[go: up one dir, main page]

WO2018177361A1 - 混合动力汽车的动力系统和发电控制方法及混合动力汽车 - Google Patents

混合动力汽车的动力系统和发电控制方法及混合动力汽车 Download PDF

Info

Publication number
WO2018177361A1
WO2018177361A1 PCT/CN2018/081048 CN2018081048W WO2018177361A1 WO 2018177361 A1 WO2018177361 A1 WO 2018177361A1 CN 2018081048 W CN2018081048 W CN 2018081048W WO 2018177361 A1 WO2018177361 A1 WO 2018177361A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
vehicle
engine
motor
hybrid vehicle
Prior art date
Application number
PCT/CN2018/081048
Other languages
English (en)
French (fr)
Inventor
杨冬生
王春生
白云辉
陈新立
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP18777420.3A priority Critical patent/EP3604010A4/en
Publication of WO2018177361A1 publication Critical patent/WO2018177361A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/085Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/16Driving resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to the field of automotive technology, and in particular to a power system of a hybrid vehicle, a hybrid vehicle, a power generation control method for a hybrid vehicle, and a computer readable storage medium.
  • Hybrid vehicles are one of the new energy vehicles that are driven by engines and/or motors.
  • the motor generator of the hybrid vehicle functions as a generator while acting as a drive motor, thereby causing a lower speed of the motor generator at a low speed, and the power generation and power generation efficiency of the motor generator are also very high. Low, so can not meet the power demand of low-speed driving, making the electric balance of the vehicle at low speed relatively difficult.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present invention is to provide a power system for a hybrid vehicle that can achieve low-speed electrical balance of the entire vehicle.
  • a second object of the present invention is to provide a hybrid vehicle.
  • a third object of the present invention is to provide a power generation control method for a hybrid vehicle.
  • a fourth object of the present invention is to provide a computer readable storage medium.
  • a power system of a hybrid vehicle includes: an engine that outputs power to a wheel of the hybrid vehicle through a clutch; a power motor, the power a motor for outputting a driving force to a wheel of the hybrid vehicle; a power battery for supplying power to the power motor; a DC-DC converter; a secondary motor connected to the engine, the secondary motor Connected to the power motor, the DC-DC converter and the power battery, respectively, the sub-motor is powered by the engine; and the control module is configured to acquire the SOC value of the power battery. And a vehicle speed of the hybrid vehicle, and controlling the sub-motor to enter a power generation power adjustment mode according to the SOC value of the power battery and the vehicle speed of the hybrid vehicle, so that the engine operates at a preset optimal economy region.
  • the engine outputs power to the wheels of the hybrid vehicle through the clutch
  • the power motor outputs the driving force to the wheels of the hybrid vehicle
  • the power battery supplies power to the power motor
  • the auxiliary motor is in the engine.
  • the control module obtains the SOC value of the power battery and the vehicle speed of the hybrid vehicle, and controls the auxiliary motor to enter the power generation power adjustment mode according to the SOC value of the power battery and the vehicle speed of the hybrid vehicle, so that the engine runs at the preset.
  • the best economic area in order to maintain the vehicle's low-speed electrical balance and low-speed smoothness, improve vehicle performance.
  • a hybrid vehicle includes the power system of the hybrid vehicle.
  • the power system of the hybrid vehicle can maintain the low-speed electric balance and the low-speed smoothness of the entire vehicle, thereby improving the overall vehicle performance.
  • a power generation control method for a hybrid vehicle includes the steps of: acquiring an SOC value of a power battery of the hybrid vehicle and a vehicle speed of the hybrid vehicle; The SOC value of the power battery and the vehicle speed of the hybrid vehicle control the secondary motor of the hybrid vehicle to enter a power generation power adjustment mode to operate the engine of the hybrid vehicle in a preset optimal economic region, wherein The secondary motor generates power by the engine.
  • the SOC value of the power battery of the hybrid vehicle and the vehicle speed of the hybrid vehicle are first obtained, and the auxiliary vehicle of the hybrid vehicle is controlled according to the SOC value of the power battery and the vehicle speed of the hybrid vehicle.
  • the motor enters the power generation regulation mode to operate the engine of the hybrid vehicle in a preset optimal economic region, wherein the secondary motor generates power under the driving of the engine, thereby maintaining the low-speed electrical balance and low-speed smoothness of the vehicle, and improving Overall vehicle performance.
  • a computer readable storage medium has an instruction stored therein, and when the instruction is executed, the hybrid vehicle executes the power generation control method.
  • a computer readable storage medium has an instruction stored therein, when a processor of a hybrid vehicle executes the instruction, the hybrid vehicle executes the power generation control method, thereby maintaining a low speed electric balance and a low speed of the entire vehicle Ride comfort and improve vehicle performance.
  • FIG. 1 is a block schematic diagram of a power system of a hybrid vehicle in accordance with an embodiment of the present invention
  • 1a is a schematic diagram of an engine characteristic curve according to an embodiment of the present invention.
  • FIG. 2a is a schematic structural view of a power system of a hybrid vehicle according to an embodiment of the present invention
  • FIG. 2b is a schematic structural view of a power system of a hybrid vehicle according to another embodiment of the present invention.
  • FIG. 3 is a block schematic diagram of a power system of a hybrid vehicle in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic view of a transmission structure between an engine and a corresponding wheel according to an embodiment of the present invention
  • Figure 5 is a schematic illustration of a transmission structure between an engine and a corresponding wheel in accordance with another embodiment of the present invention.
  • FIG. 6 is a block schematic diagram of a hybrid vehicle in accordance with an embodiment of the present invention.
  • FIG. 7 is a flowchart of a power generation control method of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of a power generation control method of a hybrid vehicle according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a power generation control method of a hybrid vehicle according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a power generation control method of a hybrid vehicle according to another embodiment of the present invention.
  • FIG. 11 is a flowchart of a power generation control method of a hybrid vehicle according to another embodiment of the present invention.
  • Figure 12 is a flow chart of a power generation control method for a hybrid vehicle in accordance with an embodiment of the present invention.
  • the power system of the hybrid vehicle includes an engine 1, a power motor 2, a power battery 3, a DC-DC converter 4, a sub-motor 5, and a main controller 101.
  • the hybrid vehicle may be a PHEV (Plug-in Hybrid Electric Vehicle).
  • the engine 1 outputs power to the wheels 7 of the hybrid vehicle through the clutch 6; the power motor 2 is used to output the driving force to the wheels 7 of the hybrid vehicle.
  • the power system of the embodiment of the present invention can provide power for the hybrid vehicle to normally travel through the engine 1 and/or the power motor 2.
  • the power source of the power system may be the engine 1 and the power motor 2, that is, any one of the engine 1 and the power motor 2 may separately output power to the wheel 7, or the engine 1 and The power motor 2 can also simultaneously output power to the wheels 7.
  • the power battery 3 is used to supply power to the power motor 2; the auxiliary motor 5 is connected to the engine 1.
  • the sub-motor 5 can be connected to the engine 1 through the train wheel end of the engine 1, and the sub-motor 5 and the power motor 2, DC-DC are respectively converted.
  • the device 4 is connected to the power battery 3, and when the sub-motor 5 performs power generation by the engine 1, it realizes at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4.
  • the engine 1 can drive the secondary motor 5 to generate electricity, and the electric energy generated by the secondary motor 5 can be supplied to at least one of the power battery 3, the power motor 2, and the DC-DC converter 4.
  • the engine 1 can drive the sub-motor 5 to generate electricity while outputting power to the wheel 7, or can separately drive the sub-motor 5 to generate electricity.
  • the power motor 2 and the sub-motor 5 respectively serve as a drive motor and a generator in a one-to-one correspondence. Since the sub-motor 5 has a high power generation and power generation efficiency at a low speed, the power demand of the low-speed travel can be satisfied, and the low speed of the whole vehicle can be maintained. Electric balance, maintain low speed ride and improve the dynamic performance of the vehicle.
  • the secondary motor 5 may be a BSG (Belt-driven Starter Generator) motor.
  • the sub-motor 5 belongs to a high-voltage motor.
  • the power generation voltage of the sub-motor 5 is equivalent to the voltage of the power battery 3, so that the electric energy generated by the sub-motor 5 can directly charge the power battery 3 without voltage conversion, and can directly power the power.
  • the motor 2 and/or the DC-DC converter 4 are powered.
  • the sub-motor 5 is also a high-efficiency generator. For example, when the sub-motor 5 is driven by the engine 1 at an idle speed, the power generation efficiency of 97% or more can be achieved, and the normal power generation efficiency is improved.
  • the sub-motor 5 can be used to start the engine 1, that is, the sub-motor 5 can realize the function of starting the engine 1, for example, when the engine 1 is started, the sub-motor 5 can drive the crankshaft of the engine 1, The start of the engine 1 is achieved by bringing the piston of the engine 1 to the ignition position, whereby the sub-motor 5 can realize the function of the starter in the related art.
  • both the engine 1 and the power motor 2 can be used to drive the wheels 7 of the hybrid vehicle.
  • the engine 1 and the power motor 2 jointly drive the same wheel of the hybrid vehicle, such as a pair of front wheels 71 (including the left front wheel and the right front wheel); as another example, as shown in FIG. 2b, the engine 1
  • the first wheel of the hybrid vehicle can be driven, for example, a pair of front wheels 71 (including a left front wheel and a right front wheel), and the power motor 2 can drive a force to a second wheel of the hybrid vehicle, such as a pair of rear wheels 72 (including the left rear Wheel and right rear wheel).
  • the engine 1 and the power motor 2 jointly drive a pair of front wheels 71, the driving force of the power system is output to a pair of front wheels 71, and the whole vehicle can be driven by two drives; when the engine 1 drives a pair of front wheels When the power motor 2 drives the pair of rear wheels 72, the driving force of the power system is output to the pair of front wheels 71 and the pair of rear wheels 72, respectively, and the entire vehicle can be driven by a four-wheel drive.
  • the power system of the hybrid vehicle further includes a differential 8, a final drive 9, and a transmission 90, wherein the engine 1 passes the clutch 6.
  • the transmission 90, the final drive 9 and the differential 8 output power to the first wheel of the hybrid vehicle, for example, a pair of front wheels 71, and the power motor 2 outputs the driving force to the hybrid through the final drive 9 and the differential 8.
  • the first wheel of the automobile is, for example, a pair of front wheels 71.
  • the clutch 6 and the transmission 90 can be integrated.
  • the power system of the hybrid vehicle further includes a first transmission 91 and a second transmission 92, wherein the engine 1 passes the clutch 6 and the first A transmission 91 outputs power to a first wheel of the hybrid vehicle, such as a pair of front wheels 71, and the power motor 2 outputs a driving force to a second wheel of the hybrid vehicle, such as a pair of rear wheels 72, through the second transmission 92.
  • the clutch 6 and the first transmission 91 can be integrated.
  • the sub-motor 5 further includes a first controller 51
  • the power motor 2 further includes a second controller 21, and the sub-motor 5 passes the first control.
  • the unit 51 is connected to the power battery 3 and the DC-DC converter 4, respectively, and is connected to the power motor 2 through the first controller 51 and the second controller 21.
  • the first controller 51 is connected to the second controller 21, the power battery 3, and the DC-DC converter 4, respectively, and the first controller 51 may have an AC-DC conversion unit, and the secondary motor 5 generates AC power when generating electricity.
  • the AC-DC conversion unit converts the alternating current generated by the high-voltage motor 2 into a high-voltage direct current such as 600V high-voltage direct current to realize at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4. .
  • the second controller 21 may have a DC-AC conversion unit
  • the first controller 51 may convert the alternating current generated by the secondary motor 5 into high-voltage direct current
  • the DC-AC conversion unit may further convert the first controller 51.
  • the high voltage direct current is converted into alternating current to supply power to the power motor 2.
  • the sub-motor 5 when the sub-motor 5 performs power generation, the sub-motor 5 can charge the power battery 3 through the first controller 51 and/or supply power to the DC-DC converter 4. That is, the sub motor 5 can realize either or both of charging the power battery 3 and supplying power to the DC-DC converter 4 through the first controller 51. Further, the sub motor 5 can also supply power to the power motor 2 through the first controller 51 and the second controller 21.
  • the DC-DC converter 4 is also connected to the power battery 3.
  • the DC-DC converter 4 is also connected to the power motor 2 via a second controller 21.
  • the first controller 51 has a first DC terminal DC1
  • the second controller 21 has a second DC terminal DC2
  • the DC-DC converter 4 has a third DC terminal DC3.
  • the third DC terminal DC3 of the DC-DC converter 4 can be connected to the first DC terminal DC1 of the first controller 51 to perform DC-DC on the high voltage DC power output by the first controller 51 through the first DC terminal DC1. Transform.
  • the third DC terminal DC3 of the DC-DC converter 4 can also be connected to the power battery 3, and the first DC terminal DC1 of the first controller 51 can be connected to the power battery 3 to pass the first controller 51.
  • the first DC terminal DC1 outputs high voltage direct current to the power battery 3 to charge the power battery 3.
  • the third DC terminal DC3 of the DC-DC converter 4 can also be connected to the second DC terminal DC2 of the second controller 21, and the first DC terminal DC1 of the first controller 51 can be connected to the second controller.
  • the second DC terminal DC2 of 21 is connected such that the first controller 51 outputs high voltage direct current to the second controller 21 through the first DC terminal DC1 to supply power to the power motor 2.
  • the DC-DC converter 4 is also respectively connected to the first electric device 10 and the low-voltage battery 20 in the hybrid vehicle to supply power to the first electric device 10 and the low-voltage battery 20, and the low-voltage battery 20 It is also connected to the first electrical device 10.
  • the DC-DC converter 4 further has a fourth DC terminal DC4, and the DC-DC converter 4 can pass the high voltage DC power and/or the sub motor 5 output from the power battery 3 through the first
  • the high voltage direct current outputted by the controller 51 is converted into low voltage direct current, and the low voltage direct current is output through the fourth direct current terminal DC4. That is, the DC-DC converter 4 can convert any one or both of the high-voltage direct current output from the power battery 3 and the high-voltage direct current output from the sub-motor 5 through the first controller 51 into low-voltage direct current, and pass the fourth direct current.
  • the terminal DC4 outputs the low voltage direct current.
  • the fourth DC terminal DC4 of the DC-DC converter 4 can be connected to the first electrical device 10 to supply power to the first electrical device 10, wherein the first electrical device 10 can be a low-voltage electrical device, including but not Limited to car lights, radios, etc.
  • the fourth DC terminal DC4 of the DC-DC converter 4 can also be coupled to the low voltage battery 20 to charge the low voltage battery 20.
  • the low voltage battery 20 is connected to the first electrical device 10 to supply power to the first electrical device 10.
  • the low voltage battery 20 can be the first electrical device. 10 power supply, thus ensuring the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in pure fuel mode and improve the mileage of the whole vehicle.
  • the third DC terminal DC3 of the DC-DC converter 4 is connected to the first controller 51
  • the fourth DC terminal DC4 of the DC-DC converter 4 is connected to the first electrical device 10 and the low voltage battery 20, respectively.
  • the sub-motor 5 can generate power to supply power to the first electric device 10 through the first controller 51 and the DC-DC converter 4 and/or to the low-voltage battery. 20 is charged to allow the hybrid vehicle to travel in pure fuel mode. That is, when the power motor 2, the second controller 21, and the power battery 3 fail, the sub-motor 5 can generate power to supply power to the first electric device 10 through the first controller 51 and the DC-DC converter 4. And charging either or both of the low voltage battery 20 to drive the hybrid vehicle in a pure fuel mode.
  • the first controller 51 can convert the alternating current generated by the secondary motor 5 into high-voltage direct current, and the DC-DC converter 4 can perform the first control.
  • the high voltage direct current converted by the unit 50 is converted to low voltage direct current to supply power to the first electrical device 10 and/or to charge the low voltage battery 20. That is, either or both of powering the first electrical device 10 and charging the low voltage battery 20 are achieved.
  • the sub motor 5 and the DC-DC converter 4 have a separate power supply path.
  • the power motor 2, the second controller 21, and the power battery 3 fail, the electric drive cannot be realized.
  • the sub motor 5 and the DC are passed.
  • the separate power supply channel of the DC converter 4 can ensure the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in pure fuel mode and improve the mileage of the whole vehicle.
  • the first controller 51, the second controller 21 and the power battery 3 are also respectively connected to the second electrical device 30 in the hybrid vehicle.
  • the first DC terminal DC1 of the first controller 51 can be connected to the second electrical device 30, and when the secondary motor 5 performs power generation, the secondary motor 5 can pass through the first controller. 51 directly supplies power to the second electrical device 30.
  • the AC-DC conversion unit of the first controller 51 can also convert the alternating current generated by the secondary motor 5 into high-voltage direct current and directly supply power to the second electrical device 30.
  • the power battery 3 can also be coupled to the second electrical device 30 to power the second electrical device 30. That is to say, the high voltage direct current output from the power battery 3 can be directly supplied to the second electric device 30.
  • the second electrical device 30 can be a high-voltage electrical device, and can include, but is not limited to, an air conditioner compressor, a PTC (Positive Temperature Coefficient) heater, and the like.
  • power generation by the sub-motor 5 makes it possible to charge the power battery 3, or supply power to the power motor 2, or supply power to the first electric device 10 and the second electric device 30.
  • the power battery 3 can supply power to the power motor 2 through the second controller 21, or supply power to the second electric device 30, and can also supply power to the first electric device 10 and/or the low-voltage battery 20 through the DC-DC converter 4. This enriches the power supply mode of the whole vehicle, meets the power demand of the whole vehicle under different working conditions, and improves the performance of the whole vehicle.
  • the low voltage may refer to a voltage of 12V (volts) or 24V
  • the high voltage may refer to a voltage of 600V, but is not limited thereto.
  • FIG. 4 A specific embodiment of the power system of the hybrid vehicle will be described in detail below with reference to FIG. 4, which is applicable to a power system in which the engine 1 and the power motor 2 jointly drive the same wheel, that is, a two-wheel drive hybrid vehicle.
  • this embodiment mainly describes a specific transmission structure between the engine 1, the power motor 2 and the wheel 7, in particular the structure of the transmission 90 in Fig. 2a, and the rest is basically the same as the embodiment of Figs. 1 and 3. The same, no longer detailed in the details here.
  • a plurality of input shafts, a plurality of output shafts, and a motor power shaft 931 in the following embodiments, and associated gears on each shaft, shifting members, and the like may be used to constitute the transmission 90 of FIG. 2a.
  • the power system of the hybrid vehicle mainly includes an engine 1 , a power motor 2 , a power battery 3 , a DC-DC converter 4 , a sub-motor 5 , and a plurality of An input shaft (eg, a first input shaft 911, a second input shaft 912), a plurality of output shafts (eg, a first output shaft 921, a second output shaft 922), and a motor power shaft 931 and associated gears on each shaft and Blocking element (eg, synchronizer).
  • An input shaft eg, a first input shaft 911, a second input shaft 912
  • output shafts eg, a first output shaft 921, a second output shaft 922
  • a motor power shaft 931 and associated gears on each shaft and Blocking element eg, synchronizer
  • the engine 1 outputs power to the wheels 7 of the hybrid vehicle through a clutch 6, such as the dual clutch 2d in the example of FIG.
  • a clutch 6 such as the dual clutch 2d in the example of FIG.
  • the engine 1 is disposed to selectively engage at least one of the plurality of input shafts through the dual clutch 2d.
  • the engine 1 when the engine 1 transmits power to the input shaft, the engine 1 can selectively engage with one of the plurality of input shafts to transmit power, or the engine 1 can also selectively couple two or two of the plurality of input shafts More than one input shaft is simultaneously engaged to transmit power.
  • the plurality of input shafts may include two input shafts, a first input shaft 911 and a second input shaft 912, and the second input shaft 912 may be coaxially sleeved on the first input shaft 911.
  • the engine 1 is selectively engageable with one of the first input shaft 911 and the second input shaft 912 through the dual clutch 2d to transmit power.
  • the engine 1 can also be simultaneously engaged with the first input shaft 911 and the second input shaft 912 to transmit power.
  • the engine 1 can also be disconnected from the first input shaft 911 and the second input shaft 912 at the same time.
  • the plurality of output shafts may include two output shafts, a first output shaft 921 and a second output shaft 922, and the first output shaft 921 and the second output shaft 922 are respectively disposed in parallel with the first input shaft 911.
  • each of the input shafts is provided with a gear driving gear, that is, each of the first input shaft 911 and the second input shaft 912 is provided with a gear driving gear
  • each of the output shafts is provided with A gear driven gear, that is, each output shaft of the first output shaft 921 and the second output shaft 922 is provided with a gear driven gear
  • the gear driven gear meshes with the gear driving gear correspondingly, thereby forming Many pairs of gear pairs with different speed ratios.
  • a six-speed transmission may be employed between the input shaft and the output shaft, that is, having a first gear pair, a second gear pair, a third gear pair, a fourth gear pair, a fifth gear pair, and six Block gear pair.
  • the present invention is not limited thereto, and those skilled in the art can adaptively increase or decrease the number of gear gear pairs according to the transmission requirements, and are not limited to the six gears shown in the embodiment of the present invention. transmission.
  • the motor power shaft 931 is disposed to be coupled with one of a plurality of output shafts (eg, the first output shaft 921 and the second output shaft 922) through the motor power shaft 931 and the output shaft.
  • One of the linkages is such that power can be transferred between the motor power shaft 931 and the one of the output shafts.
  • the power output through the output shaft (such as the power from the output of the engine 1) may be output to the motor power shaft 931, or the power via the motor power shaft 931 (such as the power output from the power motor 2) may be output to the output shaft. .
  • Coupled can be understood as a plurality of components (for example, two) associated motions. Taking two components as an example, when one of the components moves, the other component also moves.
  • the linkage of the gear to the shaft may be understood to mean that the shaft that is interlocked with the gear as it rotates will also rotate, or that the gear that is associated therewith will also rotate as the shaft rotates.
  • the linkage between the shaft and the shaft can be understood as the other shaft that is linked to and rotates when one of the shafts rotates.
  • linkage of a gear and a gear can be understood as the fact that the other gear that is interlocked with one of the gears will also rotate when it rotates.
  • the power motor 2 is disposed to be interlocked with the motor power shaft 931.
  • the power motor 2 can output the generated power to the motor power shaft 931, thereby outputting the driving force to the wheels 7 of the hybrid vehicle through the motor power shaft 931.
  • the motor power shaft 931 may be the motor shaft of the power motor 2 itself.
  • the motor power shaft 931 and the motor shaft of the power motor 2 can also be two separate shafts.
  • the output portion 221 is differentially rotatable relative to the one of the output shafts (eg, the second output shaft 922), in other words, the output portion 221 and the output shaft can be different.
  • the rotation speed rotates independently.
  • the output portion 221 is configured to selectively engage the one of the output shafts to rotate in synchronization with the output shaft, in other words, the output portion 221 is capable of differential or synchronous rotation with respect to the output shaft. In short, the output portion 221 is engageable with respect to the one of the output shafts for synchronous rotation, and of course, can also be turned to rotate at a differential speed.
  • the output portion 221 may be disposed on the one of the output shafts in an empty manner, but is not limited thereto.
  • the output portion 221 is vacant on the second output shaft 922, that is, the output portion 221 and the second output shaft 922 can be differentially rotated at different rotational speeds.
  • the output portion 221 can be rotated in synchronization with the one of the output shafts.
  • the synchronization of the output portion 221 and the output shaft can be realized when necessary by adding a corresponding synchronizer.
  • the synchronizer may be an output portion synchronizer 221c, and the output portion synchronizer 221c is provided to synchronize the one of the output portion 221 and the output shaft.
  • the power motor 2 is used to output a driving force to the wheels 7 of the hybrid vehicle, and the engine 1 and the power motor 2 collectively drive the same wheel of the hybrid vehicle.
  • the differential 75 of the vehicle may be disposed between a pair of front wheels 71 or a pair of rear wheels 72, in some examples of the invention, when the power motor 2 drives a pair of front wheels 71
  • the differential 75 can be located between the pair of front wheels 71.
  • the function of the differential 75 is to roll the left and right driving wheels at different angular velocities when the vehicle is turning or driving on an uneven road surface to ensure a pure rolling motion between the driving wheels on both sides and the ground.
  • a final drive driven gear 74 provided with a final drive 9 on the differential 75 may be disposed on the housing of the differential 75.
  • the main reducer driven gear 74 may be a bevel gear, but is not limited thereto.
  • the power battery 3 is used to supply power to the power motor 2; the secondary motor 5 is connected to the engine 1, and the secondary motor 5 is also coupled to the power motor 2, the DC-DC converter 4, and the power battery, respectively. 3 is connected, and the sub-motor 5 realizes at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4 when power is generated by the engine 1.
  • FIG. 5 Another specific embodiment of the power system of the hybrid vehicle will be described in detail below with reference to FIG. 5.
  • This embodiment is also applicable to a power system in which the engine 1 and the power motor 2 jointly drive the same wheel, that is, a two-wheel drive hybrid vehicle.
  • this embodiment mainly describes a specific transmission structure between the engine 1, the power motor 2 and the wheel 7, in particular the structure of the transmission 90 in Fig. 2a, and the rest is basically the same as the embodiment of Figs. 1 and 3. The same, no longer detailed in the details here.
  • a plurality of input shafts, a plurality of output shafts, and a motor power shaft 931 in the following embodiments, and associated gears and shifting elements on each of the shafts, etc. may be used to constitute the transmission 90 of Fig. 2a.
  • the power system of the hybrid vehicle mainly includes an engine 1 , a power motor 2 , a power battery 3 , a DC-DC converter 4 , a sub-motor 5 , and a plurality of An input shaft (eg, a first input shaft 911, a second input shaft 912), a plurality of output shafts (eg, a first output shaft 921, a second output shaft 922), and a motor power shaft 931 and associated gears on each shaft and Blocking element (eg, synchronizer).
  • An input shaft eg, a first input shaft 911, a second input shaft 912
  • output shafts eg, a first output shaft 921, a second output shaft 922
  • a motor power shaft 931 and associated gears on each shaft and Blocking element eg, synchronizer
  • the engine 1 outputs power to the wheels 7 of the hybrid vehicle through a clutch 6, such as the dual clutch 2d in the example of FIG.
  • a clutch 6 such as the dual clutch 2d in the example of FIG.
  • the engine 1 is disposed to selectively engage at least one of the plurality of input shafts through the dual clutch 2d.
  • the engine 1 when the engine 1 transmits power to the input shaft, the engine 1 can selectively engage with one of the plurality of input shafts to transmit power, or the engine 1 can also selectively couple two or two of the plurality of input shafts More than one input shaft is simultaneously engaged to transmit power.
  • the plurality of input shafts may include two input shafts of a first input shaft 911 and a second input shaft 912, and the second input shaft 912 is coaxially sleeved on the first input shaft 911, the engine 1 is capable of selectively engaging one of the first input shaft 911 and the second input shaft 912 through the dual clutch 2d to transmit power.
  • the engine 1 can also be simultaneously engaged with the first input shaft 911 and the second input shaft 912 to transmit power.
  • the engine 1 can also be disconnected from the first input shaft 911 and the second input shaft 912 at the same time.
  • the plurality of output shafts may include two output shafts of a first output shaft 921 and a second output shaft 922, and the first output shaft 921 and the second output shaft 922 are disposed in parallel with the first input shaft 911.
  • each of the input shafts is provided with a gear driving gear, that is, each of the first input shaft 911 and the second input shaft 912 is provided with a gear driving gear
  • each of the output shafts is provided with A gear driven gear, that is, each output shaft of the first output shaft 921 and the second output shaft 922 is provided with a gear driven gear
  • the gear driven gear meshes with the gear driving gear correspondingly, thereby forming Many pairs of gear pairs with different speed ratios.
  • a six-speed transmission may be employed between the input shaft and the output shaft, that is, having a first gear pair, a second gear pair, a third gear pair, a fourth gear pair, a fifth gear pair, and six Block gear pair.
  • the present invention is not limited thereto, and those skilled in the art can adaptively increase or decrease the number of gear gear pairs according to the transmission requirements, and are not limited to the six gears shown in the embodiment of the present invention. transmission.
  • one of the output shafts (for example, the first output shaft 921 and the second output shaft 922) is provided with at least one reverse output gear 81, and the output shaft is further provided with a reverse gear output.
  • the reverse synchronizer of the gear 81 (for example, the five-speed synchronizer 5c, the six-speed synchronizer 6c), in other words, the reverse synchronizer synchronizes the corresponding reverse output gear 81 and the output shaft, thereby synchronizing the output shaft with the reverse gear
  • the synchronized reverse output gear 81 can be rotated in synchronism, and the reverse power can be output from the output shaft.
  • the reverse output gear 81 is one, and the one reverse output gear 81 can be sleeved on the second output shaft 922.
  • the present invention is not limited thereto.
  • the reverse output gear 81 may also be two, and the two reverse output gears 81 are simultaneously vacant on the second output shaft 922.
  • the reverse output gear 81 can also be three or more.
  • the reverse shaft 89 is disposed in linkage with one of the input shafts (eg, the first input shaft 911 and the second input shaft 912) and also with at least one reverse output gear 81, for example, via the one of the input shafts
  • the power can be transmitted to the reverse output gear 81 through the reverse shaft 89, so that the reverse power can be output from the reverse output gear 81.
  • the reverse output gear 81 is vacant on the second output shaft 922, and the reverse shaft 89 is interlocked with the first input shaft 911, for example, the reverse power output of the engine 1 can pass.
  • the first input shaft 911 and the reverse shaft 89 are output to the reverse output gear 81.
  • the motor power shaft 931 will be described in detail below.
  • the motor power shaft 931 is provided with a motor power shaft first gear 31 and a motor power shaft second gear 32.
  • the motor power shaft first gear 31 is meshable with the final drive driven gear 74 to transmit the driving force to the wheels 7 of the hybrid vehicle.
  • the motor power shaft second gear 32 is disposed in linkage with one of the gear driven gears.
  • the power outputted by the power source may be on the motor power shaft.
  • the second gear 32 and the gear driven gear associated therewith are transmitted, and at this time, the motor power shaft second gear 32 is interlocked with the gear driven gear.
  • the motor power shaft second gear 32 is interlocked with the second gear driven gear 2b, and the motor power shaft second gear 32 and the second gear driven gear 2b can be directly meshed or indirectly transmitted through the intermediate transmission member.
  • a motor power shaft synchronizer 33c is further disposed on the motor power shaft 931, and the motor power shaft synchronizer 33c is located between the motor power shaft first gear 31 and the motor power shaft second gear 32, and the motor power shaft synchronizer 33c can be selected.
  • the motor power shaft first gear 31 or the motor power shaft second gear 32 is engaged with the motor power shaft 3.
  • the clutch sleeve of the motor power shaft synchronizer 33c is moved to the left to engage the motor power shaft second gear 32, and to the right to engage the motor power shaft first gear 31.
  • the power motor 2 is disposed to be interlocked with the motor power shaft 931.
  • the power motor 2 can output the generated power to the motor power shaft 931, thereby outputting the driving force to the wheels 7 of the hybrid vehicle through the motor power shaft 931.
  • the power motor 2 can directly transmit the generated power directly from the motor power shaft first gear 31 through the motor power shaft synchronizer 33c.
  • the output of the first gear 31 of the motor power shaft can shorten the transmission chain, reduce the intermediate transmission components, and improve the transmission efficiency.
  • a motor power shaft third gear 33 is fixedly disposed on the motor power shaft 931, and the power motor 2 is disposed to directly mesh or indirectly transmit with the motor power shaft third gear 33.
  • the motor shaft of the power motor 2 is provided with a first motor gear 511, and the first motor gear 511 is driven by the intermediate gear 512 and the motor power shaft third gear 33.
  • the power motor 2 and the motor power shaft 931 can also be coaxially connected.
  • the power motor 2 is used to output a driving force to the wheels 7 of the hybrid vehicle, and the engine 1 and the power motor 2 collectively drive the same wheel of the hybrid vehicle.
  • the differential 75 of the vehicle may be disposed between a pair of front wheels 71 or between a pair of rear wheels 72, in some examples of the invention, when the power motor 2 drives a pair of front wheels 71
  • the differential 75 can be located between the pair of front wheels 71.
  • the function of the differential 75 is to roll the left and right driving wheels at different angular velocities when the vehicle is turning or driving on an uneven road surface to ensure a pure rolling motion between the driving wheels on both sides and the ground.
  • a final drive driven gear 74 provided with a final drive 9 on the differential 75 may be disposed on the housing of the differential 75.
  • the main reducer driven gear 74 may be a bevel gear, but is not limited thereto.
  • first output shaft output gear 211 is fixedly disposed on the first output shaft 921, the first output shaft output gear 211 rotates synchronously with the first output shaft 921, and the first output shaft output gear 211 and the final drive driven gear 74 The transmission is engaged so that power via the first output shaft 921 can be transmitted from the first output shaft output gear 211 to the final drive driven gear 74 and the differential 75.
  • the second output shaft output gear 212 is fixedly disposed on the second output shaft 922, the second output shaft output gear 212 rotates synchronously with the second output shaft 922, and the second output shaft output gear 212 meshes with the final drive driven gear 74.
  • power via the second output shaft 922 can be transmitted from the second output shaft output gear 212 to the final drive driven gear 74 and the differential 75.
  • the motor power shaft first gear 31 can be used to output power through the motor power shaft 931, so the motor power shaft first gear 31 is also meshed with the final drive driven gear 74.
  • the power battery 3 is used to supply power to the power motor 2; the secondary motor 5 is connected to the engine 1, and the secondary motor 5 is also coupled to the power motor 2, the DC-DC converter 4, and the power battery, respectively. 3 is connected, and the sub-motor 5 performs at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4 when power is generated by the engine 1.
  • the power system of the hybrid vehicle can prevent the engine from participating in driving at a low speed, thereby eliminating clutch wear, reducing clutch wear or slip, and reducing the sense of frustration, improving comfort, and At low speeds, the engine can be operated in an economical area, and only power generation is not driven, fuel consumption is reduced, engine noise is reduced, low-speed electric balance and low-speed smoothness of the vehicle are maintained, and overall vehicle performance is improved.
  • the secondary motor can directly charge the power battery, and can also supply power for low voltage devices such as low voltage batteries, first electrical equipment, etc., and can also be used as a starter.
  • the powertrain of the hybrid vehicle further includes a control module 101 for controlling the powertrain of the hybrid vehicle.
  • the control module 101 can be an integration of a controller having a control function in a hybrid vehicle, such as a vehicle controller that can be a hybrid vehicle, a first controller 51 and a second control in the embodiment of FIG.
  • the integration of the device 21 and the like is not limited thereto. The control method performed by the control module will be described in detail below.
  • the control module 101 is configured to acquire the SOC value (State of Charge, also called the remaining power) of the power battery 3 and the vehicle speed V of the hybrid vehicle, and according to the SOC of the power battery 3
  • the value and the vehicle speed of the hybrid vehicle V control the secondary motor 5 to enter the power generation regulation mode to operate the engine 1 in the preset optimal economic zone.
  • the power generation power adjustment mode is a mode for adjusting the power generation of the engine. In the power generation power adjustment mode, the engine 1 can be driven to drive the secondary motor 5 to generate power to adjust the power generation of the secondary motor 5.
  • the SOC value of the power battery 3 can be collected by the battery management system of the hybrid vehicle, so that the battery management system sends the collected SOC value of the power battery 3 to the control module 101, so that the control module 101 acquires the power battery. 3 SOC value.
  • the preset optimal economic area of the engine 1 can be determined in conjunction with the engine universal characteristic map.
  • An example of an engine versatile characteristic map is shown in FIG. 1a, wherein the side ordinate is the output torque of the engine 1, the abscissa is the engine speed, and the curve a is the fuel economy curve of the engine 1.
  • the area corresponding to the fuel economy curve is the optimal economic area of the engine. That is, when the torque and torque of the engine 1 are on the optimal fuel economy curve of the engine, the engine is in the optimal economic area.
  • the control module 101 can cause the engine 1 to operate at a preset optimal economic zone by controlling the engine speed and output torque to fall on an engine fuel economy curve, such as curve a.
  • the engine 1 can output power to the wheels 7 of the hybrid vehicle through the clutch 6, and the engine 1 can also drive the sub-motor 5 to generate electric power.
  • the output power of the engine mainly includes two parts, one part is output to the sub-motor 5, that is, the power generation power that drives the sub-motor 5 to generate electric power, and the other part is output to the wheel 7, that is, the driving power of the driving wheel 7.
  • the control module 101 may first acquire the SOC value of the power battery 3 and the vehicle speed of the hybrid vehicle, and then control the sub-motor 5 to enter the power generation according to the SOC value of the power battery 3 and the vehicle speed of the hybrid vehicle.
  • the power adjustment mode is such that the engine 1 operates in a preset optimal economic zone.
  • the control module main controller 101 can adjust the power generation of the sub-motor 5 while operating the engine 1 in the preset optimum economic region.
  • control module 101 is further configured to control the power generation of the sub-motor 5 according to the SOC value of the power battery 3 and the vehicle speed of the hybrid vehicle, and obtain the power generation power of the engine 1 according to the power generation power of the sub-motor 5. To control the engine 1 to operate in a preset optimal economic zone.
  • the engine 1 can be operated in a preset optimal economic region, and since the engine 1 has the lowest fuel consumption and the highest fuel economy in the preset optimal economic region, the fuel consumption of the engine 1 can be reduced, and the engine 1 can be reduced. Noise, improve the economy of the vehicle operation.
  • the sub-motor 5 since the sub-motor 5 has high power generation and power generation efficiency at a low speed, it can meet the power demand of low-speed driving, can maintain the low-speed electric balance of the whole vehicle, maintain the low-speed smoothness of the whole vehicle, and improve the dynamic performance of the whole vehicle. Among them, by charging the power battery, the power demand of the power motor and the high-voltage electrical equipment can be ensured, thereby ensuring that the power motor drives the vehicle to run normally.
  • control module 101 is configured to: if the SOC value of the power battery 3 is greater than a preset limit value M2 and less than or equal to the first preset value M1, if the vehicle speed V of the hybrid vehicle is less than The first preset vehicle speed V1 controls the sub motor 5 to enter the power generation power adjustment mode.
  • the first preset value may be an upper limit value of the SOC value of the power battery 3 set in advance, for example, a determination value for stopping charging, and may preferably be 30%.
  • the preset limit value may be a lower limit value of the SOC value of the power battery 3 set in advance, for example, a determination value for stopping the discharge, and may preferably be 10%.
  • the SOC value of the power battery 3 can be divided into three intervals according to the first preset value and the preset limit value, that is, the first power interval, the second power interval, and the third power interval, when the SOC value of the power battery 3 is less than Or equal to the preset limit value, the SOC value of the power battery 3 is in the first power interval, at which time the power battery 3 is only charged and not discharged; when the SOC value of the power battery 3 is greater than a preset limit value and less than or equal to the first When the preset value is reached, the SOC value of the power battery 3 is in the second power interval.
  • the power battery 3 has a charging demand, and the power battery 3 can be actively charged; when the SOC value of the power battery 3 is greater than the first preset value, The SOC value of the power battery 3 is in the third power interval, and at this time, the power battery 3 may not be charged, that is, the power battery 3 is not actively charged.
  • the control module 101 can determine the interval in which the SOC value of the power battery 3 is located, and if the SOC value of the power battery 3 is in the second power interval, the power The SOC value of the battery 3 is greater than a preset limit value and less than or equal to the first preset value, indicating that the power battery 3 can be charged. At this time, the control module 101 further determines whether the vehicle speed of the hybrid vehicle is less than the first preset vehicle speed. If the vehicle speed of the hybrid vehicle is less than the first preset vehicle speed, the control sub-motor 5 enters the power generation power adjustment mode. At this time, the hybrid vehicle has a lower vehicle speed and requires less driving force, and the power motor 2 is sufficient to drive the hybrid power. When the car is running, the engine 1 can only drive the sub-motor 5 to generate electricity and does not participate in driving.
  • the engine only generates electricity and does not participate in the drive. Since the engine does not participate in the drive, the clutch does not need to be used, thereby reducing clutch wear or slippage, and at the same time reducing the sense of frustration and improving comfort.
  • control module 101 is further configured to: when the SOC value of the power battery 3 is greater than a preset limit value M2 and less than or equal to the first preset value M1, and the vehicle speed V of the hybrid vehicle is less than When the first preset vehicle speed V1 is obtained, the vehicle required power P2 of the hybrid vehicle is obtained, and when the vehicle required power P2 is less than or equal to the maximum allowable power generation Pmax of the sub-motor 5, the sub-motor 5 is controlled to enter the power-generification mode.
  • the control module 101 acquires the vehicle demand power P2 of the hybrid vehicle, and controls the sub-motor 5 when the vehicle demand power P2 is less than or equal to the maximum allowable power generation Pmax of the sub-motor 5. Enter the power generation mode.
  • the engine only generates electricity and does not participate in the drive. Since the engine does not participate in the drive, the clutch does not need to be used, thereby reducing clutch wear or slippage, and at the same time reducing the sense of frustration and improving comfort.
  • control module 101 is further configured to: when the SOC value of the power battery 3 is greater than a preset limit value and less than or equal to the first preset value M1, the vehicle speed V of the hybrid vehicle is less than the first When the preset vehicle speed V1 and the vehicle required power P2 are less than or equal to the maximum allowable power generation Pmax of the sub-motor 5, the accelerator pedal depth D of the hybrid vehicle and the vehicle resistance F of the hybrid vehicle are obtained, and the accelerator pedal depth D is smaller than When the first preset depth D1 is equal to and the vehicle resistance F of the hybrid vehicle is less than or equal to the first preset resistance F1, the control sub-motor 5 enters the power generation power adjustment mode.
  • the vehicle resistance of the hybrid vehicle may be the driving resistance of the hybrid vehicle such as rolling resistance, acceleration resistance, slope resistance, and air resistance.
  • the control module 101 acquires the accelerator pedal depth D of the hybrid vehicle and the vehicle resistance F of the hybrid vehicle in real time, when the accelerator pedal depth D is less than or equal to the first preset depth D1 and the hybrid vehicle When the vehicle resistance F is less than or equal to the first preset resistance F1, the control module 101 controls the sub motor 5 to enter the power generation power adjustment mode.
  • the engine only generates electricity and does not participate in the drive. Since the engine does not participate in the drive, the clutch does not need to be used, thereby reducing clutch wear or slippage, and at the same time reducing the sense of frustration and improving comfort.
  • the engine 1 when the hybrid vehicle is running at a low speed, the engine 1 can generate power only and does not participate in the drive. Since the engine does not participate in the drive, the clutch does not need to be used, thereby reducing clutch wear or slip, while reducing the sense of frustration and improving comfort, and At low speeds, the engine is operated in an economical area. Since the engine has the lowest fuel consumption and the highest fuel economy in the preset optimal economic zone, fuel consumption can be reduced, engine noise can be reduced, and the economy of the vehicle can be improved. The car's low-speed electric balance and low-speed ride comfort improve vehicle performance.
  • control module 101 is further configured to: when the control engine 1 separately drives the sub-motor 5 to generate power, and control the power motor 2 to independently output the driving force, obtain the power generation power of the engine 1 according to the following formula:
  • P0 is the power generation power of the engine 1
  • P1 is the power generation power of the sub-motor 5
  • ⁇ belt transmission efficiency is the efficiency of the sub-motor 5.
  • the control module 101 can calculate the power generation power P0 of the engine 1 based on the power generation power of the sub-motor 5, the belt transmission efficiency ⁇ , and the efficiency of the sub-motor 5, and The control engine 1 drives the sub-motor 5 to generate electric power with the acquired power generation power P0 to control the power generation of the sub-motor 5.
  • the engine 1 can participate in the driving, and the specific operation thereof is as follows.
  • control module 101 is further configured to: when the SOC value of the power battery 3 is less than a preset limit value, or the vehicle speed of the hybrid vehicle is greater than or equal to the first preset vehicle speed, or the vehicle demand power is greater than the vice
  • the engine 1 is controlled to participate in driving when the maximum allowable power generation of the motor 5, or the accelerator pedal depth is greater than the first predetermined depth, or the vehicle resistance of the hybrid vehicle is greater than the first preset resistance.
  • the SOC value of the power battery 3 is less than the preset limit value M2, or the vehicle speed of the hybrid vehicle is greater than or equal to the first preset vehicle speed, or the vehicle demand power is greater than the maximum allowable power generation of the sub-motor 5, or the throttle
  • the control module 101 controls the engine 1 to participate in the driving.
  • the power battery 3 is no longer discharged, and the driving required for the whole vehicle is required.
  • the force is large, the power demand of the whole vehicle is large, the depth of the accelerator pedal is large, or the whole vehicle resistance is also large.
  • the power motor 2 is not enough to drive the hybrid vehicle, and the engine 1 participates in driving to make up the driving.
  • the engine 1 can participate in driving when the driving force output from the power motor 2 is insufficient, thereby ensuring normal running of the entire vehicle, improving the power performance of the entire vehicle, and improving the mileage of the entire vehicle.
  • control module 101 is further configured to: when the vehicle demand power is greater than the maximum allowable power generation of the sub-motor 5, also control the engine 1 to participate in driving to cause the engine 1 to output power to the wheels through the clutch 6.
  • control module 101 is further configured to: when the SOC value of the power battery 3 is less than the preset limit value M2, control the engine 1 to participate in driving to cause the engine 1 to output the driving force to the wheel 7 through the clutch 6; when the SOC of the power battery 3 When the value is less than or equal to the first preset value M1, the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1 and the accelerator pedal depth D is greater than the first preset depth D1, the control module 101 controls the engine 1 to participate in driving to pass the engine 1 The clutch 6 outputs power to the wheel 7; when the SOC value of the power battery 3 is less than or equal to the first preset value M1, the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1 and the resistance F of the hybrid vehicle is greater than the first preset At the resistance F1, the control module 101 controls the engine 1 to participate in driving to cause the engine 1 to output power to the wheels 7 through the clutch 6.
  • the control module 101 acquires the SOC value of the power battery 3, the accelerator pedal depth D of the hybrid vehicle, and the real-time vehicle.
  • the vehicle speed V and the vehicle resistance F are judged on the SOC value of the power battery 3, the accelerator pedal depth D of the hybrid vehicle, the vehicle speed V, and the vehicle resistance F.
  • the control module 101 controls the engine 1 to output power to the wheel 7 through the clutch 6, so that the engine 1 and the power motor 2 simultaneously participate in driving, reducing the power motor
  • the load of 2 reduces the power consumption of the power battery 3, thereby ensuring that the engine 1 operates at a preset optimum economic area while avoiding a rapid drop in the SOC value of the power battery 3.
  • the control module 101 controls The engine 1 outputs power to the wheels 7 through the clutch 6 to cause the engine 1 and the power motor 2 to simultaneously participate in driving, reducing the load of the power motor 2 to reduce the power consumption of the power battery 3, thereby ensuring that the engine 1 operates at a preset.
  • the control module 101 controls the engine 1 to output power to the wheels 7 through the clutch 6, so that the engine 1 and the power motor 2 simultaneously participate in driving, reducing the load of the power motor 2 to reduce the power consumption of the power battery 3, thereby ensuring that the engine 1 operates at The preset optimal economic area while avoiding a rapid decline in the SOC value of the power battery 3.
  • the engine 1 can participate in driving when the driving force output from the power motor 2 is insufficient, thereby ensuring normal running of the entire vehicle, improving the power performance of the entire vehicle, and improving the mileage of the entire vehicle. Moreover, the engine can be controlled to operate in an economical area. Since the engine 1 has the lowest fuel consumption and the highest fuel economy in the preset optimal economic region, the fuel consumption can be reduced, the engine noise can be reduced, and the economic performance of the vehicle can be improved.
  • control module 101 is further configured to: when the SOC value of the power battery 3 is less than or equal to a preset limit value, and the vehicle speed of the hybrid vehicle is greater than the first preset vehicle speed, control the engine 1 to participate in driving to pass the engine 1 through the clutch 6 The power is output to the wheel 7.
  • the engine 1 can participate in driving when the driving force output from the power motor 2 is insufficient, thereby ensuring normal running of the entire vehicle, improving the power performance of the entire vehicle, and improving the mileage of the entire vehicle.
  • control module 101 is further configured to: when the SOC value of the power battery 3 is greater than the first preset value, the engine 1 does not drive the sub-motor 5 to generate power, and at this time, the power of the power battery 3 is nearly full.
  • the motor 1 does not drive the sub-motor 5 to generate electricity without charging. That is, when the power of the power battery 3 is nearly full, the engine 1 does not drive the sub-motor 5 to generate electric power, so that the sub-motor 5 does not charge the power battery 3.
  • control module 101 can adjust the power generation power of the sub-motor 5.
  • the following describes the power generation power adjustment process of the control module 101 of the embodiment of the present invention.
  • control module 101 is further configured to: after the auxiliary motor 5 enters the power generation power adjustment mode, generate power to the secondary motor 5 according to the vehicle required power P2 of the hybrid vehicle and the charging power P3 of the power battery 3. The power P1 is adjusted.
  • the formula for adjusting the power generation P1 of the sub-motor 5 according to the vehicle demand power P2 of the hybrid vehicle and the charging power P3 of the power battery is as follows:
  • P1 is the power generation power of the sub-motor 5
  • P2 is the power demanded by the whole vehicle
  • P3 is the charging power of the power battery 3
  • P11 is the driving power of the whole vehicle
  • P21 is the power of the electric equipment.
  • the electrical equipment includes the first electrical equipment 10 and the second electrical equipment 30, that is, the electrical equipment power P21 may include the power required by the high voltage electrical equipment and the low voltage electrical equipment.
  • the vehicle driving power P11 may include the output power of the power motor 2, and the control module 101 may obtain the vehicle driving power P11 according to the preset throttle-torque curve of the power motor 2 and the rotational speed of the power motor 2.
  • the preset throttle-torque curve can be determined when the hybrid vehicle is powered.
  • the control module 101 can obtain the electrical equipment power P21 in real time according to the electrical equipment running by the whole vehicle, for example, calculating the electrical equipment power P21 by DC consumption on the bus. Further, the control module 101 can acquire the charging power P3 of the power battery 3 according to the SOC value of the power battery 3.
  • the power generation of the sub motor 5 b1+b2+b3.
  • the control module 101 can obtain the charging power P3 of the power battery 3, the driving power of the vehicle P11, and the power P21 of the electrical equipment, and the charging power P3 of the power battery 3 and the driving power of the vehicle.
  • the sum of P11 and the electrical equipment power P21 is used as the power generation power P1 of the sub-motor 5, whereby the control module 101 can adjust the power generation power of the sub-motor 5 according to the calculated P1 value, for example, the control module 101 can calculate the P1 according to the calculation.
  • the value controls the output torque and the number of revolutions of the engine 1 to adjust the power at which the engine 1 drives the sub-motor 5 to generate electric power.
  • control module 101 is further configured to: acquire a rate of change of the SOC value of the power battery 3, and select a minimum output power Pmin corresponding to the optimal economic region of the engine 1 according to the vehicle demand power P2.
  • the relationship between the power and the SOC value change rate of the power battery adjusts the power generation power P1 of the sub-motor 5.
  • control module 101 can obtain the rate of change of the SOC value of the power battery 3 according to the SOC value of the power battery 3, for example, the SOC value of the power battery 3 is collected once every time interval t, so that the current state of the power battery 3 can be The ratio of the difference between the SOC value and the previous SOC value to the time interval t is taken as the rate of change of the SOC value of the power battery 3.
  • the optimal economic region of the engine can be determined according to the engine characteristic curve shown in FIG. 1a, thereby obtaining the minimum output power Pmin corresponding to the optimal economic region of the engine, and the control module 101 determines the optimal economic region of the engine.
  • the power generation of the sub-motor 5 can be adjusted according to the relationship between the vehicle demand power P2 and the minimum output power Pmin corresponding to the optimal economic region of the engine 1 and the SOC value change rate of the power battery 3. .
  • the engine 1 can generate electricity only without participating in the drive, since the engine is not Involved in the drive, the clutch is not needed, which can reduce the clutch wear or slip, reduce the sense of frustration, improve the comfort, and thus maintain the low-speed electric balance and low-speed smoothness of the whole vehicle and improve the performance of the whole vehicle.
  • control module 101 The relationship between the control module 101 and the minimum output power Pmin corresponding to the optimal economic region of the engine 1 and the rate of change of the SOC value of the power battery 3 according to the vehicle demand power P2 after the sub-motor 5 enters the power generation power adjustment mode is further described below.
  • the specific adjustment method of the power generation of the sub-motor 5 is adjusted.
  • the vehicle driving power P11 and the electric appliance power P21 are acquired in real time to acquire the entire vehicle of the hybrid vehicle.
  • the demand power P2 the control module 101 determines the vehicle demand power P2 of the hybrid vehicle, wherein the vehicle demand power P2 can satisfy the following three situations.
  • the vehicle demand power P2 is smaller than the minimum output power Pmin corresponding to the optimal economic region of the engine 1; the second case is: the vehicle demand power P2 is greater than or equal to the minimum output power of the optimal economic region of the engine.
  • Pmin is less than or equal to the maximum allowable power generation Pmax of the sub-motor 5; the third case is: the vehicle demand power P2 is greater than the maximum allowable power generation Pmax of the sub-motor 5.
  • the control module 101 acquires the power battery 3 according to the rate of change of the SOC value of the power battery 3. Charging power P3, and determining whether the charging power P3 of the power battery 3 is less than the difference between the minimum output power Pmin and the vehicle demand power P2, wherein if the charging power P3 of the power battery 3 is less than the minimum output power Pmin and the vehicle required power The difference between P2, the engine 1 is controlled to generate power at the minimum output power Pmin to adjust the power generation P1 of the sub-motor 5; if the charging power P3 of the power battery 3 is greater than or equal to the difference between the minimum output power Pmin and the vehicle demand power P2, Then, according to the sum of the charging power P3 of the power battery 3 and the vehicle demand power P2, the output power of the engine 1 in the preset optimal economic region is obtained, and the engine is controlled to generate power with the obtained output power to adjust the power generation
  • the first relationship table between the rate of change of the SOC value of the power battery 3 and the charging power P3 of the power battery 3 can be pre-stored in the control module 101, whereby the control module 101 acquires the change of the SOC value of the power battery 3. After the rate, the charging power P3 of the corresponding power battery 3 can be obtained by comparing the first relationship table.
  • the rate of change in the SOC value of the power battery 3 and the charging power P3 of the power battery 3 satisfy the relationship shown in Table 1 below.
  • the control module 101 acquires the vehicle driving power P11 and the electrical equipment power P21 in real time to obtain the vehicle demand power P2 of the hybrid vehicle, and the entire hybrid vehicle.
  • the vehicle demand power P2 is judged.
  • the charging power P3 of the power battery 3 can be obtained according to the SOC value change rate of the power battery 3, and the charging power P3 of the power battery 3 can be determined. Is it less than the difference between the minimum output power Pmin and the vehicle demand power P2.
  • the power generation of the auxiliary motor 1 is adjusted by controlling the engine 1 to generate power at the minimum output power Pmin; if the charging power P3 of the power battery 3 is greater than or equal to the difference between the minimum output power Pmin and the vehicle demand power P2, that is, P3 ⁇ Pmin-P2, the output power of the engine 1 in the preset optimal economic region is obtained according to the sum of the charging power P3 of the power battery 3 and the vehicle demand power P2, and the power is generated by controlling the engine 1 to obtain the output power.
  • the power generation of the sub motor 5 is adjusted.
  • the minimum output power Pmin corresponding to the optimal economic region of the engine 1 when the vehicle required power P2 is smaller than the minimum output power Pmin corresponding to the optimal economic region of the engine 1, the minimum output power Pmin corresponding to the optimal economic region of the engine 1 according to the charging power P3 of the power battery 3 and the entire vehicle
  • the relationship between the demand power P2 is obtained to obtain the power generation of the engine 1 so that the engine 1 operates in a preset optimal economic region, and the engine 1 only performs power generation without participating in driving, thereby reducing engine fuel consumption and reducing engine efficiency. noise.
  • the control module 101 is based on the power. Obtaining the charging power P3 of the power battery 3 by the SOC value change rate of the battery 3, and obtaining the output power P4 of the engine 1 in the preset optimal economic region according to the sum of the charging power P3 of the power battery 3 and the vehicle required power P2, And power generation by controlling the engine 1 to obtain the output power P4 to adjust the power generation power P1 of the sub-motor 5.
  • the control module 101 controls the engine 1 to operate at a preset In the optimal economic region, the charging power P3 of the power battery 3 is also obtained according to the rate of change of the SOC value of the power battery 3, and the engine 1 is obtained at the preset optimum according to the sum of the charging power P3 of the power battery 3 and the power demand P2 of the vehicle.
  • the output power P4 in the economic area, wherein the acquired output power P4 P3 + P2.
  • the control module 101 controls the engine 1 to generate electric power with the acquired output power P4 to adjust the power generation power P1 of the sub-motor 5, thereby increasing the SOC value of the power battery 3 and operating the engine 1 in the preset optimum economic region.
  • the vehicle required power P2 is greater than or equal to the minimum output power Pmin corresponding to the optimal economic region of the engine 1 and less than the maximum allowable power generation Pmax of the sub-motor 5, the charging power P3 of the power battery 3 and the required power of the entire vehicle are used.
  • the sum of P2 obtains the output power of the engine 1 so that the engine 1 operates in a preset optimum economic area, and the engine 1 performs only power generation without participating in driving, thereby being able to reduce the fuel consumption of the engine and reduce the noise of the engine.
  • control module 101 when the vehicle required power P2 is greater than the maximum allowable power generation Pmax of the secondary motor 5, the control module 101 also controls the engine 1 to participate in driving to cause the engine 1 to output power to the wheels through the clutch 6. 7.
  • the control module 101 when the vehicle required power P2 is greater than the maximum allowable power generation Pmax of the sub-motor 5, that is, the vehicle demand power P2 of the hybrid vehicle is higher than the power generation power P1 of the sub-motor 5, the control module 101 also controls the engine 1 to pass the clutch. 6 output driving force to the wheel 7 to cause the engine 1 to participate in driving, thereby taking part of the driving power P' by the engine 1 to reduce the demand for the generating power P1 of the sub-motor 5, and operating the engine 1 in the preset optimal economic area .
  • the control module 101 controls the engine 1 and the power motor 2 to simultaneously output power. Go to the wheel 7 of the hybrid car to operate the engine 1 in the preset optimal economic zone.
  • the engine can operate in an economical area, and only power generation does not participate in the drive, thereby eliminating the use of clutches, reducing clutch wear or slippage, while reducing the sense of frustration, improving comfort, reducing fuel consumption, and reducing engine noise.
  • the engine In order to maintain the low-speed electric balance and low-speed smoothness of the whole vehicle, and improve the performance of the whole vehicle.
  • the engine outputs power to the wheels of the hybrid vehicle through the clutch
  • the power motor outputs the driving force to the wheels of the hybrid vehicle
  • the power battery supplies power to the power motor.
  • the motor generates electricity under the driving of the engine
  • the control module obtains the SOC value of the power battery and the vehicle speed of the hybrid vehicle, and controls the auxiliary motor to enter the power generation mode according to the SOC value of the power battery and the vehicle speed of the hybrid vehicle to make the engine run.
  • the preset optimal economic area it can reduce the fuel consumption of the engine, improve the economy of the whole vehicle operation, and reduce the engine noise.
  • it can realize various driving modes, and can maintain the low-speed electric balance and low-speed smoothness of the whole vehicle. Improve vehicle performance.
  • the embodiment of the invention also proposes a hybrid vehicle.
  • the hybrid vehicle 200 includes the powertrain system 100 of the hybrid vehicle of the above embodiment.
  • the power consumption of the hybrid vehicle can reduce the fuel consumption of the engine, improve the economy of the entire vehicle, improve the stability of the vehicle system, and reduce the engine.
  • the energy consumption has improved the economy of the vehicle operation.
  • the hybrid vehicle's power system includes an engine, a power motor, a power battery, a DC-DC converter, and a secondary motor connected to the engine.
  • the engine outputs power to the wheels of the hybrid vehicle through a clutch, and the power motor is used to output the driving force to the hybrid.
  • the wheel of the power car, the power battery is used to supply power to the power motor, the auxiliary motor is connected to the power motor, the DC-DC converter and the power battery, and the auxiliary motor is powered by the engine.
  • the power generation control method of the hybrid vehicle includes the following steps:
  • the SOC value of the power battery can be collected by the battery management system of the hybrid vehicle so that the SOC value of the power battery is obtained.
  • the sub-motor is controlled to enter the power generation power adjustment mode according to the SOC value of the power battery and the vehicle speed of the hybrid vehicle, so that the engine runs in a preset optimal economic region.
  • the engine's pre-set optimal economic area can be determined in conjunction with the engine's universal characteristic map.
  • An example of an engine finite characteristic graph is shown in Fig. 1a, wherein the side ordinate is the output torque of the engine, the abscissa is the engine speed, and the curve a is the fuel economy curve of the engine.
  • the area corresponding to the fuel economy curve is the optimal economic area of the engine. That is, when the torque and torque of the engine are on the optimal fuel economy curve of the engine, the engine is in the best economic area.
  • the engine speed and output torque can be controlled to fall on an engine fuel economy curve, such as curve a, to operate the engine at a predetermined optimal economic zone.
  • the control unit is controlled according to the SOC value of the power battery and the vehicle speed V of the hybrid vehicle.
  • the motor enters the power generation regulation mode to operate the engine in the preset optimal economic zone.
  • the power generation power adjustment mode is a mode for adjusting the power generation of the engine.
  • the engine 1 can be driven to drive the secondary motor 5 to generate power to adjust the power generation of the secondary motor 5.
  • the engine can output power to the wheels of the hybrid vehicle through the clutch, and the engine can also drive the secondary motor to generate electricity.
  • the output power of the engine mainly includes two parts, one part is output to the sub-motor, that is, the power that drives the sub-motor to generate electricity, and the other part is output to the wheel, that is, the power that drives the wheel.
  • the SOC value of the power battery and the vehicle speed of the hybrid vehicle may be first obtained, and then the sub-motor is controlled to enter the power generation mode according to the SOC value of the power battery and the vehicle speed of the hybrid vehicle to make the engine work.
  • the power generation mode the power generation of the secondary motor can be adjusted while the engine is operating in the preset optimal economic zone.
  • the power generation of the secondary motor is controlled according to the SOC value of the power battery and the vehicle speed of the hybrid vehicle, and the power generation power of the engine is obtained according to the power generation power of the secondary motor to control the engine operation in advance.
  • the best economic area is possible.
  • the engine can be operated in the preset optimal economic region, and the engine has the lowest fuel consumption and the highest fuel economy in the preset optimal economic region, thereby reducing the fuel consumption of the engine, reducing the noise of the engine, and improving the overall efficiency.
  • the secondary motor since the secondary motor has high power generation and power generation efficiency at low speed, it can meet the power demand of low-speed driving, maintain the low-speed electric balance of the whole vehicle, maintain the low-speed smoothness of the whole vehicle, and improve the dynamic performance of the whole vehicle. Among them, by charging the power battery, the power demand of the power motor and the high-voltage electrical equipment can be ensured, thereby ensuring that the power motor drives the vehicle to run normally.
  • the control pair when the SOC value of the power battery is greater than a preset limit value and less than or equal to the first preset value, if the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed, the control pair The motor enters the power generation regulation mode.
  • the first preset value may be an upper limit value of the SOC value of the power battery set in advance, for example, a determination value for stopping charging, and may preferably be 30%.
  • the preset limit value may be a lower limit value of the SOC value of the power battery set in advance, for example, a determination value for stopping the discharge, and may preferably be 10%.
  • the SOC value of the power battery can be divided into three intervals according to the first preset value and the preset limit value, that is, the first power interval, the second power interval, and the third power interval, when the SOC value of the power battery is less than or equal to
  • the preset limit value is used, the SOC value of the power battery is in the first power interval, and the power battery is only charged and not discharged; when the SOC value of the power battery is greater than a preset limit value and less than or equal to the first preset value, The SOC value of the power battery is in the second power range.
  • the power battery has a charging demand, and the power battery can be actively charged; when the SOC value of the power battery is greater than the first preset value, the SOC value of the power battery is at the third power level. In the interval, the power battery can be not charged at this time, that is, the power battery is not actively charged.
  • the interval in which the SOC value of the power battery is located may be determined. If the SOC value of the power battery is in the second power range, the SOC value of the power battery is greater than The preset limit value is less than or equal to the first preset value, indicating that the power battery can be charged, and further determining whether the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1, if the vehicle speed V of the hybrid vehicle is When the first preset vehicle speed V1 is less than the first preset vehicle speed V1, the control sub-motor enters the power generation power adjustment mode. At this time, the hybrid vehicle has a lower vehicle speed and requires less driving force, and the power motor is sufficient to drive the hybrid vehicle to drive, and the engine can only drive the vice. The motor generates electricity and does not participate in the drive.
  • the power generation control method of the hybrid vehicle can control the secondary motor to enter the power generation power adjustment mode according to the SOC value M of the power battery and the vehicle speed V of the hybrid vehicle, and specifically includes the following steps. :
  • S101 Acquire a SOC value M of the power battery and a vehicle speed V of the hybrid vehicle.
  • S102 Acquire a vehicle speed V of the hybrid vehicle when the SOC value M of the power battery is greater than a preset limit value M2 and less than or equal to the first preset value M1.
  • the engine only generates electricity and does not participate in the drive. Since the engine does not participate in the drive, the clutch does not need to be used, thereby reducing clutch wear or slippage, and at the same time reducing the sense of frustration and improving comfort.
  • the SOC value of the power battery is greater than a preset limit value M2 and less than or equal to the first preset value M1, and the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1,
  • the vehicle required power P2 of the hybrid vehicle is also obtained, and when the vehicle required power P2 is less than or equal to the maximum allowable power generation Pmax of the sub-motor, the sub-motor is controlled to enter the power-generification mode.
  • the SOC value of the power battery is greater than a preset limit value M2 and less than or equal to the first preset value M1
  • the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1 That is, if the hybrid vehicle has a lower vehicle speed, the vehicle demand power P2 of the hybrid vehicle is obtained, and when the vehicle demand power P2 is less than or equal to the maximum allowable power generation Pmax of the sub-motor, the sub-motor is controlled to enter the power generation regulation mode.
  • the power generation control method of the hybrid vehicle can control the sub-motor to enter the power generation power adjustment mode according to the SOC value M of the power battery, the vehicle speed V, and the vehicle demand power P2, specifically including The following steps:
  • S201 Acquire a SOC value M of the power battery and a vehicle speed V of the hybrid vehicle.
  • S202 Acquire a vehicle speed V of the hybrid vehicle when the SOC value M of the power battery is greater than a preset limit value M2 and less than or equal to the first preset value M1.
  • S203 Acquire a vehicle demand power P2 of the hybrid vehicle when the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1.
  • the engine can only generate electricity and not participate in the drive. Since the engine does not participate in the drive, the clutch does not need to be used, thereby reducing clutch wear or slippage, and at the same time reducing the sense of frustration and improving comfort.
  • the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1
  • the accelerator pedal depth D of the hybrid vehicle and the vehicle resistance F of the hybrid vehicle are also obtained, and the accelerator pedal depth D is equal to or less than the first preset depth D1.
  • the control sub-motor enters the power generation power adjustment mode.
  • the vehicle resistance of the hybrid vehicle may be the driving resistance of the hybrid vehicle such as rolling resistance, acceleration resistance, slope resistance, and air resistance.
  • the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1
  • the vehicle demand power P2 is less than or equal to the auxiliary motor.
  • the maximum allowable power generation power Pmax is obtained in real time to obtain the accelerator pedal depth D of the hybrid vehicle and the vehicle resistance F of the hybrid vehicle, when the accelerator pedal depth D is less than or equal to the first preset depth D1 and the vehicle resistance F of the hybrid vehicle
  • the hybrid vehicle is operated in the low speed mode, and the auxiliary motor is controlled to enter the power generation power adjustment mode.
  • the engine can only generate electricity and not participate in the drive. Since the engine does not participate in the drive, the clutch does not need to be used, thereby reducing clutch wear or slippage, and at the same time reducing the sense of frustration and improving comfort.
  • the engine 1 when the hybrid vehicle is running at a low speed, the engine 1 can generate power only and does not participate in the drive. Since the engine does not participate in the drive, the clutch does not need to be used, thereby reducing clutch wear or slip, while reducing the sense of frustration and improving comfort, and At low speeds, the engine is operated in an economical area. Since the engine has the lowest fuel consumption and the highest fuel economy in the preset optimal economic zone, fuel consumption can be reduced, engine noise can be reduced, and the economy of the vehicle can be improved. The car's low-speed electric balance and low-speed ride comfort improve vehicle performance.
  • the power generation power P0 of the engine is obtained according to the following formula:
  • P1 represents the power generation of the secondary motor
  • represents the belt transmission efficiency
  • represents the efficiency of the secondary motor
  • the power generation power P0 of the engine can be calculated according to the power generation power of the secondary motor, the belt transmission efficiency ⁇ , and the efficiency of the secondary motor, and the power generated by the engine can be controlled.
  • P0 drives the secondary motor to generate electricity to control the power generated by the secondary motor.
  • the engine can participate in the driving, and the specific working process is as follows.
  • the SOC value of the power battery is less than a preset limit value, or the vehicle speed of the hybrid vehicle is greater than or equal to the first preset vehicle speed, or the vehicle demand power is greater than the maximum allowable power generation of the sub-motor, or
  • the engine is controlled to participate in driving when the accelerator pedal depth is greater than the first predetermined depth or the vehicle's overall vehicle resistance is greater than the first predetermined resistance.
  • the SOC value of the power battery is less than the preset limit value M2, or the vehicle speed of the hybrid vehicle is greater than or equal to the first preset vehicle speed, or the vehicle demand power is greater than the maximum allowable power generation of the sub-motor, or the accelerator pedal depth.
  • the engine is controlled to participate in driving.
  • the power battery is no longer discharged, the driving force required for the whole vehicle is large, and the vehicle demand is required.
  • the power is large, the accelerator pedal depth is large or the vehicle resistance is also large, the power motor is not enough to drive the hybrid vehicle, and the engine participates in the drive to make up the drive.
  • the engine can participate in driving when the driving force of the power motor output is insufficient, thereby ensuring the normal running of the whole vehicle, improving the power performance of the whole vehicle, and improving the mileage of the whole vehicle.
  • the engine is also controlled to drive to cause the engine to output power to the wheels through the clutch.
  • the engine when the SOC value of the power battery is less than or equal to the preset limit value M2, the engine is further controlled to drive to cause the engine to output power to the wheel through the clutch; when the SOC value of the power battery is less than or equal to the first preset value M1, the hybrid When the vehicle speed V of the power car is less than the first preset vehicle speed V1 and the accelerator pedal depth D is greater than the first preset depth D1, the engine is further controlled to drive the engine to output power to the wheel through the clutch; when the SOC value of the power battery is less than or equal to When the first preset value M1, the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1, and the vehicle resistance F of the hybrid vehicle is greater than the first preset resistance F1, the engine is further controlled to drive the engine to pass the clutch. Output to the wheel.
  • the SOC value of the power battery, the accelerator pedal depth D of the hybrid vehicle, the vehicle speed V, and the vehicle resistance F are acquired in real time.
  • the SOC value of the power battery, the accelerator pedal depth D of the hybrid vehicle, the vehicle speed V, and the vehicle resistance F are judged, and the power generation power of the sub-motor is adjusted according to the following three judgment results:
  • the engine is controlled to output power to the wheel through the clutch, so that the engine and the power motor simultaneously participate in driving, reducing the load of the power motor to reduce the power consumption of the power battery.
  • the electric quantity can ensure that the engine works in the preset optimal economic area, while avoiding the rapid decline of the SOC value of the power battery.
  • the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1
  • the accelerator pedal depth D is greater than the first preset depth D1
  • controlling the engine to pass the clutch Power output to the wheel, so that the engine and the power motor participate in the drive at the same time, reduce the load of the power motor to reduce the power consumption of the power battery, thereby ensuring that the engine works in the preset optimal economic area while avoiding the SOC of the power battery.
  • the value drops quickly.
  • the engine is controlled to pass.
  • the clutch outputs power to the wheels, so that the engine and the power motor participate in the drive at the same time, reducing the load of the power motor to reduce the power consumption of the power battery, thereby ensuring that the engine works in a preset optimal economic area while avoiding the power battery.
  • the SOC value drops rapidly.
  • the power generation control method of the hybrid vehicle can control the sub-motor to enter the power generation power adjustment mode according to the SOC value M of the power battery, the vehicle speed V, and the vehicle demand power P2, specifically including The following steps:
  • S301 Obtain a SOC value M of the power battery and a vehicle speed V of the hybrid vehicle.
  • S302 Acquire a vehicle speed V of the hybrid vehicle when the SOC value M of the power battery is greater than a preset limit value M2 and less than or equal to the first preset value M1.
  • S303 Acquire a vehicle demand power P2 of the hybrid vehicle when the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1.
  • the engine can participate in driving when the driving force of the power motor output is insufficient, thereby ensuring the normal running of the whole vehicle, improving the power performance of the whole vehicle, and improving the mileage of the whole vehicle.
  • the engine can be controlled to operate in an economic zone. Since the engine has the lowest fuel consumption and the highest fuel economy in the preset optimal economic region, fuel consumption can be reduced, engine noise can be reduced, and the economic performance of the vehicle can be improved.
  • the control engine participates in driving to cause the engine to output power to the wheels through the clutch.
  • the engine can participate in driving when the driving force of the power motor output is insufficient, thereby ensuring the normal running of the whole vehicle, improving the power performance of the whole vehicle, and improving the mileage of the whole vehicle.
  • the engine does not drive the sub-motor to generate electricity. At this time, the power of the power battery is nearly full, no charging is required, and the engine does not drive the sub-motor to generate electricity. That is to say, when the power of the power battery is close to full power, the engine does not drive the sub motor to generate electricity, so that the sub motor does not charge the power battery.
  • the power generation power of the sub-motor can be adjusted.
  • the power generation power adjustment process of the embodiment of the present invention will be specifically described below.
  • the power generation power P1 of the sub-motor is adjusted according to the vehicle required power P2 of the hybrid vehicle and the charging power P3 of the power battery.
  • the formula for adjusting the power generation P1 of the sub-motor according to the vehicle demand power P2 of the hybrid vehicle and the charging power P3 of the power battery is as follows:
  • P1 is the power generation power of the secondary motor
  • P2 is the power demanded by the whole vehicle
  • P3 is the charging power of the power battery
  • P11 is the driving power of the whole vehicle
  • P21 is the power of the electrical equipment.
  • the electrical equipment includes the first electrical equipment and the second electrical equipment, that is, the electrical equipment power P21 may include the power required by the high-voltage electrical equipment and the low-voltage electrical equipment.
  • the vehicle driving power P11 may include the output power of the power motor 2, and the vehicle driving power P11 may include the output power of the power motor according to the preset throttle-torque curve of the power motor and the speed of the power motor.
  • the vehicle driving power P11 is obtained, wherein the preset throttle-torque curve can be determined when the hybrid vehicle power is matched.
  • the electrical equipment power P21 can be obtained in real time according to the electrical equipment running in the vehicle, for example, the electrical equipment power P21 is calculated by DC consumption on the bus.
  • the charging power P3 of the power battery can be obtained from the SOC value of the power battery.
  • the vehicle driving power P11 b1kw acquired in real time
  • the power of the electrical equipment P21 b2kw
  • the charging power of the power battery P3 b3kw
  • the power generation of the secondary motor b1+b2+b3.
  • the charging power P3 of the power battery, the driving power of the vehicle P11, and the power P21 of the electrical equipment can be obtained, and the charging power P3 of the power battery, the driving power of the vehicle P11, and the power of the electrical equipment are obtained.
  • the sum of P21 is used as the power generation power P1 of the sub-motor, whereby the power generation power of the sub-motor can be adjusted according to the calculated P1 value, for example, the output torque and the rotation speed of the engine can be controlled according to the calculated P1 value,
  • the engine drives the secondary motor to adjust the power generated.
  • the power generation of the secondary motor is adjusted, including: obtaining a rate of change of the SOC value of the power battery, and selecting a minimum output power corresponding to the optimal economic region of the engine according to the vehicle demand power P2.
  • the relationship between Pmin and the rate of change of the SOC value of the power battery regulates the power generation of the sub motor.
  • the rate of change of the SOC value of the power battery can be obtained according to the SOC value of the power battery, for example, the SOC value of the power battery is collected once every time interval t, so that the current SOC value of the power battery can be compared with the previous SOC value.
  • the ratio of the difference to the time interval t is taken as the rate of change of the SOC value of the power battery 3.
  • the optimal economic region of the engine can be determined according to the engine characteristic curve shown in FIG. 1a, and then the minimum output power Pmin corresponding to the optimal economic region of the engine can be obtained, and the minimum corresponding to the optimal economic region of the engine is determined.
  • the power generation of the sub-motor 5 can be adjusted according to the relationship between the vehicle demand power P2 and the minimum output power Pmin corresponding to the optimal economic region of the engine and the rate of change of the SOC value of the power battery.
  • the engine when the hybrid vehicle runs at a low speed, the engine is operated in an economical area, the fuel consumption can be reduced, the engine noise can be reduced, the economic performance of the vehicle can be improved, and the engine can generate electricity only at low speeds without participating in the drive, since the engine does not participate.
  • the clutch is not needed, which can reduce the clutch wear or slip, reduce the sense of frustration, improve the comfort, and thus maintain the low-speed electric balance and low-speed smoothness of the whole vehicle and improve the performance of the whole vehicle.
  • the vehicle driving power P11 and the electrical equipment power P21 are acquired in real time to obtain the vehicle demand power P2 of the hybrid vehicle.
  • the vehicle demand power P2 of the hybrid vehicle is judged, wherein the vehicle demand power P2 can satisfy the following three situations.
  • the first case is: the vehicle demand power P2 is smaller than the minimum output power Pmin corresponding to the optimal economic region of the engine; the second case is: the vehicle demand power P2 is greater than or equal to the minimum output power Pmin corresponding to the optimal economic region of the engine. And less than or equal to the maximum allowable power generation Pmax of the secondary motor; the third case is: the vehicle required power P2 is greater than the maximum allowable power generation Pmax of the secondary motor.
  • the charging power P3 of the power battery is obtained according to the rate of change of the SOC value of the power battery, and is determined.
  • the engine is controlled to The minimum output power Pmin is used to generate power to adjust the power generation of the secondary motor; if the charging power P3 of the power battery is greater than or equal to the difference between the minimum output power Pmin and the vehicle demand power P2, according to the charging power P3 of the power battery and the vehicle demand.
  • the sum of the powers P2 obtains the output power of the engine in the preset optimal economic region, and controls the engine to generate power with the obtained output power to adjust the power generation power P1 of the sub-motor.
  • the first relationship table between the rate of change of the SOC value of the power battery and the charging power P3 of the power battery may be pre-stored, thereby, after obtaining the rate of change of the SOC value of the power battery, by comparing the first relationship table The charging power P3 of the corresponding power battery can be obtained.
  • the rate of change of the SOC value of the power battery and the charging power P3 of the power battery satisfy the relationship shown in Table 1 below.
  • the vehicle driving power P11 and the electrical equipment power P21 are acquired in real time to obtain the vehicle demand power P2 of the hybrid vehicle, and the vehicle demand power P2 of the hybrid vehicle is obtained. Make a judgment.
  • the charging power P3 of the power battery can be obtained according to the rate of change of the SOC value of the power battery, and it is determined whether the charging power P3 of the power battery is less than the minimum. The difference between the output power Pmin and the vehicle demand power P2.
  • the charging power P3 of the power battery is less than the difference between the minimum output power Pmin and the vehicle demand power P2, that is, P3 ⁇ Pmin-P2, Then, by controlling the engine to generate power with the minimum output power Pmin to adjust the power generation of the sub-motor 1; if the charging power P3 of the power battery is greater than or equal to the difference between the minimum output power Pmin and the vehicle demand power P2, that is, P3 ⁇ Pmin-P2 According to the sum of the charging power P3 of the power battery and the power demand P2 of the whole vehicle, the output power of the engine in the preset optimal economic region is obtained, and the power generated by controlling the engine to obtain the output power is used to adjust the power generation of the auxiliary motor. .
  • the minimum output power Pmin corresponding to the optimal economic region of the engine and the vehicle demand power P2 according to the charging power P3 of the power battery are obtained to operate the engine in a preset optimal economic region, and the engine only performs power generation without participating in driving, thereby reducing engine fuel consumption and reducing engine noise.
  • the vehicle required power P2 when the vehicle required power P2 is greater than or equal to the minimum output power Pmin corresponding to the optimal economic region of the engine and less than or equal to the maximum allowable power generation Pmax of the sub-motor, according to the SOC value of the power battery.
  • the rate of change obtains the charging power P3 of the power battery, and obtains the output power P4 of the engine in the preset optimal economic region according to the sum of the charging power P3 of the power battery and the power demand P2 of the vehicle, and the output obtained by controlling the engine.
  • the power P4 performs power generation to adjust the power generation power P1 of the sub-motor.
  • the vehicle required power P2 is greater than or equal to the minimum output power Pmin corresponding to the optimal economic region of the engine and less than the maximum allowable power generation Pmax of the sub-motor, the sum of the charging power P3 of the power battery and the required power P2 of the entire vehicle.
  • the engine's output power is obtained to operate the engine in a preset optimal economic zone, and the engine only generates electricity without participating in the drive, thereby reducing engine fuel consumption and reducing engine noise.
  • the engine when the vehicle required power P2 is greater than the maximum allowable power generation Pmax of the sub-motor, the engine is also controlled to drive to cause the engine to output power to the wheels through the clutch.
  • the engine is also controlled to output the driving force to the wheel through the clutch.
  • the engine is driven to drive a portion of the drive power P' through the engine to reduce the need for the secondary motor's power generation P1 to operate the engine in a predetermined optimal economic zone.
  • the power battery is externally discharged to supply power to the power motor.
  • the engine and the power motor are controlled to simultaneously output power to the wheels of the hybrid vehicle, so that The engine operates in the pre-set optimal economic zone.
  • the power generation control method of the hybrid vehicle can adjust the power generation of the secondary motor after the secondary motor enters the power generation power adjustment mode, and specifically includes the following steps:
  • S401 Control the sub motor to enter the power generation power adjustment mode.
  • S402 Acquire a whole vehicle demand power P2 of the hybrid vehicle and a rate of change of the SOC value of the power battery.
  • S405 When the charging power P3 of the power battery is greater than or equal to the difference between the minimum output power Pmin and the vehicle demand power P2, obtaining the optimal economy of the engine according to the sum of the charging power P3 of the power battery and the power demand P2 of the whole vehicle.
  • the output power P4 in the area is generated by controlling the engine to obtain the power P4 to adjust the power generation power P1 of the sub-motor.
  • the engine can operate in an economical area at low speeds, and can only generate electricity without participating in the drive, thereby eliminating the use of clutches, reducing clutch wear or slippage, while reducing the sense of frustration, improving comfort, reducing fuel consumption, and reducing the engine.
  • Noise in order to maintain the vehicle's low-speed electrical balance and low-speed smoothness, improve vehicle performance.
  • the power generation control method of the hybrid vehicle specifically includes the following steps:
  • S501 Obtain a SOC value M of the power battery and a vehicle speed V of the hybrid vehicle.
  • S502 Determine whether the vehicle speed V of the hybrid vehicle is less than the first preset vehicle speed V1.
  • step S503 If yes, go to step S503; if no, go to step S504.
  • S503 Determine whether the SOC value M of the power battery is less than or equal to the first preset value M1.
  • step S507 If yes, go to step S507; if no, go to step S506.
  • S504 Determine whether the SOC value M of the power battery is less than or equal to the first preset value M1.
  • step S505 If yes, go to step S505; if no, go to step S506.
  • S508 Determine whether the accelerator pedal depth D is greater than the first preset depth D1 or whether the vehicle resistance F of the hybrid vehicle is greater than the first preset resistance F1 or whether the SOC value M of the power battery is less than a preset limit value M2.
  • step S505 If yes, go to step S505; if no, go to step S509.
  • S510 Determine whether the vehicle required power P2 is less than or equal to the maximum allowable power generation Pmax of the sub-motor.
  • step S511 If yes, go to step S511; if no, go to step S505.
  • S511 Control the engine to drive the auxiliary motor to generate electricity, and the engine does not participate in driving.
  • the sub motor is controlled to enter the power generation power adjustment mode.
  • step S513 If yes, go to step S513; if no, go to step S514.
  • S513 Acquire the charging power P3 of the power battery according to the rate of change of the SOC value of the power battery, and execute step S515.
  • S514 Acquire the charging power P3 of the power battery according to the rate of change of the SOC value of the power battery, and execute step S516.
  • S515 Determine whether the charging power P3 of the power battery is smaller than a difference between the minimum output power Pmin and the vehicle required power P2.
  • step S517 If yes, go to step S517; if no, go to step S516.
  • S516 Obtain the output power P4 of the engine in the preset optimal economic region according to the sum of the charging power P3 of the power battery and the vehicle demand power P2, and generate power by controlling the engine to obtain the output power P4.
  • S517 Perform power generation by controlling the engine at the minimum output power Pmin.
  • the power generation control method of the hybrid vehicle first acquires the SOC value of the power battery and the vehicle speed of the hybrid vehicle, and enters the power generation according to the SOC value of the power battery and the vehicle speed of the hybrid vehicle.
  • Power regulation mode to keep the engine running in the preset optimal economic zone, which can reduce the fuel consumption of the engine, improve the economy of the whole vehicle operation, and reduce the engine noise. At the same time, it can realize multiple driving modes and maintain the whole vehicle. Low-speed electric balance and low-speed smoothness improve vehicle performance.
  • the present invention also proposes a computer readable storage medium having instructions stored therein, the hybrid vehicle executing the power generation control method of the above embodiment when the processor of the hybrid vehicle executes an instruction.
  • the hybrid vehicle executes the power generation control method described above, which can reduce the fuel consumption of the engine and improve the economy of the entire vehicle operation, and The engine noise is reduced, and various driving modes can be realized, which can maintain the low-speed electric balance and low-speed smoothness of the whole vehicle and improve the performance of the whole vehicle.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混合动力汽车及其动力系统和发电控制方法,动力系统包括:发动机(1),其通过离合器(6)将动力输出到混合动力汽车的车轮(7);动力电机(2),其用于输出驱动力至混合动力汽车的车轮(7);动力电池(3),其用于给动力电机(2)供电;DC-DC变换器(4);副电机(5)分别与发动机(1)、动力电机(2)、DC-DC变换器(4)和动力电池(3)相连,其在发动机(1)的带动下进行发电;控制模块(101),其用于获取动力电池(3)的SOC值和混合动力汽车的车速,并根据动力电池(3)的SOC值和混合动力汽车的车速控制副电机(5)进入发电功率调节模式,以使发动机(1)运行在预设的最佳经济区域,从而能够降低发动机(1)的油耗,提高整车运行的经济性,并且降低了发动机(1)噪音,同时可实现多种驱动模式,能够维持整车低速电平衡及低速平顺性。

Description

混合动力汽车的动力系统和发电控制方法及混合动力汽车
本申请要求于2017年03月31日提交中国专利局、申请号为201710210171.0、发明名称为“混合动力汽车的动力系统和发电控制方法及混合动力汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及汽车技术领域,特别涉及一种混合动力汽车的动力系统、一种混合动力汽车、一种混合动力汽车的发电控制方法和一种计算机可读存储介质。
背景技术
随着能源的不断消耗,新能源车型的开发和利用已逐渐成为一种趋势。混合动力汽车作为新能源车型中的一种,通过发动机和/或电机进行驱动。
但是,在相关技术中,混合动力汽车的电动发电机在充当驱动电机的同时还充当发电机,进而导致低速行驶时电动发电机的转速较低,且电动发电机的发电功率和发电效率也非常低,从而无法满足低速行驶的用电需求,使得整车维持低速时的电平衡相对较困难。
因此,相关技术需要进行改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的第一个目的在于提出一种混合动力汽车的动力系统,可实现整车低速电平衡。
本发明的第二个目的在于提出一种混合动力汽车。本发明的第三个目的在于提出一种混合动力汽车的发电控制方法。本发明的第四个目的在于提出一种计算机可读存储介质。
为达到上述目的,本发明第一方面实施例提出的一种混合动力汽车的动力系统,包括:发动机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮;动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮;动力电池,所述动力电池用于给所述动力电机供电;DC-DC变换器;与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和动力电池相连,所述副电机在所述发动机的带动下进行发电;控制模块,所述控制模块用于获取所述动力电池的SOC值和所述混合动力汽车的车速,并根据所述动力电池的SOC值和所述混合动力汽车的车速控制所述副电机进入发电功率调节模式,以使所述发动机运行在预设的最佳经济区域。
根据本发明实施例提出的混合动力汽车的动力系统,发动机通过离合器将动力输出到 混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,副电机在发动机的带动下进行发电,控制模块获取动力电池的SOC值和混合动力汽车的车速,并根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域,从而能够维持整车低速电平衡及低速平顺性,提升整车性能。
为达到上述目的,本发明第二方面实施例提出的一种混合动力汽车,包括所述的混合动力汽车的动力系统。
根据本发明实施例提出的混合动力汽车,通过上述混合动力汽车的动力系统,能够维持整车低速电平衡及低速平顺性,提升整车性能。
为达到上述目的,本发明第三方面实施例提出的一种混合动力汽车的发电控制方法,包括以下步骤:获取所述混合动力汽车的动力电池的SOC值和所述混合动力汽车的车速;根据所述动力电池的SOC值和所述混合动力汽车的车速控制所述混合动力汽车的副电机进入发电功率调节模式,以使所述混合动力汽车的发动机运行在预设的最佳经济区域,其中,所述副电机在所述发动机的带动下进行发电。
根据本发明实施例的混合动力汽车的发电控制方法,先获取混合动力汽车的动力电池的SOC值和混合动力汽车的车速,根据动力电池的SOC值和混合动力汽车的车速控制混合动力汽车的副电机进入发电功率调节模式,以使混合动力汽车的发动机运行在预设的最佳经济区域,其中,副电机在发动机的带动下进行发电,从而能够维持整车低速电平衡及低速平顺性,提升整车性能。
为达到上述目的,本发明第四方面实施例提出的一种计算机可读存储介质,具有存储于其中的指令,当所述指令被执行时,所述混合动力汽车执行所述的发电控制方法。
根据本发明实施例的计算机可读存储介质,具有存储于其中的指令,当混合动力汽车的处理器执行该指令时,混合动力汽车执行上述发电控制方法,从而能够维持整车低速电平衡及低速平顺性,提升整车性能。
附图说明
图1是根据本发明实施例的混合动力汽车的动力系统的方框示意图;
图1a是根据本发明实施例的发动机万有特性曲线示意图;
图2a是根据本发明一个实施例的混合动力汽车的动力系统的结构示意图;
图2b是根据本发明另一个实施例的混合动力汽车的动力系统的结构示意图;
图3是根据本发明一个实施例的混合动力汽车的动力系统的方框示意图;
图4是根据本发明一个实施例的发动机与对应车轮之间的传动结构的示意图;
图5是根据本发明另一个实施例的发动机与对应车轮之间的传动结构的示意图;
图6是根据本发明实施例的混合动力汽车的方框示意图;
图7是根据本发明实施例的混合动力汽车的发电控制方法的流程图;
图8是根据本发明一个实施例的混合动力汽车的发电控制方法的流程图;
图9是根据本发明另一个实施例的混合动力汽车的发电控制方法的流程图;
图10是根据本发明另一个实施例的混合动力汽车的发电控制方法的流程图;
图11是根据本发明另一个实施例的混合动力汽车的发电控制方法的流程图;以及
图12是根据本发明一个具体实施例的混合动力汽车的发电控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考图1-5来描述本发明第一方面实施例提出的混合动力汽车的动力系统,该动力系统为混合动力汽车正常行驶提供充足的动力和电能。
图1是根据本发明实施例的混合动力汽车的动力系统的方框示意图。如图1所示,该混合动力汽车的动力系统包括:发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5和主控制器101。
根据本发明的一个具体实施例,混合动力汽车可为PHEV(Plug-in Hybrid Electric Vehicle,插电式混合动力汽车)。
结合图1至图3所示,发动机1通过离合器6将动力输出到混合动力汽车的车轮7;动力电机2用于输出驱动力至混合动力汽车的车轮7。也就是说,本发明实施例的动力系统可通过发动机1和/或动力电机2为混合动力汽车正常行驶提供动力。在本发明的一些实施例中,动力系统的动力源可以是发动机1和动力电机2,也就是说,发动机1和动力电机2中的任一个可单独输出动力至车轮7,或者,发动机1和动力电机2也可同时输出动力至车轮7。
动力电池3用于给动力电机2供电;副电机5与发动机1相连,例如,副电机5可通过发动机1的轮系端与发动机1相连,副电机5分别与动力电机2、DC-DC变换器4和动 力电池3相连,副电机5在发动机1的带动下进行发电时,实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。换言之,发动机1可带动副电机5发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。应当理解的是,发动机1可在输出动力到车轮7的同时带动副电机5发电,也可单独带动副电机5发电。
由此,动力电机2和副电机5分别一一对应充当驱动电机和发电机,由于低速时副电机5具有较高的发电功率和发电效率,可以满足低速行驶的用电需求,维持整车低速电平衡,维持低速平顺性,提升整车的动力性能。
在一些实施例中,副电机5可为BSG(Belt-driven Starter Generator,皮带传动启动/发电一体化电机)电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可不经过电压变换直接给动力电池3充电,还可直接给动力电机2和/或DC-DC变换器4供电。并且副电机5也属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率,提高了正常发电效率。
另外,在本发明的一些实施例中,副电机5可用于启动发动机1,即副电机5可实现启动发动机1的功能,例如当启动发动机1时,副电机5可带动发动机1的曲轴转动,以使发动机1的活塞达到点火位置,从而实现发动机1的启动,由此副电机5可实现相关技术中启动机的功能。
如上所述,发动机1和动力电机2均可用于驱动混合动力汽车的车轮7。例如,如图2a所示,发动机1和动力电机2共同驱动混合动力汽车的同一车轮例如一对前轮71(包括左前轮和右前轮);又如,如图2b所示,发动机1可驱动混合动力汽车的第一车轮例如一对前轮71(包括左前轮和右前轮),动力电机2可驱动力至混合动力汽车的第二车轮例如一对后轮72(包括左后轮和右后轮)。
换言之,当发动机1和动力电机2共同驱动一对前轮71时,动力系统的驱动力均输出至一对前轮71,整车可采用两驱的驱动方式;当发动机1驱动一对前轮71且动力电机2驱动一对后轮72时,动力系统的驱动力分别输出至一对前轮71和一对后轮72,整车可采用四驱的驱动方式。
进一步地,在发动机1和动力电机2共同驱动同一车轮时,结合图2a所示,混合动力汽车的动力系统还包括差速器8、主减速器9和变速器90,其中,发动机1通过离合器6、变速器90、主减速器9以及差速器8将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过主减速器9以及差速器8输出驱动力至混合动力汽车的第一车轮例如 一对前轮71。其中,离合器6与变速器90可集成设置。
在发动机1驱动第一车轮且动力电机2驱动第二车轮时,结合图2b所示,混合动力汽车的动力系统还包括第一变速器91和第二变速器92,其中,发动机1通过离合器6和第一变速器91将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过第二变速器92输出驱动力至混合动力汽车的第二车轮例如一对后轮72。其中,离合器6与第一变速器91可集成设置。
进一步地,在本发明的一些实施例中,如图1至图3所示,副电机5还包括第一控制器51,动力电机2还包括第二控制器21,副电机5通过第一控制器51分别连接到动力电池3和所述DC-DC变换器4,并通过第一控制器51和第二控制器21连接到动力电机2。
具体来说,第一控制器51分别与第二控制器21、动力电池3和DC-DC变换器4相连,第一控制器51可具有AC-DC变换单元,副电机5发电时可产生交流电,AC-DC变换单元可将高压电机2发电产生的交流电变换为高压直流电例如600V高压直流电,以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
类似地,第二控制器21可具有DC-AC变换单元,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-AC变换单元可再将第一控制器51变换出的高压直流电变换为交流电,以给动力电机2供电。
换言之,如图3所示,在副电机5进行发电时,副电机5可通过第一控制器51给动力电池3充电和/或给DC-DC变换器4供电。也就是说,副电机5可通过第一控制器51实现给动力电池3充电和给DC-DC变换器4供电中的任意一个或两个。此外,副电机5还可通过第一控制器51和第二控制器21给动力电机2供电。
进一步地,如图1至图3所示,DC-DC变换器4还与动力电池3相连。DC-DC变换器4还通过第二控制器21与动力电机2相连。
在一些实施例中,如图3所示,第一控制器51具有第一直流端DC1,第二控制器21具有第二直流端DC2,DC-DC变换器4具有第三直流端DC3,DC-DC变换器4的第三直流端DC3可与第一控制器51的第一直流端DC1相连,以对第一控制器51通过第一直流端DC1输出的高压直流电进行DC-DC变换。并且,DC-DC变换器4的第三直流端DC3还可与动力电池3相连,进而第一控制器51的第一直流端DC1可与动力电池3相连,以使第一控制器51通过第一直流端DC1输出高压直流电至动力电池3以给动力电池3充电。进一步地,DC-DC变换器4的第三直流端DC3还可与第二控制器21的第二直流端DC2相连,进而第一控制器51的第一直流端DC1可与第二控制器21的第二直流端DC2相连,以使第一控制器51通过第一直流端DC1输出高压直流电至第二控制器21以给动力电机2 供电。
进一步地,如图3所示,DC-DC变换器4还分别与混合动力汽车中的第一电器设备10和低压蓄电池20相连以给第一电器设备10和低压蓄电池20供电,且低压蓄电池20还与第一电器设备10相连。
在一些实施例中,如图3所示,DC-DC变换器4还具有第四直流端DC4,DC-DC变换器4可将动力电池3输出的高压直流电和/或副电机5通过第一控制器51输出的高压直流电转换为低压直流电,并通过第四直流端DC4输出该低压直流电。也就是说,DC-DC变换器4可将动力电池3输出的高压直流电和副电机5通过第一控制器51输出的高压直流电中的任意一个或两个转换为低压直流电,并通过第四直流端DC4输出该低压直流电。进一步地,DC-DC变换器4的第四直流端DC4可与第一电器设备10相连,以给第一电器设备10供电,其中,第一电器设备10可为低压用电设备,包括但不限于车灯、收音机等。DC-DC变换器4的第四直流端DC4还可与低压蓄电池20相连,以给低压蓄电池20充电。
并且,低压蓄电池20与第一电器设备10相连,以给第一电器设备10供电,特别地,在副电机5停止发电且动力电池3故障或电量不足时,低压蓄电池20可为第一电器设备10供电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
如上所述,DC-DC变换器4的第三直流端DC3与第一控制器51相连,DC-DC变换器4的第四直流端DC4分别与第一电器设备10和低压蓄电池20相连,当动力电机2、第二控制器21和动力电池3发生故障时,副电机5可进行发电以通过第一控制器51和DC-DC变换器4给第一电器设备10供电和/或给低压蓄电池20充电,以使混合动力汽车以纯燃油模式行驶。也就是说,当动力电机2、第二控制器21和动力电池3发生故障时,副电机5可进行发电以通过第一控制器51和DC-DC变换器4实现给第一电器设备10供电和给低压蓄电池20充电中的任意一个或两个,以使混合动力汽车以纯燃油模式行驶。
换言之,当动力电机2、第二控制器21和动力电池3发生故障时,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-DC变换器4可将第一控制器50变换出的高压直流电变换为低压直流电,以给第一电器设备10供电和/或给低压蓄电池20充电。即以实现给第一电器设备10供电和给低压蓄电池20充电中的任意一个或两个。
由此,副电机5和DC-DC变换器4有一路单独供电通道,当动力电机2、第二控制器21和动力电池3发生故障时,无法实现电动驱动,此时通过副电机5和DC-DC变换器4的单独供电通道,可以保证整车的低压用电,确保整车可实现纯燃油模式行驶,提高整车行驶里程。
进一步结合图3的实施例,第一控制器51、第二控制器21和动力电池3还分别与混合 动力汽车中的第二电器设备30相连。
在一些实施例中,如图3所示,第一控制器51的第一直流端DC1可与第二电器设备30相连,当副电机5进行发电时,副电机5可通过第一控制器51直接给第二电器设备30供电。换言之,第一控制器51的AC-DC变换单元还可将副电机5发电产生的交流电变换为高压直流电,并直接给第二电器设备30供电。
动力电池3还可与第二电器设备30相连,以给第二电器设备30供电。即言,动力电池3输出的高压直流电可直接供给第二电器设备30。
其中,第二电器设备30可为高压电器设备,可包括但不限于空调压缩机、PTC(Positive Temperature Coefficient,正的温度系数)加热器等。
如上所述,通过副电机5发电,可实现为动力电池3充电、或为动力电机2供电、或为第一电器设备10和第二电器设备30供电。并且,动力电池3可通过第二控制器21为动力电机2供电,或为第二电器设备30供电,也可通过DC-DC变换器4为第一电器设备10和/或低压蓄电池20供电。由此丰富了整车供电方式,满足整车在不同工况下的用电需求,提升了整车的性能。
需要说明的是,在本发明实施例中,低压可指12V(伏)或24V的电压,高压可指600V的电压,但不限于此。
下面结合图4详细描述混合动力汽车的动力系统的一个具体实施例,该实施例适用于发动机1和动力电机2共同驱动同一车轮的动力系统,即两驱混合动力汽车。需要说明的是,该实施例主要描述发动机1、动力电机2与车轮7之间的一种具体传动结构,特别是图2a中变速器90的结构,其余部分与图1和图3的实施例基本相同,这里不再详细赘述。
还需要说明的是,下面实施例中的多个输入轴、多个输出轴和电机动力轴931及各轴上相关齿轮以及换挡元件等可用以构成图2a中的变速器90。
在一些实施例中,如图1、图3和图4所示,混合动力汽车的动力系统主要包括发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5、多个输入轴(例如,第一输入轴911、第二输入轴912)、多个输出轴(例如,第一输出轴921、第二输出轴922)和电机动力轴931及各轴上相关齿轮以及换挡元件(如,同步器)。
如图4所示,发动机1通过离合器6例如图4示例中的双离合器2d将动力输出到混合动力汽车的车轮7。在发动机1与输入轴之间进行动力传递时,发动机1设置成通过双离合器2d可选择性地接合多个输入轴中的至少一个。换言之,在发动机1向输入轴传输动力时,发动机1能够选择性地与多个输入轴中的一个接合以传输动力,或者发动机1还能够选择性地与多个输入轴中的两个或两个以上输入轴同时接合以传输动力。
例如,在图4的示例中,多个输入轴可以包括第一输入轴911和第二输入轴912两根输入轴,第二输入轴912可同轴地套设在第一输入轴911上,发动机1能够通过双离合器2d选择性地与第一输入轴911和第二输入轴912中的一个接合以传输动力。或者,特别地,发动机1还能与第一输入轴911和第二输入轴912同时接合以传输动力。当然,应当理解的是,发动机1还可同时与第一输入轴911和第二输入轴912断开。
多个输出轴可以包括第一输出轴921和第二输出轴922两根输出轴,第一输出轴921和第二输出轴922分别与第一输入轴911平行设置。
输入轴与输出轴之间可以通过挡位齿轮副进行传动。例如,每个输入轴上均设置有挡位主动齿轮,即言第一输入轴911和第二输入轴912中的每个输入轴上设置有挡位主动齿轮,每个输出轴上均设置有挡位从动齿轮,即言第一输出轴921和第二输出轴922中的每个输出轴上设置有挡位从动齿轮,挡位从动齿轮与挡位主动齿轮对应地啮合,从而构成多对速比不同的齿轮副。
在本发明的一些实施例中,输入轴与输出轴之间可以采用六挡传动,即具有一挡齿轮副、二挡齿轮副、三挡齿轮副、四挡齿轮副、五挡齿轮副和六挡齿轮副。但是,本发明并不限于此,对于本领域的普通技术人员而言,可以根据传动需要而适应性增加或减少挡位齿轮副的个数,并不限于本发明实施例中所示的六挡传动。
如图4所示,电机动力轴931设置成可与多个输出轴(例如,第一输出轴921、第二输出轴922)中的一个进行联动,通过电机动力轴931与输出轴中的所述一个进行联动,从而动力可在电机动力轴931与输出轴中的所述一个之间进行传递。例如,经该输出轴的动力(如来自发动机1输出的动力)可输出给电机动力轴931,或者经电机动力轴931的动力(如来自动力电机2输出的动力)也可输出给该输出轴。
需要说明的是,上述的“联动”可以理解为多个部件(例如,两个)关联运动,以两个部件联动为例,在其中一个部件运动时,另一个部件也随之运动。
例如,在本发明的一些实施例中,齿轮与轴联动可以理解为是在齿轮旋转时、与其联动的轴也将旋转,或者在该轴旋转时、与其联动的齿轮也将旋转。
又如,轴与轴联动可以理解为是在其中一根轴旋转时、与其联动的另一根轴也将旋转。
再如,齿轮与齿轮联动可以理解为是在其中一个齿轮旋转时、与其联动的另一个齿轮也将旋转。
在本发明下面有关“联动”的描述中,如果没有特殊说明,均作此理解。
动力电机2设置成能够与电机动力轴931联动,例如,动力电机2可将产生的动力输出给电机动力轴931,从而通过电机动力轴931输出驱动力至混合动力汽车的车轮7。
需要说明一点,在本发明的描述中,电机动力轴931可以是动力电机2自身的电机轴。当然,可以理解的是,电机动力轴931与动力电机2的电机轴也可以是两个单独的轴。
在一些实施例中,如图4所示,输出部221相对输出轴中的所述一个(例如,第二输出轴922)可差速转动,换言之,输出部221与该输出轴能够以不同的转速独立旋转。
进一步,输出部221设置成可选择性地接合输出轴中的所述一个以与该输出轴同步转动,换言之,输出部221相对该输出轴能够差速转动或同步转动。简言之,输出部221相对输出轴的所述一个可接合以同步转动,当然也可断开以差速转动。
如图4所示,该输出部221可以空套设置在输出轴中的所述一个上,但不限于此。例如在图4的示例中,该输出部221空套在第二输出轴922上,即输出部221与第二输出轴922能够以不同的转速差速转动。
如上所述,输出部221可与输出轴的所述一个同步转动,例如,可以通过增设对应的同步器在需要时实现输出部221与该输出轴的同步作用。该同步器可以是输出部同步器221c,输出部同步器221c设置成用于同步输出部221和输出轴中的所述一个。
在一些实施例中,动力电机2用于输出驱动力至混合动力汽车的车轮7,发动机1和动力电机2共同驱动混合动力汽车的同一车轮。结合图4的示例,车辆的差速器75可以布置在一对前轮71之间或一对后轮72之间,在本发明的一些示例中,当动力电机2驱动的一对前轮71时,差速器75可位于一对前轮71之间。
差速器75的功用是当车辆转弯行驶或在不平路面上行驶时,使左右驱动车轮以不同的角速度滚动,以保证两侧驱动轮与地面间作纯滚动运动。差速器75上设置有主减速器9的主减速器从动齿轮74,例如主减速器从动齿轮74可以布置在差速器75的壳体上。主减速器从动齿轮74可以是锥齿轮,但不限于此。
在一些实施例中,如图1所示,动力电池3用于给动力电机2供电;副电机5与发动机1相连,副电机5还分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
下面再结合图5详细描述混合动力汽车的动力系统的另一个具体实施例,该实施例同样适用于发动机1和动力电机2共同驱动同一车轮的动力系统,即两驱混合动力汽车。需要说明的是,该实施例主要描述发动机1、动力电机2与车轮7之间的一种具体传动结构,特别是图2a中变速器90的结构,其余部分与图1和图3的实施例基本相同,这里不再详细赘述。
还需要说明的是,下面实施例中的多个输入轴、多个输出轴和电机动力轴931及各轴 上相关齿轮以及换挡元件等可用以构成图2a中的变速器90。
在一些实施例中,如图1、图3和图5所示,混合动力汽车的动力系统主要包括发动机1、动力电机2、动力电池3、DC-DC变换器4、副电机5、多个输入轴(例如,第一输入轴911、第二输入轴912)、多个输出轴(例如,第一输出轴921、第二输出轴922)和电机动力轴931及各轴上相关齿轮以及换挡元件(如,同步器)。
如图5所示,发动机1通过离合器6例如图4示例中的双离合器2d将动力输出到混合动力汽车的车轮7。在发动机1与输入轴之间进行动力传递时,发动机1设置成通过双离合器2d可选择性地接合多个输入轴中的至少一个。换言之,在发动机1向输入轴传输动力时,发动机1能够选择性地与多个输入轴中的一个接合以传输动力,或者发动机1还能够选择性地与多个输入轴中的两个或两个以上输入轴同时接合以传输动力。
例如,在图5的示例中,多个输入轴可以包括第一输入轴911和第二输入轴912两根输入轴,第二输入轴912同轴地套设在第一输入轴911上,发动机1能够通过双离合器2d选择性地与第一输入轴911和第二输入轴912中的一个接合以传输动力。或者,特别地,发动机1还能与第一输入轴911和第二输入轴912同时接合以传输动力。当然,应当理解的是,发动机1还可同时与第一输入轴911和第二输入轴912断开。
多个输出轴可以包括第一输出轴921和第二输出轴922两根输出轴,第一输出轴921和第二输出轴922与第一输入轴911平行设置。
输入轴与输出轴之间可以通过挡位齿轮副进行传动。例如,每个输入轴上均设置有挡位主动齿轮,即言第一输入轴911和第二输入轴912中的每个输入轴上设置有挡位主动齿轮,每个输出轴上均设置有挡位从动齿轮,即言第一输出轴921和第二输出轴922中的每个输出轴上设置有挡位从动齿轮,挡位从动齿轮与挡位主动齿轮对应地啮合,从而构成多对速比不同的齿轮副。
在本发明的一些实施例中,输入轴与输出轴之间可以采用六挡传动,即具有一挡齿轮副、二挡齿轮副、三挡齿轮副、四挡齿轮副、五挡齿轮副和六挡齿轮副。但是,本发明并不限于此,对于本领域的普通技术人员而言,可以根据传动需要而适应性增加或减少挡位齿轮副的个数,并不限于本发明实施例中所示的六挡传动。
如图5所示,输出轴(例如第一输出轴921和第二输出轴922)中的一个上空套设置有至少一个倒挡输出齿轮81,并且该输出轴上还设置有用于接合倒挡输出齿轮81的倒挡同步器(例如五挡同步器5c、六挡同步器6c),换言之,倒挡同步器同步对应的倒挡输出齿轮81和该输出轴,从而使得输出轴与由倒挡同步器同步的倒挡输出齿轮81能够同步转动,进而倒挡动力能够从该输出轴输出。
在一些实施例中,如图5所示,倒挡输出齿轮81为一个,该一个倒挡输出齿轮81可以空套在第二输出轴922上。但本发明并不限于此,在另一些实施例中,倒挡输出齿轮81也可以是两个,该两个倒挡输出齿轮81同时空套在第二输出轴922上。当然,可以理解的是,倒挡输出齿轮81也可以是三个或三个以上。
倒挡轴89设置成与输入轴(例如第一输入轴911和第二输入轴912)中的一个联动且还与至少一个倒挡输出齿轮81联动,例如,经输入轴中的所述一个上的动力可以通过倒挡轴89而传递给倒挡输出齿轮81,从而倒挡动力能够从倒挡输出齿轮81输出。在本发明的示例中,倒挡输出齿轮81均是空套在第二输出轴922上的,并且倒挡轴89是与第一输入轴911联动的,例如发动机1输出的倒挡动力可通过第一输入轴911、倒挡轴89后输出给倒挡输出齿轮81。
下面对电机动力轴931进行详细描述。电机动力轴931上空套设置有电机动力轴第一齿轮31、电机动力轴第二齿轮32。电机动力轴第一齿轮31可与主减速器从动齿轮74啮合传动,以传输驱动力至混合动力汽车的车轮7。
电机动力轴第二齿轮32设置成与其中一个挡位从动齿轮联动,在具有根据本发明实施例的动力系统的混合动力汽车处于某些工况时,动力源输出的动力可以在电机动力轴第二齿轮32以及与其联动的挡位从动齿轮之间进行传递,此时电机动力轴第二齿轮32与该挡位从动齿轮联动。例如,电机动力轴第二齿轮32与二挡从动齿轮2b联动,电机动力轴第二齿轮32与二挡从动齿轮2b可以直接啮合或通过中间传动部件间接传动。
进一步,电机动力轴931上还设置有电机动力轴同步器33c,电机动力轴同步器33c位于电机动力轴第一齿轮31与电机动力轴第二齿轮32之间,电机动力轴同步器33c可以选择性地将电机动力轴第一齿轮31或电机动力轴第二齿轮32与电机动力轴3接合。例如在图5的示例中,电机动力轴同步器33c的接合套向左移动可接合电机动力轴第二齿轮32、向右移动则可接合电机动力轴第一齿轮31。
动力电机2设置成能够与电机动力轴931联动,例如,动力电机2可将产生的动力输出给电机动力轴931,从而通过电机动力轴931输出驱动力至混合动力汽车的车轮7。
对于电机动力轴第一齿轮31而言,由于其与主减速器从动齿轮74啮合,因此动力电机2可通过电机动力轴同步器33c接合电机动力轴第一齿轮31而将产生的动力直接从电机动力轴第一齿轮31输出,这样可以缩短传动链,减少中间传动部件,提高传动效率。
其次对电机动力轴931与动力电机2的传动方式结合具体实施例进行详细说明。
在一些实施例中,如图5所示,电机动力轴931上还固定设置有电机动力轴第三齿轮33,动力电机2设置成与电机动力轴第三齿轮33直接啮合传动或间接传动。
进一步,动力电机2的电机轴上设置有第一电机齿轮511,第一电机齿轮511通过中间齿轮512与电机动力轴第三齿轮33传动。又如,动力电机2与电机动力轴931也可以同轴相连。
在一些实施例中,动力电机2用于输出驱动力至混合动力汽车的车轮7,发动机1和动力电机2共同驱动混合动力汽车的同一车轮。结合图5的示例,车辆的差速器75可以布置在一对前轮71之间或一对后轮72之间,在本发明的一些示例中,当动力电机2驱动的一对前轮71时,差速器75可位于一对前轮71之间。
差速器75的功用是当车辆转弯行驶或在不平路面上行驶时,使左右驱动车轮以不同的角速度滚动,以保证两侧驱动轮与地面间作纯滚动运动。差速器75上设置有主减速器9的主减速器从动齿轮74,例如主减速器从动齿轮74可以布置在差速器75的壳体上。主减速器从动齿轮74可以是锥齿轮,但不限于此。
进一步,第一输出轴921上固定设置有第一输出轴输出齿轮211,第一输出轴输出齿轮211随第一输出轴921同步转动,第一输出轴输出齿轮211与主减速器从动齿轮74啮合传动,从而经第一输出轴921的动力能够从第一输出轴输出齿轮211传递至主减速器从动齿轮74以及差速器75。
第二输出轴922上固定设置有第二输出轴输出齿轮212,第二输出轴输出齿轮212随第二输出轴922同步转动,第二输出轴输出齿轮212与主减速器从动齿轮74啮合传动,从而经第二输出轴922的动力能够从第二输出轴输出齿轮212传递至主减速器从动齿轮74以及差速器75。
电机动力轴第一齿轮31可用于输出经电机动力轴931的动力,因此电机动力轴第一齿轮31同样与主减速器从动齿轮74啮合传动。
在一些实施例中,如图1所示,动力电池3用于给动力电机2供电;副电机5与发动机1相连,副电机5还分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
由此,本发明实施例的混合动力汽车的动力系统,能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。而且,副电机能够直接为动力电池充电,同时也可为低压器件例如低压蓄电池、第一电器设备等供电,还可作起动机用。
进一步而言,如图1和图3所示,混合动力汽车的动力系统还包括控制模块101,控制 模块101用于对混合动力汽车的动力系统进行控制。应当理解的是,控制模块101可为混合动力汽车中具有控制功能的控制器的集成,例如可为混合动力汽车的整车控制器、图3实施例中的第一控制器51和第二控制器21等的集成,但不限于此。下面来详细描述控制模块所执行的控制方法。
在本发明的一些实施例中,控制模块101用于获取动力电池3的SOC值(State of Charge,荷电状态,也叫剩余电量)和混合动力汽车的车速V,并根据动力电池3的SOC值和混合动力汽车的车速V控制副电机5进入发电功率调节模式,以使发动机1运行在预设的最佳经济区域。其中,发电功率调节模式即为对发动机的发电功率进行调节的模式,在发电功率调节模式,可通过控制发动机1带动副电机5进行发电以对副电机5的发电功率进行调节。
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池3的SOC值,从而电池管理系统将采集到的动力电池3的SOC值发送给控制模块101,以使控制模块101获取动力电池3的SOC值。
还需说明的是,可结合发动机万有特性曲线图确定发动机1的预设最佳经济区域。如图1a所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机1的输出扭矩,横坐标是发动机1的转速,曲线a为发动机1的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机1的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,控制模块101可通过控制发动机1的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机1运行在预设的最佳经济区域。
具体来说,在混合动力汽车行驶过程中,发动机1可通过离合器6将动力输出到混合动力汽车的车轮7,并且发动机1还可带动副电机5进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机5,即带动副电机5进行发电的发电功率,另一部分是输出至车轮7,即驱动车轮7的驱动功率。
在发动机1带动副电机5进行发电时,控制模块101可首先获取动力电池3的SOC值和混合动力汽车的车速,然后根据动力电池3的SOC值和混合动力汽车的车速控制副电机5进入发电功率调节模式,以使发动机1工作在预设的最佳经济区域。在发电功率调节模式,控制模块主控制器101可在使发动机1工作在预设的最佳经济区域的前提下调节副电机5的发电功率。
在本发明的一个实施例中,控制模块101进一步用于根据动力电池3的SOC值和混合 动力汽车的车速控制副电机5的发电功率,以及根据副电机5的发电功率获得发动机1的发电功率以控制发动机1运行在预设的最佳经济区域。
由此,能够使发动机1工作在预设的最佳经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机1的油耗,降低发动机1的噪音,提高整车运行的经济性。而且,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶。
进一步地,根据本发明的一个实施例,控制模块101用于:当动力电池3的SOC值大于预设的极限值M2且小于等于第一预设值M1时,如果混合动力汽车的车速V小于第一预设车速V1,控制副电机5进入发电功率调节模式。
其中,第一预设值可为预先设置的动力电池3的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池3的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池3的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池3的SOC值小于或等于预设的极限值时,动力电池3的SOC值处于第一电量区间,此时动力电池3只充电不放电;当动力电池3的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池3的SOC值处于第二电量区间,此时动力电池3存在充电需求,即可主动给动力电池3充电;当动力电池3的SOC值大于第一预设值时,动力电池3的SOC值处于第三电量区间,此时动力电池3可不充电,即不会主动给动力电池3充电。
具体来说,控制模块101在获取动力电池3的SOC值和混合动力汽车的车速之后,可判断动力电池3的SOC值所处的区间,如果动力电池3的SOC值处于第二电量区间,动力电池3的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池3进行充电,此时控制模块101进一步判断混合动力汽车的车速是否小于第一预设车速,如果混合动力汽车的车速小于第一预设车速,则控制副电机5进入发电功率调节模式,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机2足以驱动混合动力汽车行驶,发动机1可只带动副电机5进行发电,不参与驱动。
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
进一步地,根据本发明的一个实施例,控制模块101还用于:当动力电池3的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1时,获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机5的最大允许发电功率Pmax时,控制副电机5进入发电功率调节模式。
具体来说,在混合动力汽车的行驶过程中,如果动力电池3的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1,即混合动力汽车的车速较低,控制模块101则获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机5的最大允许发电功率Pmax时,控制副电机5进入发电功率调节模式。
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
更进一步地,根据本发明的一个实施例,控制模块101还用于当动力电池3的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机5的最大允许发电功率Pmax时,获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,并在油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,控制副电机5进入发电功率调节模式。
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
具体来说,如果动力电池3的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机5的最大允许发电功率Pmax,控制模块101则实时获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,当油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,控制模块101控制副电机5进入发电功率调节模式。
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
如上,在混合动力汽车低速行驶时,发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒 适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性,从而维持整车低速电平衡及低速平顺性,提升整车性能。
根据本发明的一个实施例,控制模块101还用于:当控制发动机1单独带动副电机5进行发电、并控制动力电机2独自输出驱动力时,根据以下公式获得发动机1的发电功率:
P0=P1/η/ζ
其中,P0为发动机1的发电功率,P1为副电机5的发电功率,η皮带传动效率,ζ为副电机5的效率。
也就是说,在发动机1可只发电不参与驱动的情况下,控制模块101可根据副电机5的发电功率、皮带传动效率η和副电机5的效率ζ计算出发动机1的发电功率P0,并控制发动机1以获取的发电功率P0带动副电机5进行发电,以控制副电机5的发电功率。
相应地,当混合动力汽车的动力电池3的SOC值、车速V、油门踏板深度D和整车阻力F不满足上述条件时,发动机1可参与驱动,其具体工作过程如下。
根据本发明的一个实施例,控制模块101还用于:在动力电池3的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机1参与驱动。
也就是说,在动力电池3的SOC值小于预设的极限值M2、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机5的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制模块101控制发动机1参与驱动,此时,动力电池3不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机2不足以驱动混合动力汽车行驶,发动机1参与驱动以进行补足驱动。
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
更具体地,控制模块101还用于:当整车需求功率大于副电机5的最大允许发电功率时,还控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮。
并且,控制模块101还用于:当动力电池3的SOC值小于预设的极限值M2时,控制发动机1参与驱动以使发动机1通过离合器6输出驱动力至车轮7;当动力电池3的SOC 值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,控制模块101控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7;当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的阻力F大于第一预设阻力F1时,控制模块101控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7。
具体来说,在发动机1带动副电机5进行发电且动力电机2输出驱动力至混合动力汽车的车轮7时,控制模块101实时获取动力电池3的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F,并对动力电池3的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F进行判断。
其一,当动力电池3的SOC值小于预设的极限值M2时,控制模块101控制发动机1通过离合器6将动力输出到车轮7,以使发动机1和动力电机2同时参与驱动,降低动力电机2的负载以减小动力电池3的耗电量,从而能够保证发动机1工作在预设的最佳经济区域,同时避免动力电池3的SOC值快速下降。
其二,当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,控制模块101控制发动机1通过离合器6将动力输出到车轮7,以使发动机1和动力电机2同时参与驱动,降低动力电机2的负载以减小动力电池3的耗电量,从而能够保证发动机1工作在预设的最佳经济区域,同时避免动力电池3的SOC值快速下降。
其三,当动力电池3的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的阻力F大于第一预设阻力F1时,控制模块101控制发动机1通过离合器6将动力输出到车轮7,以使发动机1和动力电机2同时参与驱动,降低动力电机2的负载以减小动力电池3的耗电量,从而能够保证发动机1工作在预设的最佳经济区域,同时避免动力电池3的SOC值快速下降。
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机1在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
此外,控制模块101还用于:当动力电池3的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一预设车速时,控制发动机1参与驱动以使发动机1通过离合器6 将动力输出到车轮7。
由此,发动机1可在动力电机2输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
当然,应当理解的是,控制模块101还用于:当动力电池3的SOC值大于第一预设值时,发动机1不带动副电机5进行发电,此时动力电池3的电量接近满电,无需充电,发动机1不带动副电机5进行发电。也就是说,在动力电池3的电量接近满电时,发动机1不带动副电机5进行发电,从而副电机5不对动力电池3充电。
进一步而言,在副电机5进入发电功率调节模式后,控制模块101可对副电机5的发电功率进行调节,下面对本发明实施例的控制模块101的发电功率调节过程进行具体描述。
根据本发明的一个实施例,控制模块101还用于:当副电机5进入发电功率调节模式后,根据混合动力汽车的整车需求功率P2和动力电池3的充电功率P3对副电机5的发电功率P1进行调节。
根据本发明的一个实施例,根据混合动力汽车的整车需求功率P2和动力电池的充电功率P3调节副电机5的发电功率P1的公式如下:
P1=P2+P3,其中,P2=P11+P21,
P1为副电机5的发电功率,P2为整车需求功率,P3为动力电池3的充电功率,P11为整车驱动功率,P21为电器设备功率。
需要说明的是,电器设备包括第一电器设备10和第二电器设备30,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。
还需说明的是,整车驱动功率P11可包括动力电机2的输出功率,控制模块101可根据动力电机2的预设油门-转矩曲线以及动力电机2的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定。另外,控制模块101可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21。此外,控制模块101可根据动力电池3的SOC值获取动力电池3的充电功率P3。假设实时获取的整车驱动功率P11=b1kw,电器设备功率P21=b2kw,动力电池3的充电功率P3=b3kw,则副电机5的发电功率=b1+b2+b3。
具体来说,在混合动力汽车行驶过程中,控制模块101可获取动力电池3的充电功率P3、整车驱动功率P11和电器设备功率P21,并将动力电池3的充电功率P3、整车驱动功率P11和电器设备功率P21之和作为副电机5的发电功率P1,由此,控制模块101可根据 计算出的P1值对副电机5的发电功率进行调节,例如控制模块101可根据计算出的P1值对发动机1的输出扭矩和转速进行控制,以对发动机1带动副电机5进行发电的功率进行调节。
进一步地,根据本发明的一个实施例,控制模块101还用于:获取动力电池3的SOC值变化速率,并根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率调节副电机5的发电功率P1。
应当理解的是,控制模块101可根据动力电池3的SOC值获取动力电池3的SOC值变化速率,例如,每个时间间隔t采集一次动力电池3的SOC值,如此可将动力电池3的当前SOC值与前一SOC值之差与时间间隔t的比值作为动力电池3的SOC值变化速率。
具体来说,可根据图1a所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率Pmin,控制模块101在确定发动机的最佳经济区域对应的最小输出功率Pmin之后,即可根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率调节副电机5的发电功率。
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
下面进一步介绍当副电机5进入发电功率调节模式后,控制模块101根据整车需求功率P2与发动机1的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池3的SOC值变化速率调节副电机5的发电功率的具体调节方式。
具体来说,在发动机1带动副电机5进行发电且动力电机2输出驱动力至混合动力汽车的车轮7时,实时获取整车驱动功率P11和电器设备功率P21,以获取混合动力汽车的整车需求功率P2,控制模块101对混合动力汽车的整车需求功率P2进行判断,其中,整车需求功率P2可满足以下三种情况。
第一种情况为:整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin;第二种情况为:整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机5的最大允许发电功率Pmax;第三种情况为:整车需求功率P2大于副电机5的最大允许发电功率Pmax。
在第一种情况的一个实施例中,当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,控制模块101根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并判断动力电池3的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差,其中,如果动力电池3的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,则控制发动机1以该最小输出功率Pmin进行发电以调节副电机5的发电功率P1;如果动力电池3的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,并控制发动机以获取的输出功率进行发电以调节副电机5的发电功率P1。
需要说明的是,控制模块101内可预存动力电池3的SOC值变化速率与动力电池3的充电功率P3之间的第一关系表,由此,控制模块101在获取动力电池3的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池3的充电功率P3。动力电池3的SOC值变化速率与动力电池3的充电功率P3满足下表1所示的关系。
表1
动力电池3的SOC值变化速率 A1 A2 A3 A4 A5
动力电池3的充电功率P3 B1 B2 B3 B4 B5
由表1所知,当控制模块101获取到的SOC值变化速率为A1时,获取到的相应的动力电池3的充电功率P3为B1;当控制模块101获取到的SOC值变化速率为A2时,获取到的相应的动力电池3的充电功率P3为B2;当控制模块101获取到的SOC值变化速率为A3时,获取到的相应的动力电池3的充电功率P3为B3;当控制模块101获取到的SOC值变化速率为A4时,获取到的相应的动力电池3的充电功率P3为B4;当控制模块101获取到的SOC值变化速率为A5时,获取到的相应的动力电池3的充电功率P3为B5。
具体来说,在副电机5进入发电功率调节模式后,控制模块101实时获取整车驱动功率P11和电器设备功率P21,以得到混合动力汽车的整车需求功率P2,并对混合动力汽车的整车需求功率P2进行判断。当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,可根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并判断动力电池3的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差。
当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,如果动力电池3的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,即P3< Pmin-P2,则通过控制发动机1以该最小输出功率Pmin进行发电以调节副电机1的发电功率;如果动力电池3的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,即P3≥Pmin-P2,则根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率,并通过控制发动机1以获取的输出功率进行发电以调节副电机5的发电功率。
由此,当整车需求功率P2小于发动机1的最佳经济区域对应的最小输出功率Pmin时,根据动力电池3的充电功率P3与发动机1的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差的关系获取发动机1的发电功率,以使发动机1运行在预设的最佳经济区域,且发动机1只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
在第二种情况的一个实施例中,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机5的最大允许发电功率Pmax时,控制模块101根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率P4,以及通过控制发动机1以获取的输出功率P4进行发电以调节副电机5的发电功率P1。
具体来说,当整车需求功率P2大于等于发动机1的最佳经济区域对应的最小输出功率Pmin且小于副电机5的最大允许发电功率Pmax时,控制模块101在控制发动机1工作在预设的最佳经济区域时还根据动力电池3的SOC值变化速率获取动力电池3的充电功率P3,并根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1在预设的最佳经济区域内的输出功率P4,其中,获取的输出功率P4=P3+P2。进而,控制模块101控制发动机1以获取的输出功率P4进行发电以调节副电机5的发电功率P1,从而使动力电池3的SOC值增加,并使发动机1工作在预设的最佳经济区域。
由此,当整车需求功率P2大于等于发动机1的最佳经济区域对应的最小输出功率Pmin且小于副电机5的最大允许发电功率Pmax时,根据动力电池3的充电功率P3与整车需求功率P2之和获取发动机1的输出功率,以使发动机1运行在预设的最佳经济区域,且发动机1只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
在第三种情况的一个实施例中,当整车需求功率P2大于副电机5的最大允许发电功率Pmax时,控制模块101还控制发动机1参与驱动以使发动机1通过离合器6将动力输出到车轮7。
具体来说,当整车需求功率P2大于副电机5的最大允许发电功率Pmax即混合动力汽车的整车需求功率P2高于副电机5的发电功率P1时,控制模块101还控制发动机1通过离合器6输出驱动力至车轮7以使发动机1参与驱动,从而通过发动机1承担部分驱动功率P',以降低对副电机5的发电功率P1的需求,使发动机1工作在预设的最佳经济区域。
由此,当整车需求功率P2大于副电机5的最大允许发电功率Pmax时,动力电池3对外放电以给动力电机2供电,此时,控制模块101控制发动机1和动力电机2同时将动力输出到混合动力汽车的车轮7,以使发动机1工作在预设的最佳经济区域。
由此,在低速时发动机能够工作在经济区域,且只发电不参与驱动,从而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且减少油耗,降低发动机噪音,进而维持整车低速电平衡及低速平顺性,提升整车性能。
综上,根据本发明实施例提出的混合动力汽车的动力系统,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机输出驱动力至混合动力汽车的车轮,动力电池给动力电机供电,副电机在发动机的带动下进行发电,控制模块获取动力电池的SOC值和混合动力汽车的车速,并根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域,从而能够降低发动机的油耗,提高整车运行的经济性,并且降低了发动机噪音,同时可实现多种驱动模式,能够维持整车低速电平衡及低速平顺性,提升整车性能。
本发明实施例还提出了一种混合动力汽车。
图6是根据本发明实施例的混合动力汽车的方框示意图。如图6所示,混合动力汽车200包括上述实施例的混合动力汽车的动力系统100。
综上,根据本发明实施例提出的混合动力汽车,通过上述混合动力汽车的动力系统,能够降低发动机的油耗,提高整车运行的经济性,并且能够提高整车系统的平稳性,降低了发动机的能耗,提高了整车运行的经济性。
图7是根据本发明实施例的混合动力汽车的发电控制方法的流程图。混合动力汽车的动力系统包括发动机、动力电机、动力电池、DC-DC变换器、与发动机相连的副电机,发动机通过离合器将动力输出到混合动力汽车的车轮,动力电机用于输出驱动力至混合动力汽车的车轮,动力电池用于给动力电机供电,副电机分别与动力电机、DC-DC变换器和动力电池相连,副电机在发动机的带动下进行发电。如图7所示,混合动力汽车的发电控制方法包括以下步骤:
S10:获取动力电池的SOC值和混合动力汽车的车速。
需要说明的是,可通过混合动力汽车的电池管理系统采集动力电池的SOC值,以使获取动力电池的SOC值。
S20:根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域。
还需说明的是,可结合发动机万有特性曲线图确定发动机的预设最佳经济区域。如图1a所示为发动机万有特性曲线图的一个示例,其中,侧纵坐标是发动机的输出扭矩,横坐标是发动机的转速,曲线a为发动机的燃油经济曲线。燃油经济曲线对应的区域即为发动机的最佳经济区域,即言当发动机的转矩和扭矩位于发动机最优的燃油经济曲线上时,发动机处于最佳经济区域。由此,在本发明实施例中,可通过控制发动机的转速和输出扭矩落在发动机燃油经济曲线例如曲线a上,以使发动机运行在预设的最佳经济区域。
进一步地,根据本发明的一个实施例,在混合动力汽车的行驶过程中,获取动力电池的SOC值和混合动力汽车的车速V,并根据动力电池的SOC值和混合动力汽车的车速V控制副电机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域。其中,发电功率调节模式即为对发动机的发电功率进行调节的模式,在发电功率调节模式,可通过控制发动机1带动副电机5进行发电以对副电机5的发电功率进行调节。
具体来说,在混合动力汽车行驶过程中,发动机可通过离合器将动力输出到混合动力汽车的车轮,并且发动机还可带动副电机进行发电。由此,发动机的输出功率主要包括两部分,一部分输出至副电机,即带动副电机进行发电的功率,另一部分是输出至车轮,即驱动车轮的功率。
在发动机带动副电机进行发电时,可首先获取动力电池的SOC值和混合动力汽车的车速,然后根据动力电池的SOC值和混合动力汽车的车速控制副电机进入发电功率调节模式,以使发动机工作在预设的最佳经济区域。在发电功率调节模式,可在使发动机工作在预设的最佳经济区域的前提下调节副电机的发电功率。
更具体地,在本发明的一个实施例中,根据动力电池的SOC值和混合动力汽车的车速控制副电机的发电功率,以及根据副电机的发电功率获得发动机的发电功率以控制发动机运行在预设的最佳经济区域。
由此,能够使发动机工作在预设的最佳经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减小发动机的油耗,降低发动机的噪音,提高整车运行的经济性。而且,由于低速时副电机具有较高的发电功率和发电效率,从而可以满足 低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。其中,通过对动力电池充电,可确保动力电机和高压电器设备的用电需求,进而确保动力电机驱动整车正常行驶。
进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值且小于等于第一预设值时,如果混合动力汽车的车速V小于第一预设车速,则控制副电机进入发电功率调节模式。
其中,第一预设值可为预先设置的动力电池的SOC值的上界限值,例如为停止充电的判定值,可优选为30%。预设的极限值可为预先设置的动力电池的SOC值的下界限值,例如为停止放电的判定值,可优选为10%。依据第一预设值和预设的极限值可将动力电池的SOC值分为三个区间,即第一电量区间、第二电量区间和第三电量区间,当动力电池的SOC值小于或等于预设的极限值时,动力电池的SOC值处于第一电量区间,此时动力电池只充电不放电;当动力电池的SOC值大于预设的极限值且小于或等于第一预设值时,动力电池的SOC值处于第二电量区间,此时动力电池存在充电需求,即可主动给动力电池充电;当动力电池的SOC值大于第一预设值时,动力电池的SOC值处于第三电量区间,此时动力电池可不充电,即不会主动给动力电池充电。
具体来说,在获取动力电池的SOC值和混合动力汽车的车速V之后,可判断动力电池的SOC值所处的区间,如果动力电池的SOC值处于第二电量区间,动力电池的SOC值大于预设的极限值且小于或等于第一预设值,则说明可对动力电池进行充电,此时进一步判断混合动力汽车的车速V是否小于第一预设车速V1,如果混合动力汽车的车速V小于第一预设车速V1,则控制副电机进入发电功率调节模式,此时混合动力汽车的车速较低,所需的驱动力较少,动力电机足以驱动混合动力汽车行驶,发动机可只带动副电机进行发电,不参与驱动。
如上所述,如图8所示,本发明实施例的混合动力汽车的发电控制方法可根据动力电池的SOC值M和混合动力汽车的车速V控制副电机进入发电功率调节模式,具体包括以下步骤:
S101:获取动力电池的SOC值M和混合动力汽车的车速V。
S102:当动力电池的SOC值M大于预设的极限值M2且小于等于第一预设值M1时,获取混合动力汽车的车速V。
S103:当混合动力汽车的车速V小于第一预设车速V1时,控制副电机进入发电功率 调节模式。
由此,在低速时发动机只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1时,还获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,控制副电机进入发电功率调节模式。
具体来说,在混合动力汽车的行驶过程中,如果动力电池的SOC值大于预设的极限值M2且小于等于第一预设值M1、以及混合动力汽车的车速V小于第一预设车速V1,即混合动力汽车的车速较低,则获取混合动力汽车的整车需求功率P2,并在整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,控制副电机进入发电功率调节模式。
如上所述,如图9所示,本发明实施例的混合动力汽车的发电控制方法可根据动力电池的SOC值M、车速V和整车需求功率P2控制副电机进入发电功率调节模式,具体包括以下步骤:
S201:获取动力电池的SOC值M和混合动力汽车的车速V。
S202:当动力电池的SOC值M大于预设的极限值M2且小于等于第一预设值M1时,获取混合动力汽车的车速V。
S203:当混合动力汽车的车速V小于第一预设车速V1时,获取混合动力汽车的整车需求功率P2。
S204:当整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,控制副电机进入发电功率调节模式。
S205:当整车需求功率P2大于副电机的最大允许发电功率Pmax时,控制发动机参与驱动。
由此,在低速时发动机可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
更进一步地,根据本发明的一个实施例,当动力电池的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,还获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,并在油门踏板深度D小于等于第一预设深度D1且混合动力 汽车的整车阻力F小于等于第一预设阻力F1时,控制副电机进入发电功率调节模式。
需要说明的是,混合动力汽车的整车阻力可为混合动力汽车的行车阻力例如滚动阻力、加速阻力、坡度阻力和空气阻力等。
具体来说,如果动力电池的SOC值大于预设的极限值且小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1、且整车需求功率P2小于等于副电机的最大允许发电功率Pmax,则实时获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F,当油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,说明混合动力汽车运行在低速模式,控制副电机进入发电功率调节模式。
由此,在低速时发动机可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性。
如上,在混合动力汽车低速行驶时,发动机1可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且,在低速时使发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车运行的经济性,从而维持整车低速电平衡及低速平顺性,提升整车性能。
根据本发明的一个实施例,当控制发动机单独带动副电机进行发电、并控制动力电机单独输出驱动力时,发动机的发电功率P0根据以下公式获得:
P0=P1/η/ζ
其中,P1表示副电机的发电功率,η表示皮带传动效率,ζ表示副电机的效率。
也就是说,在发动机可只发电不参与驱动的情况下,可根据副电机的发电功率、皮带传动效率η和副电机的效率ζ计算出发动机的发电功率P0,并控制发动机以获取的发电功率P0带动副电机进行发电,以控制副电机的发电功率。
相应地,当混合动力汽车的动力电池的SOC值、车速V、油门踏板深度D和整车阻力F不满足上述条件时,发动机可参与驱动,其具体工作过程如下。
根据本发明的一个实施例,在动力电池的SOC值小于预设的极限值、或混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控 制发动机参与驱动。
也就是说,在动力电池的SOC值小于预设的极限值M2、或者混合动力汽车的车速大于等于第一预设车速、或者整车需求功率大于副电机的最大允许发电功率、或者油门踏板深度大于第一预设深度、或者混合动力汽车的整车阻力大于第一预设阻力时,控制发动机参与驱动,此时,动力电池不再放电、整车所需的驱动力较大、整车需求功率较大、油门踏板深度较大或整车阻力也较大,动力电机不足以驱动混合动力汽车行驶,发动机参与驱动以进行补足驱动。
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
更具体地,当整车需求功率大于副电机的最大允许发电功率时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
并且,当动力电池的SOC值小于等于预设的极限值M2时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮;当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮;当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的整车阻力F大于第一预设阻力F1时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
具体来说,在发动机带动副电机进行发电且动力电机输出驱动力至混合动力汽车的车轮时,实时获取动力电池的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F,并对动力电池的SOC值、混合动力汽车的油门踏板深度D、车速V和整车阻力F进行判断,并根据以下三种判断结果调节副电机的发电功率:
其一,当动力电池的SOC值小于预设的极限值M2时,控制发动机通过离合器将动力输出到车轮,以使发动机和动力电机同时参与驱动,降低动力电机的负载以减小动力电池的耗电量,从而能够保证发动机工作在预设的最佳经济区域,同时避免动力电池的SOC值快速下降。
其二,当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且油门踏板深度D大于第一预设深度D1时,控制发动机通过离合器将动力输出到车轮,以使发动机和动力电机同时参与驱动,降低动力电机的负载以减小动力电池 的耗电量,从而能够保证发动机工作在预设的最佳经济区域,同时避免动力电池的SOC值快速下降。
其三,当动力电池的SOC值小于等于第一预设值M1、混合动力汽车的车速V小于第一预设车速V1且混合动力汽车的阻力F大于第一预设阻力F1时,控制发动机通过离合器将动力输出到车轮,以使发动机和动力电机同时参与驱动,降低动力电机的负载以减小动力电池的耗电量,从而能够保证发动机工作在预设的最佳经济区域,同时避免动力电池的SOC值快速下降。
如上所述,如图10所示,本发明实施例的混合动力汽车的发电控制方法可根据动力电池的SOC值M、车速V和整车需求功率P2控制副电机进入发电功率调节模式,具体包括以下步骤:
S301:获取动力电池的SOC值M和混合动力汽车的车速V。
S302:当动力电池的SOC值M大于预设的极限值M2且小于等于第一预设值M1时,获取混合动力汽车的车速V。
S303:当混合动力汽车的车速V小于第一预设车速V1时,获取混合动力汽车的整车需求功率P2。
S304:当整车需求功率P2小于等于副电机的最大允许发电功率Pmax时,获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F。
S305:当油门踏板深度D大于第一预设深度D1或者混合动力汽车的整车阻力F大于第一预设阻力F1或者动力电池的SOC值M小于等于预设的极限值M2时,控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
S306:当油门踏板深度D小于等于第一预设深度D1且混合动力汽车的整车阻力F小于等于第一预设阻力F1时,控制副电机进入发电功率调节模式。
S307:当整车需求功率P2大于副电机的最大允许发电功率Pmax时,控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。并且,可控制发动机工作在经济区域,由于发动机在预设的最佳经济区域的油耗最低、燃油经济性最高,从而可减少油耗,降低发动机噪音,提高整车经济性能。
此外,当动力电池的SOC值小于等于预设的极限值,且混合动力汽车的车速大于第一 预设车速时,控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
由此,发动机可在动力电机输出的驱动力不足时参与驱动,从而确保整车正常行驶,提高了整车的动力性能,提高了整车的行驶里程。
当然,应当理解的是,当动力电池的SOC值大于第一预设值时,发动机不带动副电机进行发电,此时动力电池的电量接近满电,无需充电,发动机不带动副电机进行发电。也就是说,在动力电池的电量接近满电时,发动机不带动副电机进行发电,从而副电机不对动力电池充电。
进一步而言,在副电机进入发电功率调节模式后,可对副电机的发电功率进行调节,下面对本发明实施例的发电功率调节过程进行具体描述。
根据本发明的一个实施例,当副电机进入发电功率调节模式后,根据混合动力汽车的整车需求功率P2和动力电池的充电功率P3对副电机的发电功率P1进行调节。
根据本发明的一个实施例,根据混合动力汽车的整车需求功率P2和动力电池的充电功率P3调节副电机的发电功率P1的公式如下:
P1=P2+P3,其中,P2=P11+P21,
P1为副电机的发电功率,P2为整车需求功率,P3为动力电池的充电功率,P11为整车驱动功率,P21为电器设备功率。
需要说明的是,电器设备包括第一电器设备和第二电器设备,即电器设备功率P21可包括高压电器设备和低压电器设备所需的功率。
还需说明的是,整车驱动功率P11可包括动力电机2的输出功率,整车驱动功率P11可包括动力电机的输出功率,可根据动力电机的预设油门-转矩曲线以及动力电机的转速获取整车驱动功率P11,其中,预设油门-转矩曲线可在混合动力汽车动力匹配时进行确定。另外,可根据整车运行的电器设备实时获取电器设备功率P21,例如通过总线上DC消耗来计算电器设备功率P21。此外,可根据动力电池的SOC值获取动力电池的充电功率P3。假设实时获取的整车驱动功率P11=b1kw,电器设备功率P21=b2kw,动力电池的充电功率P3=b3kw,则副电机的发电功率=b1+b2+b3。
具体来说,在混合动力汽车行驶过程中,可获取动力电池的充电功率P3、整车驱动功率P11和电器设备功率P21,并将动力电池的充电功率P3、整车驱动功率P11和电器设备功率P21之和作为副电机的发电功率P1,由此,可根据计算出的P1值对副电机的发电功率进行调节,例如可根据计算出的P1值对发动机的输出扭矩和转速进行控制,以对发动机 带动副电机进行发电的功率进行调节。
进一步地,根据本发明的一个实施例,对副电机的发电功率进行调节,包括:获取动力电池的SOC值变化速率,并根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率调节副电机的发电功率。
应当理解的是,可根据动力电池的SOC值获取动力电池的SOC值变化速率,例如,每个时间间隔t采集一次动力电池的SOC值,如此可将动力电池的当前SOC值与前一SOC值之差与时间间隔t的比值作为动力电池3的SOC值变化速率。
具体来说,可根据图1a所示的发动机万有特性曲线确定发动机的最佳经济区域,进而获取发动机的最佳经济区域对应的最小输出功率Pmin,在确定发动机的最佳经济区域对应的最小输出功率Pmin之后,即可根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率调节副电机5的发电功率。
由此,在混合动力汽车低速行驶时,使发动机工作在经济区域,可减少油耗,降低发动机噪音,提高整车的经济性能,并且,在低速时发动机可只发电不参与驱动,由于发动机不参与驱动,离合器无需使用,从而可减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,进而维持整车低速电平衡及低速平顺性,提升整车性能。
下面进一步介绍当副电机进入发电功率调节模式后,根据整车需求功率P2与发动机的最佳经济区域对应的最小输出功率Pmin之间的关系以及动力电池的SOC值变化速率调节副电机的发电功率的具体调节方式。
具体来说,在发动机带动副电机进行发电且动力电机输出驱动力至混合动力汽车的车轮时,实时获取整车驱动功率P11和电器设备功率P21,以获取混合动力汽车的整车需求功率P2,对混合动力汽车的整车需求功率P2进行判断,其中,整车需求功率P2可满足以下三种情况。
第一种情况为:整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin;第二种情况为:整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机的最大允许发电功率Pmax;第三种情况为:整车需求功率P2大于副电机的最大允许发电功率Pmax。
在第一种情况的一个实施例中,当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并判断动力电池的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差,其 中,如果动力电池的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,则控制发动机以该最小输出功率Pmin进行发电以调节副电机的发电功率;如果动力电池的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,则根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并控制发动机以获取的输出功率进行发电以调节副电机的发电功率P1。
需要说明的是,可预存动力电池的SOC值变化速率与动力电池的充电功率P3之间的第一关系表,由此,在获取动力电池的SOC值变化速率之后,通过比对第一关系表即可获取对应的动力电池的充电功率P3。动力电池的SOC值变化速率与动力电池的充电功率P3满足下表1所示的关系。
表1
动力电池3的SOC值变化速率 A1 A2 A3 A4 A5
动力电池3的充电功率P3 B1 B2 B3 B4 B5
由表1所知,当获取到的SOC值变化速率为A1时,获取到的相应的动力电池的充电功率P3为B1;当获取到的SOC值变化速率为A2时,获取到的相应的动力电池的充电功率P3为B2;当获取到的SOC值变化速率为A3时,获取到的相应的动力电池的充电功率P3为B3;当获取到的SOC值变化速率为A4时,获取到的相应的动力电池的充电功率P3为B4;当获取到的SOC值变化速率为A5时,获取到的相应的动力电池的充电功率P3为B5。
具体来说,在副电机进入发电功率调节模式后,实时获取整车驱动功率P11和电器设备功率P21,以得到混合动力汽车的整车需求功率P2,并对混合动力汽车的整车需求功率P2进行判断。当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,可根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并判断动力电池的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差。
当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,如果动力电池的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差,即P3<Pmin-P2,则通过控制发动机以该最小输出功率Pmin进行发电以调节副电机1的发电功率;如果动力电池的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差,即P3≥Pmin-P2,则根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率,并通过控制发动机以获取的输出功率进行发电以调节副电机的发电功率。
由此,当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,根据动力电池的充电功率P3与发动机的最佳经济区域对应的最小输出功率Pmin与整车需求功率P2之差的关系获取发动机的发电功率,以使发动机运行在预设的最佳经济区域,且发动机只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
在第二种情况的一个实施例中,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机的最大允许发电功率Pmax时,根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率P4,以及通过控制发动机以获取的输出功率P4进行发电以调节副电机的发电功率P1。
具体来说,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于副电机的最大允许发电功率Pmax时,在控制发动机工作在预设的最佳经济区域时还根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率P4,其中,获取的输出功率P4=P3+P2。进而,控制发动机以获取的输出功率P4进行发电以调节副电机的发电功率P1,从而使动力电池的SOC值增加,并使发动机工作在预设的最佳经济区域。
由此,当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于副电机的最大允许发电功率Pmax时,根据动力电池的充电功率P3与整车需求功率P2之和获取发动机的输出功率,以使发动机运行在预设的最佳经济区域,且发动机只进行发电而不参与驱动,从而能够降低发动机的油耗,并降低发动机的噪音。
在第三种情况的一个实施例中,当整车需求功率P2大于副电机的最大允许发电功率Pmax时,还控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
具体来说,当整车需求功率P2大于副电机的最大允许发电功率Pmax即混合动力汽车的整车需求功率P2高于副电机的发电功率P1时,还控制发动机通过离合器输出驱动力至车轮以使发动机参与驱动,从而通过发动机承担部分驱动功率P',以降低对副电机的发电功率P1的需求,使发动机工作在预设的最佳经济区域。
由此,当整车需求功率P2大于副电机的最大允许发电功率Pmax时,动力电池对外放电以为动力电机供电,此时,控制发动机和动力电机同时将动力输出到混合动力汽车的车轮,以使发动机工作在预设的最佳经济区域。
如上所述,如图11所示,本发明实施例的混合动力汽车的发电控制方法在副电机进入发电功率调节模式后,可对副电机的发电功率进行调节,具体包括以下步骤:
S401:控制副电机进入发电功率调节模式。
S402:获取混合动力汽车的整车需求功率P2和动力电池的SOC值变化速率。
S403:当整车需求功率P2小于发动机的最佳经济区域对应的最小输出功率Pmin时,根据动力电池的SOC值变化速率获取动力电池的充电功率P3。
S404:当动力电池的充电功率P3小于该最小输出功率Pmin与整车需求功率P2之差时,通过控制发动机以该最小输出功率Pmin进行发电以调节副电机的发电功率。
S405:当动力电池的充电功率P3大于等于该最小输出功率Pmin与整车需求功率P2之差时,根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率P4,并通过控制发动机以获取的功率P4进行发电以调节副电机的发电功率P1。
S406:当整车需求功率P2大于等于发动机的最佳经济区域对应的最小输出功率Pmin且小于等于副电机的最大允许发电功率Pmax时,根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率P4,以及通过控制发动机以获取的输出功率P4进行发电以调节副电机的发电功率P1。
S407:当整车需求功率P2大于副电机的最大允许发电功率Pmax时,控制发动机参与驱动以使发动机通过离合器将动力输出到车轮。
由此,在低速时发动机能够工作在经济区域,且可只发电不参与驱动,从而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且减少油耗,降低发动机噪音,进而维持整车低速电平衡及低速平顺性,提升整车性能。
如上所述,如图12所示,本发明实施例的混合动力汽车的发电控制方法具体包括以下步骤:
S501:获取动力电池的SOC值M和混合动力汽车的车速V。
S502:判断混合动力汽车的车速V是否小于第一预设车速V1。
如果是,则执行步骤S503;如果否,则执行步骤S504。
S503:判断动力电池的SOC值M是否小于等于第一预设值M1。
如果是,则执行步骤S507;如果否,则执行步骤S506。
S504:判断动力电池的SOC值M是否小于等于第一预设值M1。
如果是,则执行步骤S505;如果否,则执行步骤S506。
S505:控制发动机参与驱动。
S506:控制发动机不带动副电机发电。
S507:获取混合动力汽车的油门踏板深度D和混合动力汽车的整车阻力F。
S508:判断油门踏板深度D是否大于第一预设深度D1或者混合动力汽车的整车阻力F是否大于第一预设阻力F1或者动力电池的SOC值M是否小于预设的极限值M2。
如果是,则执行步骤S505;如果否,则执行步骤S509。
S509:获取混合动力汽车的整车需求功率P2。
S510:判断整车需求功率P2是否小于等于副电机的最大允许发电功率Pmax。
如果是,则执行步骤S511;如果否,则执行步骤S505。
S511:控制发动机带动副电机进行发电,且发动机不参与驱动。
此时,控制副电机进入发电功率调节模式。
S512:判断整车需求功率P2是否小于发动机的最佳经济区域对应的最小输出功率Pmin。
如果是,则执行步骤S513;如果否,则执行步骤S514。
S513:根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并执行步骤S515。
S514:根据动力电池的SOC值变化速率获取动力电池的充电功率P3,并执行步骤S516。
S515:判断动力电池的充电功率P3是否小于该最小输出功率Pmin与整车需求功率P2之差。
如果是,则执行步骤S517;如果否,则执行步骤S516。
S516:根据动力电池的充电功率P3与整车需求功率P2之和获取发动机在预设的最佳经济区域内的输出功率P4,并通过控制发动机以获取的输出功率P4进行发电。
S517:通过控制发动机以该最小输出功率Pmin进行发电。
综上,根据本发明实施例的混合动力汽车的发电控制方法,先获取动力电池的SOC值和混合动力汽车的车速,根据动力电池的SOC值和混合动力汽车的车速扣工资复点机进入发电功率调节模式,以使发动机运行在预设的最佳经济区域,从而能够降低发动机的油耗,提高整车运行的经济性,并且降低了发动机噪音,同时可实现多种驱动模式,能够维持整车低速电平衡及低速平顺性,提升整车性能。
本发明还提出了一种计算机可读存储介质,其具有存储于其中的指令,当混合动力汽车的处理器执行指令时,混合动力汽车执行上述实施例的发电控制方法。
综上,根据本发明实施例的计算机可读存储介质,当混合动力汽车的处理器执行指令时,混合动力汽车执行上述发电控制方法,能够降低发动机的油耗,提高整车运行的经济性,并且降低了发动机噪音,同时可实现多种驱动模式,能够维持整车低速电平衡及低速平顺性,提升整车性能。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (26)

  1. 一种混合动力汽车的动力系统,其特征在于,包括:
    发动机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮;
    动力电机,所述动力电机用于输出驱动力至所述混合动力汽车的车轮;
    动力电池,所述动力电池用于给所述动力电机供电;
    DC-DC变换器;
    与所述发动机相连的副电机,所述副电机分别与所述动力电机、所述DC-DC变换器和动力电池相连,所述副电机在所述发动机的带动下进行发电;
    控制模块,所述控制模块用于获取所述动力电池的SOC值和所述混合动力汽车的车速,并根据所述动力电池的SOC值和所述混合动力汽车的车速控制所述副电机进入发电功率调节模式,以使所述发动机运行在预设的最佳经济区域。
  2. 如权利要求1所述的混合动力汽车的动力系统,其特征在于,所述控制模块用于:当所述动力电池的SOC值大于预设的极限值且小于等于第一预设值时,如果所述混合动力汽车的车速小于第一预设车速,控制所述副电机进入所述发电功率调节模式。
  3. 如权利要求1或2所述的混合动力汽车的动力系统,其特征在于,所述控制模块还用于:当所述动力电池的SOC值大于预设的极限值且小于等于第一预设值、以及所述混合动力汽车的车速小于第一预设车速时,获取所述混合动力汽车的整车需求功率,并在所述整车需求功率小于等于所述副电机的最大允许发电功率时,控制所述副电机进入所述发电功率调节模式。
  4. 如权利要求3所述的混合动力汽车的动力系统,其特征在于,所述控制模块还用于:当所述动力电池的SOC值大于预设的极限值且小于等于第一预设值、所述混合动力汽车的车速小于第一预设车速、且所述整车需求功率小于等于所述副电机的最大允许发电功率时,获取所述混合动力汽车的油门踏板深度和所述混合动力汽车的整车阻力,并在所述油门踏板深度小于等于第一预设深度且所述混合动力汽车的整车阻力小于等于第一预设阻力时,控制所述副电机进入所述发电功率调节模式。
  5. 如权利要求1-4中任一项所述的混合动力汽车的动力系统,其特征在于,所述控制模块还用于:当所述副电机进入所述发电功率调节模式后,根据所述混合动力汽车的整车需求功率和所述动力电池的充电功率对所述副电机的发电功率进行调节。
  6. 如权利要求5所述的混合动力汽车的动力系统,其特征在于,根据所述混合动力汽 车的整车需求功率和所述动力电池的充电功率调节所述副电机的发电功率的公式如下:
    P1=P2+P3,其中,P2=P11+P21,
    P1为所述副电机的发电功率,P2为整车需求功率,P3为动力电池的充电功率,P11为整车驱动功率,P21为电器设备功率。
  7. 如权利要求6所述的混合动力汽车的动力系统,其特征在于,所述控制模块还用于:获取所述动力电池的SOC值变化速率,并根据所述整车需求功率与所述发动机的最佳经济区域对应的最小输出功率之间的关系以及所述动力电池的SOC值变化速率调节所述副电机的发电功率。
  8. 如权利要求7所述的混合动力汽车的动力系统,其特征在于,所述控制模块还用于:当所述整车需求功率小于所述发动机的最佳经济区域对应的最小输出功率时,根据所述动力电池的SOC值变化速率获取所述动力电池的充电功率,并判断所述动力电池的充电功率是否小于该最小输出功率与所述整车需求功率之差,其中,
    如果所述动力电池的充电功率小于该最小输出功率与所述整车需求功率之差,则通过控制所述发动机以该最小输出功率进行发电以调节所述副电机的发电功率;
    如果所述动力电池的充电功率大于等于该最小输出功率与所述整车需求功率之差,则根据所述动力电池的充电功率与所述整车需求功率之和获取所述发动机在预设的最佳经济区域内的输出功率,并通过控制所述发动机以获取的输出功率进行发电以调节所述副电机的发电功率。
  9. 如权利要求7所述的混合动力汽车的动力系统,其特征在于,所述控制模块还用于:当所述整车需求功率大于等于所述发动机的最佳经济区域对应的最小输出功率且小于等于所述副电机的最大允许发电功率时,根据所述动力电池的SOC值变化速率获取所述动力电池的充电功率,并根据所述动力电池的充电功率与所述整车需求功率之和获取所述发动机在预设的最佳经济区域内的输出功率,以及通过控制所述发动机以获取的输出功率进行发电以调节所述副电机的发电功率。
  10. 如权利要求7所述的混合动力汽车的动力系统,其特征在于,所述控制模块还用于:当所述整车需求功率大于所述副电机的最大允许发电功率时,还控制所述发动机参与驱动以使所述发动机通过所述离合器将动力输出到所述车轮。
  11. 如权利要求1-4任意一项所述的混合动力汽车的动力系统,其特征在于,所述控制模块还用于:当所述动力电池的SOC值小于等于预设的极限值时,控制所述发动机参与 驱动以使所述发动机通过所述离合器将动力输出到所述车轮;
    当所述动力电池的SOC值小于等于第一预设值、所述混合动力汽车的车速小于第一预设车速且所述油门踏板深度大于第一预设深度时,控制所述发动机参与驱动以使所述发动机通过所述离合器将动力输出到所述车轮;
    当所述动力电池的SOC值小于等于第一预设值、所述混合动力汽车的车速小于第一预设车速且所述混合动力汽车的整车阻力大于第一预设阻力时,所述发动机参与驱动以使所述发动机通过所述离合器将动力输出到所述车轮。
  12. 如权利要求1-11任意一项所述的混合动力汽车的动力系统,其特征在于,所述发动机和所述动力电机共同驱动所述混合动力汽车的同一车轮。
  13. 如权利要求1-11任意一项所述的混合动力汽车的动力系统,其特征在于,所述混合动力汽车的车轮包括第一车轮和第二车轮;
    发动机通过离合器将动力输出到所述混合动力汽车的第一车轮;
    所述动力电机用于输出驱动力至所述混合动力汽车的第二车轮。
  14. 一种混合动力汽车,其特征在于,包括如权利要求1-13中任一项所述的混合动力汽车的动力系统。
  15. 一种混合动力汽车的发电控制方法,其特征在于,包括以下步骤:
    获取所述混合动力汽车的动力电池的SOC值和所述混合动力汽车的车速;
    根据所述动力电池的SOC值和所述混合动力汽车的车速控制所述混合动力汽车的副电机进入发电功率调节模式,以使所述混合动力汽车的发动机运行在预设的最佳经济区域,其中,所述副电机在所述发动机的带动下进行发电。
  16. 如权利要求15所述的混合动力汽车的发电控制方法,其特征在于,当所述动力电池的SOC值大于预设的极限值且小于等于第一预设值时,如果所述混合动力汽车的车速小于第一预设车速,则控制所述副电机进入所述发电功率调节模式。
  17. 如权利要求16所述的混合动力汽车的发电控制方法,其特征在于,当所述动力电池的SOC值大于预设的极限值且小于等于第一预设值、以及所述混合动力汽车的车速小于第一预设车速时,还获取所述混合动力汽车的整车需求功率,并在所述整车需求功率小于等于所述副电机的最大允许发电功率时,控制所述副电机进入所述发电功率调节模式。
  18. 如权利要求17所述的混合动力汽车的发电控制方法,其特征在于,当所述动力电池的SOC值大于预设的极限值且小于等于第一预设值、所述混合动力汽车的车速小于第一 预设车速、且所述整车需求功率小于等于所述副电机的最大允许发电功率时,还获取所述混合动力汽车的油门踏板深度和所述混合动力汽车的整车阻力,并在所述油门踏板深度小于等于第一预设深度且所述混合动力汽车的整车阻力小于等于第一预设阻力时,控制所述副电机进入所述发电功率调节模式。
  19. 如权利要求15-18中任一项所述的混合动力汽车的发电控制方法,其特征在于,当所述副电机进入所述发电功率调节模式后,根据所述混合动力汽车的整车需求功率和所述动力电池的充电功率对所述副电机的发电功率进行调节。
  20. 如权利要求19所述的混合动力汽车的发电控制方法,其特征在于,根据所述混合动力汽车的整车需求功率和所述动力电池的充电功率调节所述副电机的发电功率的公式如下:
    P1=P2+P3,其中,P2=P11+P21,
    P1为所述副电机的发电功率,P2为整车需求功率,P3为动力电池的充电功率,P11为整车驱动功率,P21为电器设备功率。
  21. 如权利要求20所述的混合动力汽车的发电控制方法,其特征在于,对所述副电机的发电功率进行调节,包括:
    获取所述动力电池的SOC值变化速率,并根据所述整车需求功率与所述发动机的最佳经济区域对应的最小输出功率之间的关系以及所述动力电池的SOC值变化速率调节所述副电机的发电功率。
  22. 如权利要求21所述的混合动力汽车的发电控制方法,其特征在于,当所述整车需求功率小于所述发动机的最佳经济区域对应的最小输出功率时,根据所述动力电池的SOC值变化速率获取所述动力电池的充电功率,并判断所述动力电池的充电功率是否小于该最小输出功率与所述整车需求功率之差,其中,
    如果所述动力电池的充电功率小于该最小输出功率与所述整车需求功率之差,则通过控制所述发动机以该最小输出功率进行发电以调节所述副电机的发电功率;
    如果所述动力电池的充电功率大于等于该最小输出功率与所述整车需求功率之差,则根据所述动力电池的充电功率与所述整车需求功率之和获取所述发动机在预设的最佳经济区域内的输出功率,并通过控制所述发动机以获取的输出功率进行发电以调节所述副电机的发电功率。
  23. 如权利要求21所述的混合动力汽车的发电控制方法,其特征在于,当所述整车需求功率大于等于所述发动机的最佳经济区域对应的最小输出功率且小于等于所述副电机的 最大允许发电功率时,根据所述动力电池的SOC值变化速率获取所述动力电池的充电功率,并根据所述动力电池的充电功率与所述整车需求功率之和获取所述发动机在预设的最佳经济区域内的输出功率,以及通过控制所述发动机以获取的输出功率进行发电以调节所述副电机的发电功率。
  24. 如权利要求21所述的混合动力汽车的发电控制方法,其特征在于,当所述整车需求功率大于所述副电机的最大允许发电功率时,还控制所述发动机参与驱动以使所述发动机通过离合器将动力输出到所述混合动力汽车的车轮。
  25. 如权利要求18所述的混合动力汽车的发电控制方法,其特征在于,其中,
    当所述动力电池的SOC值小于等于预设的极限值时,还控制所述发动机参与驱动以使所述发动机通过离合器将动力输出到所述混合动力汽车的车轮;
    当所述动力电池的SOC值小于等于第一预设值、所述混合动力汽车的车速小于第一预设车速且所述油门踏板深度大于第一预设深度时,还控制所述发动机参与驱动以使所述发动机通过所述离合器将动力输出到所述车轮;
    当所述动力电池的SOC值小于等于第一预设值、所述混合动力汽车的车速小于第一预设车速且所述混合动力汽车的整车阻力大于第一预设阻力时,还控制所述发动机参与驱动以使所述发动机通过所述离合器将动力输出到所述车轮。
  26. 一种计算机可读存储介质,其特征在于,具有存储于其中的指令,当所述指令被执行时,所述混合动力汽车执行如权利要求15-25中任一项所述的发电控制方法。
PCT/CN2018/081048 2017-03-31 2018-03-29 混合动力汽车的动力系统和发电控制方法及混合动力汽车 WO2018177361A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18777420.3A EP3604010A4 (en) 2017-03-31 2018-03-29 Power system of hybrid electric vehicle, power generation control method and hybrid electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710210171.0A CN108656928B (zh) 2017-03-31 2017-03-31 混合动力汽车的动力系统和发电控制方法及混合动力汽车
CN201710210171.0 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018177361A1 true WO2018177361A1 (zh) 2018-10-04

Family

ID=63674276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081048 WO2018177361A1 (zh) 2017-03-31 2018-03-29 混合动力汽车的动力系统和发电控制方法及混合动力汽车

Country Status (3)

Country Link
EP (1) EP3604010A4 (zh)
CN (1) CN108656928B (zh)
WO (1) WO2018177361A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112660103A (zh) * 2020-12-31 2021-04-16 重庆金康赛力斯新能源汽车设计院有限公司 一种车辆控制模式的确定方法、装置和整车控制系统
CN113879137A (zh) * 2021-11-18 2022-01-04 重庆大学 一种电动汽车闭环控制装置和方法
CN114683969A (zh) * 2022-04-12 2022-07-01 潍柴动力股份有限公司 一种燃料电池发动机加载控制方法、装置及设备

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112572406B (zh) * 2019-09-27 2022-06-10 比亚迪股份有限公司 控制车辆的方法、装置、存储介质及车辆
CN112061112B (zh) * 2020-05-12 2022-01-04 浙江万里扬股份有限公司 控制方法、混合动力系统和车辆
CN113715801B (zh) * 2020-05-22 2024-05-10 广州汽车集团股份有限公司 具有混合动力耦合系统的车辆的控制器、控制方法和车辆
CN112224210A (zh) * 2020-10-19 2021-01-15 一汽解放青岛汽车有限公司 行星混联式汽车行车充电功率动态调节方法及汽车
CN112455424B (zh) * 2020-12-10 2021-11-30 上海馨联动力系统有限公司 一种混合动力汽车的爬坡工况识别方法
CN113829864B (zh) * 2021-03-02 2022-06-14 比亚迪股份有限公司 混合动力系统、混合动力车辆及其控制方法、整车控制器
CN113844249B (zh) * 2021-03-08 2022-07-15 比亚迪股份有限公司 混合动力系统、混合动力车辆及其控制方法、整车控制器
CN115140013B (zh) * 2021-03-30 2024-12-10 比亚迪股份有限公司 动力总成及其发电控制方法、介质和电子设备
CN113386732B (zh) * 2021-06-30 2023-03-17 中国第一汽车股份有限公司 一种非插电混动车辆工作模式的切换方法
CN113665561B (zh) * 2021-08-18 2022-03-15 上海洛轲智能科技有限公司 混合动力汽车的充电控制方法、系统及混合动力汽车
CN114715133A (zh) * 2022-04-24 2022-07-08 玉柴芯蓝新能源动力科技有限公司 双电机功率分流混合动力系统混动模式蠕行控制方法
JP2023173679A (ja) * 2022-05-26 2023-12-07 スズキ株式会社 ハイブリッド車両の制御装置
IT202200019836A1 (it) * 2022-09-27 2024-03-27 Egida S R L O In Forma Abbreviata Eg S R L Sistema di propulsione ottimizzato plug-in hybrid e relativo veicolo
IT202300012732A1 (it) * 2023-06-20 2024-12-20 Cnh Ind Italia Spa Metodo migliorato per controllare la carica e la scarica di un veicolo da lavoro ibrido-elettrico serie plug-in e veicolo da lavoro implementante tale metodo
CN117261697B (zh) * 2023-10-20 2024-04-05 佛山市清极能源科技有限公司 一种燃料电池车辆的能量控制方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898557A (zh) * 2010-07-27 2010-12-01 广州汽车集团股份有限公司 电动四驱混合动力车辆的控制方法
CN102069701A (zh) * 2009-11-20 2011-05-25 丰田自动车株式会社 混合动力车辆及混合动力车辆的控制方法
CN102358207A (zh) * 2011-09-22 2012-02-22 奇瑞汽车股份有限公司 一种电动车辅助发电功率确定方法
CN104176044A (zh) * 2013-05-22 2014-12-03 上海汽车集团股份有限公司 混合动力车在串联状态下的能量管理方法和混合动力车
US20160082826A1 (en) * 2014-09-18 2016-03-24 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
CN105799694A (zh) * 2014-12-31 2016-07-27 比亚迪股份有限公司 车辆的控制方法、系统及车辆
CN105922986A (zh) * 2016-05-24 2016-09-07 北京新能源汽车股份有限公司 增程式电动汽车及其模式切换控制方法和系统
JP6003758B2 (ja) * 2013-03-26 2016-10-05 トヨタ自動車株式会社 ハイブリッド自動車
CN106379313A (zh) * 2016-11-02 2017-02-08 天津市松正电动汽车技术股份有限公司 一种混合动力汽车发电方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717468B (zh) * 2011-08-03 2016-09-14 丰田自动车株式会社 混合动力车辆及其控制方法
DE102015207616B4 (de) * 2015-04-24 2025-06-05 Bayerische Motoren Werke Aktiengesellschaft Betriebsstrategie für ein Fahrzeug mit elektrischem Zwei-Achs-Hybrid-Antrieb

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102069701A (zh) * 2009-11-20 2011-05-25 丰田自动车株式会社 混合动力车辆及混合动力车辆的控制方法
CN101898557A (zh) * 2010-07-27 2010-12-01 广州汽车集团股份有限公司 电动四驱混合动力车辆的控制方法
CN102358207A (zh) * 2011-09-22 2012-02-22 奇瑞汽车股份有限公司 一种电动车辅助发电功率确定方法
JP6003758B2 (ja) * 2013-03-26 2016-10-05 トヨタ自動車株式会社 ハイブリッド自動車
CN104176044A (zh) * 2013-05-22 2014-12-03 上海汽车集团股份有限公司 混合动力车在串联状态下的能量管理方法和混合动力车
US20160082826A1 (en) * 2014-09-18 2016-03-24 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
CN105799694A (zh) * 2014-12-31 2016-07-27 比亚迪股份有限公司 车辆的控制方法、系统及车辆
CN105922986A (zh) * 2016-05-24 2016-09-07 北京新能源汽车股份有限公司 增程式电动汽车及其模式切换控制方法和系统
CN106379313A (zh) * 2016-11-02 2017-02-08 天津市松正电动汽车技术股份有限公司 一种混合动力汽车发电方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604010A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112660103A (zh) * 2020-12-31 2021-04-16 重庆金康赛力斯新能源汽车设计院有限公司 一种车辆控制模式的确定方法、装置和整车控制系统
CN112660103B (zh) * 2020-12-31 2023-04-07 重庆金康赛力斯新能源汽车设计院有限公司 一种车辆控制模式的确定方法、装置和整车控制系统
CN113879137A (zh) * 2021-11-18 2022-01-04 重庆大学 一种电动汽车闭环控制装置和方法
CN114683969A (zh) * 2022-04-12 2022-07-01 潍柴动力股份有限公司 一种燃料电池发动机加载控制方法、装置及设备
CN114683969B (zh) * 2022-04-12 2024-04-16 潍柴动力股份有限公司 一种燃料电池发动机加载控制方法、装置及设备

Also Published As

Publication number Publication date
EP3604010A4 (en) 2021-01-27
CN108656928B (zh) 2020-08-07
CN108656928A (zh) 2018-10-16
EP3604010A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
CN108656928B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
WO2018177358A1 (zh) 混合动力汽车及其动力系统和发电控制方法
CN108656924B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
US9227628B1 (en) Method and system for selecting an engine operating point for a hybrid vehicle
WO2015032347A1 (zh) 混合动力汽车的控制系统和控制方法
WO2010070750A1 (ja) 車両用動力伝達装置の制御装置
CN109572663B (zh) 混合动力汽车及其发动机的控制方法、装置
WO2018177357A1 (zh) 混合动力汽车的整车控制方法和动力系统
CN104417543A (zh) 混合动力汽车的控制系统和控制方法
US8527114B2 (en) Silent key start climate control demand
WO2018177360A1 (zh) 混合动力汽车的整车控制方法和动力系统
CN108656929B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
CN110254419B (zh) 混合动力车辆的控制装置
CN108657158B (zh) 混合动力汽车及其动力系统和发电控制方法
WO2018177362A1 (zh) 混合动力汽车及其动力系统
CN108725172B (zh) 混合动力汽车及其动力系统和发电控制方法
CN108656926B (zh) 混合动力汽车的整车控制方法和动力系统
TWI667162B (zh) 混合動力汽車及其用電控制方法和裝置
JP2010215190A (ja) 車両用動力伝達装置の制御装置
CN108656927B (zh) 混合动力汽车及其动力系统
CN108657166B (zh) 混合动力汽车及其动力系统和发电控制方法
CN108656933B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
WO2018177356A1 (zh) 混合动力汽车及其动力系统和发电控制方法
CN108657167B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
CN108657165B (zh) 混合动力汽车及其动力系统和发电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018777420

Country of ref document: EP

Effective date: 20191031