WO2017070289A1 - Pipe-clamping block - Google Patents
Pipe-clamping block Download PDFInfo
- Publication number
- WO2017070289A1 WO2017070289A1 PCT/US2016/057818 US2016057818W WO2017070289A1 WO 2017070289 A1 WO2017070289 A1 WO 2017070289A1 US 2016057818 W US2016057818 W US 2016057818W WO 2017070289 A1 WO2017070289 A1 WO 2017070289A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- certain embodiments
- clamping
- clamping block
- mattress
- Prior art date
Links
- 238000000034 method Methods 0.000 description 15
- 230000008901 benefit Effects 0.000 description 7
- 230000000284 resting effect Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L1/00—Laying or reclaiming pipes; Repairing or joining pipes on or under water
- F16L1/12—Laying or reclaiming pipes on or under water
- F16L1/20—Accessories therefor, e.g. floats or weights
- F16L1/24—Floats; Weights
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L1/00—Laying or reclaiming pipes; Repairing or joining pipes on or under water
- F16L1/12—Laying or reclaiming pipes on or under water
- F16L1/123—Devices for the protection of pipes under water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L1/00—Laying or reclaiming pipes; Repairing or joining pipes on or under water
- F16L1/12—Laying or reclaiming pipes on or under water
- F16L1/16—Laying or reclaiming pipes on or under water on the bottom
Definitions
- the present disclosure relates to a mattress for subsea pipelines. More specifically, in certain embodiments the present disclosure relates to a pipe-clamping mattress for subsea pipelines and associated methods and system.
- pipelines are often used to transport the oil and gas along the seafloor. These pipelines can extend over large distances. During production, these pipelines may have a tendency to move or "walk” due to thermal expansion and contraction of the pipelines. This movement of the pipeline can cause many problems, especially at connection points where the pipeline connects to subsea equipment, including pipeline end termination facilities, pumps, and manifolds.
- the present disclosure relates to a mattress for subsea pipelines. More specifically, in certain embodiments the present disclosure relates to a pipe-clamping mattress for subsea pipelines and associated methods and system.
- the present disclosure provides a pipe-clamping block comprising a top surface, a first outside surface, a second outside surface, a bottom surface, a first inside surface, a second inside surface, and a recessed surface.
- the present disclosure provides a pipe-clamping mattress comprising: a first pipe-clamping block comprising a recessed clamping surface and a second pipe-clamping block comprising a recessed clamping surface, wherein the first pipe-clamping block is connected to the second pipe-clamping block.
- the present disclosure provides a pipe-clamping mattress system comprising: a subsea pipeline disposed on a seafloor and a pipe-clamping mattress comprising, a first pipe-clamping block comprising a recessed clamping surface and a second pipe-clamping block comprising a recessed clamping surface, wherein the first pipe-clamping block is connected to the second pipe-clamping block and wherein the subsea pipeline is disposed within a cavity defined by the recessed clamping surface of the first pipe-clamping block and the recessed clamping surface of the second pipe-clamping block.
- the present disclosure provides a method comprising: providing a subsea pipeline on a sea floor and installing a pipe-clamping mattress above the subsea pipeline, wherein the pipe-clamping mattress comprising: a first pipe-clamping block comprising a recessed clamping surface and a second pipe-clamping block comprising a recessed clamping surface, wherein the first pipe-clamping block is connected to the second pipe-clamping block.
- Figure 1 is an illustration of a pipe-clamping block for a pipe-clamping mattress in accordance with certain embodiments of the present disclosure.
- Figure 2 is an illustration of pipe-clamping mattress in accordance with certain embodiments of the present disclosure.
- Figure 3 is an illustration of a pipe-clamping mattress system in accordance with certain embodiments of the present disclosure.
- Figure 4 is a force diagram illustrating the clamping forces of a pipe- clamping block in accordance with certain embodiments of the present disclosure.
- the present disclosure relates to a mattress for subsea pipelines. More specifically, in certain embodiments the present disclosure relates to a pipe-clamping mattress for subsea pipelines and associated methods and system.
- One potential advantage of the pipe-clamping mattresses described herein is that they are less likely to drive a subsea pipeline into the seafloor than conventional mattresses. Another potential advantage of the pipe-clamping mattresses described herein is that they are capable of clamping on to a subsea pipeline rather than just resting on top of the subsea pipeline. Another potential advantage of the pipe-clamping mattresses described herein is that they do not require an anchor flange relying instead on friction with the pipe over a considerable length of pipe. Another potential advantage of the pipe-clamping mattresses described herein is that they are able to clamp on to a subsea pipeline while contacting the seafloor without driving the subsea pipeline into the sea floor.
- the present disclosure provides a block for a pipe- clamping mattress.
- Figure 1 illustrates pipe-clamping block 100.
- pipe-clamping block 100 may comprise a concrete block.
- pipe-clamping block 100 may comprise any combination of any features of any element described in U.S. Patent No. 5,944,449, the entirety of which is hereby incorporated by reference.
- pipe-clamping block 100 may comprise a cross- sectional shape.
- the cross-sectional shape of pipe-clamping block 100 may be any geometric shape comprising recessed clamping surface 170.
- recessed clamping surface 170 may define a cavity.
- pipe-clamping block 100 may have a length in the range of from 1 to 5 meters along an axial direction of the cross-sectional shape.
- pipe- clamping block 100 may have a length in the range of from 2 to 3 meters along an axial direction of the cross-sectional shape.
- pipe-clamping block 100 may have a thickness in the range of from 0.2 meters to 2 meters. In certain embodiments, pipe-clamping block 100 may have a thickness in the range of from 0.3 meters to 1.2 meters.
- pipe-clamping block 100 may comprise top surface 110, first outside surface 120, second outside surface 130, bottom surface 140, first inside surface 150, second inside surface 160, and/or recessed clamping surface 170.
- top surface 110 may have a length in the range of from 1 meter to 5 meters. In certain embodiments, top surface 110 may have a length of 2 meters. In certain embodiments, bottom surface 140 may have a length in the range of from 0.5 meters to 4 meters. In certain embodiments, bottom surface 140 may have a length in the range of from 1 meter to 2 meters. In certain embodiments, top surface 110 may have a greater length than bottom surface 140 to allow for a greater clamping force to be generated by the pipe-clamping block when placed onto a subsea pipeline. In certain embodiments, top surface 110 may have a length that is at least 50% greater than the length of bottom surface 140. In certain embodiments, top surface 110 may have a length that is at least 100% greater than the length of bottom surface 140. In certain embodiments, top surface 110 and bottom surface 140 are parallel surfaces. In other embodiments, top surface 110 and bottom surface 140 are not parallel surfaces.
- first outside surface 120 may have a length in the range of from 0.01 meters to 0.1 meters. In certain embodiments, first outside surface 120 may have a length in the range of from 0.02 meters to 0.04 meters. In certain embodiments, top surface 110 and first outside surface 120 may define an angle. In certain embodiments, the angle may be 90 degrees. In other embodiments, the angle may be an angle in the range of from 90 degrees to 135 degrees. In certain embodiments, first outside surface 120 may interest with top surface 110 at a loading edge 115.
- second outside surface 130 may have a length in the range of from 0.5 meters to 4.5 meters. In certain embodiments, second outside surface 130 may have a length that is equal to the length of first outside surface 120. In certain embodiments, second outside surface 130 may have length in the range of from 0.02 meters to 0.04 meters. In certain embodiments, second outside surface 130 may have a length that is at least equal to 75% of the difference of lengths between the length top surface 110 and bottom surface 140. In certain embodiments, second outside surface 130 may have length in the range of from 1 meter to 4.5 meters. In certain embodiments, second outside surface 130 may have a length in the range of from 1.5 meters to 3 meters.
- first outside surface 120 and second outside surface 130 may define an angle.
- the angle may be an angle in the range of from 45 degrees to 135 degrees. In other embodiments, the angle may be an angle in the range of from 70 degrees to 110 degrees.
- first outside surface 120 may interest with second outside surface 130 at a flex point 125.
- second outside surface 130 and bottom surface 140 may define an angle.
- the angle may be the same as the angle defined by top surface 110 and first outside surface 120.
- the angle may be 90 degrees.
- the angle may be an angle in the range of from 90 degrees to 135 degrees. In certain embodiments, the angle may be in the range of from 135 degrees to 165 degrees.
- first inside surface 150 may have a length in the range of from 0.01 meters to 0.2 meters.
- top surface 110 and first inside surface 150 may define an angle.
- the angle may be the same angle that top surface 110 and first outside surface 120 define.
- the angle may be an angle in the range of from 90 degrees to 135 degrees.
- second inside surface 160 may have a length in the range of from 0.01 meters to 0.1 meters. In certain embodiments, second inside surface 160 may have a length that is less than the length of first inside surface 150. In certain embodiments, second inside surface 160 may have length in the range of from 0.01 meters to 0.2 meters.
- first inside surface 150 and second inside surface 160 may define an angle.
- the angle may be an angle in the range of from 90 degrees to 155 degrees. In other embodiments, the angle may be an angle in the range of from 120 degrees to 125 degrees.
- first inside surface 150 may intersect with second outside surface 160 at a flex point 155.
- recessed surface 170 may be a curved surface. In certain embodiments, recessed surface 170 may have a cross-sectional geometry of a semicircle. In certain embodiments, recessed surface 170 may have a cross-sectional geometry of a circular arc. In certain embodiments, the circular arc may have a central angle in the range of from 60 degrees to 120 degrees. In certain embodiments, the circular arc may have a central angle in the range of from 80 degrees to 120 degrees. In certain embodiments, the circular arc may have a radius in the range of from 0.1 meters to 1.3 meters. In certain embodiments, the circular arc may define a circular sector cavity. In other embodiments, recessed surface 170 may be a partially curved surface.
- recessed surface 170 may comprise a plurality of semi- surfaces. In certain embodiments, recessed surface 170 may comprise 5 to 30 semi-surfaces. In certain embodiments, each semi-surface may comprise a center point. In certain embodiments, each center point may be arranged in a semi-circle geometry. In certain embodiments, each center point may be arranged in a semi-circle geometry wherein the semi-circle has a radius in the range of from 0.1 meters to 1.3 meters.
- the length of recessed surface 170 may depend on the radius of the semi-circle and the degree of the semi-circle. In certain embodiments, the length of each semi-surface may depend on the number of semi-surfaces and the length of recessed surface 170.
- recessed surface 170 may be padded.
- the padding may be an interference padding may comprise a rubber or a similar material with groves included to allow the rubber to expand in the direction tangent to the surface 170 as it is compressed in the direction normal to the surface 170.
- the padding may have a thickness in the range of from 10 mm to 50 mm.
- pipe-clamping block 100 may have a geometry that allows pipe-clamping block 100 to clamp onto a subsea pipeline resting on a sea floor after two pipe-clamping blocks 100 are lowered on top of the subsea pipeline and downward force is applied to pipe-clamping blocks 100.
- the subsea pipeline may be partially disposed within the circular sector cavities of the pipe-clamping blocks 100.
- the downward force may be due to the weight of pipe- clamping blocks 100.
- the downward force may be applied to top surfaces 110 and/or loading edges 115.
- the downward force may be applied to top surface 110s and/or loading edges 115 by placing an object, such as an upper mattress, on top of pipe-clamping blocks 100.
- pipe-clamping block 100 may further comprise cable 180 passing through the body of pipe-clamping block 100.
- cable 180 may comprise any conventional wire cables passing through the body of conventional concrete blocks used to stabilize subsea pipelines.
- cable 180 may exit pipe-clamping block 100 at and/or near flex point 125 and/or flex point 155.
- cable 180 may comprise embedded cables or polypropylene ropes.
- pipe-clamping block 100 may comprise one or more hinges at and/or near flex point 125 and/or flex point 155.
- pipe-clamping block 100 may comprise one or more lift points 190.
- the lift points 190 may permit pipe-clamping block 100 to be lifted from or lowered to a sea floor.
- pipe-clamping block 100 may further comprise one or more holes.
- the one or more holes in pipe-clamping block 100 may reduce the weight of pipe-clamping block 100.
- FIG. 2 illustrates a pipe-clamping mattress 1000 in accordance with certain embodiments of the present disclosure.
- pipe-clamping mattress 1000 may comprise first pipe-clamping block 1100 and a second pipe-clamping block 1200.
- first pipe-clamping block 1100 may comprise any combination of features discussed above with respect to pipe-clamping block 100.
- first pipe-clamping block 1100 may comprise recessed surface 1170 and a flex point 1155.
- second pipe-clamping block 1200 may comprise recessed surface 1270 and a flex point 1255.
- first pipe-clamping block 1100 may comprise a plurality of holes.
- second pipe-clamping block 1200 may comprise a plurality of holes.
- the plurality of holes may be arranged in a number of columns and/or rows throughout first pipe-clamping block 1100 and/or second pipe- clamping block 1200.
- the plurality of holes in first pipe-clamping block 1100 and/or the plurality of holes in second pipe-clamping block 1200 may reduce the weight of pipe-clamping mattress 1000.
- first pipe-clamping block 1100 and second pipe-claming block 1200 may be connected to each other by a cable 1300.
- a portion of cable 1300 may be disposed within first pipe-clamping block 1100 and/or second pipe-clamping block 1200.
- cable 1300 may pass into first pipe-clamping block 1100 and second pipe-clamping block 1100 at and/or near flex points 1155 and 1255.
- first pipe-clamping block 1100 and second pipe-clamping block 1200 may be connected to each other by hinges located at and/or near flex points 1155 and 1255.
- first pipe-clamping block 1100 and second pipe-claming block 1200 may be oriented such that recessed surface 1170 of first pipe- clamping block 1100 is adjacent to recessed surface 1270 of second pipe-clamping block 1200.
- first pipe-clamping block 1100 and second pipe-clamping block 1200 may be oriented such that flex points 1155 and 1255 are a distance in the range of from 0.03 meters to 0.15 meters apart.
- first pipe-clamping block 1100 and second pipe- clamping block 1200 may be connected to each other in a manner that allows each block to clamp onto a subsea pipeline when pipe-clamping mattress 1000 is placed on top of a subsea pipeline.
- pipe-clamping mattress 1000 may have a geometry that allows for pipe-clamping blocks 1100 and/or 1200 to clamp onto a subsea pipeline resting on a sea floor pipe when clamping mattress 1000 is lowered on top of the subsea pipeline and downward force is applied to pipe-clamping mattress 1000.
- the subsea pipeline may be partially disposed within the circular sector cavities of pipe-clamping blocks 1100 and 1200.
- the downward force may be due to the weight of pipe-clamping mattress 1000. In certain embodiments, the downward force may be applied to top surfaces 1110 and 1210 and/or loading edges 1115 and 1215. In certain embodiments, the downward force may be applied to top surfaces 1110 and 1210 and/or loading edges 1115 and 1215 by placing an object on top of pipe-clamping mattress 1000.
- pipe-clamping mattress 1000 may have a geometry that allows for a subsea pipeline to be partially lifted from the sea floor when pipe- clamping mattress 1000 clamps onto the subsea pipeline.
- pipe- clamping mattress 1000 may have a geometry that permits the bottom surfaces of pipe- clamping mattress to rest on a sea floor when pipe-clamping mattress 1000 clamps onto a subsea pipeline.
- pipe-clamping mattress 1000 may further comprise one or more outer blocks 1400.
- pipe-claming mattress 1000 may comprise a first outer block 1400 connected to first pipe-claming block 1100 and a second outer block 1400 connected to a second pipe-clamping block 1200.
- pipe-clamping mattress 1000 may comprise a series of outer blocks 1400 connected to first pipe-clamping block 1100 and/or a series of outer blocks 1400 connected to second pipe-clamping block 1200.
- outer block 1400 may comprise a concrete blocks comprising any combination of any features of any element described in U.S. Patent No. 5,944,449. In certain embodiments, outer block 1400 may comprise a cross-sectional shape.
- outer block 1400 may have a length of from 0.5 to
- outer block 1400 may have a length in the range of from 2 to 3 meters along an axial direction of the cross-sectional shape. In certain embodiments, outer block 1400 may have a thickness in the range of from 0.5 meters to 0.7 meters. In certain embodiments, outer block 1400 may have a thickness in the range of from 0.04 meters to 0.1 meters.
- outer block 1400 may comprise a top surface 1410, a bottom surface 1440, first outside surface 1420, second outside surface 1430, first inside surface 1450, and second inside surface 1460.
- top surface 1410 and/or bottom surface 1440 may have a length in the range of from 1 meter to 5 meters. In certain embodiments, top surface 1410 and/or bottom surface 1440 may have a length of 2 meters. In certain embodiments, top surface 1410 and bottom surface 1440 are parallel surfaces. In other embodiments, top surface 1410 and bottom surface 1440 are not parallel surfaces.
- first outside surface 1420, second outside surface 1430, first inside surface 1450, and/or second inside surface 1460 may have a length in the range of from 0.1 meters to 0.3 meters. In certain embodiments, first outside surface 1420, second outside surface 1430, first inside surface 1450, and/or second inside surface 1460 may have a length in the range of from 0.02 meters to 0.04 meters. In certain embodiments, top surface 1410 and first outside surface 1420 may define an angle. In certain embodiments, the angle may be 90 degrees. In other embodiments, the angle may be an angle in the range of from 90 degrees to 135 degrees.
- first outside surface 1420 and second outside surface 1430 may define an angle.
- the angle may be an angle in the range of from 45 degrees to 135 degrees. In other embodiments, the angle may be an angle in the range of from 70 degrees to 110 degrees.
- first outside surface 1420 may interest with second outside surface 1430 at a flex point 1425.
- second outside surface 1430 and bottom surface 1440 may define an angle.
- the angle may be the same as the angle defined by top surface 1410 and first outside surface 1420. In other embodiments, the angle may be an angle in the range of from 90 degrees to 135 degrees.
- top surface 1410 and first inside surface 1450 may define an angle.
- the angle may be the same angle that top surface 1410 and first outside surface 1420 define. In other embodiments, the angle may be an angle in the range of from 90 degrees to 135 degrees.
- first inside surface 1450 and second inside surface 1460 may define an angle.
- the angle may be the same angle that top surface 1410 and first inside surface 1450 define.
- the angle may be an angle in the range of from 90 degrees to 155 degrees.
- first inside surface 1450 may interest with second outside surface 1460 at a flex point 1455.
- outer block 1400 may be connected to pipe- clamping block 1100 and/or pipe-clamping block 1200 by cable 1300.
- cables 1300 may pass through the body of pipe-clamping block 1400.
- cable 1300 may exit the wire cables may exit outer block 1400 at and/or near flex point 1425 and/or flex point 1455.
- outer block 1400 may comprise one or more hinges at and/or near flex point 1425 and/or flex point 1455 connecting one or more outer blocks 1400 to pipe-clamping block 1100 and/or pipe-clamping block 1200.
- FIG. 3 illustrates a pipe-clamping mattress system 2000.
- pipe-clamping mattress system 2000 may comprise pipe-clamping mattress 2100, subsea pipeline 3000, and sea floor 4000.
- pipe-clamping mattress 2100 may comprise any combination of features discussed above with respect to pipe-clamping mattress 1000.
- pipe-clamping mattress 2100 may comprise first pipe-clamping block 2200 connected to a second pipe-clamping block 2300 by one or more cables 2400.
- first pipe-clamping block 2200 may comprise any combination of features discussed above with respect to pipe-clamping block 100 and/or first pipe-clamping block 1100.
- first pipe-claming block 2200 may comprise a recessed surface 2270 defining a circular sector cavity and a loading edge 2215.
- second pipe-clamping block 2300 may comprise any combination of features discussed above with respect to pipe- clamping block 100 and/or second pipe-clamping block 1200.
- second pipe-clamping block 2300 may comprise a recessed surface 2370 defining a circular sector cavity and a loading edge 2315.
- one or more cables 2400 may comprise any combination of features discussed above with respect to cable 180 and/or 1300.
- pipe-clamping mattress 2100 may be articulated only in a direction perpendicular to the axis of the subsea pipeline 3000.
- subsea pipeline 3000 may be resting on sea floor 4000.
- pipe-clamping mattress 2100 may be clamped onto subsea pipeline 3000.
- subsea pipeline 3000 may be partially disposed within the circular sector cavities defined by recessed surface 2170 and recessed surface 2270.
- recessed surface 2170 and/or recessed surface 2270 may apply a clamping force to subsea pipeline 3000.
- the clamping force applied by recessed surface 2170 and/or recessed surface 2270 may be generated from a downward force acting upon pipe-clamping mattress 2100.
- the downward force may be due to the weight of pipe-clamping mattress 2100.
- the downward force may be applied to top surfaces 2210 and 2310 and/or loading edges 2215 and 2315. In certain embodiments, the downward force may be applied to top surfaces 2210 and 2310 and/or loading edges 2215 and 2315 by placing an upper mattress on top of pipe-clamping mattress 1000. In certain embodiments, the clamping force may be capable of partially lifting subsea pipeline 3000 off of sea floor 4000. In certain embodiments, pipe-clamping mattress 2100 may clamp onto subsea pipeline 3000 while contacting sea floor 4000 without driving subsea pipeline 3000 into sea floor 4000.
- pipe-clamping mattress system 2000 may further comprise upper mattress 5000.
- upper mattress 5000 may comprise a series logs 5100 connected by one or more cables.
- each of the logs 5100 may be comprise a hexagonal cross section. In certain embodiments, each of the logs 5100 may have a width in the range of from 0.25 meters to 1 meter. In certain embodiments, each of the logs may have a length of from 2 meters to 20 meters. In certain embodiments, each of the logs may have a length that is greater than the distance between loading edges 2315 and 2215. In certain embodiments, each of the logs may have a length that is less than twice the distance between loading edges 2215 and 2315. In certain embodiments, upper mattress 5000 may comprise 3 to 12 logs 5100.
- the one or more cables connected the series of logs 5100 may comprise any conventional wire cable or synthetic rope used in conventional subsea mattresses. In certain embodiments, the one or more cables may pass through the body of each of the logs 5100.
- upper mattress 5000 may span the entire length of pipe-clamping mattress 2100. In certain embodiments, upper mattress 5000 may contact pipe-clamping mattress 2100 at loading edges 2215 and 2315. In certain embodiments, upper mattress 5000 may be articulated. In certain embodiments, upper mattress 5000 may be articulated only in a direction normal to the axis of subsea pipeline 3000. In certain embodiments, not illustrated in Figure 3, upper mattress 5000 may contact pipe-clamping mattress 2100 on inner edges of the outer blocks.
- upper mattress 5000 may generated a downward force on pipe-clamping mattress 2100.
- the downward force may generate a pipe-clamping force on subsea pipeline 3000.
- pipe-clamping mattress system 2000 may comprise a pipe-clamping mattress bank comprising a plurality of pipe-claming mattresses 2100 each clamped onto subsea pipeline 3000.
- an upper mattress 5000 may rest on top of each pipe-clamping mattress 2100 in the pipe-clamping mattress bank.
- pipe-clamping mattress system 2000 may comprise a plurality of pipe-clamping mattress banks, each spaced a distance of 400 meters or more apart.
- Figure 4 illustrates a free body diagram showing the forces generated by the clamping action of the pipe-clamping block.
- the pipe-clamping block may comprise any pipe-clamping block discussed above with respect to pipe-clamping blocks 100, 1100, and/or 1200.
- Wi weight of the pipe-clamping block
- ci is the distance from the center line of the pipe to the center of gravity of the pipe-clamping block
- W s is the weight of the upper mattress
- a s i is the distance from the loading edge of the pipe-clamping block to the vertical plane through the center line of the pipe
- ypo is the distance from the loading edge of the pipe-clamping block to the horizontal plane through the center line of the pipe
- ⁇ 0 is dimensionless force coefficient
- Ri Wi + 1 ⁇ 2 W s + 1 ⁇ 2 W P i pe
- W P i pe is the submerged weight of the pipe
- b is the distance from the flex point of the pipe-clamping block to the vertical plane through the center line of the pipe.
- the present disclosure provides a method comprising: providing a subsea pipeline on a seafloor and placing a pipe-clamping mattress on top of the subsea pipeline.
- the subsea pipeline may comprise any type of subsea pipeline discussed above with respect to subsea pipeline 3000.
- the seafloor may comprise any type of seafloor discussed above with respect to seafloor 4000.
- the pipe-clamping mattress may comprise any pipe-clamping mattress discussed above with respect to pipe-clamping mattress 1000 and/or 2100.
- placing the pipe-clamping mattress on top of the subsea pipeline may comprise lowering the pipe-clamping mattress onto the subsea pipeline.
- the pipe-clamping mattress may be lowered onto the subsea pipeline by attaching the pipe-clamping mattress to an installation frame, positioning the pipe-clamping mattress so that the subsea pipeline is between the first pipe- clamping block of the pipe-clamping mattress and the second pipe-clamping block of the pipe-clamping mattress, and lowering the pipe-clamping mattress and the installation frame until the recessed surface of the clamping mattress contact the subsea pipeline.
- the method may further comprise disconnecting the pipe-clamping mattress from the installation frame. In certain embodiments, the method may further comprise allowing the pipe-clamping mattress to clamp the subsea pipeline. In certain embodiments, the pipe-clamping mattress may clamp onto the subsea pipeline while resting on the sea floor without driving the subsea pipeline into the seafloor. In certain embodiments, the method may further comprise partially lifting the subsea pipeline while allowing the pipe-clamping mattress the clamp the subsea pipeline. In certain embodiments, the method may further comprise laying an upper mattress on top of the pipe-clamping mattress. In certain embodiments, the method may further comprise placing a second pipe-clamping mattress on the subsea pipeline.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
- Laying Of Electric Cables Or Lines Outside (AREA)
- Revetment (AREA)
- Supports For Pipes And Cables (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MYPI2018701411A MY194644A (en) | 2015-10-22 | 2016-10-20 | Pipe-clamping mattress |
AU2016341924A AU2016341924A1 (en) | 2015-10-22 | 2016-10-20 | Pipe-clamping block |
US15/769,370 US10527199B2 (en) | 2015-10-22 | 2016-10-20 | Pipe-clamping block |
CN201680060666.3A CN108138990B (en) | 2015-10-22 | 2016-10-20 | Pipe clamping block |
EP16791488.6A EP3365584A1 (en) | 2015-10-22 | 2016-10-20 | Pipe-clamping block |
BR112018008255-4A BR112018008255B1 (en) | 2015-10-22 | 2016-10-20 | TUBE FIXING DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562244928P | 2015-10-22 | 2015-10-22 | |
US62/244,928 | 2015-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017070289A1 true WO2017070289A1 (en) | 2017-04-27 |
Family
ID=57241172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2016/057818 WO2017070289A1 (en) | 2015-10-22 | 2016-10-20 | Pipe-clamping block |
Country Status (7)
Country | Link |
---|---|
US (1) | US10527199B2 (en) |
EP (1) | EP3365584A1 (en) |
CN (1) | CN108138990B (en) |
AU (1) | AU2016341924A1 (en) |
BR (1) | BR112018008255B1 (en) |
MY (1) | MY194644A (en) |
WO (1) | WO2017070289A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20190438A1 (en) * | 2019-04-01 | 2020-10-02 | Subsea 7 Norway As | Controlling movement of subsea pipelines |
NO20190442A1 (en) * | 2019-04-01 | 2020-10-02 | Subsea 7 Norway As | Controlling movement of subsea pipelines |
WO2021259895A1 (en) | 2020-06-25 | 2021-12-30 | Fmc Kongsberg Subsea As | A method of laying a pipeline on a seafloor, monitoring surrounding zones of the installed pipeline for approaching vessels and warning vessels considered to be able to cause harm to the pipeline |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2582767B (en) * | 2019-04-01 | 2021-10-27 | Subsea 7 Norway As | Controlling movement of subsea pipelines |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3326000A (en) * | 1962-10-08 | 1967-06-20 | Transp Et De La Valorisation D | Immersed pipe structure |
FR2350534A1 (en) * | 1976-05-04 | 1977-12-02 | Meag Ab | Concrete pedestal for supporting pipes - has T:section with concrete bedding body and open channel shaped recess for pipe |
FR2432668A1 (en) * | 1978-08-02 | 1980-02-29 | Crochet Christian | Precast anchor block for subsea pipe - is in two pieces joining on vertical or horizontal pipe dia meter and joined by elastic hinge and bolts |
WO1989011055A1 (en) * | 1988-05-05 | 1989-11-16 | Tele Betong A/S | Concrete anchoring weight block |
FR2716251A1 (en) * | 1994-02-17 | 1995-08-18 | Bouygues Offshore | Prefabricated yoke for stabilizing a pipe, stabilization method and application. |
US5944449A (en) | 1996-04-17 | 1999-08-31 | Submar, Inc. | Non-Abrasive subsea mat |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2662552A (en) * | 1952-10-06 | 1953-12-15 | Edgar A Rowe | River weight for pipe lines |
US2739362A (en) * | 1953-04-08 | 1956-03-27 | Farrile S Young | Molds for concrete pipe weights |
US2791019A (en) * | 1954-03-01 | 1957-05-07 | Laney Lucius B Du | Mold |
US2936786A (en) * | 1957-11-18 | 1960-05-17 | Versoy Harry Nelson | River weight |
US3240512A (en) * | 1964-10-26 | 1966-03-15 | Reynolds Metals Co | Weight means for underwater pipe lines |
US3594835A (en) * | 1969-09-17 | 1971-07-27 | Pipeline Products And Services | Float device for pipelines |
DE2219228B2 (en) * | 1972-04-20 | 1976-04-01 | Nyby Bruk Ab, Nybybruk (Schweden) | REMOTE HEATING DUCT, IN PARTICULAR FOR HOT WATER PIPES |
US3797260A (en) * | 1972-05-18 | 1974-03-19 | B Webb | Pipeline anchoring system |
US3779027A (en) * | 1972-11-02 | 1973-12-18 | Marcona Corp | Method and apparatus for a continuous dumbbell tube anchoring system for submarine pipelines |
US3841105A (en) * | 1973-04-09 | 1974-10-15 | G Cannon | Method and apparatus for anchoring underwater pipelines |
US3993192A (en) * | 1975-11-10 | 1976-11-23 | Christopher Brian Bunn | Pipeline weight container and method |
US4171174A (en) * | 1975-12-29 | 1979-10-16 | Larsen Ole J F | System for depositing and protecting sand and other littoral draft material |
US4110994A (en) * | 1976-01-26 | 1978-09-05 | Poseidon Marketing And Development Co. | Marine pipeline |
US4134563A (en) * | 1976-01-28 | 1979-01-16 | The United States Of America As Represented By The United States Department Of Energy | Pipe support |
IT1055932B (en) * | 1976-01-29 | 1982-01-11 | Saipem Spa | APPARATUS PARTICULARLY SUITABLE FOR THE RECOVERY OF PIPES PLACED ON HIGH BOTTOMS AND A RECOVERY METHOD USING THE EQUIPMENT FROM A NAVEPOSATUBI |
US4116015A (en) * | 1977-01-03 | 1978-09-26 | Hydrotech International, Inc. | Method and apparatus for remotely attaching a riser pipe to an offshore structure |
FR2376989A1 (en) * | 1977-01-11 | 1978-08-04 | Petroles Cie Francaise | HIGH RELIABILITY CONNECTION DEVICE AND CONNECTION TUBES BETWEEN MOVABLE END PIPES |
US4166710A (en) * | 1978-06-26 | 1979-09-04 | Spiridonov Viktor V | Device for securing a pipeline in place |
EP0011894B1 (en) * | 1978-12-04 | 1984-07-04 | Shell Internationale Researchmaatschappij B.V. | A method for installing a tubular element in the bottom of a body of water and apparatus for carrying out this method |
DK191180A (en) * | 1979-05-23 | 1980-11-24 | Coyne & Bellier | PROCEDURE AND ARRANGEMENT FOR ANCHORING CABLES FOR EXTRA PIPE LINE AT THE SEA |
US4323088A (en) * | 1979-11-20 | 1982-04-06 | Pipe Shields, Inc. | Insulating pipe support |
US4436450A (en) * | 1981-08-21 | 1984-03-13 | Exxon Production Research Co. | Apparatus and method for removing buoyancy modules from submerged pipe |
FR2514385A1 (en) * | 1981-10-14 | 1983-04-15 | Coyne Bellier | METHOD AND DEVICE FOR PROVISIONAL SUPPORT OF SIDE WALLS OF A TRENCH |
NO168376C (en) * | 1986-04-14 | 1992-02-12 | Geodia | PROCEDURE FOR TEMPORARY AA SUPPORTED THE WALLS IN A GROWTH AFTER EXCAVING THIS |
AU626578B2 (en) * | 1988-08-12 | 1992-08-06 | Seamark Systems Limited | Seabed stabilisation mattresses |
US4927103A (en) * | 1988-11-14 | 1990-05-22 | Nicholson Richard J | Method and apparatus for piping support |
GB8925502D0 (en) * | 1989-11-10 | 1989-12-28 | Seamark Systems | Seabed stabilisation mattresses |
GB2242251B (en) * | 1990-02-23 | 1993-09-08 | Spuncon Pty Ltd | Stabilisation means |
CA2029039A1 (en) * | 1990-10-31 | 1992-05-01 | Michael F. Hill | In-ground securement of pipelines and the like |
US5263796A (en) * | 1991-07-10 | 1993-11-23 | Canadian Rubber & Steel Ltd. | Self-closing clamping apparatus |
CA2158801C (en) * | 1995-09-21 | 1998-07-14 | Grant Douglas Herbert | Pipeline weight and method of installing the same |
US5683204A (en) * | 1996-02-14 | 1997-11-04 | Lawther; Gerald Howard | Apparatus and method for laying underwater pipelines |
US6027285A (en) * | 1997-12-05 | 2000-02-22 | Submar, Inc. | Mat installation |
CA2277523C (en) * | 1999-07-16 | 2004-02-17 | Glen Alvin Jewell | Pipeline weight |
CN2381861Y (en) * | 1999-08-17 | 2000-06-07 | 上海交通大学 | Pipeline laying apparatus at shallow seabed |
US6450736B1 (en) * | 2001-04-27 | 2002-09-17 | Phillips Petroleum Company | Movable supports for pipelines |
BR0318260A (en) * | 2003-04-11 | 2006-05-23 | Balmoral Group | float clamp and application method |
US6878881B1 (en) * | 2004-09-08 | 2005-04-12 | Stephen K. Henry | Modular cable protector assembly |
US20080304938A1 (en) * | 2007-06-08 | 2008-12-11 | Brian Michael Katterhenry | Strongback Traveling Clamp |
US7862256B2 (en) * | 2007-08-16 | 2011-01-04 | Crc-Evans Canada Ltd. | Pipeline weighting device and method |
US8262320B2 (en) * | 2009-01-29 | 2012-09-11 | Gunn Donald O | Ballast-filled pipeline weight |
EP2348215B1 (en) * | 2009-12-29 | 2013-06-12 | Kyowa Co., Ltd. | Method for planarizing unevenness of the seabed |
PT2341592E (en) * | 2009-12-29 | 2014-05-06 | Kyowa Co Ltd | Method for protecting submarine cable and submarine long tube |
US9088142B2 (en) * | 2010-06-22 | 2015-07-21 | Terra Technologies, LLC | Systems and apparatus for protecting subsurface conduit and methods of making and using the same |
GB2492838B (en) * | 2011-07-14 | 2013-07-03 | Subsea 7 Uk Service Company Ltd | Improvements relating to pipelaying |
US8469634B2 (en) * | 2011-07-29 | 2013-06-25 | Pgs Geophysical As | Method and system of depth triggers for marine geophysical survey cable retriever systems |
US8721222B2 (en) * | 2011-11-04 | 2014-05-13 | Chevron U.S.A. Inc. | Lateral buckling mitigation apparatus, methods and systems for use with subsea conduits |
CA2862863C (en) * | 2012-02-20 | 2016-02-09 | Saudi Arabian Oil Company | Apparatus and method to contain pipeline leaks from a longitudinal portion of a pipeline |
BR112014026423A2 (en) * | 2012-04-25 | 2017-06-27 | Taper Lok Corp | lifting device of a drilling riser, and mounting of the drilling riser |
US8851099B2 (en) * | 2012-06-06 | 2014-10-07 | International Businss Machines Corporation | Pipe monitoring system and method |
US8974147B1 (en) * | 2013-07-02 | 2015-03-10 | Brian Webb | Slot form for pipeline buoyancy control |
CN103411027A (en) * | 2013-08-26 | 2013-11-27 | 镇江安达煤矿专用设备有限公司 | Underground pipeline construction mould |
US9279223B2 (en) * | 2013-08-28 | 2016-03-08 | Mario L. Messina | Sand retention system |
TWI571582B (en) * | 2015-06-24 | 2017-02-21 | Ian Larsen | Large diameter submerged pipe counterweight and its installation method |
-
2016
- 2016-10-20 EP EP16791488.6A patent/EP3365584A1/en not_active Withdrawn
- 2016-10-20 AU AU2016341924A patent/AU2016341924A1/en not_active Abandoned
- 2016-10-20 WO PCT/US2016/057818 patent/WO2017070289A1/en active Application Filing
- 2016-10-20 BR BR112018008255-4A patent/BR112018008255B1/en active IP Right Grant
- 2016-10-20 CN CN201680060666.3A patent/CN108138990B/en active Active
- 2016-10-20 US US15/769,370 patent/US10527199B2/en active Active
- 2016-10-20 MY MYPI2018701411A patent/MY194644A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3326000A (en) * | 1962-10-08 | 1967-06-20 | Transp Et De La Valorisation D | Immersed pipe structure |
FR2350534A1 (en) * | 1976-05-04 | 1977-12-02 | Meag Ab | Concrete pedestal for supporting pipes - has T:section with concrete bedding body and open channel shaped recess for pipe |
FR2432668A1 (en) * | 1978-08-02 | 1980-02-29 | Crochet Christian | Precast anchor block for subsea pipe - is in two pieces joining on vertical or horizontal pipe dia meter and joined by elastic hinge and bolts |
WO1989011055A1 (en) * | 1988-05-05 | 1989-11-16 | Tele Betong A/S | Concrete anchoring weight block |
FR2716251A1 (en) * | 1994-02-17 | 1995-08-18 | Bouygues Offshore | Prefabricated yoke for stabilizing a pipe, stabilization method and application. |
US5944449A (en) | 1996-04-17 | 1999-08-31 | Submar, Inc. | Non-Abrasive subsea mat |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20190438A1 (en) * | 2019-04-01 | 2020-10-02 | Subsea 7 Norway As | Controlling movement of subsea pipelines |
NO20190442A1 (en) * | 2019-04-01 | 2020-10-02 | Subsea 7 Norway As | Controlling movement of subsea pipelines |
NO345465B1 (en) * | 2019-04-01 | 2021-02-15 | Subsea 7 Norway As | Controlling movement of subsea pipelines |
NO345521B1 (en) * | 2019-04-01 | 2021-03-22 | Subsea 7 Norway As | Controlling movement of subsea pipelines |
WO2021259895A1 (en) | 2020-06-25 | 2021-12-30 | Fmc Kongsberg Subsea As | A method of laying a pipeline on a seafloor, monitoring surrounding zones of the installed pipeline for approaching vessels and warning vessels considered to be able to cause harm to the pipeline |
Also Published As
Publication number | Publication date |
---|---|
BR112018008255A2 (en) | 2018-10-23 |
US20180306347A1 (en) | 2018-10-25 |
CN108138990B (en) | 2020-09-15 |
MY194644A (en) | 2022-12-09 |
US10527199B2 (en) | 2020-01-07 |
CN108138990A (en) | 2018-06-08 |
AU2016341924A1 (en) | 2018-05-10 |
EP3365584A1 (en) | 2018-08-29 |
BR112018008255B1 (en) | 2021-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10527199B2 (en) | Pipe-clamping block | |
EP2576333B1 (en) | A flexible pipe system | |
US8562255B2 (en) | Bending restrictor assembly for use with a pipeline section | |
US9708868B2 (en) | Slip device for suspending a drill or casing string | |
US10184589B2 (en) | Riser assembly and method | |
US8678705B1 (en) | Channel flex revetment block and cabled mat | |
BRPI0603129B1 (en) | VARIABLE UPDRAWING PIPE, APPARATUS FOR COMMUNICATION WITH A PLURALITY OF UNDERWATER, AND FOR COMMUNICATION AND INTERVENTION IN A PLURALITY OF UNDERWATER, AND METHOD OF INSTALLING AN UPDATE COMMUNICATION PIPE | |
US20150060079A1 (en) | Riser assembly and method | |
CA2796536A1 (en) | Bending restrictor assembly for use with a pipeline section | |
AU2011327938B2 (en) | Riser support | |
CN107109907B (en) | Riser assembly and method of forming a riser assembly | |
US9541220B2 (en) | Conduit displacement mitigation apparatus including springs, methods and systems for use with subsea conduits | |
US9315245B2 (en) | Offshore system | |
US10520112B2 (en) | Pipeline method and apparatus | |
GB2423507A (en) | Subsea umbilical anchoring clamp | |
WO2017151780A1 (en) | Modular anchors | |
CN111101947A (en) | Hard tube system angle deviation compensation device for deep sea mining at different water depth levels | |
US10473238B2 (en) | Methods of laying subsea pipelines | |
TR201720303A2 (en) | Polymer Cable Grippers | |
CN103883048A (en) | Cable force compensation device applicable to service-period curtain wall cable net | |
JPH0272099A (en) | Installation of liquid transport cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16791488 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15769370 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018008255 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016341924 Country of ref document: AU Date of ref document: 20161020 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112018008255 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180424 |