[go: up one dir, main page]

WO2018051627A1 - 防振装置 - Google Patents

防振装置 Download PDF

Info

Publication number
WO2018051627A1
WO2018051627A1 PCT/JP2017/025566 JP2017025566W WO2018051627A1 WO 2018051627 A1 WO2018051627 A1 WO 2018051627A1 JP 2017025566 W JP2017025566 W JP 2017025566W WO 2018051627 A1 WO2018051627 A1 WO 2018051627A1
Authority
WO
WIPO (PCT)
Prior art keywords
orifice
chamber
liquid chamber
vibration
vibration isolator
Prior art date
Application number
PCT/JP2017/025566
Other languages
English (en)
French (fr)
Inventor
小島 宏
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201780055475.2A priority Critical patent/CN109690127A/zh
Priority to EP17850533.5A priority patent/EP3514403A4/en
Priority to US16/332,057 priority patent/US10989269B2/en
Publication of WO2018051627A1 publication Critical patent/WO2018051627A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/107Passage design between working chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/106Design of constituent elastomeric parts, e.g. decoupling valve elements, or of immediate abutments therefor, e.g. cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/025Elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/08Linear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2238/00Type of springs or dampers
    • F16F2238/04Damper

Definitions

  • the present invention relates to a vibration isolator.
  • This application claims priority based on Japanese Patent Application No. 2016-181613 for which it applied to Japan on September 16, 2016, and uses the content here.
  • the vibration isolator includes a cylindrical first attachment member connected to one of the vibration generating portion and the vibration receiving portion, a second attachment member connected to the other, a first attachment member, and a second attachment member.
  • An elastic body connected to the mounting member, and a partition member that divides the liquid chamber in the first mounting member into a main liquid chamber and a sub liquid chamber that use the elastic body as a part of the partition wall.
  • the partition member includes a membrane that forms part of the partition wall of the main liquid chamber, and an intermediate chamber that is located on the opposite side of the main liquid chamber with the membrane interposed therebetween, and that includes the membrane as a part of the partition wall.
  • a first orifice that communicates the liquid chamber and the sub liquid chamber and a second orifice that communicates the intermediate chamber and the sub liquid chamber are formed.
  • both mounting members are relatively displaced while elastically deforming the elastic body, and the liquid pressure in the main liquid chamber is changed to allow the liquid to flow through the first orifice and the second orifice. It absorbs and dampens vibrations.
  • cavitation may occur due to a large flow velocity or flow rate of the liquid flowing from the secondary liquid chamber to the main liquid chamber through the first orifice.
  • the present invention has been made in view of such circumstances, and an object thereof is to suppress the occurrence of cavitation in a vibration isolator having two orifices.
  • the vibration isolator of the present invention includes a cylindrical first mounting member coupled to one of a vibration generating unit and a vibration receiving unit, a second mounting member coupled to the other, and the first mounting member. And an elastic body that connects the second mounting member, a partition member that divides the liquid chamber in the first mounting member into a main liquid chamber and a sub liquid chamber in which the elastic body is part of a partition,
  • the partition member includes a membrane that forms a part of the partition wall of the main liquid chamber, and an intermediate chamber that is located on the opposite side of the main liquid chamber across the membrane and that uses the membrane as a part of the partition wall.
  • the occurrence of cavitation can be suppressed in a vibration isolator having two orifices.
  • FIG. 2 is an AA cross-sectional view of the vibration isolator of FIG. It is a longitudinal cross-sectional view of the vibration isolator which concerns on 2nd Embodiment.
  • the vibration isolator 1 includes a cylindrical first mounting member 11 connected to one of a vibration generating unit and a vibration receiving unit, and a second mounting member 12 connected to the other. And the elastic body 13 connecting the first mounting member 11 and the second mounting member 12 and the liquid chamber 14 in the first mounting member 11 in which the liquid is sealed, along the central axis O of the first mounting member 11. Along with the axial direction, a main liquid chamber 15 having the elastic body 13 as a part of the partition wall and a partition member 17 for partitioning into the sub liquid chamber 16 are provided.
  • the vibration isolator 1 When the vibration isolator 1 is used as, for example, an engine mount of an automobile, the first mounting member 11 is connected to the vehicle body as the vibration receiving portion, and the second mounting member 12 is connected to the engine as the vibration generating portion. . This suppresses transmission of engine vibration to the vehicle body.
  • the main liquid chamber 15 side along the axial direction with respect to the partition member 17 is referred to as an upper side
  • the sub liquid chamber 16 side is referred to as a lower side.
  • a direction orthogonal to the central axis O is referred to as a radial direction
  • a direction around the central axis O is referred to as a circumferential direction.
  • the first mounting member 11 includes an upper cylindrical portion 11a located on the upper side, a lower cylindrical portion 11b having a smaller inner diameter and outer diameter than the upper cylindrical portion 11a, and located on the lower side, and an upper cylindrical portion 11a and a lower cylindrical portion 11b. And a throttle part 11c extending continuously over the entire circumference.
  • the inner peripheral surface of the lower cylinder portion 11b is covered with a covering rubber.
  • the covering rubber is formed integrally with the elastic body 13.
  • the second mounting member 12 is formed in a rod shape and is arranged coaxially with the central axis O.
  • the second mounting member 12 is disposed on the radially inner side of the first mounting member 11.
  • a flange portion 12 a that protrudes outward in the radial direction is formed at the axial central portion of the second mounting member 12.
  • a female screw portion 12 b extending downward in the axial direction is formed on the upper end surface of the second mounting member 12.
  • a taper portion 12c that gradually decreases in diameter toward the lower side is formed in a portion of the second mounting member 12 that is located below the flange portion 12a.
  • the flange portion 12 a is located above the first mounting member 11.
  • the lower end portion of the second attachment member 12 is located below the upper end opening edge of the first attachment member 11.
  • the elastic body 13 connects the upper tube portion 11 a of the first mounting member 11 and the tapered portion 12 c of the second mounting member 12.
  • the outer peripheral side of the elastic body 13 is integrally vulcanized and bonded to the inner peripheral surfaces of the upper cylindrical portion 11a and the narrowed portion 11c of the first mounting member 11.
  • the inner peripheral side of the elastic body 13 is vulcanized and bonded to the outer peripheral surface of the tapered portion 12 c of the second mounting member 12.
  • the elastic body 13 extends toward the upper side gradually from the radially outer side toward the inner side.
  • the elastic body 13 seals the upper end opening of the first mounting member 11.
  • the elastic body 13 is integrally formed with a stopper rubber 32 that integrally covers the upper surface, the lower surface, and the outer peripheral surface of the flange portion 12 a of the second mounting member 12.
  • a tubular diaphragm ring 18 is liquid-tightly fitted in the lower end portion of the first mounting member 11 via a covering rubber.
  • An outer peripheral portion of a diaphragm 19 formed of a rubber material or the like so as to be elastically deformable is vulcanized and bonded to the inner peripheral surface of the diaphragm ring 18.
  • the diaphragm ring 18 is fixed to the first mounting member 11 by crimping the lower end portion of the first mounting member 11 toward the inside in the radial direction.
  • the diaphragm 19 seals the lower end opening of the first mounting member 11.
  • the diaphragm 19 and the elastic body 13 define a liquid chamber 14 in which a liquid is enclosed in the first mounting member 11.
  • water, ethylene glycol, etc. can be used, for example.
  • the partition member 17 is formed in a flat disk shape.
  • the partition member 17 is fitted in the first mounting member 11 and is sandwiched between the throttle portion 11c of the first mounting member 11 and the diaphragm ring 18 in the axial direction.
  • the liquid chamber 14 in the first mounting member 11 is divided into a main liquid chamber 15 defined by the elastic body 13 and the partition member 17, and a sub liquid chamber 16 defined by the diaphragm 19 and the partition member 17. It is divided into and.
  • the diaphragm 19 expands and contracts as the liquid flows into and out of the sub liquid chamber 16.
  • the partition member 17 includes a membrane 31 that forms part of the partition wall of the main liquid chamber 15, an upper member 34 that surrounds the membrane 31, a lower member 33 that is fitted in the upper member 34, and a membrane that is connected to the upper member 34.
  • An annular fixing member 38 for fixing 31 and an intermediate chamber 35 having the membrane 31 as a part of a partition wall are provided.
  • the membrane 31 is formed in a disk shape by an elastic member such as rubber.
  • the intermediate chamber 35 is located on the opposite side of the main liquid chamber 15 with the membrane 31 in between. A through hole is not formed in the membrane 31 of the present embodiment.
  • the upper member 34 includes a fixed cylindrical portion 34a that surrounds the membrane 31, an annular fixed flange 34b that protrudes radially inward from the lower end opening edge of the fixed cylindrical portion 34a, and a diameter from the lower end opening edge of the fixed cylindrical portion 34a.
  • An annular upper flange 34c projecting outward in the direction, an outer tubular part 34d extending downward from the fixed tubular part 34a, and a lower side projecting radially outward from the lower end opening edge of the outer tubular part 34d And a flange 34e.
  • the upper flange 34c and the lower flange 34e are fitted into the lower cylinder portion 11b via a covering rubber.
  • the fixing member 38 is placed on the upper surface of the fixed cylinder portion 34a of the upper member 34, and is fixed to the upper member 34 with a bolt or the like (not shown). Accordingly, the outer peripheral edge of the membrane 31 is fixed by being sandwiched between the fixing member 38 and the upper member 34 in the axial direction. For this reason, the membrane 31 can be elastically deformed with the outer peripheral edge portion as a fixed end as the liquid flows into and out of the main liquid chamber 15.
  • the lower member 33 is fitted in the outer cylindrical portion 34 d of the upper member 34.
  • the lower member 33 includes an annular bottom plate portion 33a, an inner cylinder portion 33b extending upward from the inner peripheral edge of the bottom plate portion 33a, a first closing portion 33c for closing the lower end portion of the inner cylinder portion 33b, and an inner cylinder An upper plate portion 33d extending radially outward from the upper end opening edge of the portion 33b.
  • the outer peripheral edge of the bottom plate portion 33a is fitted into the lower cylinder portion 11b via a covering rubber.
  • the bottom plate portion 33a is in contact with or close to the lower flange 34e of the upper member 34.
  • the inner cylinder part 33b is disposed on the radially inner side of the outer cylinder part 34d.
  • the first closing portion 33c is located above the bottom plate portion 33a.
  • the partition member 17 of the present embodiment includes a first orifice 21 that communicates the main liquid chamber 15 and the sub liquid chamber 16, a second orifice 22 that communicates the intermediate chamber 35 and the sub liquid chamber 16, and A common opening 16a that forms an opening on the side of the secondary liquid chamber 16 of each of the first orifice 21 and the second orifice 22 is formed.
  • the flow resistances of the first orifice 21 and the second orifice 22 are different from each other.
  • the second orifice 22 has a shorter channel length and a larger channel cross-sectional area than the first orifice 21, and has a low flow resistance.
  • the channel length and the channel cross-sectional area of the first orifice 21 and the second orifice 22 are tuned so that the resonance frequency of each orifice becomes a predetermined frequency. Note that the resonance frequencies of the first orifice 21 and the second orifice 22 may be equal to each other.
  • the first orifice 21 is defined by an upper flange 34c, an outer cylindrical portion 34d, a lower flange 34e of the upper member 34, and a covering rubber on the inner peripheral surface of the lower cylindrical portion 11b. As shown in FIG. 2, each of the first orifice 21 and the second orifice 22 extends in the circumferential direction. One end of the first orifice 21 communicates with the common opening 16a through the first opening 21a formed in the outer cylinder portion 34d. The other end of the first orifice 21 communicates with the main liquid chamber 15 through an unillustrated main liquid chamber side opening formed in the upper flange 34c.
  • the first orifice 21 is formed in a C shape in a cross-sectional view orthogonal to the axial direction, and a part in the circumferential direction is blocked by an outer partition wall 34f protruding outward in the radial direction from the outer cylindrical portion 34d. .
  • the second orifice 22 is disposed on the inner side in the radial direction than the first orifice 21. As shown in FIG. 1, the second orifice 22 is defined by a bottom plate portion 33 a, an inner cylinder portion 33 b, an upper plate portion 33 d of the lower member 33, and an outer cylinder portion 34 d of the upper member 34. . As shown in FIG. 2, one end portion of the second orifice 22 communicates with the intermediate chamber 35 through a second opening 35a formed in the inner cylinder portion 33b. The other end of the second orifice 22 communicates with the auxiliary liquid chamber 16 through the common opening 16a.
  • the second orifice 22 is formed in a C shape in a cross-sectional view, and a part in the circumferential direction is blocked by an inner partition wall 33f that protrudes radially outward from the inner cylindrical portion 33b.
  • the inner partition wall 33f and the outer partition wall 34f are formed at equal positions in the circumferential direction.
  • the radially outer end surface of the inner partition wall 33f and the radially inner end surface of the outer partition wall 34f are in contact with or close to each other in the radial direction.
  • the intermediate chamber 35 is defined by the inner cylinder portion 33 b and the first closing portion 33 c of the lower member 33, and the membrane 31.
  • the membrane 31 is deformed in the axial direction with the outer peripheral edge as a fixed end.
  • the common opening 16 a is formed in the wall surface of the bottom plate portion 33 a that defines the inner surface of the second orifice 22 in the partition member 17. As shown in FIG. 2, the common opening 16a is disposed at a position adjacent to the inner partition wall 33f and the first opening 21a.
  • liquid column resonance occurs in the second orifice 22, and the vibration is attenuated and absorbed.
  • the elastic body 13 is elastically deformed, and the main liquid chamber 15 and the auxiliary liquid are passed through the first orifice 21. Liquid flows to and from the chamber 16. At this time, liquid column resonance occurs in the first orifice 21, and the vibration is attenuated and absorbed.
  • the first mounting member 11 is largely displaced downward with respect to the second mounting member 12, and then the elasticity of the elastic body 13.
  • a large negative pressure is generated in the main liquid chamber 15 when it is restored and displaced upward by force or the like. Due to this negative pressure, the liquid in the sub liquid chamber 16 flows into the partition member 17 through the common opening 16a.
  • the flow of the liquid that has passed through the common opening 16a includes the flow F1 that flows through the first opening 21a and flows through the first orifice 21, and the flow that flows through the second orifice 22. Branch to F2.
  • the intermediate chamber 35 communicating with the sub liquid chamber 16 through the second orifice 22 is separated from the main liquid chamber 15 by the membrane 31.
  • the vibration isolator 1 of this embodiment compared with the case where the 1st orifice 21 and the 2nd orifice and 22 are connected to the subliquid chamber 16 through the mutually different opening, for example, the 1st orifice
  • the flow velocity and flow rate of the liquid flowing into the main liquid chamber 15 through 21 can be suppressed, and the occurrence of cavitation can be suppressed.
  • the common opening 16a is formed in the wall surface of the second orifice 22 disposed radially inward of the first orifice 21, it flows into the partition member 17 from the sub liquid chamber 16 through the common opening 16a.
  • the liquid flow can be more reliably branched into the flow F1 flowing in the first orifice 21 and the flow F2 flowing in the second orifice 22. Therefore, the flow velocity and flow rate of the liquid flowing into the main liquid chamber 15 can be more reliably reduced, and the occurrence of cavitation can be suppressed.
  • the vibration isolator 10 of the present embodiment is provided with a movable member 36 accommodated in a housing chamber 37 provided in the partition member 17 so as to be deformable or displaceable in the axial direction. And different.
  • the lower member 33 of the partition member 17 of the present embodiment has a second closing portion 33e that closes the axial center portion of the inner cylindrical portion 33b spaced above the first closing portion 33c. It is formed with a gap.
  • the above-described storage chamber 37 is defined by the first closing portion 33c, the second closing portion 33e, and the inner cylinder portion 33b.
  • the intermediate chamber 35 of the present embodiment is defined by the second closing portion 33e, the inner cylinder portion 33b, and the membrane 31.
  • the storage chamber 37 is disposed below the intermediate chamber 35 with the second closing portion 33e interposed therebetween.
  • the fixed cylindrical portion 34a extends toward the radially outer side of the outer cylindrical portion 34d, and the lower surface of the fixed cylindrical portion 34a is radially outer than the outer cylindrical portion 34d. This part defines the first orifice 21.
  • the fixing member 38 and the lower member 33 are fixed to the upper member 34 with bolts.
  • the first closing portion 33c of the present embodiment is formed with a plurality of first communication holes 37b penetrating in the axial direction in the radial direction and the circumferential direction.
  • the plurality of first communication holes 37 b allow the storage chamber 37 and the auxiliary liquid chamber 16 to communicate with each other.
  • the second closing portion 33e is formed with a plurality of second communication holes 37a penetrating in the axial direction in the radial direction and the circumferential direction.
  • the plurality of second communication holes 37 a allow the storage chamber 37 and the intermediate chamber 35 to communicate with each other.
  • the plurality of first communication holes 37 b and the plurality of second communication holes 37 a are formed on the wall surface that defines the storage chamber 37.
  • the plurality of second communication holes 37a and the plurality of first communication holes 37b are formed at equal positions in the radial direction and the circumferential direction.
  • the flow resistance of each of the plurality of second communication holes 37 a and the plurality of first communication holes 37 b is smaller than the flow resistance of the first orifice 21 and the second orifice 22.
  • the movable member 36 is formed in a disk shape by an elastic member such as rubber.
  • the outer diameter of the movable member 36 is smaller than the inner diameter of the inner cylinder portion 33b, and the thickness of the movable member 36 is smaller than the axial distance between the first closing portion 33c and the second closing portion 33e. For this reason, gaps in the radial direction and the axial direction are formed between the movable member 36 and the inner surface of the storage chamber 37.
  • the first communication hole 37b and the second communication hole 37a are formed in the wall surface of the storage chamber 37. Therefore, when vibration is input to the vibration isolation device 10, the liquid is It flows in and out of the storage chamber 37 through the communication holes 37a and 37b.
  • the movable member 36 that can be deformed or displaced in the axial direction is housed in the housing chamber 37, it flows into the housing chamber 37 when the amplitude of vibration is relatively large and the frequency is relatively small. Since the momentum of the liquid flow is strong, the movable member 36 is strongly pressed against the wall surface of the storage chamber 37.
  • the first communication hole 37b or the second communication hole 37a is closed, so that the liquid flow between the intermediate chamber 35 and the sub liquid chamber 16 through the storage chamber 37 is restricted, and the vibration isolator 10 as a whole.
  • the dynamic spring constant of can be increased. Therefore, large amplitude vibrations can be effectively damped.
  • the vibration isolator 10 when idle vibration having a relatively small vibration amplitude and a relatively large frequency is input to the vibration isolator 10, the momentum of the liquid flowing into and out of the storage chamber 37 is relatively weak. Therefore, the first communication hole 37b and the second communication hole 37a are not closed by the movable member 36, but are released, so that the liquid flows between the intermediate chamber 35 and the sub liquid chamber 16 through the storage chamber 37. And the dynamic spring constant of the vibration isolator 10 as a whole can be kept small. Thereby, it is possible to effectively attenuate small amplitude vibration. As described above, according to the vibration isolator 10 of the present embodiment, it is possible to effectively attenuate both vibration having a large amplitude and vibration having a small amplitude.
  • the partition member 17 in the first embodiment has a pore that penetrates the first closing portion 33c shown in FIG. 1 in the axial direction and communicates the intermediate chamber 35 and the auxiliary liquid chamber 16.
  • the amplitude of vibration input to the vibration isolator 1 is relatively large and the frequency is relatively small, it becomes difficult for the liquid to flow through the pores.
  • the dynamic spring constant of the vibration isolator 1 as a whole can be increased by suppressing the flow of liquid.
  • the amplitude of the vibration input to the vibration isolator 1 is relatively small and the frequency is relatively large, it becomes easier for the liquid to flow through the pores, and between the intermediate chamber 35 and the auxiliary liquid chamber 16.
  • the outer peripheral edge of the movable member 36 in the second embodiment may be fixed with respect to the storage chamber 37.
  • the movable member 36 since the movable member 36 is deformed in the axial direction with the outer peripheral edge as a fixed end, the state of deformation of the movable member 36 accompanying the vibration input to the vibration isolator 10 can be stabilized.
  • the movable member 36 may be formed with a through hole penetrating the movable member 36 in the axial direction.
  • the common opening 16 a may be formed on the wall surface that defines the inner surface of the first orifice 21.
  • the partition member 17 has two orifices 21 and 22.
  • the present invention is not limited to this, and the partition has three or more orifices.
  • the member 17 may be formed.
  • the partition member 17 may be formed with a common opening 16a on the secondary liquid chamber 16 side of two orifices of the three or more orifices, or on the secondary liquid chamber 16 side of three or more orifices.
  • a common opening 16a may be formed.
  • each of the first orifice and the second orifice communicates with the sub liquid chamber through the common opening, so that vibration having a relatively large amplitude and a relatively low frequency is input to the vibration isolator.
  • the main liquid chamber becomes negative pressure
  • the flow of the liquid in the sub liquid chamber that has passed through the common opening branches to the first orifice and the second orifice.
  • the intermediate chamber communicating with the secondary liquid chamber via the second orifice is separated from the main liquid chamber by the membrane.
  • each of the first orifice and the second orifice extends in the circumferential direction
  • the second orifice is disposed radially inward of the first orifice
  • the common opening is formed on the partition member.
  • it may be formed on a wall surface defining the inner surface of the second orifice.
  • the common opening is formed in the wall surface of the second orifice disposed radially inward of the first orifice, the flow of the liquid flowing out from the sub liquid chamber through the common opening is changed. It is possible to branch more reliably into a flow flowing inside and a flow flowing inside the second orifice. Therefore, the flow velocity and flow rate of the liquid flowing into the main liquid chamber can be more reliably reduced, and the occurrence of cavitation can be suppressed.
  • the partition member is provided with a storage chamber that stores a movable member that is deformable or displaceable in the axial direction of the first mounting member, and the wall that defines the storage chamber includes the storage chamber.
  • a first communication hole that allows communication between the chamber and the auxiliary liquid chamber, and a second communication hole that allows communication between the storage chamber and the intermediate chamber may be formed.
  • the first communication hole that connects the storage chamber and the auxiliary liquid chamber and the second communication hole that connects the storage chamber and the intermediate chamber are formed on the wall surface of the storage chamber provided in the partition member,
  • the liquid flows into and out of the storage chamber through each communication hole.
  • the accommodating chamber is used when the amplitude of vibration input to the vibration isolator is relatively large and the frequency is relatively small.
  • the dynamic spring constant of the whole vibration isolator can be increased by restricting the flow of liquid to and from the vibration isolator. Thereby, vibration with a large amplitude can be effectively attenuated.
  • the partition member may be formed with a pore communicating the intermediate chamber and the sub liquid chamber.
  • the occurrence of cavitation can be suppressed in a vibration isolator including two orifices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

本発明の防振装置(1)は、筒状の第1取付部材(11)および第2取付部材(12)と、弾性体(13)と、第1取付部材内の液室(14)を主液室(15)と副液室(16)とに区画する仕切部材(17)と、を備える。仕切部材には、主液室の隔壁の一部をなすメンブラン(31)と、メンブランを挟んで主液室の反対側に位置しメンブランを隔壁の一部とする中間室(35)と、が備えられる。仕切部材には、主液室と副液室とを連通する第1オリフィス(21)と、中間室と副液室とを連通する第2オリフィス(22)と、第1オリフィス(21)および第2オリフィス(22)それぞれの副液室側の開口をなす共通開口(16a)と、が形成されている。

Description

防振装置
 本発明は、防振装置に関する。
本願は、2016年9月16日に日本に出願された特願2016-181613号に基づき優先権を主張し、その内容をここに援用する。
 従来から、下記特許文献1に示されるような防振装置が知られている。この防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、第1取付部材と第2取付部材とを連結した弾性体と、第1取付部材内の液室を、弾性体を隔壁の一部とする主液室と副液室とに区画する仕切部材と、を備えている。仕切部材には、主液室の隔壁の一部をなすメンブランと、メンブランを挟んで主液室の反対側に位置し、メンブランを隔壁の一部とする中間室と、が備えられるとともに、主液室と副液室とを連通する第1オリフィスと、中間室と副液室とを連通する第2オリフィスと、が形成されている。
 この防振装置では、振動入力時に、両取付部材が弾性体を弾性変形させながら相対的に変位し、主液室の液圧を変動させて第1オリフィスおよび第2オリフィスに液体を流通させることで、振動を吸収および減衰している。
日本国特開平8-4823号公報
 ところで、上記したような構成の防振装置では、第1オリフィスを通じて副液室から主液室へと流動する液体の流速若しくは流量が大きいことに起因するキャビテーションが発生する可能性がある。
 本発明はこのような事情を考慮してなされたもので、2つのオリフィスを備える防振装置において、キャビテーションの発生を抑制することを目的とする。
 本発明の防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、前記第1取付部材と前記第2取付部材とを連結した弾性体と、前記第1取付部材内の液室を、前記弾性体を隔壁の一部とする主液室と副液室とに区画する仕切部材と、を備え、前記仕切部材には、前記主液室の隔壁の一部をなすメンブランと、前記メンブランを挟んで前記主液室の反対側に位置し前記メンブランを隔壁の一部とする中間室と、が備えられるとともに、前記主液室と前記副液室とを連通する第1オリフィスと、前記中間室と前記副液室とを連通する第2オリフィスと、前記第1オリフィスおよび前記第2オリフィスそれぞれの前記副液室側の開口をなす共通開口と、が形成されている。
 本発明によれば、2つのオリフィスを備える防振装置において、キャビテーションの発生を抑制することができる。
第1実施形態に係る防振装置の縦断面図である。 図1の防振装置のA-A断面矢視図である。 第2実施形態に係る防振装置の縦断面図である。
(第1実施形態)
 以下、第1実施形態に係る防振装置の構成を、図1~図3を参照しながら説明する。
 図1に示すように、防振装置1は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材11、および他方に連結される第2取付部材12と、第1取付部材11と第2取付部材12とを連結した弾性体13と、液体が封入される第1取付部材11内の液室14を、第1取付部材11の中心軸線Oに沿う軸方向に沿って、弾性体13を隔壁の一部とする主液室15、および副液室16に仕切る仕切部材17と、を備えている。
 この防振装置1が、例えば自動車のエンジンマウントとして使用される場合、第1取付部材11が振動受部としての車体に連結され、第2取付部材12が振動発生部としてのエンジンに連結される。これにより、エンジンの振動が車体に伝達することが抑えられる。
 ここで、本実施形態では、仕切部材17に対して前記軸方向に沿う主液室15側を上側といい、副液室16側を下側という。また、この防振装置1を前記軸方向から見た平面視において、中心軸線Oに直交する方向を径方向といい、中心軸線O回りに周回する方向を周方向という。
 第1取付部材11は、上側に位置する上筒部11aと、上筒部11aより内径および外径が小さく、かつ下側に位置する下筒部11bと、上筒部11aと下筒部11bとを連結し全周にわたって連続して延びる絞り部11cと、を備えている。下筒部11bの内周面は、被覆ゴムにより覆われている。被覆ゴムは、弾性体13と一体に形成されている。
 第2取付部材12は、棒状に形成されるとともに、前記中心軸線Oと同軸に配設されている。第2取付部材12は、第1取付部材11の径方向内側に配置されている。第2取付部材12における軸方向の中央部に、径方向外側に向けて突出するフランジ部12aが形成されている。第2取付部材12の上端面に、軸方向下側に延びる雌ねじ部12bが形成されている。第2取付部材12のうち、フランジ部12aより下側に位置する部分には、下側に向かうに従い漸次縮径するテーパ部12cが形成されている。フランジ部12aは、第1取付部材11より上側に位置している。第2取付部材12の下端部は、第1取付部材11の上端開口縁より下側に位置している。
 弾性体13は、第1取付部材11の上筒部11aと第2取付部材12のテーパ部12cとを連結している。弾性体13の外周側は、第1取付部材11のうち、上筒部11aおよび絞り部11cの各内周面に一体に加硫接着されている。弾性体13の内周側は、第2取付部材12のテーパ部12cにおける外周面に加硫接着されている。弾性体13は、径方向の外側から内側に向かうに従い漸次上側に向けて延びている。弾性体13により、第1取付部材11の上端開口部が密閉されている。
 弾性体13は、第2取付部材12のフランジ部12aの上面、下面、および外周面を一体に覆うストッパゴム32と一体に形成されている。
 第1取付部材11の下端部内には、被覆ゴムを介して、筒状のダイヤフラムリング18が液密に嵌合されている。ダイヤフラムリング18の内周面に、ゴム材料などで弾性変形可能に形成されたダイヤフラム19の外周部が加硫接着されている。ダイヤフラムリング18は、第1取付部材11の下端部が径方向の内側に向けて加締められることで、第1取付部材11に固定されている。ダイヤフラム19は、第1取付部材11の下端開口部を密閉している。
 ダイヤフラム19および弾性体13により、液体が封入される液室14が第1取付部材11内に画成されている。なお、液室14に封入される液体としては、例えば水やエチレングリコールなどを用いることができる。
 仕切部材17は、偏平な円盤状に形成されている。仕切部材17は、第1取付部材11内に嵌合されるとともに、第1取付部材11の絞り部11cおよびダイヤフラムリング18により軸方向で挟まれている。これにより、第1取付部材11内の液室14が、弾性体13と仕切部材17とにより画成された主液室15と、ダイヤフラム19と仕切部材17とにより画成された副液室16と、に区画されている。なお、ダイヤフラム19は、副液室16内への液体の流入および流出に伴い拡縮変形する。
 仕切部材17は、主液室15の隔壁の一部をなすメンブラン31と、メンブラン31を囲繞する上側部材34と、上側部材34内に嵌合された下側部材33と、上側部材34にメンブラン31を固定する環状の固定部材38と、メンブラン31を隔壁の一部とする中間室35と、を備えている。
 メンブラン31は、ゴムなどの弾性部材によって円板状に形成されている。中間室35は、メンブラン31を挟んで主液室15の反対側に位置している。本実施形態のメンブラン31には、貫通孔が形成されていない。
 上側部材34は、メンブラン31を囲繞する固定筒部34aと、固定筒部34aの下端開口縁から径方向内側に向けて突出する環状の固定フランジ34bと、固定筒部34aの下端開口縁から径方向外側に向けて突出する環状の上側フランジ34cと、固定筒部34aから下側に向けて延びる外筒部34dと、外筒部34dの下端開口縁から径方向外側に向けて突出する下側フランジ34eと、を備えている。
 上側フランジ34cおよび下側フランジ34eは、被覆ゴムを介して下筒部11b内に嵌合されている。
 固定部材38は、上側部材34の固定筒部34aにおける上面に載置され、不図示のボルトなどによって上側部材34に固定されている。これにより、メンブラン31の外周縁部が、固定部材38および上側部材34によって軸方向で挟まれることで固定されている。このため、メンブラン31は、主液室15内への液体の流入および流出に伴い、外周縁部を固定端として弾性変形することができる。
 下側部材33は、上側部材34の外筒部34d内に嵌合されている。下側部材33は、環状の底板部33aと、底板部33aの内周縁から上側に向けて延びる内筒部33bと、内筒部33bの下端部を閉塞する第1閉塞部33cと、内筒部33bの上端開口縁から径方向外側に向けて延びる上板部33dと、を備えている。
 底板部33aの外周縁は、被覆ゴムを介して下筒部11b内に嵌合されている。底板部33aは、上側部材34の下側フランジ34eに当接若しくは近接している。内筒部33bは、外筒部34dの径方向内側に配設されている。第1閉塞部33cは、底板部33aよりも上側に位置している。
 ここで、本実施形態の仕切部材17には、主液室15と副液室16とを連通する第1オリフィス21と、中間室35と副液室16とを連通する第2オリフィス22と、第1オリフィス21および第2オリフィス22それぞれの副液室16側の開口をなす共通開口16aと、が形成されている。
 第1オリフィス21および第2オリフィス22の流通抵抗は、互いに異なっている。第2オリフィス22は、第1オリフィス21よりも、流路長が短く流路断面積が大きくなっており、流通抵抗が小さい。第1オリフィス21および第2オリフィス22の流路長および流路断面積は、各オリフィスの共振周波数が予め決められた周波数となるようにチューニングされている。
 なお、第1オリフィス21および第2オリフィス22の共振周波数は互いに同等であってもよい。
 第1オリフィス21は、上側部材34の上側フランジ34c、外筒部34d、および下側フランジ34eと、下筒部11bの内周面の被覆ゴムと、により画成されている。図2に示すように、第1オリフィス21および第2オリフィス22はそれぞれ、周方向に延びている。第1オリフィス21の一方の端部は、外筒部34dに形成された第1開口21aを通じて、共通開口16aに連通している。第1オリフィス21の他方の端部は、上側フランジ34cに形成された不図示の主液室側開口を通じて、主液室15に連通している。
 第1オリフィス21は軸方向に直交する横断面視においてC字状に形成されており、外筒部34dから径方向外側に向けて突出する外側隔壁34fによって、周方向の一部分が遮断されている。
 第2オリフィス22は第1オリフィス21よりも径方向の内側に配設されている。第2オリフィス22は、図1に示すように、下側部材33の底板部33a、内筒部33b、および上板部33dと、上側部材34の外筒部34dと、により画成されている。図2に示すように、第2オリフィス22の一方の端部は、内筒部33bに形成された第2開口35aを通じて、中間室35に連通している。第2オリフィス22の他方の端部は、共通開口16aを通じて、副液室16に連通している。
 第2オリフィス22は横断面視においてC字状に形成されており、内筒部33bから径方向外側に向けて突出する内側隔壁33fによって、周方向の一部分が遮断されている。内側隔壁33fと外側隔壁34fとは、周方向において同等の位置に形成されている。内側隔壁33fの径方向外側の端面と、外側隔壁34fの径方向内側の端面と、は径方向で当接若しくは近接している。
 図1に示すように、中間室35は、下側部材33の内筒部33bおよび第1閉塞部33cと、メンブラン31と、により画成されている。中間室35に対する第2オリフィス22および第2開口35aを通じた液体の流入および流出に伴って、メンブラン31は外周縁を固定端として軸方向に変形する。
 共通開口16aは、仕切部材17のうち、第2オリフィス22の内面を画成する底板部33aの壁面に形成されている。共通開口16aは、図2に示すように、内側隔壁33fおよび第1開口21aに隣接する位置に配設されている。
 次に、以上のように構成された防振装置1の作用について説明する。
 防振装置1に軸方向の振動が入力され、第1取付部材11と第2取付部材12とが軸方向に相対的に変位すると、第1取付部材11および第2取付部材12を互いに連結する弾性体13が弾性変形する。次に、主液室15の内容積が変化し、第1オリフィス21および第2オリフィス22を通して液体が往来し、各オリフィス内で液柱共振が生じて振動が減衰、吸収される。
 例えば、軸方向の振幅が比較的小さく、周波数が比較的大きいアイドル振動が防振装置1に入力された場合は、メンブラン31が弾性変形し、第2オリフィス22を通じて副液室16と中間室35との間を液体が往来する。このとき、第2オリフィス22内で液柱共振が生じて振動が減衰、吸収される。また、軸方向の振幅が比較的大きく、周波数が比較的小さいシェイク振動が防振装置1に入力された場合は、弾性体13が弾性変形し、第1オリフィス21を通じて主液室15と副液室16との間を液体が往来する。この時、第1オリフィス21内で液柱共振が生じて振動が減衰、吸収される。
 ここで、防振装置1に、シェイク振動よりも大きな振幅の振動が入力されると、第1取付部材11が第2取付部材12に対して大きく下側に変位した後、弾性体13の弾性力などにより上側に復元変位する際、主液室15内に大きな負圧が生じる。この負圧により、副液室16内の液体が勢いよく共通開口16aから仕切部材17内に流入する。このとき、図2に示すように、共通開口16aを通過した液体の流れは、第1開口21aを通過して第1オリフィス21内を流動する流れF1と、第2オリフィス22内を流動する流れF2と、に分岐する。さらに、第2オリフィス22を介して副液室16に連通する中間室35は、メンブラン31によって主液室15と隔てられている。
 これにより、本実施形態の防振装置1によれば、例えば第1オリフィス21と第2オリフィスと22とが互いに異なる開口を通じて副液室16に連通している場合と比較して、第1オリフィス21を通じて主液室15内に流入する液体の流速および流量が抑えられ、キャビテーションの発生を抑制することができる。
 さらに、第1オリフィス21よりも径方向の内側に配設された第2オリフィス22の壁面に共通開口16aが形成されていることにより、副液室16から共通開口16aを通じて仕切部材17に流入する液体の流れを、第1オリフィス21内を流動する流れF1および第2オリフィス22内を流動する流れF2へと、より確実に分岐させることが可能となる。従って、主液室15内に流入する液体の流速および流量をより確実に低減し、キャビテーションの発生を抑制することができる。
(第2実施形態)
 次に、本発明に係る第2実施形態について図3を用いて説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 本実施形態の防振装置10は、仕切部材17内に設けられた収容室37内に、軸方向に変形可能または変位可能に収容された可動部材36を備えている点が、第1実施形態と異なる。
 図3に示すように、本実施形態の仕切部材17における下側部材33には、内筒部33bの軸方向中央部を閉塞する第2閉塞部33eが、第1閉塞部33cの上側に間隔を空けて形成されている。第1閉塞部33c、第2閉塞部33e、および内筒部33bにより、先述の収容室37が画成されている。また、本実施形態の中間室35は、第2閉塞部33eと、内筒部33bと、メンブラン31と、により画成されている。収容室37は、第2閉塞部33eを隔てて中間室35の下側に配設されている。
 なお、本実施形態の上側部材34では、固定筒部34aが外筒部34dの径方向外側に向けて延在しており、固定筒部34aの下面のうち外筒部34dよりも径方向外側の部分が第1オリフィス21を画成している。
 固定部材38および下側部材33は、上側部材34に対してボルトで固定されている。
 また、本実施形態の第1閉塞部33cには、これを軸方向に貫通する第1連通孔37bが、径方向および周方向に間隔をあけて複数形成されている。複数の第1連通孔37bは、収容室37と副液室16とを連通させている。第2閉塞部33eには、これを軸方向に貫通する第2連通孔37aが、径方向および周方向に間隔をあけて複数形成されている。複数の第2連通孔37aは、収容室37と中間室35とを連通させている。複数の第1連通孔37bおよび複数の第2連通孔37aは、収容室37を画成する壁面に形成されている。
 複数の第2連通孔37aと複数の第1連通孔37bとは、径方向および周方において同等の位置に形成されている。複数の第2連通孔37aおよび複数の第1連通孔37bそれぞれの流通抵抗は、第1オリフィス21および第2オリフィス22の流通抵抗より小さくなっている。
 可動部材36は、ゴムなどの弾性部材により円板状に形成されている。可動部材36の外径は内筒部33bの内径よりも小さく、可動部材36の厚みは第1閉塞部33cと第2閉塞部33eとの間の軸方向の距離よりも小さい。このため、可動部材36と収容室37の内面との間には、径方向および軸方向の隙間が形成されている。
 本実施形態の防振装置10によれば、収容室37の壁面に第1連通孔37bおよび第2連通孔37aが形成されているため、防振装置10に振動が入力されると、液体が各連通孔37a、37bを通じて収容室37に対して流入および流出する。
 ここで、収容室37内には軸方向に変形可能または変位可能な可動部材36が収容されているため、振動の振幅が比較的大きく周波数が比較的小さい場合には、収容室37に流入した液体の流れの勢いが強いために、可動部材36が収容室37の壁面に強く押し付けられる。これにより、第1連通孔37bまたは第2連通孔37aが閉塞されるため、収容室37を通じた中間室35と副液室16との間の液体の往来を規制して、防振装置10全体の動的ばね定数を増加させることができる。したがって、大振幅の振動を効果的に減衰させることができる。
 一方、振動の振幅が比較的小さく周波数が比較的大きいアイドル振動などが防振装置10に入力された場合には、収容室37に対して流入および流出する液体の流れの勢いが比較的弱くなるため、可動部材36によって第1連通孔37bおよび第2連通孔37aが閉塞されずにこれらが解放されることで、収容室37を通じた中間室35と副液室16との間の液体の往来を許容して、防振装置10全体の動的ばね定数を小さく抑えることができる。これにより、小振幅の振動を効果的に減衰させることができる。
 以上のように、本実施形態の防振装置10によれば、振幅が大きい振動および振幅が小さい振動のいずれをも効果的に減衰させることができる。
 なお、本発明の技術的範囲は前記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記第1実施形態における仕切部材17には、図1に示す第1閉塞部33cを軸方向に貫通し、中間室35と副液室16とを連通する細孔が形成されていてもよい。この場合、防振装置1に入力される振動の振幅が比較的大きく周波数が比較的小さい場合には、細孔を通して液体が流通しにくくなるため、中間室35と副液室16との間の液体の往来を抑制して防振装置1全体の動的ばね定数を増加させることができる。一方、この防振装置1に入力される振動の振幅が比較的小さく周波数が比較的大きい場合には、細孔を通して液体が比較的流通しやすくなり、中間室35と副液室16との間の液体の往来が抑制されずに防振装置1全体の動的ばね定数を小さく抑えることができる。これにより、簡易な構成で、第2実施形態の防振装置10と同様に、振幅が大きい振動および振幅が小さい振動のいずれをも効果的に減衰させることができる。
 また、前記第2実施形態における可動部材36の外周縁は、収容室37に対して固定されていてもよい。この場合、可動部材36が外周縁を固定端として軸方向に変形するため、防振装置10に入力される振動に伴う可動部材36の変形の状態を安定させることができる。また、可動部材36には、これを軸方向に貫通する貫通孔が形成されていてもよい。
 また、前記第1実施形態および第2実施形態において、共通開口16aは第1オリフィス21の内面を画成する壁面に形成されていてもよい。
 また、前記第1実施形態および第2実施形態において、仕切部材17には2つのオリフィス21,22が形成されていたが、本発明はこれに限られず、3つ以上のオリフィスが形成された仕切部材17が形成されていてもよい。この場合、仕切部材17には、3つ以上のオリフィスのうち2つのオリフィスの副液室16側の共通開口16aが形成されていてもよいし、3つ以上のオリフィスの副液室16側の共通開口16aが形成されていてもよい。
 本発明の防振装置によれば、第1オリフィスおよび第2オリフィスがそれぞれ、共通開口を通じて副液室に通じているため、防振装置に振幅が比較的大きく周波数が比較的小さい振動が入力されて主液室が負圧になった際に、共通開口を通過した副液室内の液体の流れが、第1オリフィスおよび第2オリフィスへと分岐する。さらに、第2オリフィスを介して副液室に連通する中間室は、メンブランによって主液室と隔てられている。
 これにより、例えば第1オリフィスと第2オリフィスとが互いに異なる開口を通じて副液室に連通している場合と比較して、第1オリフィスを通じて主液室内に流入する液体の流速および流量が抑えられ、キャビテーションの発生を抑制することができる。
 ここで、前記第1オリフィスおよび前記第2オリフィスはそれぞれ、周方向に延びるとともに、前記第2オリフィスが前記第1オリフィスよりも径方向の内側に配設され、前記共通開口は、前記仕切部材のうち、前記第2オリフィスの内面を画成する壁面に形成されていてもよい。
 この場合、第1オリフィスよりも径方向の内側に配設された第2オリフィスの壁面に共通開口が形成されていることにより、副液室から共通開口を通じて流出する液体の流れを、第1オリフィス内を流動する流れおよび第2オリフィス内を流動する流れへと、より確実に分岐させることが可能となる。従って、主液室内に流入する液体の流速および流量をより確実に低減し、キャビテーションの発生を抑制することができる。
 また、前記仕切部材には、前記第1取付部材の軸方向に変形可能または変位可能に収容された可動部材を収容する収容室が設けられ、前記収容室を画成する壁面には、前記収容室と前記副液室とを連通させる第1連通孔と、前記収容室と前記中間室とを連通させる第2連通孔と、が形成されていてもよい。
 この場合、仕切部材に設けられた収容室の壁面に、収容室と副液室とを連通させる第1連通孔および収容室と中間室とを連通させる第2連通孔が形成されているため、防振装置に振動が入力されると、液体が各連通孔を通じて収容室に対して流入および流出する。
 ここで、収容室内には軸方向に変形可能または変位可能な可動部材が収容されているため、防振装置に入力される振動の振幅が比較的大きく周波数が比較的小さい場合には、収容室に流入した液体の流れの勢いが強いために可動部材が収容室の壁面に強く押し付けられて、第1連通孔または第2連通孔が閉塞されるため、収容室を通じた中間室と副液室との間の液体の往来を規制して防振装置全体の動的ばね定数を増加させることができる。これにより、振幅が大きい振動を効果的に減衰させることができる。
 一方、防振装置に入力される振動の振幅が比較的小さく周波数が比較的大きい場合には、収容室に対して流入および流出する液体の流れの勢いが比較的弱くなるため、可動部材によって第1連通孔および第2連通孔が閉塞されず、液体が流動することで、収容室を通じた中間室と副液室との間の液体の往来を許容して防振装置全体の動的ばね定数を小さく抑えることができる。これにより、振幅が小さい振動を効果的に減衰させることができる。
 以上のように、このような構成の防振装置によれば、振幅が大きい振動および振幅が小さい振動のいずれをも効果的に減衰させることができる。
 また、前記仕切部材には、前記中間室と前記副液室とを連通する細孔が形成されていてもよい。
 この場合、防振装置に入力される振動の振幅が比較的大きく周波数が比較的小さい場合には、仕切部材に形成された細孔を通して液体が流通しにくくなるため、中間室と副液室との間の液体の往来を抑制して防振装置全体の動的ばね定数を増加させることができる。
 一方、防振装置に入力される振動の振幅が比較的小さく周波数が比較的大きい場合には、細孔を通して液体が比較的流通しやすくなるため、中間室と副液室との間の液体の往来が抑制されずに防振装置全体の動的ばね定数を小さく抑えることができる。
 以上により、本発明の防振装置によれば、簡易な構成で、振幅が大きい振動および振幅が小さい振動のいずれをも効果的に減衰させることができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
本発明によれば、2つのオリフィスを備える防振装置において、キャビテーションの発生を抑制することができる。
 1、10 防振装置 
11 第1取付部材 
12 第2取付部材 
13 弾性体 
14 液室 
15 主液室 
16 副液室 
16a 共通開口 
17 仕切部材 
19 ダイヤフラム 
21 第1オリフィス 
22 第2オリフィス 
31 メンブラン 
35 中間室 
36 可動部材 
37 収容室 
37a 第2連通孔 
37b 第1連通孔

Claims (6)

  1.  振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、
     前記第1取付部材と前記第2取付部材とを連結した弾性体と、
     前記第1取付部材内の液室を、前記弾性体を隔壁の一部とする主液室と副液室とに区画する仕切部材と、を備え、
     前記仕切部材には、
      前記主液室の隔壁の一部をなすメンブランと、
      前記メンブランを挟んで前記主液室の反対側に位置し前記メンブランを隔壁の一部とする中間室と、が備えられるとともに、
      前記主液室と前記副液室とを連通する第1オリフィスと、
      前記中間室と前記副液室とを連通する第2オリフィスと、
      前記第1オリフィスおよび前記第2オリフィスそれぞれの前記副液室側の開口をなす共通開口と、が形成されている防振装置。
  2.  前記第1オリフィスおよび前記第2オリフィスはそれぞれ、周方向に延びるとともに、前記第2オリフィスが前記第1オリフィスよりも径方向の内側に配設され、
     前記共通開口は、前記仕切部材のうち、前記第2オリフィスの内面を画成する壁面に形成されている、請求項1に記載の防振装置。
  3.  前記仕切部材には、前記第1取付部材の軸方向に変形可能または変位可能に収容された可動部材を収容する収容室が設けられ、
     前記収容室を画成する壁面には、前記収容室と前記副液室とを連通させる第1連通孔と、前記収容室と前記中間室とを連通させる第2連通孔と、が形成されている、請求項1に記載の防振装置。
  4.  前記仕切部材には、前記第1取付部材の軸方向に変形可能または変位可能に収容された可動部材を収容する収容室が設けられ、
     前記収容室を画成する壁面には、前記収容室と前記副液室とを連通させる第1連通孔と、前記収容室と前記中間室とを連通させる第2連通孔と、が形成されている、請求項2に記載の防振装置。
  5.  前記仕切部材には、前記中間室と前記副液室とを連通する細孔が形成されている、請求項1に記載の防振装置。
  6.  前記仕切部材には、前記中間室と前記副液室とを連通する細孔が形成されている、請求項2に記載の防振装置。
PCT/JP2017/025566 2016-09-16 2017-07-13 防振装置 WO2018051627A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780055475.2A CN109690127A (zh) 2016-09-16 2017-07-13 防振装置
EP17850533.5A EP3514403A4 (en) 2016-09-16 2017-07-13 VIBRATION PROTECTION DEVICE
US16/332,057 US10989269B2 (en) 2016-09-16 2017-07-13 Anti-vibration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016181613A JP6817004B2 (ja) 2016-09-16 2016-09-16 防振装置
JP2016-181613 2016-09-16

Publications (1)

Publication Number Publication Date
WO2018051627A1 true WO2018051627A1 (ja) 2018-03-22

Family

ID=61620000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025566 WO2018051627A1 (ja) 2016-09-16 2017-07-13 防振装置

Country Status (5)

Country Link
US (1) US10989269B2 (ja)
EP (1) EP3514403A4 (ja)
JP (1) JP6817004B2 (ja)
CN (1) CN109690127A (ja)
WO (1) WO2018051627A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3742018A1 (fr) 2019-05-24 2020-11-25 Hutchinson Support antivibratoire hydraulique
WO2021053905A1 (ja) 2019-09-17 2021-03-25 株式会社ブリヂストン 防振装置
US20220176793A1 (en) * 2019-04-17 2022-06-09 Bridgestone Corporation Anti-vibration device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114630975B (zh) 2019-11-07 2024-12-20 株式会社普洛斯派 隔振装置
JP7350629B2 (ja) 2019-11-07 2023-09-26 株式会社プロスパイラ 防振装置
US12110937B2 (en) 2019-11-07 2024-10-08 Prospira Corporation Vibration-damping device
JP7290549B2 (ja) * 2019-11-07 2023-06-13 株式会社プロスパイラ 防振装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113435A (ja) * 1993-10-15 1995-05-02 Tokai Rubber Ind Ltd 流体封入式防振組立体
JPH10132017A (ja) * 1996-10-28 1998-05-22 Bridgestone Corp 防振装置
JP2001020992A (ja) * 1999-07-09 2001-01-23 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2006071109A (ja) * 1998-12-11 2006-03-16 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2007120607A (ja) * 2005-10-27 2007-05-17 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2010174998A (ja) * 2009-01-30 2010-08-12 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2010196874A (ja) * 2009-02-27 2010-09-09 Kurashiki Kako Co Ltd 液体封入式防振装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592114B1 (fr) * 1985-12-24 1989-12-29 Hutchinson Sa Perfectionnements aux supports antivibratoires hydrauliques
JP3198603B2 (ja) * 1992-03-23 2001-08-13 東海ゴム工業株式会社 流体封入式マウント装置
JP3461913B2 (ja) 1994-06-20 2003-10-27 株式会社ブリヂストン 防振装置
JP3539067B2 (ja) * 1996-05-23 2004-06-14 東海ゴム工業株式会社 流体封入式マウント装置
US6257562B1 (en) 1998-12-11 2001-07-10 Toyo Tire & Rubber Co., Ltd. Liquid filled vibration isolating device
JP4688067B2 (ja) * 2005-07-14 2011-05-25 東海ゴム工業株式会社 流体封入式エンジンマウント
EP1995491A3 (en) * 2007-05-22 2014-02-19 Kurashiki Kako Co., Ltd. Liquid-filled anti-vibration mounting device
CN101883932B (zh) * 2007-12-03 2013-09-11 株式会社普利司通 防振装置
CN101813154B (zh) 2009-02-24 2013-02-13 仓敷化工株式会社 液体封入式隔振装置
JP5909077B2 (ja) * 2011-11-08 2016-04-26 東洋ゴム工業株式会社 防振ユニット
CN102588502B (zh) 2011-12-30 2013-12-04 宁波泛亚汽车部件有限公司 一种发动机液压悬置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113435A (ja) * 1993-10-15 1995-05-02 Tokai Rubber Ind Ltd 流体封入式防振組立体
JPH10132017A (ja) * 1996-10-28 1998-05-22 Bridgestone Corp 防振装置
JP2006071109A (ja) * 1998-12-11 2006-03-16 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2001020992A (ja) * 1999-07-09 2001-01-23 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2007120607A (ja) * 2005-10-27 2007-05-17 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2010174998A (ja) * 2009-01-30 2010-08-12 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2010196874A (ja) * 2009-02-27 2010-09-09 Kurashiki Kako Co Ltd 液体封入式防振装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514403A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220176793A1 (en) * 2019-04-17 2022-06-09 Bridgestone Corporation Anti-vibration device
US11993150B2 (en) * 2019-04-17 2024-05-28 Prospira Corporation Anti-vibration device
EP3742018A1 (fr) 2019-05-24 2020-11-25 Hutchinson Support antivibratoire hydraulique
FR3096427A1 (fr) * 2019-05-24 2020-11-27 Hutchinson Support antivibratoire hydraulique
WO2021053905A1 (ja) 2019-09-17 2021-03-25 株式会社ブリヂストン 防振装置
CN114402148A (zh) * 2019-09-17 2022-04-26 株式会社普利司通 隔振装置
US12203522B2 (en) 2019-09-17 2025-01-21 Prospira Corporation Vibration-damping device

Also Published As

Publication number Publication date
EP3514403A4 (en) 2019-08-28
JP2018044650A (ja) 2018-03-22
CN109690127A (zh) 2019-04-26
EP3514403A1 (en) 2019-07-24
US10989269B2 (en) 2021-04-27
US20190226549A1 (en) 2019-07-25
JP6817004B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2018051627A1 (ja) 防振装置
US8864114B2 (en) Liquid-sealed antivibration device
US8807545B2 (en) Liquid-sealed antivibration device
JP5642241B1 (ja) 防振装置
WO2018135312A1 (ja) 防振装置
WO2011099357A1 (ja) 防振装置
WO2021090938A1 (ja) 防振装置
US20220397177A1 (en) Vibration-damping device
JP2009243543A (ja) 流体封入式防振装置
WO2022075067A1 (ja) 防振装置
US12203522B2 (en) Vibration-damping device
JP5518354B2 (ja) 防振装置
JP2010031988A (ja) 流体封入式防振装置
JP6153428B2 (ja) 液封入式防振装置
WO2019215950A1 (ja) 防振装置
JP5723944B2 (ja) 防振装置
JP5436252B2 (ja) 防振装置
JP5893482B2 (ja) 液封入式防振装置
JP2008138802A (ja) 防振装置
JP2016114146A (ja) 防振装置
JP2016056885A (ja) 防振装置
JP2017003051A (ja) 防振装置
JP2014052045A (ja) 防振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017850533

Country of ref document: EP

Effective date: 20190416