WO2018158458A1 - Procede de calibration d'un nez electronique - Google Patents
Procede de calibration d'un nez electronique Download PDFInfo
- Publication number
- WO2018158458A1 WO2018158458A1 PCT/EP2018/055233 EP2018055233W WO2018158458A1 WO 2018158458 A1 WO2018158458 A1 WO 2018158458A1 EP 2018055233 W EP2018055233 W EP 2018055233W WO 2018158458 A1 WO2018158458 A1 WO 2018158458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- interest
- gaseous medium
- pressure
- electronic nose
- sensors
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0006—Calibrating gas analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/4133—Refractometers, e.g. differential
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
- G01N21/61—Non-dispersive gas analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/93—Detection standards; Calibrating baseline adjustment, drift correction
Definitions
- the invention relates to a method of calibrating an electronic nose.
- An electronic nose typically includes a plurality of sensors for recognizing the presence of a target compound, for example a chemical or biological analyte, in a gas sample.
- a target compound for example a chemical or biological analyte
- the sensors are generally not specific to a particular target compound. Also, in a given application, a comparison is generally made of the data provided by the different sensors of the electronic nose, which provide a recognition fingerprint, with reference data, for example from prior learning for the target compound in question.
- optical index refractive index
- the calibration is performed by injecting a gas comprising an organic reference compound.
- a second technique consists in using a prediction model after injection of an organic reference compound at different concentrations. This is proposed by Tian et al., "On-line calibration of semiconductor gas sensors based on, model prediction", J. of computers, vol. 8, p. 2204, September 2013 (D2).
- An object of the invention is thus to propose a method for calibrating an electronic nose that does not have at least one of the abovementioned disadvantages.
- the invention proposes a method of calibrating an electronic nose, said electronic nose comprising a plurality of optical sensors arranged on a surface and able to be in contact with a gaseous medium of interest, said optical sensors being capable of delivering a signal representative of the local optical index of the gaseous medium of interest when they are excited by photons, the method being characterized in that it comprises the following steps, after placing the electronic nose in a medium gas of interest at the initial pressure P 0 and the initial temperature T 0 :
- a corrective factor such that a variation of the signal between steps d) and b) corrected by said corrective factor is equal to or substantially equal to a variation of the signal between these same steps for a reference, this reference being provided by a reference sensor or a combination of reference sensors.
- the method according to the invention may comprise at least one of the following characteristics, taken alone or in combination:
- step a) the pressure P 0 and / or the temperature T 0 of the gaseous medium of interest are determined; the measurement carried out in step b) or d), for example a measurement of reflectivity or of transmissivity, is carried out over a period of between 0.1 s and 60 min, preferably between 1 s and 10 min, and then averaged;
- N times steps c) and d) are repeated N times, with N a natural number greater than or equal to 1, so that the pressure and / or the temperature of the gaseous medium of interest is different from a pressure and / or a temperature of the gaseous medium of interest for which a measurement has already been made;
- step c the pressure and / or the temperature of the gaseous medium of interest is modified to another known value
- the pressure of the gaseous medium of interest is modified by a value between + 10mbar and + 2bar, preferably between + 50mbar and + 150mbar or a value between -10mbar and -900mbar preferably between -50mbar and -150mbar; and / or modifying the temperature of the gaseous medium by a value between +1 ° C and + 100 ° C, preferably between + 5 ° C and + 15 ° C or between -1 ° C and -50 ° C, preferably between -5 ° C and -15 ° C;
- step e an additional step of modifying the pressure and / or the temperature of the gaseous medium of interest at the initial pressure (P 0 ) and / or the initial temperature (T 0 ) is carried out; ;
- the optical sensor is chosen from a sensor having a plasmon effect, for example on a plane surface, an optical fiber or nanocavities, or a sensor capable of operating by refractometry, for example a resonator sensor.
- the invention also proposes a method of calibrating an electronic nose, said electronic nose comprising a plurality of optical sensors arranged on a surface and able to be in contact with a gaseous medium of interest, said sensors optical devices being capable of delivering a signal representative of the local optical index of the gaseous medium of interest when they are excited by photons, the method being characterized in that it comprises the following steps, after placing the nose in a gaseous medium of interest at the initial pressure P 0 and the initial temperature T 0 :
- This method according to the invention may comprise at least one of the following characteristics, taken alone or in combination:
- step A the pressure and / or the temperature of the gaseous medium of interest is adjusted to a predetermined value
- step C) or E) for example a measurement of reflectivity or of transmissivity, takes place over a period of between 0.1 s and 60 min, preferably between 1 s and 10 min, then averaged;
- step F) before carrying out step F), the steps D) and E) are repeated N times, with N a natural number greater than or equal to 1, so that the pressure or, as the case may be, the temperature of the medium gaseous interest is different from a pressure or depending on the case of a temperature of the gaseous medium of interest for which a measurement has already been made;
- step D) the pressure of the gaseous medium is modified by a value between + 10mbar and + 2bar, preferably between + 50mbar and + 150mbar or a value between -10mbar and -900mbar, preferably between -50mbar and -150mbar; and / or modifying the temperature of the gaseous medium by a value between +1 ° C. and + 100 ° C., preferably between + 5 ° C. and + 15 ° C., or between -1 ° C. and -50 ° C.
- step F an additional step consisting in modifying the pressure and / or the temperature of the gaseous medium of interest at the initial pressure (P 0 ) and / or the initial temperature (T 0 ) is implemented. ;
- the optical sensor is chosen from a sensor having a plasmon effect, for example on a flat surface, an optical fiber or nanocavities, or a sensor capable of operating by refractometry, for example a resonator sensor.
- FIG. 1 represents an installation that can be envisaged to implement a method according to the invention, based on a measurement in reflectivity and a change in pressure of the gaseous medium associated with the electronic nose;
- FIG. 2 is a typical image generated by the evoked installation on which the sensors of the electronic nose are visible;
- FIG. 3 represents reflectivity measurement results carried out with the installation of FIGS. 1 and 2, with dry air as a gaseous medium;
- FIG. 4 which comprises FIGS. 4 (a) to 4 (c), represents a case of application that can be carried out with the installation of FIGS. 1 and 2, with a gaseous medium comprising air ( dry) and ethanol, serving as analyte;
- FIG. 5 represents a variant of the installation of FIGS. 1 and 2 for implementing a method according to the invention, based on a measurement in reflectivity and a change in temperature of the gaseous medium associated with the electronic nose;
- FIG. 6 represents another variant of the installation of FIGS. 1 and 2 for implementing a method according to the invention, based on a measurement in transmittivity and a change in pressure and temperature of the gaseous medium associated with the electronic nose.
- FIG. 1 represents an example of an experimental installation 100 making it possible to implement the method of calibrating an electronic nose according to the invention.
- This experimental installation 100 comprises a light source 10, for example an LED, capable of emitting a given wavelength, an electronic nose 20 and an optical probe 30, for example a CCD camera.
- a lens L1 and a polarizer P may be provided between the light source 10 and the electronic nose 20.
- a lens L2 may also be provided between the electronic nose 20 and the optical probe 30.
- optical probe 30 is arranged on the same side of the metal layer 21 as the light source 20. This experimental installation 100 thus makes it possible to carry out measurements in reflection.
- the electronic nose 20 comprises a metal layer 21, in this case gold (Au), flat.
- the electronic nose 20 also comprises a plurality of sensors Ci, CN arranged on a first face F1 of said metal layer 21 so that said first face F1 of the metal layer 21 and said sensors are in contact with a gaseous medium, dielectric in nature .
- the electronic nose 20 also comprises a support 22 for said metal layer 21.
- the support 22 is arranged against a second face F2 of the metal layer 21, said second face F2 being opposite to said first face F1.
- Another thin metal layer (not shown), for example made of chromium (Cr), is provided between the second face F2 of the layer 21 and the support 22 to ensure the attachment of the metal layer 21 on the support 22.
- Such an installation 100 makes it possible to generate a plasmon resonance at the first face of the metal layer 21 which is in contact with the gaseous medium. More precisely, if we define the angle of incidence between the direction of propagation of the light beam FL and the normal to the metal layer 21, we can define the following relation:
- n s is the reduction index of the support 22
- s m is the permittivity of the metal forming the metal layer 21
- G g is the permittivity of the gaseous medium MG
- 6R is the incidence angle of plasmon resonance.
- the relation (R1) implicitly involves the wavelength of the light beam FL emitted by the optical source 10.
- the optical index n G of the gaseous medium MG and therefore its permittivity ⁇ 9 depend on the length wave.
- This experimental installation 100 therefore takes up the characteristics of the Kretschmann configuration.
- the manufacture of such a Kretschmann configuration is known to those skilled in the art and is therefore not specified.
- the article by Guedon & al. entitled “Characterization and Optimization of a Real-Time, Parallel, Label-Free, Polypyrolle-based DNA Sensor by Surface Plasmon Imaging,” Anal Chem, 2000, 72, pp. 6003-6009 for more information.
- the plasmon resonance allows to induce a plasmon wave at the interface between the metal layer and the gaseous medium, the amplitude of which makes it possible to observe with a good sensitivity local variations of optical properties, such as a variation of optical index or a variation of reflectivity.
- the signal delivered by the sensors Ci, C N may in particular be representative of a variation in reflectivity.
- the applicant was able to see that it was possible with the experimental installation 100 to perform a calibration, in this case relative, of the sensors, by varying the pressure and / or the temperature of the gaseous medium MG.
- this relative calibration does not make it possible to calibrate the electronic nose to ensure that in use (that is to say after calibration and to detect for example the presence of a particular target compound), the use a device of the Kretschmann configuration type will provide absolute values of a local optical index variation for characterizing this particular target compound.
- a chemical calibration can be performed upstream, for example in the factory. This chemical calibration may in particular be carried out by a known technique such as that described in document D1 or D2.
- Experimental setup 100 has been specifically designed to ensure a common stimulus under pressure.
- the metal layer 21 and its sensors are housed in a chamber 40 comprising an inlet E and an outlet S.
- the outlet S is connected to a pump 50 for supplying the chamber with a perfectly controlled gas flow.
- This means that the flow of gas is controlled, ie known, to obtain a laminar gas flow in the chamber.
- a first method according to the invention is a method of calibrating an electronic nose, said electronic nose comprising a plurality of optical sensors arranged on a surface and able to be in contact with a gaseous medium of interest, said optical sensors being capable of delivering a signal representative of the local optical index of the gaseous medium of interest when they are excited by photons, the method being characterized in that it comprises the following steps, after placing the electronic nose in a medium gas of interest at the initial pressure P 0 and the initial temperature T 0 :
- step b) repeat step b); and e) for each sensor, determining a corrective factor such that a variation of the signal between steps d) and b) corrected by said corrective factor is equal to or substantially equal to a variation of the signal between these same steps for a reference, this reference being provided by a reference optical sensor or a combination of optical reference sensors.
- This first calibration method makes it possible to implement a relative calibration.
- Figure 2 is a view of the metal layer 21 and its sensors Ci, C N.
- optical sensors are all formed by the technique proposed by Hou et al., "Continuous evolution profiles for electronic-tongue-based analysis", Angewandte Chem. Int. Ed. 2012, vol. 51, pp.10394-10398; with decanthiol for example
- the optical sensors obtained after functionalization of their surface then all have a round shape.
- the measurements can be made for all the sensors. Nevertheless, in the sole concern of the demonstration, it was chosen here to select only four of them. This can easily be done by providing a mask to cover the sensors for which we do not want to get a response during calibration.
- the gaseous medium MG is dry air.
- P1 1, 1 63 mbar.
- the reflectivity measurement results are shown in FIG. 3 (signals delivered by the optical sensors Ci, CN). This figure 3 provides the evolution of the reflectivity variation (%) over time and for each of the four selected sensors.
- the reflectivity (%) is defined by the ratio of the intensity of the light beam received by the optical probe to the intensity of the light beam emitted by the optical source.
- a corrective factor such as a signal difference between steps d) and b) (difference in reflectivity variation here) was then determined. equal to or substantially equal to a variation of the reflectivity of the reference sensor.
- the reference sensor, C1 indicates a measured reflectivity variation of 0.54%, considered correct, and the sensor C4 a measured reflectivity variation of 0.42. %.
- the corrective factor is 54/42 to obtain a corrected reflectivity variation of the sensor C4, equal to the variation of reflectivity of the reference sensor, ie 0.54%.
- the pressure jump is perfectly determined, which makes it possible to know the modified pressure after the implementation of step d).
- an electronic nose comprising a plurality of optical sensors arranged on a surface and able to be in contact with a gaseous medium of interest, said optical sensors being capable of delivering a signal representative of the local optical index of the gaseous medium of interest when they are excited by photons, the method being characterized in that it comprises the following steps, after placing the electronic nose in a medium gas of interest at the initial pressure P 0 and the initial temperature T 0 : A) determining the initial pressure P 0 and the initial temperature T 0 of the gaseous medium of interest;
- Steps B), C) D) and E) of the second process are identical to steps a), b), c) and d) of the first process, respectively.
- step D) of the second process differs from step c) of the first process, inasmuch as the value of the pressure, or of the temperature or both the pressure and the temperature must ) be known.
- Step F) can be performed as follows. It is known that the optical index n G of a gaseous medium MG depends on the temperature T (in ° C), the pressure P (in Torr) and the wavelength ⁇ (in ⁇ ) according to a relationship of type: or: is a quantity representative of the optical index n G of the medium
- R ci is, for the sensor d, the measured reflectivity variation (from FIG. 3).
- each sensor thus provides, according to the relationship R4, identical evolutions of this local optical index as a function of the pressure of the gaseous medium.
- this second method also makes it possible to obtain an absolute calibration of the different sensors, insofar as it makes it possible to obtain the evolution of the optical index in accordance with the relationship R4. Indeed, once the different optical index changes for the different sensors are determined, the calibration of the electronic nose is made. It only remains to take into account before starting an effective measurement with this electronic nose.
- step D the pressure jump accurately (step D)) in order to correctly determine, for each sensor, the evolution of the local optical index (step F)).
- gaseous MG gaseous MG. Indeed, here the gaseous medium is dry air loaded with ethanol, 200ppm. Ethanol acts as an analyte.
- Figure 4 includes Figures 4 (a) to 4 (c).
- Figure 4 (a) shows, in the form of a histogram, the measured reflectivity variation (raw data - compared to the data of Figure 3).
- Figure 4 (b) shows the correction factors for each sensor. At this stage, we therefore know the corrective factors leading to the calibration.
- Figure 4 (c) shows the corrected variation in reflectivity for each sensor. This Figure 4 (c) corresponds to Figure 4 (a) corrected by Figure 4 (b). At this point, we are ready to start an effective measurement.
- step b) or d) for the first process or step C) or E) for the second method carried out over a period of time between 0, 1 s and 60 min, preferably between 1 s and 10 min, then averaged.
- the duration of the measurement depends on the desired accuracy, but also the characteristics of the device for sampling.
- steps c) and d) are advantageously repeated N times before the implementation of step e) or, as the case may be, the steps D) and E are repeated N times. before the implementation of step F), with N a natural integer greater than or equal to 1.
- the pressure of the gaseous medium is different from a pressure (or, depending on the case, the temperature or both the pressure and the temperature) for which a measurement has already been made. it allows to have more than two measurements and thus increase the quality of measurements.
- reflectivity measurements can be entirely performed on the basis of an evolution of the temperature T of the gaseous medium MG, or by maintaining the pressure P 0 at a temperature of constant value the pressure of this gaseous medium is also varying the pressure of the gaseous medium.
- the experimental installation 100 includes a device 50' for regulating the temperature, to be able to change the temperature.
- this device can be in the form of an electric wire powered by the sector to achieve a heating Joule effect which is associated with a temperature control loop.
- a change of 10 ° C in the temperature of the gaseous medium MG substantially corresponds to the effect provided by a change in pressure of the OOmbar.
- R1 we can rely on the relationship R1 for this purpose.
- control device may be replaced by a device for regulating the temperature and the pressure, when it is desired to vary both the temperature and the pressure, device being for example an association of the means described above to vary the temperature on the one hand and the pressure on the other hand.
- FIG. 6 thus shows an experimental installation 100 "making it possible to implement a change in pressure and / or temperature of the gaseous medium, with a measurement in transmittivity.
- the pump 50 and / or as the case may be, the device 50 'of temperature control has however not been shown in this FIG. 6, the objective being simply to show how the measurement can be carried out.
- a method according to the invention can be implemented with a different installation of the installations 100, 100 ', 100 ", respectively represented in FIGS. 1, 5 and 6.
- SPR surface plasmon resonance
- a method according to the invention can be implemented using surface plasmon resonance on optical fiber, whether in reflection or in transmission.
- This technique is for example presented by Burgmeier et al., "Plasmonic nanoshelled functionalized etch fiber Bragg gratings for highly sensitive refractive index measurements", Optics Letters, vol. 40 (4), pp. 546-549 (2015).
- the device proposed in this document is used with a liquid medium, but could as well be used for a gaseous medium, so for an electronic nose.
- a method according to the invention can be implemented using surface plasmon resonance on beads, whether in reflection or in transmission. This technique is for example presented, in the case of a use in reflection by Frederix et al., "Biosensing based on light absorption on nanoscale gold and silver nanoparticles", Anal. Chem. 2003, vol. 75, pp. 6894-6900.
- the dielectric medium considered is rather a liquid, but can be used for a gaseous medium and therefore an electronic nose.
- a method according to the invention can also be implemented using nanocavity-based plasmon resonance.
- Zhao Hua-Jin's article, "High sensitivity refractive index gas sensing enhanced surface plasmon resonance with nano-cavity anteanna array", 2012, Chinese Physical Society and IOP Publishing Ltd., Chinese Physics B, vol. 21 (8), pp. clearly indicates that such nanocavities are sensitive to a local optical index change. This can be used to perform a calibration, for example for an electronic nose.
- an optical sensor of the "optical resonator” type can be used.
- the resonator performs the function of the metal layer of a plasmon effect sensor.
- the gaseous medium of interest used to make the calibration is dry air.
- the invention is not limited to dry air.
- the gaseous medium of interest for the calibration may be, without limitation, ambient air, a carrier gas that is to say capable of carrying a gas to be measured, such as volatile organic compounds (VOC).
- VOC volatile organic compounds
- the correction factors can be obtained at the manufacture of the electronic nose but also by the user in the same environment as his measures of interest, or during a maintenance for example.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Medicinal Chemistry (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197027844A KR102428510B1 (ko) | 2017-03-03 | 2018-03-02 | 전자코를 캘리브레이션 하는 방법 |
AU2018226567A AU2018226567A1 (en) | 2017-03-03 | 2018-03-02 | Method for calibrating an electronic nose |
SG11201908116X SG11201908116XA (en) | 2017-03-03 | 2018-03-02 | Method for calibrating an electronic nose |
CN201880021091.3A CN110520726A (zh) | 2017-03-03 | 2018-03-02 | 用于校准电子鼻的方法 |
EP18707921.5A EP3589946A1 (fr) | 2017-03-03 | 2018-03-02 | Procede de calibration d'un nez electronique |
CA3055115A CA3055115A1 (fr) | 2017-03-03 | 2018-03-02 | Procede de calibration d'un nez electronique |
JP2019568817A JP7376874B2 (ja) | 2017-03-03 | 2018-03-02 | 電子鼻の較正方法 |
US16/490,527 US10928369B2 (en) | 2017-03-03 | 2018-03-02 | Method of calibrating an electronic nose |
IL26910919A IL269109A (en) | 2017-03-03 | 2019-09-03 | A method for calibrating an electronic nose |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1751751A FR3063543B1 (fr) | 2017-03-03 | 2017-03-03 | Procede de calibration d'un nez electronique. |
FR1751751 | 2017-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018158458A1 true WO2018158458A1 (fr) | 2018-09-07 |
Family
ID=59253625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/055233 WO2018158458A1 (fr) | 2017-03-03 | 2018-03-02 | Procede de calibration d'un nez electronique |
Country Status (11)
Country | Link |
---|---|
US (1) | US10928369B2 (fr) |
EP (1) | EP3589946A1 (fr) |
JP (1) | JP7376874B2 (fr) |
KR (1) | KR102428510B1 (fr) |
CN (1) | CN110520726A (fr) |
AU (1) | AU2018226567A1 (fr) |
CA (1) | CA3055115A1 (fr) |
FR (1) | FR3063543B1 (fr) |
IL (1) | IL269109A (fr) |
SG (1) | SG11201908116XA (fr) |
WO (1) | WO2018158458A1 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3091346A1 (fr) | 2018-12-31 | 2020-07-03 | Aryballe Technologies | Procede de caracterisation de composes cibles |
FR3103895A1 (fr) | 2019-11-29 | 2021-06-04 | Aryballe Technologies | procede de caracterisation de composes d’intérêt dans une chambre de mesure présentant une variation d’humidité relative |
FR3105832A1 (fr) | 2019-12-30 | 2021-07-02 | Aryballe Technologies | Procédé de recalibration d’un nez électronique |
FR3120445A1 (fr) | 2021-03-08 | 2022-09-09 | Aryballe | Procédé de caractérisation d’un analyte présent dans un échantillon gazeux contenant au moins une espèce chimique parasite |
FR3122736A1 (fr) | 2021-05-10 | 2022-11-11 | Aryballe | Dispositif et procédé de mesure multisensorielle d’adsorption et désorption de composés d’un fluide |
WO2023135163A1 (fr) | 2022-01-14 | 2023-07-20 | Aryballe | Procede de detection d'objets biologiques par imagerie par resonance plasmonique de surface |
WO2023187547A1 (fr) | 2022-03-29 | 2023-10-05 | Aryballe | Dispositif et procédé de mesure multivariée d'une présence de composés dans un fluide |
FR3144867A1 (fr) | 2023-01-10 | 2024-07-12 | Aryballe | Dispositif et procédé de caractérisation d’un fluide |
JP7544804B2 (ja) | 2019-07-12 | 2024-09-03 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | 匂いの物理化学的分類を可能にする電子鼻のための検出システムおよびそのようなシステムを備える電子鼻 |
WO2024200803A1 (fr) | 2023-03-31 | 2024-10-03 | Centre National De La Recherche Scientifique | Procédés et systèmes de substitution sensorielle de l'odorat chez un sujet |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3092910B1 (fr) * | 2019-02-18 | 2021-07-09 | Aryballe Tech | Procédé d’identification d’un article par signature olfactive |
FR3106212B1 (fr) | 2020-01-10 | 2022-10-14 | Aryballe Tech | Dispositif électronique, procédé et programme d’ordinateur pour l’estimation olfactive d’un état d’un produit |
CN111426801B (zh) * | 2020-05-09 | 2022-08-02 | 上海宁和环境科技发展有限公司 | 电子鼻学习驯化方法及其设备 |
TWI753713B (zh) * | 2020-12-21 | 2022-01-21 | 財團法人工業技術研究院 | 具校正功能之壓力感測器及其校正方法 |
WO2022234261A1 (fr) * | 2021-05-05 | 2022-11-10 | Elta Group Limited | Appareil de détection de la qualité de l'air dans une pièce, système de régulation de la qualité de l'air et dispositif de détection de la qualité de l'air |
FR3129103B1 (fr) | 2021-11-16 | 2023-10-20 | Michelin & Cie | Procédé et Système de Contrôle de Fabrication de Produits Caoutchouteux en Réponse aux Propriétés Physico-Chimiques d’un Mélange Caoutchouteux |
FR3146521B1 (fr) | 2023-03-10 | 2025-02-14 | Michelin & Cie | Procédé et système de contrôle de fabrication de produits caoutchouteux en réponse aux propriétés physico-chimiques d’un mélange caoutchouteux |
DE102023205210A1 (de) * | 2023-06-05 | 2024-12-05 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Bestimmen einer Korrelationsfunktion, Verfahren zur Gasbestimmung und Gassensor |
KR102739296B1 (ko) * | 2023-11-16 | 2024-12-05 | (주) 오로스테크놀로지 | 온도 제어가 용이한 시료 계측 시스템 및 이를 운용하는 운용 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007003674A2 (fr) * | 2005-07-02 | 2007-01-11 | Universidad De Granada | Instrument et procede de mesure de la concentration de gaz |
WO2015102090A1 (fr) * | 2013-12-30 | 2015-07-09 | 新日鉄住金化学株式会社 | Substrat composite, capteur optique, capteur à résonance localisée de plasmon de surface, leur utilisation, procédé de détection, filtre perméable sélectif vis-à-vis de l'humidité et capteur muni de celui-ci |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2866230B2 (ja) * | 1991-09-20 | 1999-03-08 | 東京瓦斯株式会社 | ガス濃度測定装置 |
US6672129B1 (en) * | 1997-10-22 | 2004-01-06 | Microfab Technologies, Inc. | Method for calibrating a sensor for measuring concentration of odors |
GB0415881D0 (en) | 2004-07-15 | 2004-08-18 | Univ Southampton | Multiwavelength optical sensors |
JP4475577B2 (ja) | 2004-09-30 | 2010-06-09 | 富士フイルム株式会社 | 測定装置および測定ユニット |
DE102005054495A1 (de) * | 2005-11-16 | 2007-05-24 | Mivitec Gmbh | Verteilte Sensor- und Referenzspots für Chemo- und Biosensoren |
FR2927700B1 (fr) * | 2008-02-18 | 2010-05-14 | Continental Automotive France | Procede d'etalonnage d'un capteur de mesure |
US7610142B1 (en) * | 2008-06-13 | 2009-10-27 | Ford Global Technologies, Llc | Sensor self-calibration system and method |
WO2011156713A1 (fr) * | 2010-06-11 | 2011-12-15 | Vanderbilt University | Système et procédé de détection interférométrique multiplexés |
GB201018418D0 (en) * | 2010-11-01 | 2010-12-15 | Gas Sensing Solutions Ltd | Temperature calibration methods and apparatus for optical absorption gas sensors, and optical absorption gas sensors thereby calibrated |
JP5933972B2 (ja) | 2011-12-27 | 2016-06-15 | 株式会社堀場製作所 | ガス計測装置およびガス計測装置における波長変調幅の設定方法。 |
WO2014170179A1 (fr) | 2013-04-15 | 2014-10-23 | Thermo Fisher Scientific (Bremen) Gmbh | Système d'admission de gaz pour analyseur de rapport isotopique et procédé de détermination d'un rapport isotopique |
WO2015045411A1 (fr) | 2013-09-27 | 2015-04-02 | 旭化成エレクトロニクス株式会社 | Capteur de gaz |
CN103500770B (zh) * | 2013-10-23 | 2016-08-24 | 中北大学 | 一种多气体检测的红外气体传感器 |
NO343817B1 (no) * | 2013-12-19 | 2019-06-11 | Simtronics As | Optisk gassdeteksjon |
US10113999B2 (en) | 2014-03-07 | 2018-10-30 | City University Of Hong Kong | Method and a device for detecting a substance |
JP5875741B1 (ja) | 2014-06-04 | 2016-03-02 | 三菱電機株式会社 | ガス計測装置とその計測方法 |
CN104807968A (zh) * | 2015-05-11 | 2015-07-29 | 杭州北辰光电技术有限公司 | 气体传感器及其识别与校准方法 |
CN105180978B (zh) * | 2015-05-26 | 2018-09-18 | 马平 | 基于窄带光源和滤波特性可调元件的光学传感器及其方法 |
US9745621B2 (en) * | 2015-08-17 | 2017-08-29 | Wisys Technology Foundation, Inc. | Temperature gradient surface plasmon resonance instrument |
JP6581439B2 (ja) * | 2015-08-26 | 2019-09-25 | 旭化成エレクトロニクス株式会社 | ガスセンサ較正装置、ガスセンサ較正方法及びガスセンサ |
KR102652349B1 (ko) * | 2015-09-24 | 2024-03-27 | 래크리사이언시즈, 엘엘씨. | 광학 센서들, 시스템들 및 그 사용 방법들 |
ES2773778T3 (es) * | 2015-11-10 | 2020-07-14 | Lacrisciences Llc | Sistemas y procedimientos para determinar la osmolaridad de una muestra |
CN105651939B (zh) * | 2015-12-29 | 2017-11-07 | 重庆大学 | 电子鼻系统中基于凸集投影的浓度检测精度校正方法 |
US9709491B1 (en) * | 2016-03-28 | 2017-07-18 | The United States Of America | System and method for measuring aerosol or trace species |
-
2017
- 2017-03-03 FR FR1751751A patent/FR3063543B1/fr active Active
-
2018
- 2018-03-02 US US16/490,527 patent/US10928369B2/en active Active
- 2018-03-02 CN CN201880021091.3A patent/CN110520726A/zh active Pending
- 2018-03-02 JP JP2019568817A patent/JP7376874B2/ja active Active
- 2018-03-02 WO PCT/EP2018/055233 patent/WO2018158458A1/fr active Application Filing
- 2018-03-02 SG SG11201908116X patent/SG11201908116XA/en unknown
- 2018-03-02 EP EP18707921.5A patent/EP3589946A1/fr active Pending
- 2018-03-02 AU AU2018226567A patent/AU2018226567A1/en not_active Abandoned
- 2018-03-02 KR KR1020197027844A patent/KR102428510B1/ko active IP Right Grant
- 2018-03-02 CA CA3055115A patent/CA3055115A1/fr not_active Abandoned
-
2019
- 2019-09-03 IL IL26910919A patent/IL269109A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007003674A2 (fr) * | 2005-07-02 | 2007-01-11 | Universidad De Granada | Instrument et procede de mesure de la concentration de gaz |
WO2015102090A1 (fr) * | 2013-12-30 | 2015-07-09 | 新日鉄住金化学株式会社 | Substrat composite, capteur optique, capteur à résonance localisée de plasmon de surface, leur utilisation, procédé de détection, filtre perméable sélectif vis-à-vis de l'humidité et capteur muni de celui-ci |
Non-Patent Citations (13)
Title |
---|
BURGMEIER: "Plasmonic nanoshelled functionalized etch fiber Bragg gratings for highly sensitive refractive index measurements", OPTICS LETTERS, vol. 40, no. 4, 2015, pages 546 - 549 |
FREDERIX: "Biosensing based on light absorption on nanoscaled gold and silver nanoparticles", ANAL. CHEM., vol. 75, 2003, pages 6894 - 6900, XP001047366, DOI: doi:10.1021/ac0346609 |
GUEDON: "Characterization and Optimization of a Real-Time, Parallel, Label-Free, Polypyrolle based DNA Sensor by Surface Plasmon Imaging", ANAL. CHEM., vol. 72, 2000, pages 6003 - 6009 |
HENRY J. MCDERMOTT: "Air Monitoring for Toxic exposure", JOHN WILEY & SONS INC., pages: 161 - 173 |
HOU: "Continuous évolution profiles for electronic-tongue-based analysis", ANGEWANDTE CHEM. INT. ED., vol. 51, 2012, pages 10394 - 10398 |
ISABEL M PÃ CR REZ DE VARGAS-SANSALVADOR ET AL: "Compact optical instrument for simultaneous determination of oxygen and carbon dioxide", MICROCHIMICA ACTA ; AN INTERNATIONAL JOURNAL ON MICRO AND TRACEANALYSIS, SPRINGER-VERLAG, VI, vol. 172, no. 3 - 4, 17 December 2010 (2010-12-17), pages 455 - 464, XP019885628, ISSN: 1436-5073, DOI: 10.1007/S00604-010-0520-0 * |
KIM: "Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers", OPTICS COMMUNICATIONS, vol. 281, no. 18, 2008, pages 4644 - 4647, XP023612951, DOI: doi:10.1016/j.optcom.2008.06.006 |
LUCHANSKY: "High-Q optical sensors for chemical and biological analysis", ANALYTICAL CHEMISTRY, vol. 84, no. 2, 2011, pages 793 - 821 |
PALMA ET AL: "Microcontroller-based portable instrument for stabilised optical oxygen sensor", SENSORS AND ACTUATORS B: CHEMICAL: INTERNATIONAL JOURNAL DEVOTED TO RESEARCH AND DEVELOPMENT OF PHYSICAL AND CHEMICAL TRANSDU, ELSEVIER BV, NL, vol. 121, no. 2, 3 February 2007 (2007-02-03), pages 629 - 638, XP005872249, ISSN: 0925-4005, DOI: 10.1016/J.SNB.2006.03.056 * |
PASSARO ET AL.: "Ammonia Optical Sensing by Microring Resonators", SENSORS, vol. 7, 2007, pages 2741 - 2749 |
TIAN: "On-line calibration of semiconductor gas sensors based on, prédiction model", J. OF COMPUTERS, vol. 8, September 2013 (2013-09-01), pages 2204 |
XIUTAO LOU ET AL: "Temperature-Corrected Oxygen Detection Based on Multi-Mode Diode Laser Correlation Spectroscopy", JOURNAL OF SPECTROSCOPY, vol. 32, no. 30, 1 January 2013 (2013-01-01), pages 6090 - 8, XP055152166, ISSN: 2314-4920, DOI: 10.1155/2013/524071 * |
ZHAO HUA-JIN: "Chinese Physical Society", vol. 21, 2012, IOP PUBLISHING LTD, article "High sensitivity refractive index gas sensing enhanced by surface plasmon resonance with nano-cavity anteanna array" |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020141281A1 (fr) | 2018-12-31 | 2020-07-09 | Aryballe Technologies | Procede de caracterisation de composes cibles |
CN113439204A (zh) * | 2018-12-31 | 2021-09-24 | 阿雅宝科技公司 | 用于表征目标化合物的方法 |
FR3091346A1 (fr) | 2018-12-31 | 2020-07-03 | Aryballe Technologies | Procede de caracterisation de composes cibles |
JP7544804B2 (ja) | 2019-07-12 | 2024-09-03 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | 匂いの物理化学的分類を可能にする電子鼻のための検出システムおよびそのようなシステムを備える電子鼻 |
FR3103895A1 (fr) | 2019-11-29 | 2021-06-04 | Aryballe Technologies | procede de caracterisation de composes d’intérêt dans une chambre de mesure présentant une variation d’humidité relative |
US20230031220A1 (en) * | 2019-12-30 | 2023-02-02 | Aryballe | Method for recalibrating an electronic nose |
FR3105832A1 (fr) | 2019-12-30 | 2021-07-02 | Aryballe Technologies | Procédé de recalibration d’un nez électronique |
WO2021136761A1 (fr) * | 2019-12-30 | 2021-07-08 | Aryballe Technologies | Procede de recalibration d'un nez electronique |
FR3120445A1 (fr) | 2021-03-08 | 2022-09-09 | Aryballe | Procédé de caractérisation d’un analyte présent dans un échantillon gazeux contenant au moins une espèce chimique parasite |
WO2022189292A1 (fr) | 2021-03-08 | 2022-09-15 | Aryballe | Procede de caracterisation d'un analyte present dans un echantillon gazeux contenant au moins une espece chimique parasite |
FR3122736A1 (fr) | 2021-05-10 | 2022-11-11 | Aryballe | Dispositif et procédé de mesure multisensorielle d’adsorption et désorption de composés d’un fluide |
WO2022238812A1 (fr) | 2021-05-10 | 2022-11-17 | Aryballe | Dispositif et procédé de mesure multisensorielle d'adsorption et désorption de composés d'un fluide |
WO2023135163A1 (fr) | 2022-01-14 | 2023-07-20 | Aryballe | Procede de detection d'objets biologiques par imagerie par resonance plasmonique de surface |
FR3131959A1 (fr) | 2022-01-14 | 2023-07-21 | Aryballe | Procédé de détection d’objets biologiques par imagerie par résonance plasmonique de surface |
WO2023187547A1 (fr) | 2022-03-29 | 2023-10-05 | Aryballe | Dispositif et procédé de mesure multivariée d'une présence de composés dans un fluide |
FR3134183A1 (fr) | 2022-03-29 | 2023-10-06 | Aryballe | Dispositif et procédé de mesure multivariée d’une présence de composés dans un fluide |
FR3144867A1 (fr) | 2023-01-10 | 2024-07-12 | Aryballe | Dispositif et procédé de caractérisation d’un fluide |
WO2024200803A1 (fr) | 2023-03-31 | 2024-10-03 | Centre National De La Recherche Scientifique | Procédés et systèmes de substitution sensorielle de l'odorat chez un sujet |
Also Published As
Publication number | Publication date |
---|---|
JP2020509395A (ja) | 2020-03-26 |
SG11201908116XA (en) | 2019-10-30 |
IL269109A (en) | 2019-11-28 |
FR3063543A1 (fr) | 2018-09-07 |
AU2018226567A1 (en) | 2019-10-10 |
FR3063543B1 (fr) | 2022-01-28 |
KR102428510B1 (ko) | 2022-08-03 |
CA3055115A1 (fr) | 2018-09-07 |
CN110520726A (zh) | 2019-11-29 |
JP7376874B2 (ja) | 2023-11-09 |
US20200088702A1 (en) | 2020-03-19 |
US10928369B2 (en) | 2021-02-23 |
KR20200004785A (ko) | 2020-01-14 |
EP3589946A1 (fr) | 2020-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018158458A1 (fr) | Procede de calibration d'un nez electronique | |
FR2491615A1 (fr) | Procede de mesure optoelectronique et dispositifs pour la determination de la qualite de surfaces a reflexion diffuse | |
WO2010072363A1 (fr) | Spectromètre miniature embarque dans un véhicule automobile a détecteur de mesure et détecteur de référence unique | |
WO2010049652A1 (fr) | Dispositif et procede de mesures polarimetriques spectroscopiques dans le domaine visible et proche infrarouge | |
EP3449239B1 (fr) | Procédé et appareil de mesure de la concentration en eau dans un matériau diffusant la lumière. | |
EP3899497A1 (fr) | Dispositif laser pour interferometrie a polarisation | |
EP3054281A1 (fr) | Dispositif de mesure d'un signal optique rétrodiffusé par un échantillon | |
WO2014068003A1 (fr) | Dispositif d'acquisition d'une image d'un échantillon, comportant un organe de régulation du chauffage d'un support de réception de l'échantillon, et système d'imagerie associé | |
EP1938062A1 (fr) | Procede d'analyse qualitative et quantitative par spectroscope d'emission optique | |
EP1853898A1 (fr) | Procédé et système d'analyse physicochimique à l'aide d'une ablation par pulse laser | |
FR3032342A1 (fr) | Procede de caracterisation d'un echantillon par mesure d'un signal optique retrodiffuse | |
WO2010130766A1 (fr) | Procede de caracterisation rheologique d'un milieu complexe | |
EP3980751A1 (fr) | Procédé et dispositif d'analyse d'un échantillon, mettant en oeuvre un support résonant | |
Kroh et al. | Evaluation of the pH-sensitive swelling of a hydrogel by means of a plasmonic sensor substrate | |
WO2014003529A2 (fr) | Design d'un capteur à haute performance à base de modes optiques guides dans une micro puce à structure periodique de milieux dielectriques | |
EP3980749A1 (fr) | Procédé et dispositif d'analyse d'un échantillon, mettant en oeuvre un support résonant, illuminé par un rayonnement infra-rouge | |
FR3051250A1 (fr) | Resonateur optique pour un dispositif de capteur servant a detecter un fluide et dispositif de capteur pour sa mise en œuvre ainsi que procede de detection | |
FR2946144A1 (fr) | Dispositif de spectroscopie et procede pour sa mise en oeuvre | |
FR3120445A1 (fr) | Procédé de caractérisation d’un analyte présent dans un échantillon gazeux contenant au moins une espèce chimique parasite | |
EP3364171A1 (fr) | Procede de detection d'une variation locale d'indice de refraction d'un milieu dielectrique situe a la surface d'un capteur optique | |
EP3631423B1 (fr) | Dispositif optique de détection et de quantification de composés volatils | |
EP2791636B1 (fr) | Lame interferometrique a deux ondes comportant une cavite pleine partiellement resonante et son procede de fabrication | |
EP4085244B1 (fr) | Procede de recalibration d'un nez electronique | |
WO2002061401A1 (fr) | Procede de caracterisation ou de controle de l'elaboration d'un composant en couches minces par methodes optiques | |
FR3035237A1 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18707921 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3055115 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019568817 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197027844 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018707921 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018226567 Country of ref document: AU Date of ref document: 20180302 Kind code of ref document: A |