[go: up one dir, main page]

WO2018199136A1 - Abl1 t315i変異の発現レベルの測定方法 - Google Patents

Abl1 t315i変異の発現レベルの測定方法 Download PDF

Info

Publication number
WO2018199136A1
WO2018199136A1 PCT/JP2018/016748 JP2018016748W WO2018199136A1 WO 2018199136 A1 WO2018199136 A1 WO 2018199136A1 JP 2018016748 W JP2018016748 W JP 2018016748W WO 2018199136 A1 WO2018199136 A1 WO 2018199136A1
Authority
WO
WIPO (PCT)
Prior art keywords
abl1
mutation
primer
mrna
nucleic acid
Prior art date
Application number
PCT/JP2018/016748
Other languages
English (en)
French (fr)
Inventor
粛典 葛城
田中 秀明
隆太 伊藤
古賀 大輔
Original Assignee
大塚製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚製薬株式会社 filed Critical 大塚製薬株式会社
Priority to KR1020197034072A priority Critical patent/KR20200002933A/ko
Priority to SG11201909983Q priority patent/SG11201909983QA/en
Priority to CN201880042856.1A priority patent/CN110997938A/zh
Priority to JP2019514562A priority patent/JPWO2018199136A1/ja
Publication of WO2018199136A1 publication Critical patent/WO2018199136A1/ja
Priority to PH12019502417A priority patent/PH12019502417A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the BCR-ABL1 fusion gene is a chromosomal abnormality found in chronic myelogenous leukemia (Chronic Myelogenous Leukemia: CML) and Philadelphia chromosome positive Acute Lymphocytic Leukemia: Ph positive ALL.
  • CML chronic myelogenous leukemia
  • Ph positive ALL Philadelphia chromosome positive Acute Lymphocytic Leukemia
  • the translocation t (9; 22) between chromosome 9 and chromosome 22 fused the ABL1 gene localized in the q34 band of chromosome 9 with the BCR gene localized in the q11 band of chromosome 22. It is formed.
  • the chimeric protein BCR-ABL1 encoded by the BCR-ABL1 fusion gene, has tyrosine kinase activity, constitutively stimulates cell proliferation signals, and suppresses apoptosis, thereby limiting the number of hematopoietic stem cells. Proliferate and cause abnormalities.
  • tyrosine kinase inhibitor tyrosine kinase inhibitor acting as a target molecule for BCR-ABL1
  • TKI tyrosine kinase inhibitor
  • a representative TKI, imatinib has demonstrated a breakthrough therapeutic effect on CML and Ph-positive ALL cases.
  • the effect was reduced and became a therapeutic issue.
  • Nilotinib and dasatinib were subsequently developed as effective TKIs against many of the BCR-ABL1 gene mutations that are resistant to imatinib.
  • T315I mutation isoleucine
  • Ponatinib was developed as a drug that exhibits a tyrosine kinase inhibitory action against BCR-ABL1 having this T315I mutation.
  • Ponatinib is useful for CML and Ph-positive ALL that are resistant or intolerant to existing TKIs, and shows a high effect particularly when it has a T315I mutation (Non-patent Documents 4 and 5).
  • the therapeutic effect can be monitored by measuring the expression level of BCR-ABL1 mRNA. Since the T315I mutation is resistant to many TKIs and has a poor prognosis, it is clinically useful to monitor the expression level of BCR-ABL1 mRNA having the T315I mutation in the same manner as the amount of BCR-ABL1 mRNA. Conceivable. It is also considered useful for evaluating the effects of ponatinib. However, the T315I mutation detection method developed so far lacks sufficient quantitativeness and is insufficient for these purposes.
  • the purpose of the present application is to provide a method for measuring the expression level of ABL1 T315I mutation in a subject, or a kit therefor.
  • the subject RNA sample is used with two reverse primers that bind upstream and downstream of the T315I mutation site of ABL1 mRNA. It was found that the expression level of the ABL1 T315I mutation can be measured by performing reverse transcription with and comparing the amount of reverse transcription product with the two primers.
  • the application is a method of measuring the expression level of an ABL1 T315I mutation in a subject, (1) In the presence of a modified nucleic acid having a base sequence complementary to the region containing the T315I mutation position of wild-type ABL1 mRNA, (a) a reverse primer that binds to a region downstream of the T315I mutation position of ABL1 mRNA; b) reverse transcription of the RNA sample of interest using a reverse primer that binds to the region upstream of the T315I mutation position of ABL1 mRNA in the same container; and (2) calculating the expression level of the ABL1 T315I mutation based on the ratio of the reverse transcription product of the primer of (a) to the reverse transcription product of the primer of (b),
  • a method comprising:
  • the application is a kit for measuring the expression level of an ABL1 T315I mutation in a subject comprising: (A) A reverse primer that binds to a region downstream of the T315I mutation position of ABL1 mRNA; (B) a reverse primer that binds to a region upstream of the T315I mutation position of ABL1 mRNA; and (C) a modified nucleic acid having a base sequence complementary to the region containing the T315I mutation position of wild-type ABL1 mRNA;
  • a kit is provided.
  • the expression level of ABL1 T315I mutation in a subject can be measured. This is expected to provide useful information for the treatment of patients with T315I mutation.
  • the base sequence of SEQ ID NO: 1 is shown.
  • the 947th cytosine base is shown in bold and underlined. This shows the base sequence of SEQ ID NO: 1 (continued).
  • the base sequence of SEQ ID NO: 3 is shown.
  • the 947th thymine base is shown in bold and underlined. This shows the base sequence of SEQ ID NO: 3 (continued).
  • FIG. 1 It is a schematic diagram of quantitative real-time PCR of T315I mutant ABL1 mRNA.
  • the amplification curve of amplification of cDNA derived from T315I reverse primer is shown.
  • the amplification curve of amplification of cDNA derived from ABL reverse primer is shown.
  • the ABL1 gene is a gene localized in the q34 band of chromosome 9.
  • BCR gene exon 1, exon 1-13 or 1-14 and ABL1 gene exon 2-4 are fused by translocation t (9; 22) between chromosome 9 and chromosome 22, chronic bone marrow BCR-ABL1 gene found in sexual leukemia and Philadelphia chromosome positive acute lymphoblastic leukemia.
  • the ABL1 gene typically has the base sequence of SEQ ID NO: 1, but many mutants are known.
  • the ABL1 gene includes a polynucleotide that hybridizes under stringent conditions to a sequence complementary to the polynucleotide having the sequence of SEQ ID NO: 1.
  • hybridize under stringent conditions the hybridization used here is in accordance with the usual method described in, for example, Molecular Cloning, T. Maniatis et al., CSH Laboratory (1983) etc. It can be carried out.
  • “Stringent conditions” means, for example, 6 ⁇ SSC (a solution containing 1.5M NaCl, 0.15M trisodium citrate is 10 ⁇ SSC), 45 ° C.
  • the ABL1 gene has at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% or more sequence identity with a polynucleotide having the sequence of SEQ ID NO: 1.
  • a polynucleotide having Sequence identity means the degree of sequence similarity between two oligonucleotides. Two sequences that are aligned in an optimal state (a state that maximizes the sequence match) over the region of the base sequence to be compared. Determined by comparison. The sequence identity value (%) determines the same base present in both sequences to determine the number of matching sites, and then divides this number of matching sites by the total number of bases in the sequence region to be compared. It is calculated by multiplying the obtained numerical value by 100.
  • Algorithms for obtaining optimal alignment and sequence identity include various algorithms commonly available to those skilled in the art (eg, BLAST algorithm, FASTA algorithm, etc.).
  • sequence identity of the base sequence is determined using sequence analysis software such as BLAST and FASTA.
  • wild-type ABL1 gene the ABL1 gene having a nucleotide at the T315I mutation position having cytosine is referred to as “wild-type ABL1 gene”, and its mRNA is referred to as “wild-type ABL1 mRNA”.
  • Wild-type ABL1 mRNA typically has the nucleotide sequence of SEQ ID NO: 1, and the protein encoded thereby has the amino acid sequence of SEQ ID NO: 2.
  • “T315I mutation position” means the position corresponding to the 947th position of SEQ ID NO: 1 when the nucleotide sequence of a certain ABL1 gene is optimally aligned with the nucleotide sequence of SEQ ID NO: 1.
  • T315I mutation substitution in the ABL1 gene or ABL1 protein is referred to herein as the “T315I mutation”.
  • the ABL1 gene having a T315I mutation is referred to as “T315I mutant ABL1 gene”, and its mRNA is referred to as “T315I mutant ABL1BL mRNA”.
  • the T315I mutant ABL1 mRNA typically has the nucleotide sequence of SEQ ID NO: 3, and the protein encoded thereby has the amino acid sequence of SEQ ID NO: 4.
  • expression level of ABL1IT315I mutation refers to the expression level of all genes having a T315I mutation, ie, a translocated ABL1 gene having a T315I mutation, including a non-translocated ABL1 gene and a BCR-ABL1 gene. Means.
  • the subject is a human.
  • the subject may be a subject suffering from or suspected of having chronic myeloid leukemia (CML) or Philadelphia chromosome positive acute lymphoblastic leukemia (Ph + ALL).
  • CML chronic myeloid leukemia
  • Ph + ALL Philadelphia chromosome positive acute lymphoblastic leukemia
  • the subject may have a BCR-ABL1 gene.
  • an “RNA sample” is RNA extracted from a sample containing hematopoietic stem cells, leukocytes or leukemia cells derived from the subject, and can be, for example, RNA extracted from blood, bone marrow fluid, or lymph fluid. RNA extracted from isolated hematopoietic stem cells, blood cells, leukocytes or leukemia cells may be used. In certain embodiments, the RNA sample is RNA extracted from peripheral blood leukocytes or bone marrow nucleated cells. In certain embodiments, the RNA sample is RNA extracted from peripheral blood leukocytes.
  • RNA may be total RNA or purified mRNA.
  • a modified nucleic acid having a base sequence complementary to the region containing the T315I mutation position of wild-type ABL1 mRNA is used.
  • the modified nucleic acid is referred to as “T315I clamp”.
  • a modified nucleic acid contains one or more artificial nucleotides, forms a complementary strand more strongly than mRNA having a certain base sequence with respect to mRNA having a certain sequence, and is not degraded by the exonuclease activity of reverse transcriptase .
  • Reverse transcriptase stops the extension reaction at the binding site when the modified nucleic acid is bound to the template mRNA.
  • the T315I clamp binds to the wild-type ABL1 mRNA with a cytosine at the T315I mutation position, so that the nucleotide does not bind to the T315I variant ABL1 mRNA with thymine, and thus suppresses reverse transcription of the wild-type ABL1 mRNA.
  • the reverse transcription of T315I mutant ABL1 mRNA is designed not to be suppressed.
  • the T315I clamp is about 10-22, about 12-20, about 14-18, or about 15-17, for example about 16 comprising nucleotides at the T315I mutation position of wild-type ABL1 mRNA.
  • the T315I clamp comprises the nucleotide sequence of 5'-ATGAACTCAGTGATGA-3 '(SEQ ID NO: 5). In one embodiment, the T315I clamp consists of the base sequence of SEQ ID NO: 5.
  • the T315I clamp contains one or more artificial nucleotides.
  • the artificial nucleotide means one having a modified nucleoside (base moiety or sugar moiety) and having a structure different from that of a natural nucleotide.
  • an artificial nucleotide one that enhances nuclease resistance and binding affinity with a target sequence can be selected. For example, Deleavey, G. F., & Damha, M. J. (2012). Designing chemically modified oligonucleotides for targeted gene silencing. Chemistry & biology, 19 (8), 937 Artificial nucleotides described in -954 can be used.
  • artificial nucleotides include, for example, abasic nucleosides; arabino nucleosides, 2′-deoxyuridines, ⁇ -deoxyribonucleosides, ⁇ -L-deoxyribonucleosides, nucleosides with other sugar modifications; peptide nucleic acids (PNA) ), A peptide nucleic acid to which a phosphate group is bound (PHONA), a cross-linked artificial nucleic acid (LNA), a 2′-O, 4′-C-ethylene cross-linked nucleic acid (ENA), a constrained ethyl (cEt), a morpholino nucleic acid, etc. .
  • PNA peptide nucleic acids
  • Nucleosides having sugar modifications include substituted pentose monosaccharides such as 2′-O-methyl ribose, 2′-O-methoxyethyl ribose, 2′-deoxy-2′-fluororibose, 3′-O-methyl ribose; Included are nucleosides having 1 ', 2'-deoxyribose; arabinose; substituted arabinose sugars; hexose and alpha-anomeric sugar modifications.
  • modified base examples include pyrimidines such as 5-hydroxycytosine, 5-methylcytosine, 5-fluorouracil and 4-thiouracil; purines such as 6-methyladenine and 6-thioguanosine; and other heterocyclic bases Is mentioned.
  • the artificial nucleotides in the T315I clamp may all be of the same type, or two or more different artificial nucleotides may be present.
  • the T315I clamp includes one or more PNAs as artificial nucleotides.
  • PNA generally has a structure in which a phosphate bond of DNA is replaced by a peptide bond by N- (2-aminoethyl) glycine binding to a peptide (Nielsen et al. 1991 Science 254, 1457-1500).
  • PNA is resistant to various nucleolytic enzymes and forms complementary strands with DNA or RNA by molecular recognition similar to DNA or RNA.
  • the affinity between PNA and DNA is higher than the affinity between DNA and DNA or between DNA and RNA.
  • the nucleotides in the T315I clamp are all PNA.
  • the addition amount of the T315I clamp may be an amount that can suppress reverse transcription of wild-type ABL1 mRNA, and is, for example, about 0.1 ⁇ M to 10 ⁇ M or about 0.5 ⁇ M to 5 ⁇ M at the final volume molar concentration of the reverse transcription reaction solution. For example, it can be about 2 ⁇ M.
  • step (1) for reverse transcription, two reverse primers, (a) a reverse primer that binds to a region downstream of the T315I mutation position of ABL1 mRNA, and (b) a T315I mutation position of ABL1 mRNA.
  • a reverse primer that binds to the upstream region The reverse primer in (a) reverse transcribes a portion including a region to which the T315I clamp of ABL1 mRNA binds. In the present specification, the reverse primer is referred to as “T315I reverse primer”.
  • the reverse primer in (b) reversely transcribes the part upstream of the region to which the T315I clamp binds in ABL1 mRNA. In this specification, the reverse primer of (b) is referred to as “ABL reverse primer”. Methods for designing primers suitable for reverse transcription are well known to those skilled in the art.
  • step (1) reverse transcription using a T315I reverse primer and an ABL reverse primer is performed in one step, that is, in the same container, simultaneously or successively.
  • reverse transcription with T315I reverse primer and ABL reverse primer is performed simultaneously in the same container.
  • Schematic diagrams of reverse transcription reactions of wild-type ABL1 mRNA and T315I mutant ABL1 mRNA using these reverse transcription primers and T315I clamp are shown in Figs. 3 and 4, respectively.
  • reagents such as reverse transcriptase, dNTP, and buffer
  • conditions such as amounts of various reagents, reaction time, and temperature are described in the instructions attached to the reverse transcriptase. It can be appropriately determined by a known method such as a description or a commonly used protocol.
  • the reverse transcriptase is any known reverse transcriptase that can be used in molecular biology experiments, such as Tth DNA polymerase, rTth DNA polymerase, AMV reverse transcriptase, MMLV reverse transcriptase, HIV reverse transcriptase, etc. Derivatives can be used.
  • step (2) the expression level of the ABL1 T315I mutation is calculated based on the ratio of the reverse transcription product produced by the T315I reverse primer of (a) to the reverse transcription product produced by the ABL reverse primer of (b).
  • the value obtained by quantifying the reverse transcription product by the T315I reverse primer in (a) divided by the value quantifying the reverse transcription product by the ABL reverse primer in (b) is a measured value of the expression level of the ABL1 T315I mutation.
  • Quantification of reverse transcripts may be performed by any method known in the art.
  • step (2) of the above method comprises quantifying the reverse transcription product by the T315I reverse primer of step (2-1) (a) by quantitative PCR, and step (2-2) (b)
  • the method further comprises the step of quantitatively quantifying the reverse transcription product of the ABL reverse primer of said product by quantitative PCR.
  • Quantitative PCR may be quantitative real-time PCR, for example.
  • Various fluorescent PCR techniques can be used for quantitative real-time PCR.
  • Examples of the fluorescent PCR technique include an intercalator method using a fluorescent nucleic acid labeling agent such as SYBR GREEN I (for example, LightCycler (registered trademark) (Roche), ABI Prizm 7700 Sequence Detection System (registered trademark) (Perkin Elmer, Applied Biosystems), TaqMan probe method for monitoring amplification in real time using 5 ′ exonuclease activity of DNA polymerase, RNase activity of RNase H enzyme and cycling probe using dedicated chimeric RNA probe Law, etc., but is not limited to this.
  • SYBR GREEN I for example, LightCycler (registered trademark) (Roche), ABI Prizm 7700 Sequence Detection System (registered trademark) (Perkin Elmer, Applied Biosystems), TaqMan probe method for monitoring amplification in real time using 5 ′ exonuclease activity of DNA polymerase, RNase activity of RNase H enzyme and cycling probe using dedicated chimeric RNA
  • quantitative real-time PCR is performed by the TaqMan probe method.
  • an oligonucleotide in which the 5 'end is modified with a fluorescent substance and the 3' end with a quencher substance is added to the PCR reaction system.
  • the TaqMan probe specifically hybridizes to the template DNA at the annealing stage. However, since a quencher is present on the probe, the generation of fluorescence is suppressed even when irradiated with excitation light.
  • TaqMan probe hybridized to the template is decomposed by the 5 'exonuclease activity of Taq polymerase in the extension reaction step, the fluorescent dye is separated from the quencher and emits fluorescence.
  • TaqMan probes can bind anywhere in the PCR product and can be designed by methods well known in the art. Also, any combination of fluorescent material and quencher material can be used.
  • a standard solution containing a known concentration of cDNA and an unknown concentration of cDNA are amplified simultaneously, and the horizontal axis represents the number of amplification cycles, and the vertical axis represents the fluorescence intensity (logarithmic conversion value) of the reporter dye.
  • An amplification curve may be created. A line parallel to the horizontal axis is drawn near the central value of the fluorescence intensity where the amplification curve becomes linear, and the number of amplification cycles when the line and each amplification curve intersect can be obtained.
  • the sample amplification cycle number is applied to this standard curve.
  • the concentration of can be calculated.
  • primer pairs used in steps (2-1) and (2-2) are designed so that the reverse transcription product of step (1) can be amplified.
  • Methods for designing primers suitable for PCR are well known to those skilled in the art.
  • Primer pairs are designed so that the amplified nucleic acid has a length suitable for quantification, eg, about 10-1000, about 20-500, about 50-300, about 100-200 nucleotides, eg, about 150 nucleotides in length. obtain.
  • the primer pair used in step (2-1) is designed so that a region including the T315I mutation position of the reverse transcription product can be amplified. That is, a forward primer having a base sequence of a region containing the T315I mutation position of the ABL gene or a region upstream thereof, and a base sequence complementary to the base sequence of the region containing the T315I mutation position of the ABL1 gene or a region downstream thereof Use a reverse primer with The forward primer used in step (2-1) has a base sequence in the region containing the T315I mutation position of the ABL gene, and the nucleotide corresponding to the nucleotide at the T315I mutation position is replaced with uracil ribonucleotide. Also good.
  • the same T315I reverse primer as in step (1) (a) is used in step (2-1).
  • step (2-2) the same ABL reverse primer as in step (1) (b) is used.
  • the reverse transcription product by the T315I reverse primer may be quantified by RNaseH-dependent quantitative PCR specific for the T315I mutation.
  • RNaseH-dependent PCR is a sequence-specific PCR method using RNaseH (Boucard AA, et. Al. J Biol Chem, 289 (1): 387-402; Dobosy JR, et al., BMC Biotechnol, 11 ( 80): 1-18).
  • RNase H recognizes an RNA / DNA heteroduplex and cleaves a phosphodiester bond with the 5'-end DNA of RNA.
  • At least one base of the primer is RNA to form a template DNA and an RNA / DNA heteroduplex, and a region (blocking region) where DNA polymerase cannot bind is provided on the 3 ′ side of RNA.
  • the RNA in the primer must be complementary to the template DNA and not mismatched.
  • step (2-1) the nucleotide sequence of the region containing the T315I mutation position of the ABL1 gene has been substituted, and the nucleotide corresponding to the nucleotide at the T315I mutation position has been replaced with uracil ribonucleotide.
  • a forward primer having a blocking region at the 3 ′ end is used.
  • the forward primer is referred to as “T315I forward primer”.
  • the uracil ribonucleotide in the T315I forward primer causes a mismatch with the nucleotide of the template in PCR of wild type ABL cDNA, so that the blocking region is not cleaved and PCR does not proceed.
  • T315I mutant ABL cDNA can be specifically amplified by RNaseH-dependent PCR using T315I forward primer.
  • the T315I forward primer includes a sequence in a region upstream of the T315I mutation position of the ABL1 gene, and is designed so that the remaining oligonucleotide functions as a forward primer for the PCR reaction after the RNA and the blocking region are separated.
  • the T315I forward primer includes, for example, a sequence of about 8-60, 10-30, 15-25 or 19-23 nucleotides upstream of the T315I mutation position of ABL1 mRNA, eg, about 20, 21 or 22 nucleotides.
  • the nucleotide corresponding to the nucleotide at the T315I mutation position in the T315I forward primer is a uracil ribonucleotide.
  • the blocking region on the 3 'side includes mismatching DNA and blocking groups such as C3 spacer.
  • the blocking region consists of 4 deoxyribonucleotides having the same bases as the 945th to 948th nucleotides of the ABL1 gene, one deoxyribonucleotide having a different base from the 949th nucleotide, and one blocking group.
  • the blocking region is one deoxyribonucleotide having the same base as the 945th nucleotide of the ABL1 gene, two blocking groups, one deoxyribonucleotide having the same base as the 946th nucleotide, 947th It consists of one deoxyribonucleotide having a base different from that of the nucleotide.
  • the T315I forward primer is 5'-GAGCCCCCGTTCTATACATCATArUT / iSpC3 // iSpC3 / GC-3 '(SEQ ID NO: 6, where rU is uracil RNA and iSpC3 is spacer C3).
  • Steps (2-1) and (2-2) may be performed in the presence of a T315I clamp. Therefore, the reaction can be carried out by adding reagents necessary for the step (2-1) or (2-2) to all or a part of the product of the step (1).
  • the steps (1) and (2-1) or the steps (1) and (2-2) can be performed in one step, that is, in the same container, simultaneously or successively.
  • step (2-1) When RNaseH-dependent PCR is performed in step (2-1) and steps (1) and (2-1) are performed in a single step, part of the T315I clamp and part of the T315I forward primer are complementarily bound. You may be able to.
  • the ability of an oligonucleotide to discriminate a single base mutation is believed to be maximized when the mutation site is in the middle of the oligonucleotide, but to reduce this complementary binding, the T315I clamp is It may be designed such that the nucleotide corresponding to the mutation position is located 3 ′ from the center of the T315I clamp.
  • the T315I clamp can be designed so that the complementary region of the T315I clamp and the T315I forward primer is less than 50% of the total length of the T315I clamp.
  • the T315I clamp consisting of the nucleotide sequence of SEQ ID NO: 5 has been optimized so that it has less complementary binding to the forward primer used for RNase H-dependent PCR and has the ability to identify mutations.
  • Such adjustment of the modified nucleic acid sequence is applicable not only to the detection of T315I mutation but also to the detection of other mutations.
  • a portion of less than 50% of the total length of the modified nucleic acid is a forward primer for RNase H-dependent PCR. It is better to adjust it so that it is complementary.
  • reagents such as DNA polymerase, RNaseH, dNTP, and buffer
  • the conditions such as the amount of each reagent, reaction time, temperature, etc. are described in the instructions attached to the enzyme. And can be appropriately determined by a known method such as a commonly used protocol.
  • DNA polymerase any known DNA polymerase that can be used for molecular biology experiments and the like, for example, rTth DNA polymerase, Taq polymerase, and derivatives thereof can be used.
  • RNaseH may be any known RNaseH that can be used for molecular biology experiments, for example, RNaseH2.
  • the primers, clamps and probes listed in the table below are used. All of these may be used in combination, or at least one may be used.
  • kits for performing the above methods is at least (A) A reverse primer that binds to a region downstream of the T315I mutation position of ABL1 mRNA; (B) a reverse primer that binds to a region upstream of the T315I mutation position of ABL1 mRNA; and (C) a modified nucleic acid having a base sequence complementary to the region containing the T315I mutation position of wild-type ABL1 mRNA; including.
  • the kit may further include at least one of a forward primer for amplifying the reverse transcription product of ABL1 mRNA by the reverse primer of (a) and (b) and a further reverse primer for PCR.
  • the primer may be for RNase H dependent PCR.
  • the kit may further include a probe for quantitative PCR.
  • the kit can further comprise a standard, eg, at least one of a known amount of wild-type ABL1 mRNA and T315I mutant ABL1 mRNA.
  • the kit may further contain reagents necessary for carrying out the above method, for example, reverse transcriptase, DNA polymerase, RNaseH, dNTP, buffer, etc. for reverse transcription, PCR, quantitative PCR or RNaseH-dependent PCR.
  • the kit may further include other components desirable from a commercial and user standpoint, such as a package insert containing instructions for use (eg, a written or storage medium).
  • kits Each component included in the kit is either separately or, if possible, mixed, dissolved in water or a suitable buffer, or lyophilized and placed in a suitable container.
  • Suitable containers include bottles, vials, test tubes, tubes, plates, multiwell plates and the like.
  • the container may be formed from at least one material such as glass, plastic, metal, and the like.
  • the container may have a label.
  • the expression level of T315I mutant ABL1 mRNA in which the 944th base of ABL1 mRNA in RNA extracted from peripheral blood leukocytes or bone marrow nucleated cells is mutated from cytosine to thymine is measured.
  • the measurement principle is a two-step quantitative RT-PCR method consisting of two steps: reverse transcription reaction (RT) that synthesizes complementary DNA (cDNA) using RNA as a template, and real-time PCR that quantifies cDNA using a fluorescently labeled probe. It is.
  • a region including the T315I mutation position of T315I mutant ABL1 mRNA and a region not including the T315I mutation position of all ABL1 mRNA are amplified, and a ratio obtained by dividing the former quantitative value by the latter quantitative value is used as a report value.
  • the outline of the reverse transcription reaction is shown in FIG.
  • the ABL1 mRNA whose 944th base is cytosine is defined as wild-type ABL1 mRNA
  • the ABL1 mRNA whose thymine is defined as T315I mutant ABL1 mRNA.
  • Two primers, ABL reverse primer and T315I reverse primer are used to reverse transcribe the region for quantifying all ABL1 mRNA and the region for quantifying T315I mutant ABL1 mRNA, respectively.
  • the ABL reverse primer and the T315I reverse primer bind to complementary sequences contained in the measurement sample (FIGS. 5 (1a) and (1b)).
  • the first strand cDNA is synthesized by the reverse transcription activity of Tth DNA polymerase contained in the reaction solution (FIG. 5 (2a) or (2b)).
  • the reaction solution contains a T315I clamp having a sequence complementary to the wild-type ABL1 mRNA.
  • the T315I clamp specifically binds, Since the reverse transcription reaction is inhibited (FIG.
  • ABL1 mRNA-derived cDNA synthesized by reverse transcription reaction is amplified by real-time PCR (FIG. 6).
  • the fluorescently labeled probe (ABL probe) bound to one side of the double-stranded cDNA is decomposed by the 5′-3 ′ exonuclease activity of Tth DNA polymerase in the reaction solution, and the reporter dye is released.
  • the increase in the amount of cDNA derived from ABL1 mRNA is measured in real time by measuring the fluorescence intensity of the released dye for each cycle (FIG. 6 (6)).
  • rhPCR RNase H-dependent PCR
  • RNase H2 a nucleolytic enzyme used for rhPCR, has the property of recognizing RNA / DNA heteroduplexes and cleaving the phosphodiester bond with the 5 ′ terminal DNA of RNA.
  • RNA and DNA heteroduplex are formed by changing one deoxyribonucleotide of a primer to a ribonucleotide, and a region (blocking region) where DNA polymerase cannot bind is provided on the 3 ′ side of RNA.
  • PCR proceeds only when RNase H2 recognizes and cleaves an RNA / DNA heteroduplex.
  • RNase H2 recognizes and cleaves an RNA / DNA heteroduplex.
  • cDNA derived from T315I mutant ABL1 mRNA in which the 944th base of ABL1 mRNA is thymine is amplified.
  • An outline of quantitative real-time PCR of T315I mutant ABL1 mRNA is shown in FIG.
  • the portion corresponding to the 944th base of the T315I mutant ABL1 mRNA is substituted from DNA (thymine) to RNA (uracil) (FIG. 7 (1 a)). Since the RNA-substituted base of the T315I forward primer does not form an RNA / DNA heteroduplex with cDNA derived from wild-type ABL1 mRNA, the cleavage of the blocking region by RNase H2 does not occur, and the PCR reaction does not occur (FIG. 7 ( 2a)).
  • the RNA-substituted base of the T315I forward primer forms an RNA / DNA heteroduplex with respect to the cDNA derived from T315I mutant ABL1 mRNA
  • the blocking region is cleaved by RNase H2
  • the cDNA derived from T315I mutant ABL1 mRNA Specific amplification proceeds (FIGS. 7 (1b) and (2b)).
  • Specific amplification of cDNA derived from T315I mutant ABL1 mRNA is repeated by PCR (FIGS. 7 (3) to (9)).
  • the fluorescently labeled probe (ABLT315I probe) bound to one side of the double-stranded cDNA is decomposed by the 5'-3 'exonuclease activity of Tth DNA polymerase in the reaction solution, and the reporter dye is released.
  • the increase in the amount of cDNA derived from T315I mutant ABL1 mRNA is measured in real time (FIG. 7 (6)).
  • the present application is a method for detecting an ABL1 T315I mutation in a subject, comprising: (1) In the presence of a modified nucleic acid having a base sequence complementary to the region containing the T315I mutation position of wild-type ABL1 mRNA, using a reverse primer that binds to the region downstream of the T315I mutation position of ABL1 mRNA, Reverse transcription of an RNA sample; (2) Using a forward primer having a base sequence of the region containing the T315I mutation position of ABL1 mRNA, the nucleotide corresponding to the nucleotide at the T315I mutation position is uracil ribonucleotide, and having a blocking region at the 3 ′ end ( Amplifying the reverse transcription product of 1) by RNase H-dependent PCR; (3) a step of determining that the subject expresses the ABL1 T315I mutation when the nucleic acid is amplified in step (2);
  • a method comprising:
  • the present application is a kit for performing the above method, comprising: (A) A forward primer having a base sequence of a region containing the T315I mutation position of ABL1 mRNA, a nucleotide corresponding to the nucleotide at the T315I mutation position being replaced with uracil ribonucleotide, and a blocking region at the 3 ′ end; (B) a reverse primer that binds to a region downstream of the T315I mutation position of ABL1 mRNA; and (C) a modified nucleic acid having a base sequence complementary to the region containing the T315I mutation position of wild-type ABL1 mRNA; A kit is provided.
  • a method for measuring the expression level of an ABL1 T315I mutation in a subject (1) In the presence of a modified nucleic acid having a base sequence complementary to the region containing the T315I mutation position of wild-type ABL1 mRNA, (a) a reverse primer that binds to a region downstream of the T315I mutation position of ABL1 mRNA; b) reverse transcription of the RNA sample of interest using a reverse primer that binds to the region upstream of the T315I mutation position of ABL1 mRNA in the same container; and (2) calculating the expression level of the ABL1 T315I mutation based on the ratio of the reverse transcription product of the primer of (a) to the reverse transcription product of the primer of (b), Including methods.
  • Step (2) Quantifying the reverse transcription product by the primer of step (2-1) (a) by quantitative PCR; and Quantifying the reverse transcript by the primer of step (2-2) (b) by quantitative PCR;
  • the method of claim 1 further comprising: [3] Quantitative PCR in step (2-1) (X) the nucleotide sequence of the region containing the T315I mutation position of the ABL gene, wherein the nucleotide corresponding to the nucleotide at the T315I mutation position is replaced with uracil ribonucleotide, or (Y) having a base sequence in a region upstream of the T315I mutation position of ABL mRNA, Item 3.
  • a part of the modified nucleic acid and a part of the forward primer of (X) are complementary, and the complementary region is less than 50% of the total length of the modified nucleic acid, The method according to any one.
  • the method according to any one of items 1 to 9 wherein the nucleotide corresponding to the T315I mutation position in the modified nucleic acid is located 3 ′ from the center of the modified nucleic acid.
  • the method according to any one of items 1 to 10 wherein the modified nucleic acid comprises the base sequence of SEQ ID NO: 5.
  • step (a) comprises the sequence of SEQ ID NO: 7.
  • step (b) comprises the sequence of SEQ ID NO: 10.
  • step (2-1) is performed in the presence of the modified nucleic acid used in step (1).
  • a kit for measuring the expression level of ABL1 T315I mutation in a subject (A) A reverse primer that binds to a region downstream of the T315I mutation position of ABL1 mRNA; (B) a reverse primer that binds to a region upstream of the T315I mutation position of ABL1 mRNA; and (C) a modified nucleic acid having a base sequence complementary to the region containing the T315I mutation position of wild-type ABL1 mRNA; Including kit. [25] The kit according to item 24, further comprising a forward primer for amplifying the reverse transcription product of ABL mRNA by the reverse primer of (a) and (b) by PCR.
  • the forward primer is (X) the nucleotide sequence of the region containing the T315I mutation position of ABL1 mRNA, and the nucleotide corresponding to the nucleotide of the T315I mutation is replaced with uracil ribonucleotide, or (Y) having a base sequence in a region upstream from the T315I mutation position of ABL1 mRNA, 26.
  • the kit according to item 25 which is a forward primer.
  • the kit according to item 26 wherein the forward primer is the forward primer of (X).
  • the forward primer has a blocking region at the 3 ′ end.
  • the kit according to any one of items 25 to 28, wherein the forward primer comprises the sequence of SEQ ID NO: 6.
  • the forward primer consists of the sequence of SEQ ID NO: 6.
  • a part of the modified nucleic acid is complementary to a part of the forward primer of (X), and the complementary region is less than 50% of the total length of the modified nucleic acid.
  • the kit according to any one. [32] The kit according to any one of items 24 to 31, wherein the nucleotide corresponding to the T315I mutation position in the modified nucleic acid is located 3 ′ from the center of the modified nucleic acid. [33] The kit according to any one of items 24 to 32, wherein the modified nucleic acid comprises the sequence of SEQ ID NO: 5. [34] The kit according to any one of items 24 to 33, wherein the modified nucleic acid comprises the sequence of SEQ ID NO: 5.
  • the kit according to any one of items 24 to 34, wherein the modified nucleic acid comprises PNA.
  • the reverse primer of (a) comprises the sequence of SEQ ID NO: 7.
  • the reverse primer of (b) comprises the sequence of SEQ ID NO: 10.
  • the kit according to any one of items 24 to 36, wherein the reverse primer of (a) comprises the sequence of SEQ ID NO: 7.
  • the reverse primer of (b) comprises the sequence of SEQ ID NO: 10.
  • kits according to any one of items 24 to 39 further comprising at least one of wild-type ABL1 mRNA and ABL1 mRNA having a T315I mutation.
  • the kit according to any one of items 24 to 40 which comprises at least one of the primer, clamp and probe described in Table 1.
  • the kit according to any one of items 24 to 41 comprising the primer, clamp and probe described in Table 1.
  • Primer and probe design The following primer sets and probes were designed and synthesized.
  • the fluorescently labeled probe was labeled with HEX (6-carboxyfluorescein) at the 5 ′ end of the probe and labeled with Iowa Black FQ (Integrated DNA technologies) as the quenching dye at the 3 ′ end of the probe. Details of primers and probes in this example are shown in Table 2.
  • [Test 1] Preparation of standard product (ABL1 T315I mutant RNA)
  • synthetic RNA containing the sequence of ABL1 mRNA having T315I mutation was used.
  • a plasmid vector containing a PCR amplification region using the above-described primers in wild-type ABL1 mRNA and a T7 promoter sequence serving as a starting point for RNA synthesis was prepared.
  • a single base mutation was introduced into the portion corresponding to the T315I mutation of the ABL1 mRNA-derived sequence contained in this plasmid vector by site-directed mutagenesis.
  • the plasmid vector introduced with this mutation was transformed into E. coli.
  • Escherichia coli was cultured to prepare a large amount of plasmid vector, which was cleaved at one site with a restriction enzyme to prepare a linear DNA fragment having a sequence encoding ABL1 mRNA having a T315I mutation.
  • RNA containing the sequence of ABL1 mRNA having the T315I mutation was synthesized using the DNA fragment as a template.
  • the synthesized RNA was diluted with TE buffer containing 100 ng / ⁇ L of E. coli transfer RNA to prepare an RNA standard.
  • the ABL1 T315I mutant RNA standard thus prepared was adjusted to a concentration of 1 ⁇ 10 2 , 1 ⁇ 10 3 , 1 ⁇ 10 4 , 1 ⁇ 10 5 , 1.0 ⁇ 10 6 , 1 ⁇ 10 7 copies / test. .
  • As a negative control TE buffer containing 100 ng / ⁇ L of E. coli transfer RNA was used.
  • Reverse transcription reaction (2-1) Preparation of reaction solution
  • the volume of the reaction solution is 50 ⁇ L
  • T315I reverse primer and ABL reverse primer (Integrated DNA technologies) are 0.2 ⁇ M final concentration and dNTPs (Toyobo), respectively.
  • Final concentration 0.1 mM
  • MnOAc (Toyobo) 2.4 mM
  • PNA clamp (Panagene) 2 ⁇ M
  • rTth DNA polymerase (Toyobo) 2.5 U per reaction
  • test RNA per reaction It prepared so that it might become 1 microgram.
  • One sample standard for each concentration was used in the reaction.
  • the PNA clamp had a base sequence of ATGAACTCAGTGATGA (SEQ ID NO: 5), and all nucleotides were peptide-bonded.
  • (2-2) Reaction conditions The reverse transcription reaction was performed at 60 ° C. for 60 minutes.
  • (3-2) Measurement of cDNA derived from ABL reverse primer (a) Preparation of reaction solution The volume of the reaction solution was 30 ⁇ L, and ABL forward primer and ABL reverse primer (Integrated DNA technologies) were each at a final concentration of 0.3 ⁇ M and ABL fluorescence. Labeled probe (Integrated DNA technologies) at a final concentration of 0.2 ⁇ M, dNTPs (Toyobo) at a final concentration of 0.4 mM, MnOAc (Toyobo) at a final concentration of 2.0 mM, Tth DNA polymerase at 1.125 U per reaction, The reverse transcription reaction product was prepared to be 5 ⁇ L per reaction. A single measurement of the reverse transcription reaction product at each concentration was performed.
  • T315I mutant RNAs used for the standard product of Test 1 were used for the RNA extracted from human leukemia-derived cell HL60 in order to obtain the detection lower limit of the ABL1 T315I mutation measurement system.
  • T315I reverse primer-derived cDNA and ABL reverse primer-derived cDNA were measured using a sample added at a concentration of 1, and the ratio obtained by dividing the former measured value by the latter measured value was determined.
  • Test sample a sample obtained by adding ABL1 T315I mutant RNA used as a standard product at various concentrations to RNA extracted from human leukemia cell line HL60 which is negative for BCR-ABL1 was used. Specifically, ABL1 T315I mutant RNA used as a standard product was added to Total RNA extracted from HL60 at a concentration of 25, 50, 100 copies / test, and the final RNA concentration was 100 ng / ⁇ L using TE buffer. Prepared. As a control product, total RNA extracted from HL60 and adjusted to 100 ng / ⁇ L using TE buffer was used.
  • Results A ratio obtained by dividing the measured value of cDNA derived from T315I reverse primer by Table 4, the measured value of cDNA derived from ABL reverse primer by Table 5, and the measured value of cDNA derived from T315I reverse primer divided by the measured value of cDNA derived from reverse primer (ABL1 Table 6 shows T315I mutation / ABL1 ratio).
  • the measured values of cDNA derived from T315I reverse primer in samples added with 100, 50, and 25 copies / test ABL1 T315I mutant RNA were 109.4, 47.4, and 27.3 on average, which were consistent with the theoretical values. .
  • no fluorescence amplification was detected in the measurement of cDNA derived from T315I reverse primer of HL60 (control) not containing ABL1 T315I mutant RNA.
  • the measured value of cDNA derived from ABL reverse primer was 2.08 ⁇ 10 5 on average because HL60 used for dilution expressed a certain amount of ABL1 mRNA, and almost the same value was shown in all measured samples. Thus, even when RNA extracted from HL60 cells expressing 10 5 or more copies of wild-type ABL was measured, cDNA derived from T315I reverse primer of HL60 not containing ABL1 T315I mutant RNA was not detected. This measurement system is considered to have very high specificity for ABL1 T315I mutant RNA.
  • the ABL1 T315I mutant / ABL1 ratio of the sample added with 100, 50 and 25 copies / test ABL1 T315I mutant RNA was 0.052%, 0.023%, and 0.013%, respectively, on average. From this, the mutation detection rate of this measurement system was very high sensitivity of about 0.01%.
  • Test 3 Reaction inhibitory effect by PNA clamp The purpose of this test was to confirm the effect of PNA clamp in reverse transcription reaction.
  • PCR PCR was performed in the same manner as in Test 2.
  • Results A ratio obtained by dividing the measured value of cDNA derived from T315I reverse primer by Table 7, the measured value of cDNA derived from ABL reverse primer by Table 8, and the measured value of cDNA derived from T315I reverse primer divided by the measured value of cDNA derived from reverse primer (ABL1 T315I mutation / ABL1 ratio) is shown in Table 9.
  • the measured value of T315I reverse primer-derived cDNA in the sample to which 100, 50 and 25 copies / test of ABL1 T315I mutant RNA was added was 333.7, 235.3, and 202.3 copies / test on average.
  • the measured value of T315I reverse primer-derived cDNA of RNA extracted from HL60 (control) was 186.9 copies / test.
  • the measured value of cDNA derived from ABL reverse primer was 2.29 ⁇ 10 5 on average because HL60 used for dilution expressed a certain amount of ABL1 mRNA, and almost the same value was shown in all measured samples.
  • the ABL1 T315I mutation / ABL1 ratio of the sample to which 100, 50, and 25 copies / test ABL1 T315I mutant RNA was added was 0.147%, 0.107%, and 0.090%, respectively, on average.
  • the ABL1 T315I mutation / ABL1 ratio of HL60 (control) containing no ABL1 T315I mutant RNA was 0.077% on average.
  • the T315I reverse primer-derived cDNA of the sample not added with ABL1 T315I mutant RNA was measured at 186.9 copies / test, and the difference from the sample added with ABL1 T315I mutant RNA I could not get enough. Therefore, the use of a PNA clamp in the reverse transcription reaction is considered important for detecting the ABL13T315I mutation with high sensitivity.
  • the present application can provide a highly sensitive ABL1AT315I mutation detection or quantification method compared to conventional methods. That is, by using the above method or kit, the expression level of the ABL1BLT315I mutation can be quantified with high sensitivity.
  • the expression level of the ABL1 T315I mutation thus quantified is expected to be a useful index in the diagnosis of onset and recurrence of leukemia, determination of prognosis, and timing of bone marrow transplantation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)

Abstract

本開示は、(1)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸の存在下で、(a)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー、および(b)ABL1 mRNAのT315I変異位置より上流の領域に結合するリバースプライマーを同一容器中で用いて、対象のRNA試料を逆転写する工程、(2)(b)のプライマーによる逆転写産物に対する(a)のプライマーによる逆転写産物の割合に基づいて、ABL1 T315I変異の発現レベルを算出する工程、を含む方法およびそのためのキットを提供する。

Description

ABL1 T315I変異の発現レベルの測定方法
 本特許出願は、日本国特許出願第2017-087578号について優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
 本願は、ABL1 T315I変異の発現レベルを測定する方法、または、そのためのキットに関する。
 BCR-ABL1融合遺伝子は、慢性骨髄性白血病(Chronic Myelogenous Leukemia: CML)およびフィラデルフィア染色体陽性急性リンパ性白血病(Philadelphia chromosome positive Acute Lymphocytic Leukemia: Ph陽性ALL)にみられる染色体異常である。9番染色体と22番染色体の間での転座t(9;22)によって、9番染色体のq34バンドに局在するABL1遺伝子と22番染色体のq11バンドに局在するBCR遺伝子が融合して形成される。BCR-ABL1融合遺伝子でコードされるキメラタンパクBCR-ABL1はチロシンキナーゼ(tyrosine kinase)活性を有し、恒常的に細胞増殖シグナルを刺激し、アポトーシス抑制の働きをすることで、造血幹細胞を無制限に増殖させて異常を引き起こす。
 上記のように、キメラタンパクBCR-ABL1はCMLおよびPh陽性ALLの原因タンパクの1つであるため、BCR-ABL1を標的分子として作用するチロシンキナーゼ阻害剤(tyrosine kinase inhibitor:TKI)が治療薬として開発されてきた。代表的なTKIであるイマチニブは、CMLおよびPh陽性ALLの症例に対して画期的な治療効果を発揮した。しかし、BCR-ABL1遺伝子に変異を生じた症例では、その効果が低下し、治療上の課題となった。その後イマチニブに抵抗性を持つBCR-ABL1遺伝子変異の多くに対して有効なTKIとして、ニロチニブおよびダサチニブが開発された。ところが、BCR-ABL1遺伝子が、BCR-ABL1のABL1領域315番目のアミノ酸であるスレオニンがイソロイシンに置換されるように変異(T315I変異)した症例に対しては、著しく効果が低下した(非特許文献1~3)。従来、T315I変異を生じた場合は、TKI治療による予後は不良で、同種幹細胞移植が第一選択とされており、血液学的再発に至る前の早期のT315I変異の検出が望まれていた。
 このT315I変異を有するBCR-ABL1に対してもチロシンキナーゼ阻害作用を示す薬剤としてポナチニブが開発された。ポナチニブは既存のTKIに抵抗性又は不耐容のCMLおよびPh陽性ALLに有用で、特にT315I変異を有する場合に高い効果を示した(非特許文献4および5)。
 このようなことから患者がT315I変異を有する場合、既存のTKIから速やかにポナチニブによる治療に切り替える必要がある。しかし、これまでBCR-ABL1の変異解析に用いられているダイレクトシークエンス法、パイロシークエンス法、DHPLC法、高解像度融解曲線分析法、特異的プライマーによるPCR法などの方法は、感度が十分ではなく、早期にT315I変異を確認することは難しかった(非特許文献6~8)。T315I変異の発見が遅れ、病期が進行すると、T315I変異に有効なポナチニブを用いた場合でも寛解を達成できなくなる可能性が高まる。そのため、T315I変異をより早期に検出することは、医療上の重要な課題と考えられた。
 また、BCR-ABL1を対象としたTKI治療では、BCR-ABL1 mRNA発現量を測定することにより、治療効果のモニタリングが可能である。T315I変異は、多くのTKIに対して耐性を持ち予後が不良であるため、T315I変異を有するBCR-ABL1 mRNAの発現量を、BCR-ABL1 mRNA量と同様にモニタリングすることは、臨床上有用と考えられる。また、ポナチニブの効果を評価するためにも有用と考えられる。しかし、これまでに開発されたT315I変異検出法は、十分な定量性を欠き、これらの目的には不十分である。
Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408-17. Modugno M. New resistance mechanisms for small molecule kinase inhibitors of Abl kinase. Drug Discov Today Technol. 2014;11:5-10. Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, et al. BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia. Cancer Cell. 2014;26:428-42. Goldman JM. Ponatinib for chronic myeloid leukemia. N Engl J Med. 2012; 367: 2148-2149. Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012; 367: 2075-2088. Hofmann WK、 Jones LC, Lemp NA, de Vos S, Gschaidmeier H、 Hoelzer D, et al. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood. 2002;99:1860-2. Yamamoto M, Kakihana K, Ohashi K, Yamaguchi T, Tadokoro K, Akiyama H, et al. Serial monitoring of T315I BCR-ABL mutation by Invader assay combined with RT-PCR. Int J Hematol. 2009;89:482-8. Yin L, Dittman D, Chenn A. Rapid quantitative detection of the T315I mutation in patients with chronic myelogenous leukemia. Diagn Mol Pathol. 2012;21:34-39.
 本願の目的は、対象におけるABL1 T315I変異の発現レベルを測定する方法、または、そのためのキットを提供することである。
 本発明者らは、対象のRNA試料を、ABL1 mRNAのT315I変異部位の上流と下流に結合する2種のリバースプライマーを用いて、野生型ABL1 mRNA遺伝子に特異的に結合する修飾核酸の存在下で逆転写し、当該2種のプライマーによる逆転写産物の量を比較することにより、ABL1 T315I変異の発現レベルを測定できることを見出した。
 従って、ある態様では、本願は、対象におけるABL1 T315I変異の発現レベルを測定する方法であって、
(1)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸の存在下で、(a)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー、および(b)ABL1 mRNAのT315I変異位置より上流の領域に結合するリバースプライマーを同一容器中で用いて、対象のRNA試料を逆転写する工程、および、
(2)(b)のプライマーによる逆転写産物に対する(a)のプライマーによる逆転写産物の割合に基づいて、ABL1 T315I変異の発現レベルを算出する工程、
を含む方法を提供する。
 別の態様では、本願は、対象におけるABL1 T315I変異の発現レベルを測定するためのキットであって、
(a)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー;
(b)ABL1 mRNAのT315I変異位置より上流の領域に結合するリバースプライマー;および、
(c)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸;
を含むキットを提供する。
 本発明により、対象におけるABL1 T315I変異の発現レベルを測定できる。これにより、T315I変異を有する患者の処置に有用な情報が得られることが期待される。
配列番号1の塩基配列を示す。947番目のシトシン塩基を太字および下線で示す。 配列番号1の塩基配列(続き)を示す。 配列番号3の塩基配列を示す。947番目のチミン塩基を太字および下線で示す。 配列番号3の塩基配列(続き)を示す。 2つのリバースプライマーを用いる野生型ABL1 mRNAの逆転写反応の模式図である。 2つのリバースプライマーを用いるT315I変異型ABL1 mRNAの逆転写反応の模式図である。 逆転写反応の模式図である。 ABL1 mRNAの定量リアルタイムPCRの模式図である。 T315I変異型ABL1 mRNAの定量リアルタイムPCRの模式図である。 T315Iリバースプライマー由来cDNAの増幅の増幅曲線を示す。 ABLリバースプライマー由来cDNAの増幅の増幅曲線を示す。
 特に具体的な定めのない限り、本明細書で使用される用語は、有機化学、医学、薬学、分子生物学、微生物学等の分野における当業者に一般に理解されるとおりの意味を有する。以下にいくつかの本明細書で使用される用語についての定義を記載するが、これらの定義は、本明細書において、一般的な理解に優先する。
 本明細書では、数値が「約」の用語を伴う場合、その値の±10%の範囲を含むことを意図する。例えば、「約20」は、「18~22」を含むものとする。数値の範囲は、両端点の間の全ての数値および両端点の数値を含む。範囲に関する「約」は、その範囲の両端点に適用される。従って、例えば、「約20~30」は、「18~33」を含むものとする。
 ABL1遺伝子は、9番染色体のq34バンドに局在する遺伝子である。9番染色体と22番染色体の間での転座t(9;22)によって、BCR遺伝子のエクソン1、エクソン1~13または1~14と、ABL1遺伝子のエクソン2~4が融合すると、慢性骨髄性白血病およびフィラデルフィア染色体陽性急性リンパ性白血病にみられるBCR-ABL1遺伝子を生じる。
 ABL1遺伝子は、典型的には配列番号1の塩基配列を有するが、多数の変異体が知られている。本願に関して、ABL1遺伝子には、配列番号1の配列を有するポリヌクレオチドに相補的な配列とストリンジェントな条件下でハイブリダイズするポリヌクレオチドが含まれる。「ストリンジェントな条件下でハイブリダイズする」に関して、ここで使用されるハイブリダイゼーションは、例えば、Molecular Cloning, T. Maniatis et al., CSH Laboratory (1983) 等に記載される通常の方法に準じて行うことができる。また「ストリンジェントな条件下」とは、例えば、6×SSC(1.5M NaCl、0.15M クエン酸三ナトリウムを含む溶液を10×SSCとする)、50%ホルムアミドを含む溶液中で45℃にてハイブリッドを形成させた後、2×SSCで50℃にて洗浄するような条件(Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6)、および、それと同等のストリンジェンシーをもたらす条件を挙げることができる。
 さらに、ABL1遺伝子には、配列番号1の配列を有するポリヌクレオチドと、少なくとも70%、80%、85%、90%、95%、96%、97%、98%または99%以上の配列同一性を有するポリヌクレオチドが含まれる。配列同一性とは、2つのオリゴヌクレオチド間の配列の類似の程度を意味し、比較対象の塩基配列の領域にわたって最適な状態(配列の一致が最大となる状態)にアラインメントされた2つの配列を比較することにより決定される。配列同一性の数値(%)は両方の配列に存在する同一の塩基を決定して、適合部位の数を決定し、次いでこの適合部位の数を比較対象の配列領域内の塩基の総数で割り、得られた数値に100をかけることにより算出される。最適なアラインメントおよび配列同一性を得るためのアルゴリズムとしては、当業者が通常利用可能な種々のアルゴリズム(例えば、BLASTアルゴリズム、FASTAアルゴリズムなど)が挙げられる。塩基配列の配列同一性は、例えばBLAST、FASTAなどの配列解析ソフトウェアを用いて決定される。
 本明細書において、ABL1遺伝子のうち、T315I変異位置のヌクレオチドがシトシンを有するABL1遺伝子を、「野生型ABL1遺伝子」と称し、そのmRNAを「野生型ABL1 mRNA」と称する。野生型ABL1 mRNAは、典型的には、配列番号1のヌクレオチド配列を有し、それにコードされるタンパク質は配列番号2のアミノ酸配列を有する。本願に関して、「T315I変異位置」は、あるABL1遺伝子のヌクレオチド配列を配列番号1のヌクレオチド配列と最適にアラインメントしたときに、配列番号1の947番目に相当する位置を意味する。
 野生型ABL1遺伝子の上記シトシンがチミンに置換されると、それにコードされるタンパク質において、BCR-ABL1タンパク質のABL1領域の315番目のアミノ酸に相当するスレオニンがイソロイシンに置換される。ABL1遺伝子またはABL1タンパク質における当該置換を本明細書において「T315I変異」と称する。T315I変異を有するABL1遺伝子を「T315I変異型ABL1遺伝子」と称し、そのmRNAを「T315I変異型ABL1 mRNA」と称する。T315I変異型ABL1 mRNAは、典型的には、配列番号3のヌクレオチド配列を有し、それにコードされるタンパク質は配列番号4のアミノ酸配列を有する。
 本願に関して、「ABL1 T315I変異の発現レベル」は、T315I変異を有するすべての遺伝子、即ち、T315I変異を有する、転座していないABL1遺伝子およびBCR-ABL1遺伝子を含む転座したABL1遺伝子の発現レベルを意味する。
 本願に関して、典型的には、対象はヒトである。対象は、慢性骨髄性白血病(CML)またはフィラデルフィア染色体陽性急性リンパ性白血病(Ph+ALL)に罹患しているか、または、罹患している疑いのある対象であってもよい。対象は、BCR-ABL1遺伝子を有してもよい。
 本願に関して、「RNA試料」とは、対象に由来する造血幹細胞、白血球または白血病細胞を含む試料から抽出されたRNAであり、例えば、血液、骨髄液、リンパ液から抽出されたRNAであり得る。単離された造血幹細胞、血液細胞、白血球または白血病細胞から抽出されたRNAを用いてもよい。ある実施態様では、RNA試料は末梢血白血球または骨髄液有核細胞から抽出されたRNAである。ある実施態様では、RNA試料は末梢血白血球から抽出されたRNAである。
 試料からのRNAの抽出には、公知のいかなる方法を用いてもよい。例えば、PCI(フェノール・クロロホルム・イソアミルアルコール抽出)法において溶液を酸性にして水層から抽出する方法、市販のRNA抽出キットを用いる方法、その他の公知の方法によることができる。RNAは、totalRNAであってもよく、精製されたmRNAであってもよい。
 工程(1)において、野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸を用いる。本明細書において、当該修飾核酸を「T315Iクランプ」と称する。修飾核酸は、1個以上の人工ヌクレオチドを含み、ある配列を有するmRNAに対して、修飾核酸と同じ塩基配列を有するDNAよりも強く相補鎖を形成し、逆転写酵素のエキソヌクレアーゼ活性により分解されない。逆転写酵素は、鋳型であるmRNAに修飾核酸が結合していると、結合部位で伸長反応を停止する。
 T315Iクランプは、T315I変異位置のヌクレオチドがシトシンを有する野生型ABL1 mRNAと結合し、当該ヌクレオチドがチミンを有するT315I変異型ABL1 mRNAとは結合しないように、従って、野生型ABL1 mRNAの逆転写を抑制するが、T315I変異型ABL1 mRNAの逆転写は抑制しないように設計する。具体的には、T315Iクランプは、野生型ABL1 mRNAのT315I変異位置のヌクレオチドを含む約10~22個、約12~20個、約14~18個または約15~17個、例えば約16個のヌクレオチドからなる領域に相補的な修飾核酸であり得る。ある実施態様では、T315Iクランプは、5’-ATGAACTCAGTGATGA-3’(配列番号5)のヌクレオチド配列を含む。ある実施態様では、T315Iクランプは、配列番号5の塩基配列からなる。
 T315Iクランプは、1個またはそれ以上の人工ヌクレオチドを含む。人工ヌクレオチドとは、ヌクレオシド(塩基部分または糖部分)が修飾されており、天然のヌクレオチドと異なる構造を有するものを意味する。人工ヌクレオチドとしては、ヌクレアーゼ耐性や標的配列との結合親和性を高めるものを選択し得る。例えば、出典明示により本明細書の一部とする Deleavey, G. F., & Damha, M. J. (2012). Designing chemically modified oligonucleotides for targeted gene silencing. Chemistry & biology, 19(8), 937-954 に記載の人工ヌクレオチドを使用し得る。人工ヌクレオチドの例には、例えば、無塩基(abasic)ヌクレオシド;アラビノヌクレオシド、2'-デオキシウリジン、α-デオキシリボヌクレオシド、β-L-デオキシリボヌクレオシド、その他の糖修飾を有するヌクレオシド;ペプチド核酸(PNA)、ホスフェート基が結合したペプチド核酸(PHONA)、架橋型人工核酸(LNA)、2'-O,4'-C-エチレン架橋核酸(ENA)、拘束エチル(cEt)、モルホリノ核酸等が挙げられる。糖修飾を有するヌクレオシドには、2'-O-メチルリボース、2'-O-メトキシエチルリボース、2'-デオキシ-2'-フルオロリボース、3'-O-メチルリボース等の置換五単糖;1',2'-デオキシリボース;アラビノース;置換アラビノース糖;六単糖およびアルファ-アノマーの糖修飾を有するヌクレオシドが含まれる。修飾された塩基としては、例えば、5-ヒドロキシシトシン、5-メチルシトシン、5-フルオロウラシル、4-チオウラシル等のピリミジン;6-メチルアデニン、6-チオグアノシン等のプリン;および他の複素環塩基等が挙げられる。T315Iクランプ中の人工ヌクレオチドは、すべて同じ種類のものであってもよく、2種類以上の異なる人工ヌクレオチドが存在してもよい。
 ある実施態様では、T315Iクランプは、人工ヌクレオチドとして、1個またはそれ以上のPNAを含む。PNAは、一般に、N-(2-アミノエチル)グリシンがペプチド結合することにより、DNAのリン酸結合がペプチド結合で置き換えられた構造を生じる(Nielsen et al. 1991 Science 254、 1457-1500)。PNAは、各種核酸分解酵素に対して耐性であり、DNAまたはRNAと同様の分子認識によりDNAまたはRNAと相補鎖を形成する。PNAとDNAの親和性は、DNAとDNAまたはDNAとRNAの親和性よりも高い。ある実施態様では、T315Iクランプ中のヌクレオチドは、すべてPNAである。
 T315Iクランプの添加量は、野生型ABL1 mRNAの逆転写を抑制し得る量であればよく、例えば、逆転写反応液の最終体積モル濃度で、約0.1μM~10μMまたは約0.5μM~5μM、例えば、約2μMとすることができる。
 工程(1)では、逆転写のために、2種のリバースプライマー、即ち、(a)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー、および(b)ABL1 mRNAのT315I変異位置より上流の領域に結合するリバースプライマーを使用する。(a)のリバースプライマーは、ABL1 mRNAのT315Iクランプが結合する領域を含む部分を逆転写する。本明細書において、当該リバースプライマーを「T315Iリバースプライマー」と称する。(b)のリバースプライマーは、ABL1 mRNAの、T315Iクランプが結合する領域よりも上流の部分を逆転写する。本明細書において、(b)のリバースプライマーを「ABLリバースプライマー」と称する。逆転写に適するプライマーの設計方法は当業者に周知である。
 工程(1)では、T315IリバースプライマーとABLリバースプライマーによる逆転写を、ワンステップで、即ち、同一容器内で、同時または連続して行う。ある実施態様では、T315IリバースプライマーとABLリバースプライマーによる逆転写を、同一容器内で同時に行う。これらの逆転写用プライマーとT315Iクランプを用いる野生型ABL1 mRNAおよびT315I変異型ABL1 mRNAの逆転写反応の模式図を、それぞれ図3および4に示す。
 逆転写酵素、dNTP、バッファーなどの試薬は、当分野で通常用いられるものを用いることができ、各種試薬の量、反応時間、温度などの条件は、逆転写酵素に添付されている説明書の記載や通常用いられるプロトコール等の公知の手法により、適宜決定することができる。例えば、逆転写酵素は分子生物学実験等に使用可能な公知の任意の逆転写酵素、例えば、TthDNAポリメラーゼ、rTthDNAポリメラーゼ、AMV逆転写酵素、MMLV逆転写酵素、HIV逆転写酵素等、またはそれらの誘導体を使用し得る。
 工程(2)では、(b)のABLリバースプライマーによる逆転写産物に対する(a)のT315Iリバースプライマーによる逆転写産物の割合に基づいて、ABL1 T315I変異の発現レベルを算出する。例えば、(a)のT315Iリバースプライマーによる逆転写産物を定量した値を、(b)のABLリバースプライマーによる逆転写産物を定量した値で除した値を、ABL1 T315I変異の発現レベルの測定値とする。逆転写産物の定量は、当分野で知られているいかなる方法で実施してもよい。例えば、定量的PCR、増幅後の核酸の電気泳動、検出可能な標識を結合させた核酸プローブを用いるハイブリダイゼーション法、インターカレーター性蛍光色素による二本鎖DNAの染色、蛍光プローブ法などが挙げられる。
 ある実施態様では、上記方法の工程(2)は、工程(2-1)(a)のT315Iリバースプライマーによる逆転写産物を定量的PCRにより定量する工程、および工程(2-2)(b)のABLリバースプライマーによる逆転写産物を定量的PCRにより定量する工程、をさらに含む。定量的PCRは、例えば定量リアルタイムPCRであってもよい。定量リアルタイムPCRには、各種の蛍光PCR技術を用い得る。蛍光PCR技術としては、例えば、SYBR GREEN Iなどの蛍光性核酸標識剤を用いるインターカレーター法(例えば、ライトサイクラー(登録商標)(ロシュ社)、ABI Prizm 7700 Sequence Detection System(登録商標)(パーキン・エルマー、アプライド・バイオシステムズ社)を用いる)、DNAポリメラーゼの5'エキソヌクレアーゼ活性を利用して増幅をリアルタイムでモニターするTaqManプローブ法、RNaseH酵素のRNase活性および専用のキメラRNAプローブを利用するサイクリングプローブ法などが挙げられるが、これに限定されない。
 ある実施態様では、TaqManプローブ法により定量リアルタイムPCRを行う。一般的に、TaqManプローブ法では、5’末端を蛍光物質で、3’末端をクエンチャー物質で修飾したオリゴヌクレオチド(TaqManプローブ)をPCR反応系に加える。TaqManプローブは、アニーリング段階で鋳型DNAに特異的にハイブリダイズするが、プローブ上にクエンチャーが存在するため、励起光を照射しても蛍光の発生は抑制される。伸長反応段階でTaqポリメラーゼの5’エキソヌクレアーゼ活性により、鋳型にハイブリダイズしたTaqManプローブが分解されると、蛍光色素がクエンチャーから離れ、蛍光が発せられる。TaqManプローブは、PCR産物のどこに結合してもよく、当分野で周知の方法により設計し得る。また、任意の蛍光物質とクエンチャー物質の組み合わせを使用し得る。
 定量リアルタイムPCRにおいて、既知濃度のcDNAを含む標準液と未知濃度のcDNA(検体)を同時に増幅し、横軸に増幅サイクル数、縦軸にレポーター色素の蛍光強度(対数変換値)をプロットした蛍光増幅曲線を作成してもよい。増幅曲線が直線状となる蛍光強度の中央値付近で横軸と平行な線を引き、その線と各増幅曲線が交わるときの増幅サイクル数を求め得る。さらに、横軸に各標準液の濃度(対数変換値)、縦軸に標準液の増幅サイクル数をプロットした標準曲線を作成し、この標準曲線上に検体の増幅サイクル数を当てはめることにより、検体の濃度を算出し得る。
 工程(2-1)および(2-2)で用いるプライマー対は、工程(1)の逆転写産物を増幅できるようにそれぞれ設計する。PCRに適するプライマーの設計方法は当業者に周知である。プライマー対は、増幅された核酸が定量に適する長さ、例えば、約10~1000、約20~500、約50~300、約100~200ヌクレオチド、例えば、約150ヌクレオチド長を有するように設計し得る。
 工程(2-1)で用いるプライマー対は、逆転写産物のT315I変異位置を含む領域を増幅できるように設計する。即ち、ABL遺伝子のT315I変異位置を含む領域またはそれより上流の領域の塩基配列を有するフォワードプライマーと、ABL1遺伝子のT315I変異位置を含む領域またはそれより下流の領域の塩基配列に相補的な塩基配列を有するリバースプライマーを使用する。工程(2-1)で用いるフォワードプライマーは、ABL遺伝子のT315I変異位置を含む領域の塩基配列を有し、T315I変異位置のヌクレオチドに相当するヌクレオチドがウラシルリボヌクレオチドで置き換えられているものであってもよい。ある実施態様では、工程(2-1)において、工程(1)の(a)と同じT315Iリバースプライマーを用いる。ある実施態様では、工程(2-2)において、工程(1)の(b)と同じABLリバースプライマーを用いる。
 工程(2-1)では、T315Iリバースプライマーによる逆転写産物を、T315I変異に特異的なRNaseH依存的定量的PCRにより定量してもよい。RNaseH依存的PCRは、RNaseHを利用する配列特異的PCR法である(Boucard AA, et. al. J Biol Chem, 289(1):387-402; Dobosy JR, et al., BMC Biotechnol, 11(80):1-18)。RNaseHは、RNA/DNAヘテロ2本鎖を認識し、RNAの5’末端側DNAとのホスホジエステル結合を切断する。RNaseH依存的PCRでは、プライマーの少なくとも1塩基をRNAとすることにより鋳型DNAとRNA/DNAヘテロ2本鎖を形成させ、さらにRNAの3’側にDNAポリメラーゼが結合できない領域(ブロッキング領域)を設けることにより、RNaseHがRNA/DNAヘテロ2本鎖を認識し、切断したときにのみ、PCRが進行するようにする。RNaseHがRNAとDNAのホスホジエステル結合を切断するには、プライマー内のRNAが鋳型DNAと相補的であり、ミスマッチでないことが必要である。
 工程(2-1)におけるRNaseH依存的定量的PCRには、ABL1遺伝子のT315I変異位置を含む領域の塩基配列を有し、T315I変異位置のヌクレオチドに相当するヌクレオチドがウラシルリボヌクレオチドで置き換えられており、3’末端にブロッキング領域を有するフォワードプライマーを用いる。本明細書において、当該フォワードプライマーを「T315Iフォワードプライマー」と称する。T315Iフォワードプライマー中のウラシルリボヌクレオチドは、野性型ABL cDNAのPCRにおいて鋳型のヌクレオチドとミスマッチを生じるので、ブロッキング領域が切断されず、PCRは進行しない。一方、T315I変異型ABL cDNAのPCRではミスマッチは生じないので、ブロッキング領域は切断され、PCRが進行する。従って、T315Iフォワードプライマーを用いるRNaseH依存的PCRにより、T315I変異型ABL cDNAを特異的に増幅することができる。
 RNaseH依存的PCRに用いるプライマーは、例えば、Integrated DNA technologies社により提供されるプロトコールを参照して、当業者が適宜設計し得る。T315Iフォワードプライマーは、ABL1遺伝子のT315I変異位置よりも上流の領域の配列を含み、RNAとブロッキング領域が切り離された後に、残りのオリゴヌクレオチドがPCR反応のフォワードプライマーとして機能するように設計する。T315Iフォワードプライマーは、例えば、ABL1 mRNAのT315I変異位置の上流約8~60、10~30、15~25または19~23ヌクレオチド、例えば、約20、21または22ヌクレオチドの配列を含む。T315Iフォワードプライマー中のT315I変異位置のヌクレオチドに相当するヌクレオチドは、ウラシルリボヌクレオチドである。3’側のブロッキング領域には、ミスマッチDNAおよびC3スペーサーなどのブロッキング基が含まれる。例えば、ブロッキング領域は、ABL1遺伝子の945~948番目のヌクレオチドと同じ塩基を有する4個のデオキシリボヌクレオチド、949番目のヌクレオチドと異なる塩基を有する1個のデオキシリボヌクレオチドおよび1個のブロッキング基からなる。別の例では、ブロッキング領域は、ABL1遺伝子の945番目のヌクレオチドと同じ塩基を有する1個のデオキシリボヌクレオチド、2個のブロッキング基、946番目のヌクレオチドと同じ塩基を有する1個のデオキシリボヌクレオチド、947番目のヌクレオチドと異なる塩基を有する1個のデオキシリボヌクレオチドからなる。
 ある実施態様では、T315Iフォワードプライマーは、5’-GAGCCCCCGTTCTATATCATCArUT/iSpC3//iSpC3/GC-3’(配列番号6、ここで、rUはウラシルRNAであり、iSpC3はスペーサーC3である)である。
 工程(2-1)および(2-2)は、T315Iクランプの存在下で行われてもよい。従って、工程(1)の産物の全部または一部に、工程(2-1)または(2-2)に必要な試薬を添加して反応を行うことができる。例えば、工程(1)と(2-1)、または、工程(1)と(2-2)を、ワンステップで、即ち、同一容器内で、同時または連続して行うことができる。
 工程(2-1)でRNaseH依存的PCRを実施し、工程(1)と(2-1)をワンステップで実施する場合、T315Iクランプの一部とT315Iフォワードプライマーの一部が相補的に結合し得る場合がある。一般的に、オリゴヌクレオチドが1塩基の変異を識別する能力は、変異部位がオリゴヌクレオチドの中央にある場合に最大になると考えられるが、この相補的結合を低減するために、T315Iクランプは、T315I変異位置に相当するヌクレオチドが、T315Iクランプの中央よりも3’側に位置するように設計してもよい。即ち、T315IクランプとT315Iフォワードプライマーの相補的な領域がT315Iクランプの全長の50%より少ないように、T315Iクランプを設計し得る。例えば、配列番号5の塩基配列からなるT315Iクランプは、RNaseH依存的PCRに用いるフォワードプライマーとの相補的結合が少なく、かつ、変異を識別する能力を有するように至適化されている。なお、このような修飾核酸配列の調整は、T315I変異の検出に限らず他の変異の検出にも適用できる。すなわち、野生型mRNAの逆転写反応を修飾核酸により阻害し、その後のPCR反応をRNaseH依存的PCRにより阻害する場合には、修飾核酸の全長の50%より少ない部分がRNaseH依存的PCRのフォワードプライマーと相補的に結合するように調整したほうが良い。
 DNAポリメラーゼ、RNaseH、dNTP、バッファーなどの試薬は、当分野で通常用いられるものを用いることができ、各種試薬の量、反応時間、温度などの条件は、酵素に添付されている説明書の記載や通常用いられるプロトコール等の公知の手法により、適宜決定することができる。例えば、DNAポリメラーゼは分子生物学実験等に使用可能な公知の任意のDNAポリメラーゼ、例えば、rTthDNAポリメラーゼ、Taqポリメラーゼおよびその誘導体を使用し得る。例えば、RNaseHは分子生物学実験等に使用可能な公知の任意のRNaseH、例えば、RNaseH2を使用し得る。
 ある実施態様では、下表のプライマー、クランプおよびプローブを使用する。これらのすべてを組み合わせて使用してもよく、少なくとも1つを使用してもよい。
Figure JPOXMLDOC01-appb-T000001
 ある態様では、本願は、上記の方法を実施するためのキットを提供する。キットは、少なくとも、
(a)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー;
(b)ABL1 mRNAのT315I変異位置より上流の領域に結合するリバースプライマー;および、
(c)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸;
を含む。
 キットは、さらに、(a)および(b)のリバースプライマーによるABL1 mRNAの逆転写産物をPCRで増幅するためのフォワードプライマーおよびPCR用のさらなるリバースプライマーの少なくとも1つを含んでもよい。プライマーは、RNaseH依存的PCR用であってもよい。キットは、さらに、定量的PCR用のプローブを含んでもよい。キットは、さらに、標準品、例えば、既知量の野生型ABL1 mRNAおよびT315I変異型ABL1 mRNAの少なくとも1つを含み得る。
 キットは、さらに、上記の方法の実施に必要な試薬、例えば、逆転写、PCR、定量的PCRまたはRNaseH依存的PCR用の、逆転写酵素、DNAポリメラーゼ、RNaseH、dNTP、バッファーなどを含んでもよい。キットは、さらに、使用のための説明を含む添付文書(例えば、書面または記憶媒体等)等の、商業的見地および使用者の見地から望ましいその他の構成要素を含んでもよい。
 キットに含まれる各構成要素は、各々別個に、あるいは可能であれば混合した状態で、水または適当な緩衝液中に溶解されるか、または凍結乾燥された状態で、適切な容器中に収容されて提供され得る。好適な容器には、ボトル、バイアル、試験管、チューブ、プレート、マルチウェルプレート等が含まれる。容器は、ガラス、プラスチック、金属などの少なくとも1つの材料から形成されていてよい。容器は、ラベルを有していてもよい。
 以下に、本願の方法およびキットの実施態様の一例について、模式図を用いて測定原理を説明するが、本願発明はいかなる理論にも限定されない。
1 測定原理概略
 末梢血白血球または骨髄液有核細胞より抽出したRNA中のABL1 mRNAの944番目の塩基がシトシンからチミンに変異したT315I変異型ABL1 mRNAの発現量を測定する。測定原理は、RNAを鋳型として相補的DNA(cDNA)を合成する逆転写反応(RT)と、蛍光標識プローブを用いてcDNAを定量するリアルタイムPCRの、2段階からなる2ステップ定量RT-PCR法である。T315I変異型ABL1 mRNAのT315I変異位置を含む領域と、すべてのABL1 mRNAのT315I変異位置を含まない領域をそれぞれ増幅し、前者の定量値を後者の定量値で除した比を報告値とする。
1.1 逆転写反応
 逆転写反応の概略を図5に示す。944番目の塩基がシトシンであるABL1 mRNAを野生型ABL1 mRNA、チミンであるABL1 mRNAをT315I変異型ABL1 mRNAと定義する。すべてのABL1 mRNAを定量するための領域およびT315I変異型ABL1 mRNAを定量するための領域を、それぞれ逆転写するために、ABLリバースプライマーおよびT315Iリバースプライマーの2種類のプライマーを用いる。
 まずABLリバースプライマーおよびT315Iリバースプライマーが測定試料に含まれる相補的な配列に結合する(図5(1a)および(1b))。これらのリバースプライマーを起点として、反応液に含まれるTthDNAポリメラーゼの逆転写活性により、第1鎖cDNAを合成する(図5(2a)または(2b))。反応液には野生型ABL1 mRNAと相補的な配列をもつT315Iクランプが含まれ、第1鎖cDNAを合成する際に、鋳型が野生型ABL1 mRNAである場合、T315Iクランプが特異的に結合し、逆転写反応は阻害されるため(図5(2a))、T315Iリバースプライマー由来cDNAの合成量が減少する(図5(3a))。一方、鋳型がT315I変異型ABL1 mRNAである場合、T315Iクランプは結合せず、逆転写反応は阻害されない(図5(2b)および(3b))。またABLリバースプライマー由来cDNAの合成はT315Iクランプの影響を受けないため、野生型ABL1 mRNAとT315I変異型ABL1 mRNAに対して同様にcDNAが合成される。
1.2 ABL1 mRNAの定量リアルタイムPCR
 ABL1 mRNA定量リアルタイムPCRの概略を図6に示す。リアルタイムPCRによって、逆転写反応により合成されたABL1 mRNA由来のcDNAを増幅する(図6)。この増幅過程において、2本鎖cDNAの片方に結合した蛍光標識プローブ(ABLプローブ)が、反応液中のTthDNAポリメラーゼの5’-3’エキソヌクレアーゼ活性により分解され、レポーター色素が遊離する。遊離した色素の蛍光強度をサイクル毎に測定することにより、ABL1 mRNA由来のcDNA量の増加をリアルタイムに測定する(図6(6))。
1.3 T315I変異型ABL1 mRNAの定量リアルタイムPCR
 T315I変異型ABL1 mRNA由来のcDNAを増幅する際、反応特異性を高めるためにRNaseH依存的PCR(rhPCR)の原理を用いる。rhPCRに用いる核酸分解酵素であるRNaseH2は、RNA/DNAヘテロ2本鎖を認識し、RNAの5’末端側DNAとのホスホジエステル結合を切断する特性をもつ。rhPCRでは、プライマーの1つのデオキシリボヌクレオチドをリボヌクレオチドに変更することで鋳型DNAとRNA/DNAヘテロ2本鎖を形成させ、さらにRNAの3’側にDNAポリメラーゼが結合できない領域(ブロッキング領域)を設け、RNaseH2がRNA/DNAヘテロ2本鎖を認識して切断した場合のみPCRが進行する。この原理を利用して、ABL1 mRNAの944番目の塩基がチミンであるT315I変異型ABL1 mRNAに由来するcDNAのみを増幅する。T315I変異型ABL1 mRNAの定量リアルタイムPCRの概略を図7に示す。
 T315Iフォワードプライマーでは、T315I変異型ABL1 mRNAの944番目の塩基に相当する部分がDNA(チミン)からRNA(ウラシル)に置換されている(図7(1a))。T315IフォワードプライマーのRNA置換塩基は、野生型ABL1 mRNA由来cDNAに対してはRNA/DNAヘテロ2本鎖を形成しないため、RNaseH2によるブロッキング領域の切断が起こらず、PCR反応は起こらない(図7(2a))。
 一方、T315IフォワードプライマーのRNA置換塩基は、T315I変異型ABL1 mRNA由来cDNAに対してはRNA/DNAヘテロ2本鎖を形成、RNaseH2によりブロッキング領域が切断され、T315I変異型ABL1 mRNAに由来するcDNAの特異的な増幅が進行する(図7(1b)、(2b))。T315I変異型ABL1 mRNAに由来するcDNAの特異的な増幅が、PCRにより繰り返される(図7(3)~(9))。この増幅過程において、2本鎖cDNAの片方に結合した蛍光標識プローブ(ABLT315Iプローブ)が、反応液中のTthDNAポリメラーゼの5’-3’エキソヌクレアーゼ活性により分解され、レポーター色素が遊離する。遊離した色素の蛍光強度をサイクル毎に測定することにより、T315I変異型ABL1 mRNA由来のcDNA量の増加をリアルタイムに測定する(図7(6))。
 別の態様では、本願は、対象におけるABL1 T315I変異を検出する方法であって、
(1)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸の存在下で、ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマーを用いて、対象のRNA試料を逆転写する工程、
(2)ABL1 mRNAのT315I変異位置を含む領域の塩基配列を有し、T315I変異位置のヌクレオチドに相当するヌクレオチドがウラシルリボヌクレオチドであり、3’末端にブロッキング領域を有するフォワードプライマーを用いて、(1)の逆転写産物を、RNaseH依存的PCRにより増幅する工程、
(3)工程(2)において核酸が増幅された場合に、対象がABL1 T315I変異を発現していると判定する工程、
を含む方法を提供する。
 別の態様では、本願は、上記の方法を実施するためのキットであって、
(a)ABL1 mRNAのT315I変異位置を含む領域の塩基配列を有し、T315I変異位置のヌクレオチドに相当するヌクレオチドがウラシルリボヌクレオチドで置き換えられており、3’末端にブロッキング領域を有するフォワードプライマー;
(b)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー;および、
(c)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸;
を含むキットを提供する。
 この方法およびキットの詳細は、上記の対象におけるABL1 T315I変異の発現レベルを測定する方法およびキットの説明に準じる。
 本願は、例えば、下記の実施態様を提供する。
[1]対象におけるABL1 T315I変異の発現レベルを測定する方法であって、
(1)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸の存在下で、(a)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー、および(b)ABL1 mRNAのT315I変異位置より上流の領域に結合するリバースプライマーを同一容器中で用いて、対象のRNA試料を逆転写する工程、および、
(2)(b)のプライマーによる逆転写産物に対する(a)のプライマーによる逆転写産物の割合に基づいて、ABL1 T315I変異の発現レベルを算出する工程、
を含む方法。
[2]工程(2)が、
 工程(2-1)(a)のプライマーによる逆転写産物を定量的PCRにより定量する工程、および、
 工程(2-2)(b)のプライマーによる逆転写産物を定量的PCRにより定量する工程、
をさらに含む、第1項に記載の方法。
[3]工程(2-1)の定量的PCRが、
  (X)ABL遺伝子のT315I変異位置を含む領域の塩基配列を有し、T315I変異位置のヌクレオチドに相当するヌクレオチドがウラシルリボヌクレオチドで置き換えられている、または、
  (Y)ABL mRNAのT315I変異位置より上流の領域の塩基配列を有する、
フォワードプライマーを用いる、第2項に記載の方法。
[4]フォワードプライマーが(X)のフォワードプライマーである、第3項に記載の方法。
[5]フォワードプライマーが、3’末端にブロッキング領域を有する、第4項に記載の方法。
[6]工程(2-1)の定量的PCRが、T315I変異に特異的なRNaseH依存的定量的PCRである、第2項~第5項のいずれかに記載の方法。
[7]工程(2-1)において配列番号6の塩基配列を含むフォワードプライマーを用いる、第2項~第6項のいずれかに記載の方法。
[8]工程(2-1)において配列番号6の塩基配列からなるフォワードプライマーを用いる、第2項~第7項のいずれかに記載の方法。
[9]修飾核酸の一部と(X)のフォワードプライマーの一部が相補的であり、相補的な領域は修飾核酸の全長の50%より少ないものである、第3項~第8項のいずれかに記載の方法。
[10]修飾核酸におけるT315I変異位置に相当するヌクレオチドが、修飾核酸の中央よりも3’側に位置する、第1項~第9項のいずれかに記載の方法。
[11]修飾核酸が配列番号5の塩基配列を含む、第1項~第10項のいずれかに記載の方法。
[12]修飾核酸が配列番号5の塩基配列からなる、第1項~第11項のいずれかに記載の方法。
[13]修飾核酸がPNAを含む、第1項~第12項のいずれかに記載の方法。
[14]工程(1)の(a)のリバースプライマーが配列番号7の配列を含む、第1項~第12項のいずれかに記載の方法。
[15]工程(1)の(b)のリバースプライマーが配列番号10の配列を含む、第1項~第14項のいずれかに記載の方法。
[16]工程(1)の(a)のリバースプライマーが配列番号7の配列からなる、第1項~第15項のいずれかに記載の方法。
[17]工程(1)の(b)のリバースプライマーが配列番号10の配列からなる、第1項~第16項のいずれかに記載の方法。
[18]工程(2-1)が、工程(1)で使用される修飾核酸の存在下で行われる、第2項~第17項のいずれかに記載の方法。
[19]対象がヒトである、第1項~第18項のいずれかのいずれかに記載の方法。
[20]RNA試料が末梢血白血球または骨髄液有核細胞から抽出されたRNAである、第1項~第19項のいずれかに記載の方法。
[21]RNA試料が末梢血白血球から抽出されたRNAである、第1項~第19項のいずれかに記載の方法。
[22]表1に記載のプライマー、クランプおよびプローブの少なくとも1つを使用する、第1項~第21項のいずれかに記載の方法。
[23]表1に記載のプライマー、クランプおよびプローブを使用する、第1項~第22項のいずれかに記載の方法。
[24]対象におけるABL1 T315I変異の発現レベルを測定するためのキットであって、
(a)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー;
(b)ABL1 mRNAのT315I変異位置より上流の領域に結合するリバースプライマー;および、
(c)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸;
を含むキット。
[25](a)および(b)のリバースプライマーによるABL mRNAの逆転写産物をPCRで増幅するためのフォワードプライマーをさらに含む、第24項に記載のキット。
[26]フォワードプライマーが、
 (X)ABL1 mRNAのT315I変異位置を含む領域の塩基配列を有し、T315I変異のヌクレオチドに相当するヌクレオチドがウラシルリボヌクレオチドで置き換えられている、または、
 (Y)ABL1 mRNAのT315I変異位置より上流の領域の塩基配列を有する、
フォワードプライマーである、第25項に記載のキット。
[27]フォワードプライマーが(X)のフォワードプライマーである、第26項に記載のキット。
[28]フォワードプライマーが、3’末端にブロッキング領域を有する、第27項に記載のキット。
[29]フォワードプライマーが配列番号6の配列を含む、第25項~第28項のいずれかに記載のキット。
[30]フォワードプライマーが配列番号6の配列からなる、第25項~第29項のいずれかに記載のキット。
[31]修飾核酸の一部と(X)のフォワードプライマーの一部が相補的であり、相補的な領域は修飾核酸の全長の50%より少ないものである、第25項~第30項のいずれかに記載のキット。
[32]修飾核酸におけるT315I変異位置に相当するヌクレオチドが、修飾核酸の中央よりも3’側に位置する、第24項~第31項のいずれかに記載のキット。
[33]修飾核酸が配列番号5の配列を含む、第24項~第32項のいずれかに記載のキット。
[34]修飾核酸が配列番号5の配列からなる、第24項~第33項のいずれかに記載のキット。
[35]修飾核酸がPNAを含む、第24項~第34項のいずれかに記載のキット。
[35](a)のリバースプライマーが配列番号7の配列を含む第24項~第35項のいずれかに記載のキット。
[36](b)のリバースプライマーが配列番号10の配列を含む、第24項~第35項のいずれかに記載のキット。
[37](a)のリバースプライマーが配列番号7の配列からなる、第24項~第36項のいずれかに記載のキット。
[38](b)のリバースプライマーが配列番号10の配列からなる、第24項~第37項のいずれかに記載のキット。
[39]定量的PCR用のプローブをさらに含む、第24項~第38項のいずれかに記載のキット。
[40]野生型ABL1 mRNAおよびT315I変異を有するABL1 mRNAの少なくとも1つをさらに含む、第24項~第39項のいずれかに記載のキット。
[41]表1に記載のプライマー、クランプおよびプローブの少なくとも1つを含む、第24項~第40項のいずれかに記載のキット。
[42]表1に記載のプライマー、クランプおよびプローブを含む、第24項~第41項のいずれかに記載のキット。
 本明細書で引用するすべての文献は、出典明示により本明細書の一部とする。
 上記の説明は、すべて非限定的なものであり、添付の特許請求の範囲において定義される本発明の範囲から逸脱せずに、変更することができる。さらに、下記の実施例は、すべて非限定的な実施例であり、本発明を説明するためだけに供されるものである。
プライマーとプローブの設計
 以下のプライマーセットおよびプローブを設計し、合成した。
 蛍光標識プローブは、プローブの5’末端をHEX(6-カルボキシフルオレセイン)で標識し、プローブの3’末端を消光色素としてIowa Black FQ(Integrated DNA technologies社)で標識した。
 本実施例におけるプライマーおよびプローブの詳細を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[試験1]
(1)標準品(ABL1 T315I変異RNA)の調製
 標準品として、T315I変異を有するABL1 mRNAの配列を含む合成RNAを用いた。合成RNAの鋳型となるDNA断片を作製するために、野生型ABL1 mRNA中の上記プライマーによるPCRの増幅領域と、RNA合成の起点となるT7プロモーターの配列を含むプラスミドベクターを作製した。このプラスミドベクターに含まれるABL1 mRNA由来配列のT315I変異に相当する部分に、部位特異的変異導入法にて一塩基変異を導入した。この変異を導入したプラスミドベクターを大腸菌に形質転換した。大腸菌を培養して大量のプラスミドベクターを調製し、制限酵素により1箇所切断することにより、T315I変異を有するABL1 mRNAをコードする配列をもつ直鎖状のDNA断片を作製した。
 T7 RNAポリメラーゼを用いて、上記DNA断片を鋳型として、T315I変異を有するABL1 mRNAの配列を含むRNA(ABL1 T315I変異RNA)を合成した。合成したRNAを、100ng/μLの大腸菌トランスファーRNAを含むTEバッファーで希釈し、RNA標準品を調製した。かくして調製したABL1 T315I変異RNA標準品を、1×10、1×10、1×10、1×10、1.0×10、1×10コピー/試験の濃度に調整した。また、陰性対照品として、100ng/μLの大腸菌トランスファーRNAを含むTEバッファーを用いた。
(2)逆転写反応
(2-1)反応液の調整
 反応液の容量を50μLとし、T315IリバースプライマーおよびABLリバースプライマー(Integrated DNA technologies社)をそれぞれ終濃度0.2μM、dNTPs(東洋紡社)を終濃度0.1mM、MnOAc(東洋紡社)を終濃度2.4mM、PNAクランプ(パナジーン社)を終濃度2μM、rTth DNAポリメラーゼ(東洋紡社)を1反応当たり2.5U、被験RNAを1反応当たり1μgとなるように調製した。各濃度につき1サンプルの標準品を反応に用いた。PNAクランプは、ATGAACTCAGTGATGA(配列番号5)の塩基配列を有し、すべてのヌクレオチドがペプチド結合しているものであった。
(2-2)反応条件
 60℃で60分間かけて逆転写反応を行った。
(3)PCR
 PCR反応は、T315Iリバースプライマー由来cDNAと、ABLリバースプライマー由来cDNA(対照)の増幅を、別のチューブで行った。
(3-1)T315Iリバースプライマー由来cDNAの測定
(a)反応液の調製
 反応液の容量を30μLとし、T315IフォワードプライマーおよびT315Iリバースプライマー(Integrated DNA technologies社)をそれぞれ終濃度0.3μM、T315I蛍光標識プローブ(Integrated DNA technologies社)を終濃度0.15μM、dNTPs(東洋紡社)を終濃度0.2mM、MnOAc(東洋紡社)を終濃度2.4mM、RNaseH2(Integrated DNA technologies社)を1反応当たり100mU、rTth DNAポリメラーゼ(東洋紡社)を1反応当たり1.25U、逆転写反応産物を25μLとなるように調製した。(2)の逆転写反応産物を精製せずに使用した。各濃度の逆転写反応産物を単測定した。
(b)PCR反応
 Applied Biosystems 7500 Fast Realtime PCR system(ライフテクノロジーズ社)を用いて、95℃10秒間反応した後、95℃10秒間→60℃60秒間の反応を40回繰り返し行った。
(3-2)ABLリバースプライマー由来cDNAの測定
(a)反応液の調製
 反応液の容量を30μLとし、ABLフォワードプライマーおよびABLリバースプライマー(Integrated DNA technologies社)をそれぞれ終濃度0.3μM、ABL蛍光標識プローブ(Integrated DNA technologies社)を終濃度0.2μM、dNTPs(東洋紡社)を終濃度0.4mM、MnOAc(東洋紡社)を終濃度2.0mM、Tth DNAポリメラーゼを1反応当たり1.125U、逆転写反応産物を1反応当たり5μLとなるように調製した。各濃度の逆転写反応産物を単測定した。
(b)PCR反応
 Applied Biosystems 7500 Fast Realtime PCR system(ライフテクノロジーズ社)を用いて、95℃10秒間反応した後、95℃10秒間→60℃60秒間の反応を40回繰り返し行った。
(4)結果
(a)T315Iリバースプライマー由来cDNAの増幅を行った場合、(b)ABLリバースプライマー由来cDNAの増幅を行った場合、それぞれについて標準品と陰性対照品の蛍光増幅曲線と増幅サイクル数を確認した。
 図8に(a)T315Iリバースプライマー由来cDNAの増幅を行った場合の増幅曲線、図9に(b)ABLリバースプライマー由来cDNAの増幅を行った場合の増幅曲線を示す。表3に、T315Iリバースプライマー由来cDNAおよびABLリバースプライマー由来cDNAを増幅した場合の増幅サイクルを示す。T315Iリバースプライマー由来cDNA、ABLリバースプライマー由来cDNAともに、1×10から1×10コピー/試験の広い範囲で測定可能であった。
Figure JPOXMLDOC01-appb-T000003

[試験2]検出限界の検討
 本試験では、ABL1 T315I変異測定系の検出下限を求めるために、ヒト白血病由来細胞HL60より抽出したRNAに、試験1の標準品に用いたABL1 T315I変異RNAを種々の濃度で添加した試料を用いて、T315Iリバースプライマー由来cDNAおよびABLリバースプライマー由来cDNAを測定し、前者の測定値を後者の測定値で除した比を求めた。
(1)標準品(ABL1 T315I変異RNA)の調製
 標準品は、試験1と同様の方法で調製した。
(2)被験試料
 被験試料として、BCR-ABL1陰性であるヒト白血病細胞株HL60より抽出したRNAに、標準品に用いたABL1 T315I変異RNAを種々の濃度で添加した試料を用いた。具体的には、HL60より抽出したTotal RNAに、標準品に用いたABL1 T315I変異RNAを25、50、100コピー/試験の濃度で添加し、TEバッファーを用いてRNAの終濃度を100ng/μLに調製した。また、対照品として、HL60より抽出し、TEバッファーを用いて100ng/μLに調製したTotal RNAを用いた。
(3)逆転写反応
 逆転写反応は、試験1と同様の方法で行った。標準品は各濃度1サンプル反応に用いた。被験試料は各濃度につき12サンプルを反応に用いた。
(4)PCR
 PCRは、試験1と同様の方法で行った。標準品は逆転写反応産物を単測定した。被験試料は、各濃度12サンプルの逆転写産物をそれぞれ単測定した。
(5)結果
 T315Iリバースプライマー由来cDNAの測定値を表4、ABLリバースプライマー由来cDNAの測定値を表5、T315Iリバースプライマー由来cDNAの測定値をリバースプライマー由来cDNAの測定値で除した比(ABL1 T315I変異/ABL1比)を表6に示す。100、50および25コピー/試験のABL1 T315I変異RNAを添加した試料におけるT315Iリバースプライマー由来cDNAの測定値は、それぞれ平均値で109.4、47.4および27.3となり、理論値と一致した。一方、ABL1 T315I変異RNAを含まないHL60(対照)のT315Iリバースプライマー由来cDNAの測定では、すべて蛍光増幅が検出されなかった。
 ABLリバースプライマー由来cDNAの測定値は、希釈に用いたHL60がABL1 mRNAを一定量発現していることから、平均2.08×10となり、すべての測定試料でほぼ同等の値を示した。このように、野生型ABLを10コピー以上発現しているHL60細胞より抽出したRNAを測定した場合においても、ABL1 T315I変異RNAを含まないHL60のT315Iリバースプライマー由来cDNAは検出されなかったことから、この測定系はABL1 T315I変異RNAに対する非常に高い特異性を持つと考えられる。
 100、50および25コピー/試験のABL1 T315I変異RNAを添加した試料のABL1 T315I変異/ABL1比は、それぞれ平均値で、0.052%、0.023%および0.013%となった。このことから、この測定系の変異検出率は0.01%程度と非常に高感度であった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[試験3]PNAクランプによる反応阻害効果
 本試験は、逆転写反応におけるPNAクランプの効果を確認することを目的として行った。
(1)標準品(ABL1 T315I変異RNA)の調製
 標準品は、試験1と同様の方法で調製した。
(2)被験試料
 被験試料は、試験2と同様の方法で調整した。
(3)逆転写反応
 逆転写反応は、試験2と同様の方法で、ただし、PNAクランプを添加せずに行った。
(4)PCR
 PCRは、試験2と同様の方法で行った。
(5)結果
 T315Iリバースプライマー由来cDNAの測定値を表7、ABLリバースプライマー由来cDNAの測定値を表8、T315Iリバースプライマー由来cDNAの測定値をリバースプライマー由来cDNAの測定値で除した比(ABL1 T315I変異/ABL1比)を表9に示す。100、50および25コピー/試験のABL1 T315I変異RNAを添加した試料におけるT315Iリバースプライマー由来cDNAの測定値は、それぞれ平均値で333.7、235.3、202.3コピー/試験であった。HL60より抽出したRNA(対照)のT315Iリバースプライマー由来cDNAの測定値は186.9コピー/試験となった。
 ABLリバースプライマー由来cDNAの測定値は、希釈に用いたHL60がABL1 mRNAを一定量発現していることから、平均2.29×10となり、すべての測定試料でほぼ同等の値を示した。100、50および25コピー/試験のABL1 T315I変異RNAを添加した試料のABL1 T315I変異/ABL1比は、それぞれ平均値で、0.147%、0.107%および0.090%となった。ABL1 T315I変異RNAを含まないHL60(対照)のABL1 T315I変異/ABL1比は、平均値で0.077%となった。
 試験2と異なり、PNAクランプが存在しない状態では、ABL1 T315I変異RNAを添加しない試料のT315Iリバースプライマー由来cDNAが186.9コピー/試験と測定され、またABL1 T315I変異RNAを添加した試料との差も十分に取れなかった。従って、逆転写反応にPNAクランプを用いることは、高感度にABL1 T315I変異を検出するために重要と考えられる。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 本願は、従来法と比較して高感度なABL1 T315I変異の検出または定量方法を提供し得る。即ち、上記の方法またはキットを用いることで、感度よくABL1 T315I変異の発現レベルを定量することが可能になる。かくして定量されるABL1 T315I変異の発現レベルは、白血病の発症および再発の診断、予後判断、並びに骨髄移植の時期決定などにおいて有用な指標となることが期待される。

Claims (21)

  1.  対象におけるABL1 T315I変異の発現レベルを測定する方法であって、
    (1)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸の存在下で、(a)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー、および(b)ABL1 mRNAのT315I変異位置より上流の領域に結合するリバースプライマーを同一容器中で用いて、対象のRNA試料を逆転写する工程、および、
    (2)(b)のプライマーによる逆転写産物に対する(a)のプライマーによる逆転写産物の割合に基づいて、ABL1 T315I変異の発現レベルを算出する工程、
    を含む方法。
  2.  工程(2)が、
     工程(2-1)(a)のプライマーによる逆転写産物を定量的PCRにより定量する工程、および、
     工程(2-2)(b)のプライマーによる逆転写産物を定量的PCRにより定量する工程、
    をさらに含む、請求項1に記載の方法。
  3.  工程(2-1)の定量的PCRが、
      (X)ABL mRNAのT315I変異位置を含む領域の塩基配列を有し、T315I変異位置のヌクレオチドに相当するヌクレオチドがウラシルリボヌクレオチドで置き換えられている、または、
      (Y)ABL mRNAのT315I変異位置より上流の領域の塩基配列を有する、
    フォワードプライマーを用いる、請求項2に記載の方法。
  4.  フォワードプライマーが、3’末端にブロッキング領域を有する(X)のフォワードプライマーである、請求項3に記載の方法。
  5.  工程(2-1)の定量的PCRが、T315I変異に特異的なRNaseH依存的定量的PCRである、請求項2~4のいずれかに記載の方法。
  6.  工程(2-1)において配列番号6の塩基配列を含むフォワードプライマーを用いる、請求項2~5のいずれかに記載の方法。
  7.  工程(2-1)において配列番号6の塩基配列からなるフォワードプライマーを用いる、請求項2~6のいずれかに記載の方法。
  8.  修飾核酸の一部と(X)のフォワードプライマーの一部が相補的であり、相補的な領域は修飾核酸の全長の50%より少ないものである、請求項3~7のいずれかに記載の方法。
  9.  修飾核酸におけるT315I変異位置に相当するヌクレオチドが、修飾核酸の中央よりも3’側に位置する、請求項1~8のいずれかに記載の方法。
  10.  修飾核酸が配列番号5の塩基配列を含む、請求項1~9のいずれかに記載の方法。
  11.  修飾核酸が配列番号5の塩基配列からなる、請求項1~10のいずれかに記載の方法。
  12.  修飾核酸がPNAを含む、請求項1~11のいずれかに記載の方法。
  13.  工程(1)の(a)のリバースプライマーが配列番号7の配列を含み、(b)のリバースプライマーが配列番号10の配列を含む、請求項1~12のいずれかに記載の方法。
  14.  対象におけるABL1 T315I変異の発現レベルを測定するためのキットであって、
    (a)ABL1 mRNAのT315I変異位置より下流の領域に結合するリバースプライマー;
    (b)ABL1 mRNAのT315I変異位置より上流の領域に結合するリバースプライマー;および、
    (c)野生型ABL1 mRNAのT315I変異位置を含む領域に相補的な塩基配列を有する修飾核酸;
    を含むキット。
  15.  (a)および(b)のリバースプライマーによるABL mRNAの逆転写産物をPCRで増幅するためのフォワードプライマーをさらに含む、請求項14に記載のキット。
  16.  フォワードプライマーが、
     (X)ABL1 mRNAのT315I変異位置を含む領域の塩基配列を有し、T315I変異のヌクレオチドに相当するヌクレオチドがウラシルリボヌクレオチドで置き換えられている、または、
     (Y)ABL1 mRNAのT315I変異位置より上流の領域の塩基配列を有する、
    フォワードプライマーである、請求項15に記載のキット。
  17.  フォワードプライマーが、3’末端にブロッキング領域を有する(X)のフォワードプライマーである、請求項16に記載のキット。
  18.  修飾核酸の一部と(X)のフォワードプライマーの一部が相補的であり、相補的な領域は修飾核酸の全長の50%より少ないものである、請求項16または17に記載のキット。
  19.  修飾核酸におけるT315I変異位置に相当するヌクレオチドが、修飾核酸の中央よりも3’側に位置する、請求項14~18のいずれかに記載のキット。
  20.  定量的PCR用のプローブをさらに含む、請求項14~19のいずれかに記載のキット。
  21.  野生型ABL mRNAおよびT315I変異を有するABL mRNAの少なくとも1つをさらに含む、請求項14~20のいずれかに記載のキット。
PCT/JP2018/016748 2017-04-26 2018-04-25 Abl1 t315i変異の発現レベルの測定方法 WO2018199136A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197034072A KR20200002933A (ko) 2017-04-26 2018-04-25 Abl1 t315i 변이의 발현 레벨의 측정 방법
SG11201909983Q SG11201909983QA (en) 2017-04-26 2018-04-25 Method of determining expression level of t315i variant of abl1
CN201880042856.1A CN110997938A (zh) 2017-04-26 2018-04-25 Abl1 t315i突变的表达水平的测定方法
JP2019514562A JPWO2018199136A1 (ja) 2017-04-26 2018-04-25 Abl1 t315i変異の発現レベルの測定方法
PH12019502417A PH12019502417A1 (en) 2017-04-26 2019-10-25 Method of determining expression level ot t315i variant of abl1

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087578 2017-04-26
JP2017087578 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018199136A1 true WO2018199136A1 (ja) 2018-11-01

Family

ID=63919184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016748 WO2018199136A1 (ja) 2017-04-26 2018-04-25 Abl1 t315i変異の発現レベルの測定方法

Country Status (6)

Country Link
JP (1) JPWO2018199136A1 (ja)
KR (1) KR20200002933A (ja)
CN (1) CN110997938A (ja)
PH (1) PH12019502417A1 (ja)
SG (2) SG10201912849TA (ja)
WO (1) WO2018199136A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321200A (zh) * 2020-02-28 2020-06-23 广州安镝声生物医药科技有限公司 一种细胞外abl1激酶活性检测试剂盒及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536193A (ja) * 2002-05-09 2005-12-02 アプレラ コーポレイション 少量のポリヌクレオチドを濃縮する方法
JP2010051195A (ja) * 2008-08-26 2010-03-11 Hitachi High-Technologies Corp 高発現遺伝子由来のcDNAクローンの含有率を低減させたcDNAライブラリーの作製方法
KR20120088891A (ko) * 2010-11-11 2012-08-09 주식회사 파나진 Pna 기반의 실시간 pcr 클램핑을 이용한 bcr-abl 융합 유전자의 돌연변이 검출 방법 및 키트
JP2013504310A (ja) * 2009-09-11 2013-02-07 ザ チャイニーズ ユニバーシティ オブ ホンコン 肝臓病変を評価する方法
JP2016077221A (ja) * 2014-10-17 2016-05-16 東洋鋼鈑株式会社 Bcr−abl阻害剤耐性関連変異の検出方法及びこれを用いたbcr−abl阻害剤耐性を予測するためのデータ取得方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676638B (zh) * 2011-03-08 2014-06-04 苏州大学附属第一医院 检测bcr/abl融合基因abl激酶区耐药突变位点的方法及试剂盒
CN105349681A (zh) * 2015-12-07 2016-02-24 湖南圣维基因科技有限公司 一种bcr-abl融合基因t315i突变荧光pcr检测试剂盒
RU2609641C1 (ru) * 2015-12-07 2017-02-02 Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран) Способ анализа соматических мутаций в химерном гене BCR/ABL с использованием ОТ-ПЦР и последующей гибридизацией с олигонуклеотидным биологическим микрочипом (биочипом)
CN105441568B (zh) * 2016-01-06 2019-01-08 武汉海吉力生物科技有限公司 用于检测人类bcr-abl融合基因t315i突变的引物、探针及试剂盒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005536193A (ja) * 2002-05-09 2005-12-02 アプレラ コーポレイション 少量のポリヌクレオチドを濃縮する方法
JP2010051195A (ja) * 2008-08-26 2010-03-11 Hitachi High-Technologies Corp 高発現遺伝子由来のcDNAクローンの含有率を低減させたcDNAライブラリーの作製方法
JP2013504310A (ja) * 2009-09-11 2013-02-07 ザ チャイニーズ ユニバーシティ オブ ホンコン 肝臓病変を評価する方法
KR20120088891A (ko) * 2010-11-11 2012-08-09 주식회사 파나진 Pna 기반의 실시간 pcr 클램핑을 이용한 bcr-abl 융합 유전자의 돌연변이 검출 방법 및 키트
JP2016077221A (ja) * 2014-10-17 2016-05-16 東洋鋼鈑株式会社 Bcr−abl阻害剤耐性関連変異の検出方法及びこれを用いたbcr−abl阻害剤耐性を予測するためのデータ取得方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111321200A (zh) * 2020-02-28 2020-06-23 广州安镝声生物医药科技有限公司 一种细胞外abl1激酶活性检测试剂盒及其应用

Also Published As

Publication number Publication date
SG11201909983QA (en) 2019-11-28
CN110997938A (zh) 2020-04-10
JPWO2018199136A1 (ja) 2020-05-14
KR20200002933A (ko) 2020-01-08
PH12019502417A1 (en) 2020-10-19
SG10201912849TA (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US20240158780A1 (en) Target enrichment by unidirectional dual probe primer extension
CA2830673C (en) Telomere length measurement in formalin-fixed, paraffin embedded (ffpe) samples by quantitative pcr
JP7389551B2 (ja) Metエキソン14欠失の検出と、関連する治療法
JP7569828B2 (ja) minor BCR-ABL1遺伝子を検出する方法
CN110719957B (zh) 用于核酸靶向富集的方法和试剂盒
JP2012105679A (ja) 遠隔サンプル由来のdna断片を提供する方法
KR20130094342A (ko) 인간 표피 성장 인자 수용체 유전자 내의 돌연변이를 탐지하기 위한 방법 및 조성물
KR102648647B1 (ko) 짧은 호모폴리머릭 반복서열의 개선된 검출법
WO2018199136A1 (ja) Abl1 t315i変異の発現レベルの測定方法
JP7335871B2 (ja) 短い核酸の多重検出
CN101140239A (zh) 核糖核苷酸还原酶m1基因检测试剂盒及应用
EP4079850A1 (en) Analytical method and kit
JP2024086170A (ja) 分析方法、キット及び検出用デバイス
WO2023060138A2 (en) Methods for producing circular deoxyribonucleic acids
CN119790163A (zh) 环境温度核酸扩增和检测
CN114934114A (zh) 一种人甲状腺癌ccdc6-ret融合型基因表达检测方法
CN108424961A (zh) 一种用于检测上火的血清特异性miRNA的试剂盒及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197034072

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18791232

Country of ref document: EP

Kind code of ref document: A1