In the present embodiment, eight first chemical liquid supply pipes 16 are arranged at equal intervals, and the first chemical liquid supply pipes 16 and the water collecting pipes 15 are also arranged at equal intervals. The number of the first chemical liquid supply pipes 16 and the positional relationship with the water collecting pipe 15 are not limited to this. The side wall 16b of the first chemical solution supply pipe 16 is provided with a plurality of chemical solution supply openings 16a having a size that does not allow the ion exchanger that supplies the regenerated chemical solution to pass therethrough. The plurality of chemical solution supply openings 16 a are preferably arranged at equal pitches in the vertical direction Z at positions facing the wall surface of the inner cylinder 3 of the container body 2. The plurality of first chemical liquid supply pipes 16 are branched from a ring-shaped header pipe 17 provided in the connection space 8, and the header pipe 17 is connected to a pipe 18 that penetrates the top plate 2 b of the container body 2. A strongly acidic liquid such as HCl is preferably used as the regenerative chemical solution for the cation exchange resin.
復水脱塩装置101の内部で復水は以下のように処理される(図4Bも参照)。まず、復水供給管14に流入した復水は復水供給管14の内部を上向流で流通し、復水供給管14の側壁14bに設けられた多数の復水供給開口14aから内側空間6に排出される。復水はカチオン交換樹脂層Cを通って、各集水管15に向かって流れる。このため、復水は、復水供給管14から各集水管15に向かって(径方向外側に向かって)放射状に、且つ概ね水平方向に流れる。集水管15は内筒3の内側壁面に沿って複数設けられているため、復水は容器本体2の中心線2dを中心としたどの角度方向にも概ね均等に流れる。このようにして、復水はカチオン交換樹脂層Cでカチオン成分を除去される。
Condensate is processed in the condensate demineralizer 101 as follows (see also FIG. 4B). First, the condensate that has flowed into the condensate supply pipe 14 circulates in the condensate supply pipe 14 in an upward flow. 6 is discharged. Condensate flows through the cation exchange resin layer C toward each water collecting pipe 15. For this reason, the condensate flows radially from the condensate supply pipe 14 toward each of the water collecting pipes 15 (radially outward) and in a generally horizontal direction. Since a plurality of the water collecting pipes 15 are provided along the inner wall surface of the inner cylinder 3, the condensate flows almost evenly in any angular direction around the center line 2 d of the container body 2. In this manner, the cation component is removed from the condensate by the cation exchange resin layer C.
復水は集水管15の復水集水開口15aから集水管15の内部に導入され、再び上向流となって復水流出口15bから接続空間8に流出する。その後、復水は第1の実施形態と同様にしてアニオン交換樹脂単床層Aでアニオン成分を除去され、カチオン成分とアニオン成分が混床層Mでさらに除去される。復水は復水排出部13を通って復水脱塩装置1から排出される。
The condensate is introduced into the collecting pipe 15 from the condensate collecting opening 15a of the collecting pipe 15, and becomes an upward flow again and flows out from the condensate outlet 15b to the connection space 8. Thereafter, in the condensate, the anion component is removed by the anion exchange resin single bed layer A in the same manner as in the first embodiment, and the cation component and the anion component are further removed by the mixed bed layer M. Condensate is discharged from the condensate demineralizer 1 through the condensate discharge unit 13.
このように、本実施形態では内側空間6内を復水が径方向に流通する。この結果、カチオン交換樹脂層Cの層高は鉛直方向Zではなく水平方向で規定される。図4Aには第1の実施形態の復水脱塩装置1の模式的な断面図を、図4Bには第2の実施形態の復水脱塩装置101の模式的な断面図を示している。図4Aは説明の都合上、径を誇張して示している。カチオン交換樹脂層Cの容積は同じであると仮定している。図中、太線は復水の流れを示している。第2の実施形態の復水脱塩装置101では、カチオン交換樹脂層Cの層高Chは容器本体2の径方向ないし水平方向で規定される。層高Chは復水の水質確保のために一定の高さが求められるともに、過大な圧力損失を防止するために適正な範囲に設定する必要がある。第1の実施形態の復水脱塩装置1では、第2の実施形態と同様、内筒3によってカチオン交換樹脂層Cとアニオン交換樹脂単床層Aが仕切られている。しかし、復水は従来のようにカチオン交換樹脂層Cの底部から上向流で流入するため、カチオン交換樹脂層Cの層高Chは鉛直方向Zで規定される。この結果、第1の実施形態の復水脱塩装置1はカチオン交換樹脂層Cの上方に、カチオン交換樹脂が充填されない空間が発生しやすい。これに対して第2の実施形態ではカチオン交換樹脂が効率的に充填されるため、空間の利用率が高い。従って、復水脱塩装置101をコンパクト化することができ、第1の実施形態の復水脱塩装置1と比べてコストをさらに抑制することができる。また、第2の実施形態では復水脱塩装置1の平面寸法も抑制される。これにより、復水脱塩装置101の設置面積が低減し、復水脱塩装置101が設置される建屋のコストも抑制することができる。また、第1の実施形態の場合、装置をコンパクトにしようとするとカチオン交換樹脂層Cが層高になるため、差圧が上昇してしまうが、第2の実施形態の場合、装置をコンパクト化でき、さらに差圧が低減できる。
Thus, in this embodiment, the condensate circulates in the inner space 6 in the radial direction. As a result, the height of the cation exchange resin layer C is defined not in the vertical direction Z but in the horizontal direction. 4A shows a schematic cross-sectional view of the condensate demineralizer 1 of the first embodiment, and FIG. 4B shows a schematic cross-sectional view of the condensate demineralizer 101 of the second embodiment. . FIG. 4A exaggerates the diameter for convenience of explanation. It is assumed that the volume of the cation exchange resin layer C is the same. In the figure, the thick line indicates the flow of condensate. In the condensate demineralization apparatus 101 of the second embodiment, the layer height Ch of the cation exchange resin layer C is defined in the radial direction or horizontal direction of the container body 2. The bed height Ch is required to be constant for ensuring the water quality of the condensate, and it is necessary to set it to an appropriate range in order to prevent excessive pressure loss. In the condensate demineralization apparatus 1 of the first embodiment, the cation exchange resin layer C and the anion exchange resin single bed layer A are partitioned by the inner cylinder 3 as in the second embodiment. However, since condensate flows upward from the bottom of the cation exchange resin layer C as in the prior art, the layer height Ch of the cation exchange resin layer C is defined in the vertical direction Z. As a result, the condensate demineralization apparatus 1 of the first embodiment tends to generate a space above the cation exchange resin layer C that is not filled with the cation exchange resin. On the other hand, since the cation exchange resin is efficiently filled in the second embodiment, the space utilization rate is high. Therefore, the condensate demineralizer 101 can be made compact, and the cost can be further suppressed as compared with the condensate demineralizer 1 of the first embodiment. Moreover, in the second embodiment, the planar size of the condensate demineralizer 1 is also suppressed. Thereby, the installation area of the condensate demineralizer 101 can be reduced, and the cost of the building where the condensate demineralizer 101 is installed can also be suppressed. In the case of the first embodiment, if the device is made compact, the cation exchange resin layer C becomes a layer height, so that the differential pressure increases. In the case of the second embodiment, the device is made compact. In addition, the differential pressure can be reduced.
次に、上述の復水脱塩装置101におけるカチオン交換樹脂とアニオン交換樹脂の再生方法を説明する。
Next, a method for regenerating the cation exchange resin and the anion exchange resin in the above-described condensate demineralizer 101 will be described.
まず、復水脱塩装置101を発電所の復水系統から隔離し、復水脱塩装置1の内部を大気開放し、復水を排水する。この結果、カチオン交換樹脂が充填された内側空間6はアニオン交換樹脂が充填された外側空間7から分離され、内側空間6と外側空間7との間で復水が流通することが防止される。第1の薬液供給管16は薬液タンク(図示せず)に接続し、復水供給管14はドレン配管(図示せず)に接続しておく。
First, the condensate demineralizer 101 is isolated from the condensate system of the power plant, the interior of the condensate demineralizer 1 is opened to the atmosphere, and the condensate is drained. As a result, the inner space 6 filled with the cation exchange resin is separated from the outer space 7 filled with the anion exchange resin, and condensate is prevented from flowing between the inner space 6 and the outer space 7. The first chemical supply pipe 16 is connected to a chemical tank (not shown), and the condensate supply pipe 14 is connected to a drain pipe (not shown).
次に、第1の薬液供給管16から内側空間6にカチオン交換樹脂の再生薬液を供給し、復水供給管14で再生薬液を回収することによって、カチオン交換樹脂を再生する。本実施形態では、再生薬液は復水の流れと逆向き、すなわち容器本体2の径方向内側に向けて概ね水平に流れる(向流再生)。向流再生では復水の流れに関しカチオン交換樹脂層Cの最下流側(出口側)の樹脂から再生されるため、安定した水質を維持できる。
Next, the regenerated chemical solution of the cation exchange resin is supplied from the first chemical solution supply pipe 16 to the inner space 6, and the regenerated chemical solution is recovered by the condensate supply pipe 14 to regenerate the cation exchange resin. In the present embodiment, the regenerative chemical solution flows in the opposite direction to the condensate flow, that is, substantially horizontally toward the radially inner side of the container body 2 (countercurrent regeneration). In the countercurrent regeneration, since the condensate flow is regenerated from the resin on the most downstream side (exit side) of the cation exchange resin layer C, stable water quality can be maintained.
カチオン交換樹脂の再生後、第1の薬液供給管16の接続先を洗浄水タンク(図示せず)に切り替え、第1の薬液供給管16から内側空間6に洗浄水を供給する。復水供給管14で洗浄水を回収することによって、洗浄水は復水の向きと逆方向に流れる。カチオン交換樹脂は洗浄水によって洗浄され、表面に付着した再生薬液や不純物が除去される。洗浄水としては純水を用いることができる。なお、洗浄水も復水の流れに関しカチオン交換樹脂単床層Cの最下流側(出口側)から供給されるため、残留薬液が後段のアニオン交換樹脂に流れ、アニオン交換樹脂が逆再生されることを防止することができる。アニオン交換樹脂は逆再生されるとCl型(再生薬液として硫酸を用いた場合はSO4型)となり、脱塩の際に塩素イオンや硫酸イオンが放出され、腐食、スケールなどの原因となる。アニオン交換樹脂は第1の実施形態と同様にして再生することができる。
After regeneration of the cation exchange resin, the connection destination of the first chemical liquid supply pipe 16 is switched to a cleaning water tank (not shown), and the cleaning water is supplied from the first chemical liquid supply pipe 16 to the inner space 6. By collecting the wash water with the condensate supply pipe 14, the wash water flows in the direction opposite to the direction of the condensate. The cation exchange resin is washed with washing water to remove the regenerative chemical solution and impurities attached to the surface. Pure water can be used as the washing water. Since the washing water is also supplied from the most downstream side (exit side) of the cation exchange resin single bed layer C with respect to the condensate flow, the residual chemical solution flows to the anion exchange resin in the subsequent stage, and the anion exchange resin is reversely regenerated. This can be prevented. When the anion exchange resin is reversely regenerated, it becomes Cl type (SO 4 type when sulfuric acid is used as a regenerative chemical solution), and chlorine ions and sulfate ions are released during desalting, which causes corrosion, scale, and the like. The anion exchange resin can be regenerated in the same manner as in the first embodiment.
内側空間6のカチオン交換樹脂を抜き取るときは、まず塔内の水抜きを行う。次に復水供給管14から水を供給してカチオン交換樹脂層をほぐし、第1の薬液供給管16に接続された空気供給手段(図示せず)から第1の薬液供給管16を通して空気を供給して塔内を加圧する。そして、抜き取り口22に設けられた弁(図示せず)を開いてカチオン交換樹脂の抜き取りを行う。容器本体2の底板2cは中心に向かって下り傾斜となっているため、カチオン交換樹脂は空気の加圧力と相まって底板2cの中心に向かって移動し、抜き取り口22から押し出される(排出される)。外側空間7のアニオン交換樹脂は第1の実施形態と同様にして抜き取ることができる。
When draining the cation exchange resin from the inner space 6, first drain the water in the tower. Next, water is supplied from the condensate supply pipe 14 to loosen the cation exchange resin layer, and air is supplied from the air supply means (not shown) connected to the first chemical liquid supply pipe 16 through the first chemical liquid supply pipe 16. Supply and pressurize the inside of the tower. And the valve (not shown) provided in the extraction port 22 is opened, and cation exchange resin is extracted. Since the bottom plate 2c of the container body 2 is inclined downward toward the center, the cation exchange resin moves toward the center of the bottom plate 2c together with the pressure of air and is pushed out (discharged) from the extraction port 22. . The anion exchange resin in the outer space 7 can be extracted in the same manner as in the first embodiment.
本発明の第2の実施形態はこれに限定されるものではなく、様々な変形が可能である。
The second embodiment of the present invention is not limited to this, and various modifications are possible.
まず、上記実施形態とは逆に、復水を復水脱塩装置101の径方向内側に流し、薬液及び洗浄水を径方向外側に流すことができる。
First, conversely to the above embodiment, the condensate can be flowed radially inward of the condensate demineralizer 101, and the chemical solution and washing water can be flowed radially outward.
接続空間8は容器本体2の下部に設けられてもよい。図示は省略するが、復水は復水脱塩装置101の上方から復水脱塩装置101に供給され、上記実施形態と同様、復水供給管14から集水部15に向かって径方向外側に流れ、カチオン交換樹脂単床層Cでカチオン成分を除去される。復水は集水部15を下向き流となって流れ接続空間8に流入し、さらに外側空間7のアニオン交換樹脂単床層A、混床層Mを上向き流で流通し、容器本体2の上部から排出される。
The connection space 8 may be provided in the lower part of the container body 2. Although illustration is omitted, the condensate is supplied to the condensate demineralizer 101 from above the condensate demineralizer 101 and is radially outward from the condensate supply pipe 14 toward the water collecting portion 15 as in the above embodiment. The cation component is removed by the cation exchange resin single bed layer C. The condensate flows downward in the water collecting portion 15 and flows into the connection space 8, and further flows upward through the anion exchange resin single bed layer A and mixed bed layer M in the outer space 7, and the upper part of the container body 2. Discharged from.
集水部は複数の集水管15からなっているが、復水がカチオン交換樹脂の内部を概ね径方向に流れる限り、集水部は様々な構成をとることができる。図5は図2のC―C線からみた図3Cと同様の断面図である。この例では、内筒3の内側に内筒3と同心の第2の内筒25が設けられ、内筒3と第2の内筒25との間に環状断面を有する流路が形成されている。第2の内筒25には多数の復水集水開口(図示せず)が形成されている。
The water collecting section is composed of a plurality of water collecting pipes 15, but the water collecting section can take various configurations as long as the condensate flows in the radial direction inside the cation exchange resin. FIG. 5 is a cross-sectional view similar to FIG. 3C, taken along line CC in FIG. In this example, a second inner cylinder 25 concentric with the inner cylinder 3 is provided inside the inner cylinder 3, and a flow path having an annular cross section is formed between the inner cylinder 3 and the second inner cylinder 25. Yes. A number of condensate water collection openings (not shown) are formed in the second inner cylinder 25.
本発明のいくつかの好ましい実施形態を詳細に示し、説明したが、添付された請求項の趣旨または範囲から逸脱せずに様々な変更および修正が可能であることを理解されたい。
Although several preferred embodiments of the present invention have been shown and described in detail, it should be understood that various changes and modifications can be made without departing from the spirit or scope of the appended claims.
Although several preferred embodiments of the present invention have been shown and described in detail, it should be understood that various changes and modifications can be made without departing from the spirit or scope of the appended claims.
Claims (10)
- 第1のイオン交換体が充填される内側空間を形成する内筒と、
前記内筒を取り囲む容器本体であって、少なくとも第2のイオン交換体が充填される外側空間を前記内筒との間で形成するとともに、前記外側空間と連通する接続空間を形成する容器本体と、
前記内側空間に復水を供給する復水供給部と、
前記外側空間の前記第2のイオン交換体の下流に設けられ、前記第2のイオン交換体で処理された復水を排出する復水排出部と、を有する復水脱塩装置。 An inner cylinder forming an inner space filled with the first ion exchanger;
A container body surrounding the inner cylinder, the container body forming an outer space filled with at least a second ion exchanger between the inner cylinder and a connection space communicating with the outer space; ,
A condensate supply unit for supplying condensate to the inner space;
A condensate demineralizer having a condensate discharge unit that is provided downstream of the second ion exchanger in the outer space and discharges the condensate treated with the second ion exchanger. - 前記復水供給部は、前記内側空間を鉛直方向に延び、側壁に複数の復水供給開口が形成された復水供給管であり、
前記内側空間を、前記第1のイオン交換体を挟んで前記復水供給管と対向して鉛直方向に延びる集水部をさらに有し、前記集水部は、側壁に前記第1のイオン交換体で処理された復水を集水する復水集水開口が形成されるとともに、前記接続空間と連通する復水流出口を備える、請求項1に記載の復水脱塩装置。 The condensate supply section is a condensate supply pipe that extends in the vertical direction in the inner space and has a plurality of condensate supply openings formed on a side wall thereof.
The inner space further includes a water collection portion extending in a vertical direction facing the condensate supply pipe across the first ion exchanger, and the water collection portion has a first ion exchange on a side wall. The condensate demineralizer according to claim 1, wherein a condensate water collection opening for collecting condensate treated by a body is formed, and a condensate outlet is provided in communication with the connection space. - 前記復水供給管は前記内側空間のほぼ中心に位置し、前記集水部は前記内筒の内側壁面に沿って周方向に配置されている、請求項2に記載の復水脱塩装置。 The condensate demineralizer according to claim 2, wherein the condensate supply pipe is located substantially at the center of the inner space, and the water collecting portion is disposed in a circumferential direction along the inner wall surface of the inner cylinder.
- 前記集水部は複数の集水管であり、各集水管は、側壁に設けられた複数の復水集水開口と、前記復水流出口と、を有する、請求項3に記載の復水脱塩装置。 The condensate demineralization according to claim 3, wherein the water collecting section is a plurality of water collecting pipes, and each water collecting pipe has a plurality of condensate water collecting openings provided in a side wall and the condensate outlet. apparatus.
- 前記内側空間を鉛直方向に延び、側壁に前記第1のイオン交換体の再生薬液を供給する複数の薬液供給開口が設けられた第1の薬液供給管を有する、請求項1から4のいずれか1項に記載の復水脱塩装置。 5. The apparatus according to claim 1, further comprising a first chemical solution supply pipe that extends in the vertical direction in the inner space and has a plurality of chemical solution supply openings that supply a regenerative chemical solution of the first ion exchanger on the side wall. The condensate demineralizer according to item 1.
- 前記容器本体の前記第1のイオン交換体の充填部の下方に開口し、前記第1のイオン交換体を抜き取るための抜き取り口と、前記第1の薬液供給管に接続され、前記第1のイオン交換体の抜き取り時に、第1の薬液供給管を通して前記内側空間を加圧するための空気を供給する空気供給手段と、を有する、請求項5に記載の復水脱塩装置。 The container main body opens below the filling portion of the first ion exchanger, is connected to an extraction port for extracting the first ion exchanger, and the first chemical supply pipe, and 6. The condensate demineralizer according to claim 5, further comprising air supply means for supplying air for pressurizing the inner space through the first chemical supply pipe when the ion exchanger is extracted.
- 前記外側空間の前記第2のイオン交換体の充填部の上方に位置し、前記第2のイオン交換体の再生薬液を供給する第2の薬液供給管と、前記容器本体の前記第2のイオン交換体の充填部の下方に開口し、前記第2のイオン交換体の再生薬液を回収する薬液回収口と、を有する、請求項1から6のいずれか1項に記載の復水脱塩装置。 A second chemical solution supply pipe for supplying a regenerative chemical solution for the second ion exchanger located above the filling portion of the second ion exchanger in the outer space; and the second ions of the container body. The condensate demineralizer according to any one of claims 1 to 6, further comprising: a chemical solution recovery port that opens below a filling portion of the exchanger and collects the regenerated chemical solution of the second ion exchanger. .
- 前記外側空間の前記第2のイオン交換体の充填部の下流に、カチオン交換体とアニオン交換体が混床で充填され、
前記第2のイオン交換体の再生時に前記薬液回収口に向けて水を供給する水供給手段を有する、請求項7に記載の復水脱塩装置。 A cation exchanger and an anion exchanger are packed in a mixed bed downstream of the filling section of the second ion exchanger in the outer space,
The condensate demineralizer according to claim 7, further comprising water supply means for supplying water toward the chemical solution recovery port during regeneration of the second ion exchanger. - 前記容器本体の前記アニオン交換体の充填部の下部に開口し、前記アニオン交換体を抜き取るための抜き取り口と、前記第2の薬液供給管に接続され、前記アニオン交換体の抜き取り時に前記外側空間を加圧するための空気を供給する空気供給手段と、を有する、請求項7または8に記載の復水脱塩装置。 Opened below the filling portion of the anion exchanger of the container main body, connected to an extraction port for extracting the anion exchanger and the second chemical liquid supply pipe, and the outer space when extracting the anion exchanger The condensate demineralizer according to claim 7 or 8, further comprising an air supply means for supplying air for pressurizing the water.
- 前記第1のイオン交換体はカチオン交換樹脂であり、前記第2のイオン交換体はアニオン交換樹脂である、請求項1から9のいずれか1項に記載の復水脱塩装置。
The condensate demineralizer according to any one of claims 1 to 9, wherein the first ion exchanger is a cation exchange resin and the second ion exchanger is an anion exchange resin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-099996 | 2017-05-19 | ||
JP2017099996A JP6910844B2 (en) | 2017-05-19 | 2017-05-19 | Condenser desalination device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018211794A1 true WO2018211794A1 (en) | 2018-11-22 |
Family
ID=64274299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/008990 WO2018211794A1 (en) | 2017-05-19 | 2018-03-08 | Condensate demineralization device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6910844B2 (en) |
WO (1) | WO2018211794A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020060266A (en) | 2018-10-11 | 2020-04-16 | 株式会社Roki | Lubricating oil discharge and filling structure |
JP7633061B2 (en) | 2021-03-25 | 2025-02-19 | オルガノ株式会社 | Method for manufacturing a filter housing and a filter housing |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4862335U (en) * | 1971-11-18 | 1973-08-08 | ||
DE3104324A1 (en) * | 1980-05-12 | 1982-01-14 | Veb Kombinat Medizin- Und Labortechnik Leipzig, Ddr 7035 Leipzig | Ion exchange apparatus for laboratory scale or small industrial scale water deionisation |
JPH0531375A (en) * | 1991-07-31 | 1993-02-09 | Fujitsu Ltd | Ion exchange resin tower |
JPH05317729A (en) * | 1992-05-21 | 1993-12-03 | Japan Organo Co Ltd | Method for regenerating of ion-exchange resin and plant therefor |
JP2001205263A (en) * | 2000-01-27 | 2001-07-31 | Japan Organo Co Ltd | Double bed type ion exchange apparatus |
WO2010016410A1 (en) * | 2008-08-08 | 2010-02-11 | オルガノ株式会社 | Composite filtration and desalination equipment |
-
2017
- 2017-05-19 JP JP2017099996A patent/JP6910844B2/en active Active
-
2018
- 2018-03-08 WO PCT/JP2018/008990 patent/WO2018211794A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4862335U (en) * | 1971-11-18 | 1973-08-08 | ||
DE3104324A1 (en) * | 1980-05-12 | 1982-01-14 | Veb Kombinat Medizin- Und Labortechnik Leipzig, Ddr 7035 Leipzig | Ion exchange apparatus for laboratory scale or small industrial scale water deionisation |
JPH0531375A (en) * | 1991-07-31 | 1993-02-09 | Fujitsu Ltd | Ion exchange resin tower |
JPH05317729A (en) * | 1992-05-21 | 1993-12-03 | Japan Organo Co Ltd | Method for regenerating of ion-exchange resin and plant therefor |
JP2001205263A (en) * | 2000-01-27 | 2001-07-31 | Japan Organo Co Ltd | Double bed type ion exchange apparatus |
WO2010016410A1 (en) * | 2008-08-08 | 2010-02-11 | オルガノ株式会社 | Composite filtration and desalination equipment |
Also Published As
Publication number | Publication date |
---|---|
JP6910844B2 (en) | 2021-07-28 |
JP2018192442A (en) | 2018-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101315566B1 (en) | Composite filtration and desalination equipment | |
US3847805A (en) | Ion exchange vessel | |
TWI535666B (en) | Ion exchange device | |
WO2018211794A1 (en) | Condensate demineralization device | |
CN201182991Y (en) | Condensed water high tower separation apparatus | |
JP5849419B2 (en) | Pure water production equipment | |
JP2009066525A (en) | Ion exchange resin filling method and condensate demineralizer | |
US3272340A (en) | Quickly detachable strainer system for water treatment tanks | |
JPH1028847A (en) | Combined filtration and desalination equipment | |
JP5999400B1 (en) | Ion exchange apparatus and method of using the same | |
JP2016083641A (en) | Reverse osmosis treatment device and method of washing reverse osmosis membrane | |
CN104200861A (en) | Waste liquid evaporation treatment device and waste liquid treatment method | |
JP4781154B2 (en) | Method and apparatus for taking out ion exchange resin from desalinator | |
JP6015737B2 (en) | Operation method of regenerative ion exchanger | |
JPH08117746A (en) | Combined filtration desalination equipment | |
KR100602458B1 (en) | Resin Separation without Neutral Resin | |
JP3364301B2 (en) | Filtration and desalination equipment | |
JP6544528B2 (en) | Ion exchange apparatus and method of using the same | |
JPH04200644A (en) | Used resin recycling system | |
JPS62193653A (en) | Cation resin regeneration tower for condensate desalter | |
JP2000137094A (en) | Condensate demineralizer | |
JPS589095A (en) | Filting and desalting device for atomic power plant | |
JP2017170419A5 (en) | ||
JP2002066210A (en) | Adsorption filtration tank | |
CS210840B1 (en) | Method and apparatus for two-stage separation of suspension at purification of water resulting from coagulation with added coagulants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18802218 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18802218 Country of ref document: EP Kind code of ref document: A1 |