WO2016080390A1 - Driving device for driving generator device - Google Patents
Driving device for driving generator device Download PDFInfo
- Publication number
- WO2016080390A1 WO2016080390A1 PCT/JP2015/082256 JP2015082256W WO2016080390A1 WO 2016080390 A1 WO2016080390 A1 WO 2016080390A1 JP 2015082256 W JP2015082256 W JP 2015082256W WO 2016080390 A1 WO2016080390 A1 WO 2016080390A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- application
- power
- electric motor
- voltage
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 81
- 238000010248 power generation Methods 0.000 claims abstract description 66
- 230000008859 change Effects 0.000 claims abstract description 9
- 239000012530 fluid Substances 0.000 claims abstract description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 56
- 230000007547 defect Effects 0.000 claims description 10
- 238000001514 detection method Methods 0.000 description 48
- 230000009467 reduction Effects 0.000 description 40
- 230000007257 malfunction Effects 0.000 description 36
- 238000010586 diagram Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 17
- 239000003990 capacitor Substances 0.000 description 13
- 230000004044 response Effects 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 10
- 230000005856 abnormality Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 210000003746 feather Anatomy 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000004308 accommodation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a drive device for driving a power generation device.
- the windmill device includes a movable part (for example, a nacelle or a blade) that operates in accordance with a change in the air flow direction, a driving device for driving the movable part, and a housing that houses the driving device.
- a movable part for example, a nacelle or a blade
- An object of the present invention is to provide a drive device that can give high reliability to a power generation device.
- the drive device drives the movable part of the power generation device that operates in accordance with a change in the fluid flow direction.
- the drive device includes: a first power generation unit that generates first power that operates the movable part; a second power generation unit that generates second power that operates the movable part; the first power generation unit; A power supply unit configured to supply power to the second power generation unit, and power transmission for transmitting at least one of the first power and the second power to the movable part and operating the movable part And a piece.
- the above-described drive device can give high reliability to the power generation device.
- FIG. 1st embodiment It is a schematic perspective view of the example windmill apparatus with which the drive device was integrated (2nd Embodiment). It is a schematic sectional drawing of the drive device integrated in the windmill apparatus shown by FIG. It is a schematic sectional drawing of the windmill apparatus shown by FIG. It is a conceptual diagram of an electric motor (3rd Embodiment). It is a block diagram showing the schematic function structure of the drive device of 4th Embodiment. It is a schematic block diagram showing the function structure of the drive device shown by FIG. It is a schematic flowchart showing control of the drive device shown by FIG. It is a block diagram showing the schematic functional structure of the drive device of 5th Embodiment. FIG.
- FIG. 10 is a schematic flowchart showing control of the drive device shown in FIG. 9.
- FIG. It is a block diagram showing the schematic hardware constitutions of the drive device of 6th Embodiment. It is a notional block diagram of the drive device of a 7th embodiment. It is a schematic sectional drawing showing the exemplary structure of a differential gear apparatus (8th Embodiment). It is a notional block diagram of the drive device of a 9th embodiment. It is a block diagram showing the schematic hardware constitutions of the drive device of 10th Embodiment. It is a notional block diagram of the drive device of an 11th embodiment. It is a notional block diagram of the drive device of a 12th embodiment. It is a block diagram showing the schematic hardware constitutions of the drive device of 13th Embodiment.
- the power generation device is exemplified by a windmill device that has a movable part that operates in accordance with a change in the flow direction of air and converts the kinetic energy of air into electrical energy.
- the power generation device may be a facility that has a movable portion that operates in accordance with a change in the flow direction of the liquid and converts the kinetic energy of the liquid into electrical energy.
- FIG. 1 is a conceptual block diagram of the driving apparatus 100 of the first embodiment.
- the drive device 100 will be described with reference to FIG.
- the solid arrows in FIG. 1 conceptually represent electrical energy transfer.
- the chain arrows in FIG. 1 conceptually represent mechanical energy transfer.
- the driving device 100 includes a pinion 200, an electric motor 300, and application units 400 and 500.
- Each of the application units 400 and 500 applies a drive voltage to the electric motor 300.
- the electric motor 300 generates a rotational force according to the driving voltage.
- the rotational force is transmitted from the electric motor 300 to the pinion 200.
- Each of the application units 400 and 500 may be a general voltage application circuit including an inverter.
- Various circuit technologies that can apply a voltage to the electric motor 300 can be applied to the application units 400 and 500. Therefore, the principle of the present embodiment is not limited to a specific circuit structure of the application units 400 and 500.
- the pinion 200 meshes with a ring gear (not shown) fixed in a casing (not shown) of a windmill device (not shown).
- the pinion 200 transmits the rotational force from the electric motor 300 to the ring gear.
- the rotational force transmitted from the pinion 200 may be used to drive a blade (not shown) of the wind turbine device.
- the pinion 200 may mesh with a ring housing fixed in the blade casing constituting the blade of the wind turbine equipment and / or the nacelle casing constituting the nacelle of the wind turbine equipment.
- the rotational force transmitted from the pinion 200 may be used to drive a nacelle (not shown) of the wind turbine equipment.
- the pinion 200 may mesh with a ring gear fixed in the nacelle casing constituting the nacelle of the windmill equipment and / or the tower casing constituting the tower (not shown) of the windmill equipment.
- the rotational motion of the pinion 200 may be utilized to operate other movable parts of the wind turbine equipment. Therefore, the principle of the present embodiment is not limited to a specific application of the rotational motion of the pinion 200 or a specific fixed position of the ring gear with which the pinion 200 is engaged.
- the power transmission piece is exemplified by the pinion 200.
- the component used as the power transmission piece may be selected to match the structure of the power generation device. Therefore, instead of the pinion, other parts (for example, a pulley or a cam) may be used as the power transmission piece.
- the principle of this embodiment is not limited to a specific component used as a power transmission piece.
- the electric motor 300 includes coil portions 310 and 320.
- the application unit 400 applies a voltage to the coil unit 310.
- the application unit 500 applies a voltage to the coil unit 320.
- Each of the application units 400 and 500 may be a general voltage application circuit.
- the power supply unit is exemplified by the application units 400 and 500.
- the first coil unit and the first power generation unit are exemplified by one of the coil units 310 and 320.
- the second coil unit and the second power generation unit are exemplified by the other of the coil units 310 and 320.
- the first coil unit and the second coil unit may receive voltage application from a common voltage application circuit.
- the power supply unit is exemplified by a voltage application circuit designed to apply a voltage to both the first coil unit and the second coil unit.
- the voltage application circuit designed to apply a voltage to both the first coil unit and the second coil unit includes the first coil unit and the second coil in addition to the voltage generation circuit that generates the voltage.
- a switching circuit that switches to the coil unit or both the first coil unit and the second coil unit may be included.
- the principle of the present embodiment is not limited to a specific structure of the voltage application circuit used as the power supply unit.
- the application unit 500 may apply a voltage to the coil unit 320 while the application unit 400 applies a voltage to the coil unit 310.
- the coil units 310 and 320 can generate a rotational force in cooperation.
- the first power is exemplified by the rotational force generated by one of the coil units 310 and 320.
- the second power is exemplified by the rotational force generated by the other of the coil units 310 and 320.
- the first drive voltage is exemplified by a voltage output from one of the application units 400 and 500.
- the second drive voltage is exemplified by a voltage output from the other of the application units 400 and 500.
- the driving device 100 may rotate the pinion 200 using only the voltage application from the application unit 500. At this time, the driving device 100 may increase the voltage from the application unit 500.
- the driving device 100 applies the voltage from the application unit 400. Only the pinion 200 may be rotated. At this time, the driving device 100 may increase the voltage from the application unit 400.
- the driving device 100 may rotate the pinion 200 using only the voltage application from the application unit 400. Thereafter, if a problem occurs in the voltage application path from the application unit 400 to the coil unit 310, the driving apparatus 100 may rotate the pinion 200 using only the voltage application from the application unit 500.
- the drive device 100 may rotate the pinion 200 using only the voltage application from the application unit 500 if there is no malfunction in the drive device 100. Thereafter, if a failure occurs in the voltage application path from the application unit 500 to the coil unit 320, the driving apparatus 100 may rotate the pinion 200 using only the voltage application from the application unit 400.
- the driving device 100 switches the voltage application path according to whether or not a failure has occurred.
- the driving apparatus 100 can switch the voltage application path with various switching patterns. Therefore, the principle of the present embodiment is not limited to a specific switching pattern of the voltage application path.
- the driving device 100 may have various structures for detecting the occurrence of a malfunction.
- the driving apparatus 100 includes a detection element that detects a current flowing through a voltage application path from the application unit 400 to the coil unit 310, and a detection element that detects a current flowing through the voltage application path from the application unit 500 to the coil unit 320. , May be included.
- the driving apparatus 100 may detect the occurrence of a malfunction under feedback control using a signal representing the detected current magnitude.
- the driving apparatus 100 may include a mechanism for detecting the torque of the electric motor 300 and a mechanism for detecting the rotational speed of the electric motor 300. In this case, the driving device 100 may monitor the torque and the rotational speed of the electric motor 300 to determine whether or not a failure has occurred.
- the principle of this embodiment is not limited to a specific technique for detecting the occurrence of a malfunction.
- Second Embodiment The principle of the driving device described in relation to the first embodiment can be applied to various movable parts of the wind turbine device.
- a driving device for driving a blade of a wind turbine device will be described.
- FIG. 2 is a schematic perspective view of an exemplary windmill device WML in which a driving device is incorporated. With reference to FIG. 2, the windmill device WML will be described.
- the windmill device WML includes a tower casing TWH, a nacelle casing NCH, a hub casing HBH, and three blade casings BDH.
- the tower casing TWH is erected from the ground.
- the tower casing TWH constitutes a tower of the wind turbine equipment WML.
- the nacelle casing NCH is attached to the upper end of the tower casing TWH.
- the nacelle housing NCH constitutes a nacelle of the wind turbine equipment WML.
- the nacelle casing NCH rotates around the vertical axis at the upper end of the tower casing TWH.
- the drive device constructed according to the principle of the first embodiment may be used for the rotational movement of the nacelle casing NCH at the upper end of the tower casing TWH.
- the hub housing HBH is attached to the nacelle housing TWH.
- Hub housing HBH constitutes a hub of windmill device WML.
- the hub housing HBH rotates according to the wind force received by the windmill device WML.
- the three blade housings BDH extend radially from the hub housing HBH.
- the blade housing BDH constitutes a blade of the windmill device WML.
- Each blade housing BDH rotates around an axis along the extending direction of the blade housing BDH on the hub housing HBH.
- the drive device constructed according to the principle of the first embodiment may be used for the rotational movement of each blade casing BDH on the hub casing HBH.
- FIG. 3 is a schematic cross-sectional view of the drive device 100A of the second embodiment.
- the driving device 100A will be described with reference to FIGS.
- the driving device 100A is disposed in the hub housing HBH and / or the blade housing BDH.
- the driving device 100A generates a rotational force for rotating the blade casing BDH on the hub casing HBH.
- the driving device 100A includes a pinion 200A, an electric motor 300A, and a speed reduction unit 600.
- the rotational force generated by the electric motor 300A is transmitted to the pinion 200A through the speed reduction unit 600.
- the pinion 200A corresponds to the pinion 200 described with reference to FIG.
- the electric motor 300A corresponds to the electric motor 300 described with reference to FIG.
- the electric motor 300 ⁇ / b> A includes a main housing 330 and a rotating shaft 340.
- Coil elements (not shown) corresponding to the coil portions 310 and 320 described with reference to FIG. 1 are arranged in the main housing 330. When a voltage is applied to these coil elements, the rotating shaft 340 extending from the main housing 330 rotates.
- the rotating shaft 340 can rotate even when a voltage is applied to only one of the coil elements described above. Therefore, even if a failure occurs in the voltage application path to one of the coil elements described above, the driving device 100A can apply a rotation operation to the blade housing BDH under the voltage application to the other coil element. .
- the speed reduction unit 600 includes a speed reduction mechanism 610 and an output shaft 620.
- the speed reduction mechanism 610 can include various speed reducers (for example, a planetary gear speed reducer and an eccentric speed reducer). Therefore, the principle of the present embodiment is not limited to a specific structure of the speed reduction mechanism 610.
- Deceleration mechanism 610 is connected to rotating shaft 340 of electric motor 300A.
- the speed reduction mechanism 610 increases the torque while reducing the rotation speed.
- the increased torque is transmitted from the speed reduction mechanism 610 to the output shaft 620.
- the output shaft 620 rotates at a lower rotational speed than the rotating shaft 340 of the electric motor 300A.
- the pinion 200A is attached to the output shaft 620.
- the pinion 200A can rotate with the output shaft 620.
- FIG. 4 is a schematic cross-sectional view of the wind turbine equipment WML around the boundary between the hub housing HBH and the blade housing BDH.
- FIGS. 3 and 4 an exemplary arrangement of the driving device 100 ⁇ / b> A will be described.
- the opening OPN is formed in the hub housing HBH.
- the hub housing HBH includes a contour surface CTS that forms the contour of the opening OPN.
- the driving device 100A is fixed to the contour surface CTS.
- Windmill equipment WML includes a ball bearing BRG.
- the ball bearing BRG is disposed between the hub housing HBH and the blade housing BDH.
- the hub housing HBH includes an outer surface OUS that defines the outer contour of the hub housing HBH.
- the blade housing BDH includes a base end face PXS facing the opening OPN.
- Ball bearing BRG includes an outer ring portion ORG, an inner ring portion IRG, and a plurality of balls BLL.
- the outer ring portion ORG is fixed to the outer surface OUS.
- the inner ring portion IRG arranged in the outer ring portion ORG is fixed to the base end face PXS.
- the plurality of balls BLL roll between the outer ring part ORG and the inner ring part IRG arranged substantially concentrically with the outer ring part ORG. Therefore, the inner ring portion IRG can rotate within the outer ring portion ORG.
- the blade housing BDH rotates together with the inner ring portion IRG.
- the movable part is exemplified by the blade housing BDH.
- the inner ring portion IRG includes an inner surface INS opposite to the plurality of balls BLL. Gear teeth (not shown) are formed on the inner surface INS.
- the pinion 200A meshes with gear teeth formed on the inner surface INS. Therefore, the inner ring portion IRG and the blade housing BDH can rotate together with the pinion 200A.
- ⁇ Third Embodiment> Designers designing windmill equipment may want to use smaller drives for ease of attachment to the windmill equipment and other design reasons. If a small electric motor is used for the driving device, the driving device is reduced in size. In the third embodiment, a technique for making a small electric motor available will be described.
- FIG. 5 is a conceptual diagram of the electric motor 300A.
- a symbol used in common between the second embodiment and the third embodiment means that an element to which the common symbol is attached has the same function as that of the second embodiment. Therefore, description of 2nd Embodiment is used for these elements.
- the electric motor 300A will be described with reference to FIGS.
- the coil elements 310A and 320A are arranged in the main housing 330.
- the coil element 310A corresponds to the coil unit 310 described with reference to FIG.
- the coil element 320A corresponds to the coil part 320 described with reference to FIG.
- Both the coil elements 310A and 320A surround an area around the rotation axis RAX of the electric motor 300A.
- FIG. 5 shows a “region A” surrounded by the coil element 310A and a “region B” surrounded by the coil element 320A. Region A partially overlaps region B. Alternatively, the area surrounded by the coil element 310A may completely overlap with the area surrounded by the coil element 320A.
- the first region is exemplified by one of the region A and the region B.
- the second region is exemplified by the other of region A and region B.
- the electric motor 300A may not have a long dimension in the extending direction of the rotation axis RAX. Therefore, the designer can design a small drive device using the electric motor 300A.
- the manufacturer who manufactures the electric motor 300A may bundle the coil wire for the coil element 310A and the coil wire for the coil element 320A and wind them to form the coil elements 310A and 320A. As a result, most of the area A overlaps the area B. The manufacturer may use another method to form the overlapping region that overlaps between the coil elements 310A and 320A.
- the principle of this embodiment is not limited to a specific technique for forming the coil elements 310A and 320A.
- the drive device constructed based on the principle described in connection with the first embodiment can operate appropriately under various controls.
- an exemplary control technique for the driving device will be described.
- FIG. 6 is a block diagram showing a schematic functional configuration of the drive device 100B of the fourth embodiment.
- symbol used in common between 1st Embodiment and 4th Embodiment means that the element to which the said common code
- the driving device 100B will be described with reference to FIG. 1 and FIG.
- the driving device 100B includes a pinion 200 and application units 400 and 500.
- the description of the first embodiment is incorporated in these elements.
- the driving device 100B includes an electric motor 300B and a control unit 700.
- the application units 400 and 500 generate a voltage under the control of the control unit 700.
- the voltage is applied to the electric motor 300B.
- the electric motor 300B transmits the rotational force to the pinion 200 under application of a voltage.
- the electric motor 300B corresponds to the electric motor 300 described with reference to FIG.
- the electric motor 300B includes a main coil portion 310B and a sub coil portion 320B.
- the main coil portion 310B corresponds to one of the coil portions 310 and 320 described with reference to FIG.
- the sub-coil portion 320B corresponds to the other of the coil portions 310 and 320 described with reference to FIG. Therefore, the main coil part 310B and the subcoil part 320B may be formed based on the technique described in relation to the third embodiment.
- the control unit 700 includes a detection unit 710 and a switching unit 720.
- the switching unit 720 outputs a request signal for requesting voltage application to the application unit 400.
- the application unit 400 generates a voltage in response to the request signal. The voltage is then applied from the application unit 400 to the main coil unit 310B.
- the detection unit 710 measures a current flowing through an electrical path connected to the application unit 400 and the main coil unit 310B.
- the detection unit 710 may receive a signal indicating the magnitude of the current flowing through the electrical path connected to the application unit 400 and the main coil unit 310B from the detection element incorporated in the electric motor 300B. If the current is excessively small, the detection signal 710 may determine that a failure has occurred in the electrical path connecting the application unit 400 and the main coil unit 310B. Therefore, the detection unit 710 can appropriately determine whether or not a failure has occurred in the electrical path connecting the application unit 400 and the main coil unit 310B.
- the detection unit 710 may be a general microcomputer that executes a program designed to determine a malfunction from a general ammeter and an output signal from the ammeter.
- an electronic component such as a CPU (Central Processing Unit) or a PLD (Programmable Logic Device) may be used.
- the principle of this embodiment is not limited to a specific electronic component used as the detection unit 710.
- the application unit 500 While the request signal is being output from the detection unit 710 to the application unit 400, the application unit 500 does not receive the request signal. Therefore, sub coil part 320B does not receive a voltage. As a result, the pinion 200 is rotated by the rotational force generated by the voltage application to the main coil unit 310B.
- FIG. 7 is a schematic block diagram showing a functional configuration of the driving device 100B when a failure occurs in an electrical path connected to the application unit 400 and the main coil unit 310B.
- the drive device 100B will be further described with reference to FIGS.
- the detection unit 710 detects an excessively low current. When the magnitude of the detected current falls below the threshold value, the detection unit 710 may generate a switching signal. The switching signal is output from the detection unit 710 to the switching unit 720.
- the switching unit 720 switches the output destination of the above request signal from the applying unit 400 to the applying unit 500 in accordance with the switching signal.
- the application unit 500 generates a voltage according to the request signal.
- the voltage is then applied from the application unit 500 to the sub coil unit 320B. Therefore, after a failure occurs in the electrical path connected to the application unit 400 and the main coil unit 310B, the pinion 200 is rotated by the rotational force generated by the voltage application to the sub coil unit 320B.
- the switching unit 720 may be a general switching circuit designed to switch the output destination of the request signal according to the switching signal. The principle of the present embodiment is not limited to a specific circuit structure of the switching unit 720.
- the control unit 700 and the application units 400 and 500 may be constructed on a common circuit board. Alternatively, the control unit 700 may be constructed on a circuit board different from the application units 400 and 500.
- the principle of the present embodiment is not limited to a specific structure of a circuit that forms the control unit 700 and the application units 400 and 500.
- FIG. 8 is a schematic flowchart showing the control of the driving device 100B. The control of the drive device 100B will be described with reference to FIGS.
- Step S110 The detection unit 710 determines whether or not the current flowing through the electrical path connected to the application unit 400 and the main coil unit 310B exceeds a threshold value. If the current exceeds the threshold value, step S120 is executed. In other cases, step S140 is executed.
- Step S120 The switching unit 720 outputs a request signal for requesting voltage application to the application unit 400.
- the application unit 400 applies a voltage to the main coil unit 310B according to the request signal. Thereafter, step S130 is executed.
- Step S130 Under the application of voltage to the main coil portion 310B, the electric motor 300B generates a rotational force. The rotational force is transmitted from the electric motor 300B to the pinion 200. When the rotation angle of the blade housing BDH reaches the target rotation angle, the control ends. In other cases, the processing loop from step S110 to step S130 continues to be executed.
- the angular position control with respect to the rotation angle of the blade housing BDH may be based on general PID control. The principle of the present embodiment is not limited to a specific angle control technique for the rotation angle of the blade housing BDH.
- Step S140 The detection unit 710 generates a switching signal.
- the switching signal is output from the detection unit 710 to the switching unit 720.
- the switching unit 720 switches the output destination of the request signal from the applying unit 400 to the applying unit 500 according to the switching signal.
- the request signal is transmitted from the switching unit 720 to the application unit 500.
- the application unit 500 generates a voltage according to the request signal. The voltage is then applied from the application unit 500 to the sub coil unit 320B.
- Step S150 The electric motor 300B generates a rotational force under application of a voltage to the sub coil unit 320B.
- the rotational force is transmitted from the electric motor 300B to the pinion 200.
- the control ends. In other cases, the processing loop of step S140 and step S150 continues to be executed.
- the drive device of the fourth embodiment switches the voltage application destination from one coil unit to another coil unit when a failure occurs.
- the drive device executes a control mode in which a voltage is applied to the plurality of coil portions when no failure occurs, while the voltage is applied to one of the plurality of coil portions when the failure occurs.
- Another control mode may be executed that applies.
- a drive device having a function of switching control modes will be described.
- FIG. 9 is a block diagram illustrating a schematic functional configuration of the drive device 100C of the fifth embodiment.
- symbol used in common between 1st Embodiment and 5th Embodiment means that the element to which the said common code
- the drive device 100C will be described with reference to FIGS.
- the drive device 100C includes a pinion 200, an electric motor 300, and application units 400 and 500.
- the description of the first embodiment is incorporated in these elements.
- the driving device 100C includes a control unit 700C.
- the application units 400 and 500 generate a voltage under the control of the control unit 700C.
- the voltage is applied to the electric motor 300.
- the electric motor 300 transmits a rotational force to the pinion 200 under application of a voltage.
- Control unit 700C includes a detection unit 710C and a switching unit 720C.
- the switching unit 720C outputs a first request signal requesting application of a voltage to the applying unit 400.
- the switching unit 720 ⁇ / b> C outputs a second request signal for requesting voltage application to the application unit 500.
- Application unit 400 generates the first voltage in response to the first request signal. Thereafter, the first voltage is applied from the application unit 400 to the coil unit 310.
- Application unit 500 generates a second voltage in response to the second request signal. The second voltage is then applied from the application unit 500 to the coil unit 320.
- Detecting unit 710 ⁇ / b> C measures the current flowing through the first path connected to application unit 400 and coil unit 310.
- the detection unit 710 ⁇ / b> C measures the current flowing through the second path connected to the application unit 500 and the coil unit 320.
- the detection unit 710 ⁇ / b> C may receive a signal representing the magnitude of the current flowing through the first path and the second path from the detection element incorporated in the electric motor 300. If the current flowing through the coil unit 310 is excessively small, the detection signal 710 ⁇ / b> C may determine that a failure has occurred in the electrical path that connects the application unit 400 and the coil unit 310.
- the detection signal 710C may determine that a failure has occurred in the electrical path that connects the application unit 500 and the coil unit 320. Therefore, the detection unit 710C can appropriately determine whether or not a failure occurs in the first route and / or the second route.
- the control unit 700C performs a control operation under the first control mode.
- the switching unit 720C outputs the first request signal to the applying unit 400 and the second request signal to the applying unit 500 under the first control mode.
- the application unit 400 generates a first voltage
- the application unit 500 generates a second voltage.
- the first voltage is applied from the application unit 400 to the coil unit 310.
- the second voltage is applied from the application unit 500 to the coil unit 320.
- the pinion 200 is rotated by the rotational force generated when voltage is applied to both the coil units 310 and 320.
- the first drive voltage is exemplified by one of the first voltage and the second voltage.
- the second drive voltage is exemplified by the other of the first voltage and the second voltage.
- the control unit 700C performs a control operation under the second control mode.
- the detection unit 710C may generate a notification signal that notifies the occurrence of the failure.
- the notification signal is output from detection unit 710C to switching unit 720C.
- the switching unit 720C that is notified of the malfunction in the first path requests voltage application through the second path.
- the switching unit 720C may include an instruction for requesting an increase in voltage in the second request signal.
- the application unit 500 can apply a voltage having a higher value than the second voltage under the first control mode as the second voltage. Therefore, the loss of the rotational force due to the malfunction occurring in the first path is compensated by the high rotational force generated by the coil unit 320.
- the switching unit 720C notified of the malfunction in the second path requests voltage application through the first path.
- the switching unit 720C may include an instruction for requesting an increase in voltage in the first request signal.
- the application unit 400 can apply a voltage having a value higher than the first voltage under the first control mode as the first voltage. Therefore, the loss of rotational force due to the malfunction that has occurred in the second path is compensated by the high rotational force generated by the coil unit 310.
- FIG. 10 is a schematic flowchart showing the control of the driving device 100C. The control of the driving device 100C will be described with reference to FIGS.
- Step S210 The detection unit 710C determines whether or not the current flowing through the first path is below a threshold value. If the current is below the threshold, step S220 is executed. In other cases, step S240 is executed.
- Step S220 The detection unit 710C generates a notification signal for notifying an electrical failure in the first path.
- the notification signal is output from detection unit 710C to switching unit 720C.
- the switching unit 720C outputs a first request signal to the applying unit 400 in response to the notification signal.
- the application unit 400 applies a first voltage to the coil unit 310 in response to the first request signal. Thereafter, step S230 is executed.
- Step S230 Under the application of the first voltage to the coil unit 310, the electric motor 300 generates a rotational force. The rotational force is transmitted from the electric motor 300 to the pinion 200. Control ends when the rotation angle of the blade housing BDH reaches the target rotation angle. In other cases, the processing loop of step S220 and step S230 continues to be executed.
- the angular position control with respect to the rotation angle of the blade housing BDH may be based on general PID control. The principle of the present embodiment is not limited to a specific angle control technique for the rotation angle of the blade housing BDH.
- Step S240 The detection unit 710C determines whether or not the current flowing through the second path is below a threshold value. If the current is below the threshold, step S250 is executed. In other cases, step S270 is executed.
- Step S250 The detection unit 710C generates a notification signal for notifying an electrical failure in the second path.
- the notification signal is output from detection unit 710C to switching unit 720C.
- the switching unit 720C outputs a second request signal to the applying unit 500 in response to the notification signal.
- the application unit 500 applies the second voltage to the coil unit 320 in response to the second request signal. Thereafter, step S260 is executed.
- Step S260 Under the application of the second voltage to the coil unit 320, the electric motor 300 generates a rotational force. The rotational force is transmitted from the electric motor 300 to the pinion 200. Control ends when the rotation angle of the blade housing BDH reaches the target rotation angle. In other cases, the processing loop of step S250 and step S260 continues to be executed.
- Step S270 The switching unit 720C outputs the first request signal to the applying unit 400 and outputs the second request signal to the applying unit 500.
- the application unit 400 applies a first voltage to the coil unit 310 in response to the first request signal.
- the application unit 500 applies the second voltage to the coil unit 320 in response to the second request signal.
- the value of the first voltage applied to the coil unit 310 in step S270 may be lower than the value of the first voltage applied to the coil unit 310 in step S220.
- the value of the second voltage applied to the coil unit 320 in step S270 may be lower than the value of the second voltage applied to the coil unit 320 in step S250.
- Step S280 is performed after the application of the first voltage and the second voltage.
- Step S280 Under the application of the second voltage to the coil unit 320, the electric motor 300 generates a rotational force. The rotational force is transmitted from the electric motor 300 to the pinion 200. Control ends when the rotation angle of the blade housing BDH reaches the target rotation angle. In other cases, step S210 is executed again.
- FIG. 11 is a block diagram illustrating a schematic hardware configuration of the driving apparatus 100D according to the sixth embodiment.
- the drive device 100D will be described with reference to FIGS. 1 to 3 and FIG.
- the driving device 100D drives the blade casings BH1, BH2, and BH3.
- the blade housings BH1, BH2, and BH3 correspond to the three blade housings BDH described with reference to FIG.
- the driving device 100D includes three pinions 210, 220, and 230.
- the pinion 210 meshes with a ring gear (not shown) attached to the blade housing BH1.
- the pinion 220 meshes with a ring gear (not shown) attached to the blade housing BH2.
- the pinion 230 meshes with a ring gear (not shown) attached to the blade housing BH3.
- the connection between the pinion 210, 220, 230 and the blade housings BH1, BH2, BH3 may be based on the technique described in connection with the second embodiment.
- the driving device 100D includes three electric motors 301, 302, and 303, and three speed reducers 601, 602, and 603.
- Each of the electric motors 301, 302, and 303 corresponds to the electric motor 300 described with reference to FIG.
- Each of the reduction gears 601, 602, 603 corresponds to the reduction gear unit 600 described with reference to FIG.
- the electric motors 301, 302, and 303 transmit the rotational force to the speed reducers 601, 602, and 603, respectively.
- Each of the reduction gears 601, 602, 603 increases the rotational force.
- the increased rotational force is transmitted from the speed reducers 601, 602, 603 to the pinions 210, 220, 230, respectively.
- the pinions 210, 220, and 230 can impart rotational motion to the blade casings BH1, BH2, and BH3, respectively.
- the driving device 100D includes a first application circuit 410, a second application circuit 510, a third application circuit 420, a fourth application circuit 520, a fifth application circuit 430, and a sixth application circuit 530.
- Each of the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 corresponds to the application unit 400 described with reference to FIG.
- the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 correspond to the application unit 500 described with reference to FIG.
- Each of the first application circuit 410 and the second application circuit 510 applies a voltage to the electric motor 301.
- the first application circuit 410 may apply the voltage exclusively to the electric motor 301 in the absence of a malfunction.
- the second application circuit 510 applies a voltage to the electric motor 301. Therefore, even if a failure occurs in the voltage application from the first application circuit 410 to the electric motor 301, the blade casing BH1 can continue the rotation operation appropriately.
- the second application circuit 510 may apply the voltage exclusively to the electric motor 301. In this case, after a failure occurs in the voltage application from the second application circuit 510 to the electric motor 301, the first application circuit 410 applies a voltage to the electric motor 301. Therefore, even if a problem occurs in the voltage application from the second application circuit 510 to the electric motor 301, the blade casing BH1 can continue the rotation operation appropriately.
- the first application circuit 410 may apply a voltage to the electric motor 301 in cooperation with the second application circuit 510 in the absence of a malfunction. If a malfunction occurs in one of the first application circuit 410 and the second application circuit 510, the electric motor 301 is driven by the other of the first application circuit 410 and the second application circuit 510. Therefore, even if one of the first application circuit 410 and the second application circuit 510 has a problem, the blade housing BH1 can continue the rotation operation appropriately.
- Each of the third application circuit 420 and the fourth application circuit 520 applies a voltage to the electric motor 302.
- Each of the fifth application circuit 430 and the sixth application circuit 530 applies a voltage to the electric motor 303. Similar to the set of the first applying circuit 410 and the second applying circuit 510, the set of the third applying circuit 420 and the fourth applying circuit 520 and the set of the fifth applying circuit 430 and the sixth applying circuit 530 are the fourth embodiment. And / or, under the control principle described in connection with the fifth embodiment, the electric motors 302 and 303 can each generate a rotational force. Therefore, the above description of the first application circuit 410 and the second application circuit 510 is incorporated in these sets.
- the fifth application circuit 430 may apply the voltage exclusively to the electric motor 303 in the absence of a malfunction.
- the sixth application circuit 530 applies a voltage to the electric motor 303. Therefore, even if a failure occurs in the voltage application from the fifth application circuit 430 to the electric motor 303, the blade casing BH3 can continue the rotation operation appropriately.
- the sixth application circuit 530 may apply the voltage exclusively to the electric motor 303. In this case, after a failure occurs in the voltage application from the sixth application circuit 530 to the electric motor 303, the fifth application circuit 430 applies a voltage to the electric motor 303. Therefore, even if a failure occurs in the voltage application from the sixth application circuit 530 to the electric motor 303, the blade casing BH3 can continue the rotation operation appropriately.
- the fifth application circuit 430 may apply a voltage to the electric motor 303 in cooperation with the sixth application circuit 530 in the absence of a malfunction. If a malfunction occurs in one of the fifth application circuit 430 and the sixth application circuit 530, the electric motor 303 is driven by the other of the fifth application circuit 430 and the sixth application circuit 530. Therefore, even if one of the fifth application circuit 430 and the sixth application circuit 530 has a problem, the blade housing BH3 can continue the rotation operation appropriately.
- the driving device 100D includes an arithmetic circuit 730, a first determination circuit 740, and a second determination circuit 750.
- the arithmetic circuit 730 may receive various data such as the current position of each of the blade casings BH1, BH2, and BH3, the current position of the nacelle casing NCH, the wind direction, and the wind force from the windmill device WML (see FIG. 2).
- the arithmetic circuit 730 calculates target rotation positions of the blade casings BH1, BH2, and BH3 according to the data received from the windmill device WML.
- the blade housing BH1 is rotated around the longitudinal axis of the blade housing BH1 by the electric motor 301, the speed reducer 601 and the pinion 210, and reaches the target rotation position calculated by the arithmetic circuit 730.
- the blade housing BH2 is rotated around the longitudinal axis of the blade housing BH2 by the electric motor 302, the speed reducer 602, and the pinion 220, and reaches the target rotation position calculated by the arithmetic circuit 730.
- the blade housing BH3 is rotated around the longitudinal axis of the blade housing BH3 by the electric motor 303, the speed reducer 603, and the pinion 230, and reaches the target rotation position calculated by the arithmetic circuit 730.
- the data representing the calculated target rotational position may be transmitted exclusively from the arithmetic circuit 730 to the first determination circuit 740 in the absence of a malfunction.
- the first determination circuit 740 determines the magnitude of the voltage applied to the electric motors 301, 302, 303 from the data received from the arithmetic circuit 730.
- a signal indicating the magnitude of the determined voltage is output from the first determination circuit 740 to the first application circuit 410, the third application circuit 420, and the fifth application circuit 430.
- the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the first determination circuit 740.
- the arithmetic circuit 730 may detect whether or not a failure has occurred in the electrical transmission path from the first determination circuit 740 to the electric motors 301, 302, and 303.
- Various known detection techniques may be applied to detect the occurrence of a failure in the electrical transmission path from the first determination circuit 740 to the electric motors 301, 302, and 303.
- the principle of this embodiment is not limited to a specific technique for detecting the occurrence of a malfunction.
- the arithmetic circuit 730 determines the output destination of the data representing the calculated target rotation position as the first determination circuit. Switching from 740 to the second decision circuit 750 may be performed.
- the second determination circuit 750 determines the magnitude of the voltage applied to the electric motors 301, 302, 303 from the data received from the arithmetic circuit 730.
- a signal indicating the magnitude of the determined voltage is output from the second determination circuit 750 to the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530.
- the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the second determination circuit 750.
- data representing the target rotational position may be transmitted exclusively from the arithmetic circuit 730 to the second determination circuit 750 in the absence of a malfunction.
- the second determination circuit 750 determines the magnitude of the voltage applied to the electric motors 301, 302, 303 from the data received from the arithmetic circuit 730.
- a signal indicating the magnitude of the determined voltage is output from the second determination circuit 750 to the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530.
- the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the second determination circuit 750.
- the arithmetic circuit 730 may detect whether or not a failure has occurred in the electrical transmission path from the second determination circuit 750 to the electric motors 301, 302, and 303.
- Various known detection techniques may be applied to detect the occurrence of a fault in the electrical transmission path from the second determination circuit 750 to the electric motors 301, 302, and 303.
- the principle of this embodiment is not limited to a specific technique for detecting the occurrence of a malfunction.
- the arithmetic circuit 730 determines the output destination of the data representing the calculated target rotation position as the second determination circuit. Switching from 750 to the first decision circuit 740 may be performed.
- the first determination circuit 740 determines the magnitude of the voltage applied to the electric motors 301, 302, 303 from the data received from the arithmetic circuit 730.
- a signal indicating the magnitude of the determined voltage is output from the first determination circuit 740 to the first application circuit 410, the third application circuit 420, and the fifth application circuit 430.
- the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the first determination circuit 740.
- the data representing the calculated target rotational position can be transmitted from the arithmetic circuit 730 to the first determination circuit 740 and the second determination circuit 750 in the absence of a problem. Good.
- Each of the first determination circuit 740 and the second determination circuit 750 determines the magnitude of the voltage applied to the electric motors 301, 302, and 303 from the data received from the arithmetic circuit 730.
- a signal indicating the magnitude of the determined voltage is output from the first determination circuit 740 to the first application circuit 410, the third application circuit 420, and the fifth application circuit 430, and from the second determination circuit 750, And output to the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530.
- the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the first determination circuit 740.
- the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the second determination circuit 750.
- the arithmetic circuit 730 determines the output destination of data representing the calculated target rotation position as the second determination circuit. Only 750 may be set. In this case, the arithmetic circuit 730 may notify the second determination circuit 750 of the occurrence of the problem. The second determination circuit 750 may increase the magnitude of the voltage in response to the notification of the occurrence of the malfunction. As a result, the increased voltage is applied from the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 to the electric motors 301, 302, and 303.
- the arithmetic circuit 730 determines the output destination of the data representing the calculated target rotation position as the first determination circuit. Only 740 may be set. In this case, the arithmetic circuit 730 may notify the first determination circuit 740 of the occurrence of the malfunction. The first determination circuit 740 may increase the magnitude of the voltage in response to the notification of the occurrence of the malfunction. As a result, the increased voltage is applied from the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 to the electric motors 301, 302, and 303.
- control unit is exemplified by the arithmetic circuit 730, the first determination circuit 740, and the second determination circuit 750.
- the driving device 100D includes a first battery 810 and a second battery 820.
- a set of the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 is electrically connected to the first battery 810.
- a set of the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 applies a voltage to the electric motors 301, 302, and 303 using the electric power stored in the first battery 810.
- a set of the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 is electrically connected to the second capacitor 820.
- a set of the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 applies a voltage to the electric motors 301, 302, and 303 using the electric power stored in the second battery 820.
- the power storage unit is exemplified by the first battery 810 and the second battery 820.
- Each of the first capacitor 810 and the second capacitor 820 may receive power through the arithmetic circuit 730.
- other power supply technologies may be used to supply power to the first battery 810 and the second battery 820.
- the principle of this embodiment is not limited to a specific power supply technology to the first battery 810 and the second battery 820.
- the blade housings BH1, BH2, and BH3 are in a feather position from an arbitrary rotational position (a position at which the force that the blade housings BH1, BH2, and BH3 receive from the wind is minimized). It has the capacity to store the power needed to return to Therefore, a serious problem occurs in one of the electrical transmission path from the first determination circuit 740 to the electric motors 301, 302, and 303 and the electrical transmission path from the second determination circuit 750 to the electric motors 301, 302, and 303. Even if this occurs, the blade housings BH1, BH2, and BH3 can return to the feather position.
- FIG. 12 is a conceptual block diagram of the driving apparatus 100E of the seventh embodiment.
- symbol used in common between 1st Embodiment and 7th Embodiment means that the element to which the said common code
- the drive device 100E will be described with reference to FIG. Solid arrows in FIG. 12 conceptually represent electrical energy transfer.
- a chain line arrow in FIG. 12 conceptually represents mechanical energy transfer.
- the driving device 100E includes a pinion 200 and application units 400 and 500.
- the description of the first embodiment is applied to the pinion 200 and the application units 400 and 500.
- the connection technique described in relation to the second embodiment may be applied to the connection between the pinion 200 and a ring gear attached to a casing (not shown) of a windmill device (not shown).
- the driving device 100 further includes electric motors 350 and 360 and a differential gear device 630.
- the electric motor 350 receives voltage application from the application unit 400.
- the electric motor 360 receives voltage application from the application unit 500.
- each of the electric motors 350 and 360 generates a rotational force.
- the rotational force is transmitted from each of the electric motors 350 and 360 to the differential gear device 630.
- the differential gear device 630 rotates the pinion 200 according to the rotational force from each of the electric motors 350 and 360.
- the first electric motor is exemplified by one of the electric motors 350 and 360.
- the second electric motor is exemplified by the other of the electric motors 350 and 360.
- the first rotational force is exemplified by the rotational force output from one of the electric motors 350 and 360.
- the second rotational force is exemplified by the rotational force output from the other of the electric motors 350 and 360.
- the power transmission device is exemplified by a differential gear device 630.
- the power transmission device may be a clutch mechanism or another mechanism capable of transmitting the rotational force generated by one or both of the electric motors 350 and 360 to the pinion 200.
- the principle of this embodiment is not limited to a specific device used as a power transmission device.
- the pinion 200 may be driven by a set of the application unit 400, the electric motor 350, and the differential gear device 630. Thereafter, if a problem occurs in the combination of the application unit 400, the electric motor 350, and the differential gear device 630, the pinion 200 is driven by the combination of the application unit 500, the electric motor 360, and the differential gear device 630. . Alternatively, the pinion 200 may be driven by the combination of the application unit 500, the electric motor 360, and the differential gear device 630 in the absence of a malfunction. Thereafter, if a problem occurs in the combination of the application unit 500, the electric motor 360, and the differential gear device 630, the pinion 200 is driven by the combination of the application unit 400, the electric motor 350, and the differential gear device 630. .
- the control principle described in relation to the fifth embodiment can also be applied to the driving device 100E.
- the application unit 400 may apply a voltage to the electric motor 350 in synchronization with voltage application from the application unit 500 to the electric motor 360.
- the electric motor 350 can drive the differential gear device 630 and the pinion 200 in cooperation with the electric motor 360.
- the pinion 200 may be driven by the combination of the application unit 500, the electric motor 360, and the differential gear device 630. At this time, the application unit 500 may increase the torque output from the electric motor 360.
- the pinion 200 may be driven by the combination of the application unit 400, the electric motor 350, and the differential gear device 630. At this time, the application unit 400 may increase the torque output from the electric motor 350.
- the drive device described in connection with the seventh embodiment includes a differential gear device.
- the designer can design the drive device using the differential gear device having various structures.
- an exemplary structure of the differential gear device will be described.
- FIG. 13 is a schematic cross-sectional view illustrating an exemplary structure of the differential gear device 630.
- the differential gear device 630 will be described with reference to FIGS. 12 and 13.
- the differential gear device 630 includes a housing 640, a gear case 650, a first input unit 660, a second input unit 670, an internal gear shaft 680, and an output shaft 690.
- FIG. 13 shows a first transmission shaft 371 and a second transmission shaft 372.
- the first transmission shaft 371 transmits the rotational force from the electric motor 350 to the differential gear device 630.
- the second transmission shaft 372 transmits the rotational force from the electric motor 360 to the differential gear device 630.
- the first transmission shaft 371 may be a part of a gear structure connected to the electric motor 350.
- the first transmission shaft 371 may be a rotating shaft of the electric motor 350.
- the second transmission shaft 372 may be a part of a gear structure connected to the electric motor 360.
- the second transmission shaft 372 may be a rotating shaft of the electric motor 360.
- the first transmission shaft 371 includes a shaft portion 373 and a gear portion 374.
- the gear part 374 is disposed at the tip of the shaft part 373.
- the gear unit 374 is connected to the first input unit 660.
- the second transmission shaft 372 includes a shaft portion 375 and a gear portion 376.
- the gear part 376 is disposed at the tip of the shaft part 375.
- the gear unit 376 is connected to the second input unit 670.
- the first input unit 660 includes a support shaft 661, an external gear 662, and an internal gear 663.
- the support shaft 661 includes a proximal end portion connected to the housing 640 and a distal end portion disposed in the gear case 650.
- the external gear 662 is fixed to the support shaft 661 between the housing 640 and the gear case 650.
- the external gear 662 meshes with the gear portion 374 of the first transmission shaft 371. Accordingly, the support shaft 661 and the external gear 662 can rotate together with the first transmission shaft 371.
- the internal gear 663 is fixed to the support shaft 661 in the gear case 650. Therefore, the internal gear 663 can rotate together with the support shaft 661 and the external gear 662.
- the internal gear 663 meshes with the internal gear shaft 680 in the gear case 650. Therefore, the internal gear 663 can transmit a rotational force from the support shaft 661 and the external gear 662 to the internal gear shaft 680.
- the second input unit 670 includes a support shaft 671, an external gear 672, and an internal gear 673.
- the support shaft 671 includes a proximal end portion connected to the housing 640 and a distal end portion disposed in the gear case 650.
- the support shaft 671 of the second input unit 670 is disposed on an extension line of the support shaft 661 of the first input unit 660. Accordingly, the support shaft 671 of the second input unit 670 can hold the gear case 650 in cooperation with the support shaft 661 of the first input unit 660.
- the external gear 672 is fixed to the support shaft 671 between the housing 640 and the gear case 650.
- the external gear 672 meshes with the gear portion 376 of the second transmission shaft 372. Accordingly, the support shaft 671 and the external gear 672 can rotate together with the second transmission shaft 372.
- the internal gear 673 is fixed to the support shaft 671 in the gear case 650. Therefore, the internal gear 673 can rotate together with the support shaft 671 and the external gear 672.
- the internal gear 673 meshes with the internal gear shaft 680 in the gear case 650. Therefore, the internal gear 673 can transmit a rotational force from the support shaft 671 and the external gear 672 to the internal gear shaft 680.
- the internal gear shaft 680 includes a shaft portion 681 and gears 682 and 683.
- the shaft portion 681 is connected to the gear case 650.
- the gears 682 and 683 are connected to the internal gears 663 and 673, respectively. Therefore, the internal gear shaft 680 can rotate the gear case 650 according to the rotation of the internal gears 663 and 664.
- the gear case 650 includes an accommodation wall 651 and a gear portion 652.
- the storage wall 651 defines a storage space in which the internal gear shaft 680 and the internal gears 663 and 673 are stored.
- the internal gear shaft 680 is connected to the accommodation wall 651.
- the gear portion 652 extends outward from the housing wall 651.
- the gear portion 652 is connected to the output shaft 690. Accordingly, the rotation of the gear case 650 is transmitted to the output shaft 690.
- the output shaft 690 includes a shaft portion 691 and a gear portion 692.
- the gear portion 692 of the output shaft 690 meshes with the gear portion 652 of the gear case 650. Therefore, the rotation of the gear case 650 is connected to the shaft portion 691 of the output shaft 690.
- the shaft portion 691 may be directly or indirectly connected to the pinion 200.
- the pinion 200 can rotate with the shaft portion 691.
- the gear case 650 can rotate to one of the first input unit 660 and the second input unit 670 in the absence of malfunction. Rotated by input. Thereafter, if a problem occurs in transmission of the rotational force to one of the first input unit 660 and the second input unit 670, the gear case 650 is connected to the other of the first input unit 660 and the second input unit 670. It is rotated by the input of torque. Therefore, even if a failure occurs in the transmission of the rotational force to one of the first input unit 660 and the second input unit 670, the rotational force continues to be transmitted from the gear case 650 to the pinion 200 through the output shaft 690.
- the gear case 650 is free from rotational force applied to both the first input unit 660 and the second input unit 670 in the absence of malfunction. Rotated by input. Thereafter, if a problem occurs in transmission of the rotational force to one of the first input unit 660 and the second input unit 670, the gear case 650 is connected to the other of the first input unit 660 and the second input unit 670. It is rotated by the input of torque. Therefore, even if a failure occurs in the transmission of the rotational force to one of the first input unit 660 and the second input unit 670, the rotational force continues to be transmitted from the gear case 650 to the pinion 200 through the output shaft 690.
- the drive device according to the seventh embodiment includes a differential gear device.
- the designer may increase the torque output from the differential gear device using a reduction gear.
- a drive device including a reduction gear will be described.
- FIG. 14 is a conceptual block diagram of the drive device 100F of the ninth embodiment.
- symbol used in common between 7th Embodiment and 9th Embodiment means that the element to which the said common code
- the drive device 100F will be described with reference to FIG.
- the solid arrows in FIG. 14 conceptually represent electrical energy transfer.
- a chain line arrow in FIG. 14 conceptually represents mechanical energy transfer.
- the drive device 100F includes a pinion 200, electric motors 350 and 360, application units 400 and 500, and a differential gear device 630.
- the description of the seventh embodiment is incorporated in these elements.
- the driving device 100F further includes a speed reducer 600F.
- the reduction gear 600 ⁇ / b> F is disposed between the differential gear device 630 and the pinion 200.
- the reduction gear 600F increases the torque output from the differential gear device 630.
- the increased torque is transmitted from the speed reducer 600F to the pinion 200.
- the wind turbine device (not shown) is driven appropriately.
- the speed reducer 600F may be a planetary gear speed reducer, an eccentric speed reducer, or another speed reducer capable of appropriately increasing torque.
- the principle of the present embodiment is not limited to a specific type of speed reducer 600F.
- ⁇ Tenth Embodiment> The designer can design various hardware configurations of the driving device based on the technical principle described in relation to the seventh to ninth embodiments. In the tenth embodiment, an exemplary hardware configuration of the drive device will be described.
- FIG. 15 is a block diagram illustrating a schematic hardware configuration of the driving device 100G according to the tenth embodiment.
- symbol used in common between 6th Embodiment and 10th Embodiment means that the element to which the said common code
- the drive device 100G will be described with reference to FIGS.
- the drive device 100G includes three pinions 210, 220, and 230, and three speed reducers 601, 602, and 603.
- the pinions 210, 220, and 230 correspond to the pinion 200 described with reference to FIG.
- Each of the reduction gears 601, 602, 603 corresponds to the reduction gear 600F described with reference to FIG.
- the pinion 210 and the speed reducer 601 drive the blade casing BH1.
- the pinion 220 and the speed reducer 602 drive the blade housing BH2.
- the pinion 230 and the speed reducer 603 drive the blade housing BH3.
- the driving device 100G includes an arithmetic circuit 730, a first determination circuit 740, a second determination circuit 750, a first application circuit 410, a second application circuit 510, and a third application circuit. 420, a fourth application circuit 520, a fifth application circuit 430, and a sixth application circuit 530. The description of the sixth embodiment is incorporated for these elements.
- the driving device 100G includes electric motors 351, 352, 353, 361, 362, and 363. Each of the electric motors 351, 352, and 353 corresponds to the electric motor 350 described with reference to FIG. Each of the electric motors 361, 362, and 363 corresponds to the electric motor 360 described with reference to FIG.
- the electric motor 351 generates a rotational force under application of a voltage from the first application circuit 410.
- the electric motor 361 generates a rotational force under application of a voltage from the second application circuit 510.
- the electric motor 352 generates a rotational force under voltage application from the third application circuit 420.
- the electric motor 362 generates a rotational force under voltage application from the fourth application circuit 520.
- the electric motor 353 generates a rotational force under voltage application from the fifth application circuit 430.
- the electric motor 363 generates a rotational force under application of a voltage from the sixth application circuit 530.
- ⁇ ⁇ Drive device 100G includes three differential gear devices 631, 632, and 633.
- the differential gear device 631 receives a rotational force from at least one of the electric motors 351 and 361. Thereafter, the rotational force is sequentially transmitted from the differential gear device 631 to the speed reducer 601, the pinion 210, and the blade housing BH1.
- the differential gear device 632 receives a rotational force from at least one of the electric motors 352 and 362. Thereafter, the rotational force is sequentially transmitted from the differential gear device 632 to the speed reducer 602, the pinion 220, and the blade housing BH2.
- the differential gear device 633 receives a rotational force from at least one of the electric motors 353 and 363. Thereafter, the rotational force is sequentially transmitted from the differential gear device 633 to the speed reducer 603, the pinion 230, and the blade housing BH3.
- the set of electric motors 351, 352, 353 and the set of electric motors 361, 362, 363 One of them generates a rotational force under the control of the arithmetic circuit 730.
- the other of the set of electric motors 351, 352, 353 and the set of electric motors 361, 362, 363 may be stationary.
- the set of electric motors 351, 352, 353 and the set of electric motors 361, 362, 363 does not operate properly thereafter, the set of electric motors 351, 352, 353 and the electric motors 361, 362 The other of the 363 sets is activated by the arithmetic circuit 730. Therefore, the blade housings BH1, BH2, and BH3 can perform an appropriate operation even when a failure occurs.
- the switching of the control mode when a failure occurs is the same as the technology described in relation to the sixth embodiment. Therefore, the description of the sixth embodiment is applied to signal processing by the arithmetic circuit 730, the first determination circuit 740, and the second determination circuit 750.
- the control unit is exemplified by an arithmetic circuit 730, a first determination circuit 740, and a second determination circuit 750.
- the switching unit is exemplified by the arithmetic circuit 730.
- the driving device 100G includes three capacitors 801, 802, and 803.
- the first application circuit 410 applies a voltage to the electric motor 351 using the electric power stored in the battery 801.
- the second application circuit 510 applies a voltage to the electric motor 361 using the electric power stored in the battery 801.
- the third application circuit 420 applies a voltage to the electric motor 352 using the electric power stored in the battery 802.
- the fourth application circuit 520 applies a voltage to the electric motor 362 using the electric power stored in the battery 802.
- the fifth application circuit 430 applies a voltage to the electric motor 353 using the electric power stored in the battery 803.
- the sixth application circuit 530 applies a voltage to the electric motor 363 using the electric power stored in the battery 803.
- the battery 801 has a capacity capable of storing electric power required for the blade housing BH1 to return from an arbitrary rotation position to the feather position.
- the battery 802 has a capacity capable of storing electric power required for the blade housing BH2 to return from the arbitrary rotation position to the feather position.
- the battery 803 has a capacity capable of storing electric power required for the blade housing BH3 to return from the arbitrary rotation position to the feather position. Since the capacitors 801, 802, and 803 are provided corresponding to the blade casings BH1, BH2, and BH3, the respective storage capacities of the capacitors 801, 802, and 803 are the same as those described in connection with the sixth embodiment. It may be smaller than the capacity.
- the capacitors 801, 802, 803 may receive power through the arithmetic circuit 730. Alternatively, the capacitors 801, 802, 803 may receive power through other power supply paths. The principle of the present embodiment is not limited to a specific power supply path to the capacitors 801, 802, and 803.
- the drive device of 9th Embodiment is equipped with the reduction gear arrange
- the designer may arrange the speed reducer at another part of the drive device.
- another drive device including a reduction gear will be described.
- FIG. 16 is a conceptual block diagram of the driving apparatus 100H according to the eleventh embodiment.
- symbol used in common between 9th Embodiment and 11th Embodiment means that the element to which the said common code
- the drive device 100H will be described with reference to FIGS.
- the solid arrows in FIG. 16 conceptually represent electrical energy transfer.
- a chain line arrow in FIG. 16 conceptually represents mechanical energy transfer.
- the drive device 100H includes a pinion 200, electric motors 350 and 360, application units 400 and 500, and a differential gear device 630.
- the description of the ninth embodiment is incorporated in these elements.
- the driving device 100H further includes two speed reducers 601H and 602H.
- the reduction gear 601H is disposed between the electric motor 350 and the differential gear device 630.
- the reduction gear 602H is disposed between the electric motor 360 and the differential gear device 630.
- the first speed reducer is exemplified by one of the speed reducers 601H and 602H.
- the second reducer is exemplified by the other of the reducers 601H and 602H.
- Reduction gear 601H increases the torque output from electric motor 350.
- Reducer 602H increases the torque output from electric motor 360.
- the increased torque is input from the reduction gears 601H and 602H to the differential gear device 630.
- the first transmission shaft 371 described with reference to FIG. 13 may be a rotating shaft of the speed reducer 601H.
- the second transmission shaft 372 described with reference to FIG. 13 may be a rotating shaft of the speed reducer 602H. Therefore, the structure of the differential gear device 630 described in relation to the eighth embodiment can be suitably used for the drive device 100H.
- Each of the speed reducers 601H and 602H may be a planetary gear speed reducer, an eccentric speed reducer, or another speed reducer capable of appropriately increasing torque.
- the principle of this embodiment is not limited to a specific type of each of the speed reducers 601H and 602H.
- the drive device of the eleventh embodiment can appropriately operate according to the control principle described in relation to the fourth and fifth embodiments.
- the designer may incorporate various detection facilities in the drive device for detecting a malfunction occurring in the drive device.
- the designer can incorporate a device for detecting the number of rotations, such as a resolver, in the driving device.
- the control unit can determine that a problem has occurred in the drive device.
- the control unit cannot determine whether there is a problem in the voltage application process or whether there is a problem in the rotational force transmission process from the electric motor to the differential gear device.
- Information representing the type of defect may be recorded on a predetermined recording medium.
- An administrator who manages the wind turbine device can efficiently repair the drive device with reference to the recorded information.
- the processing and use of information representing the type of defect does not limit the principle of the twelfth embodiment.
- FIG. 17 is a conceptual block diagram of the driving apparatus 100I of the twelfth embodiment.
- symbol used in common between 11th Embodiment and 12th Embodiment means that the element to which the said common code
- the drive device 100I will be described with reference to FIGS.
- the solid arrows in FIG. 17 conceptually represent electrical energy transfer.
- a chain line arrow in FIG. 17 conceptually represents mechanical energy transfer.
- the drive device 100I includes a pinion 200, electric motors 350 and 360, application units 400 and 500, speed reducers 601H and 602H, and a differential gear device 630.
- the description of the eleventh embodiment is incorporated in these elements.
- the driving device 100I further includes a control unit 700I.
- Control unit 700I includes a detection unit 710I and a switching unit 720I.
- the detection unit 710I detects a malfunction in the driving device 100I
- the switching unit 720I outputs an output path of a request signal for requesting voltage application according to the control principle described in relation to the fourth embodiment or the fifth embodiment. To change.
- Detecting unit 710I monitors the magnitude of the current flowing through electric motors 350 and 360.
- Various known detection techniques are used to acquire information indicating the magnitude of the current flowing through the electric motors 350 and 360.
- the principle of this embodiment is not limited to a specific technique for acquiring information indicating the magnitude of the current flowing through the electric motors 350 and 360.
- the detection unit 710I uses a lower limit threshold and an upper limit threshold set by using a value larger than the lower limit threshold for detecting a malfunction. If the magnitude of the current flowing through electric motors 350 and 360 is less than the lower threshold value, detection unit 710I can determine that an electrical failure has occurred in the signal transmission path connected to electric motors 350 and 360. . If the magnitude of the current flowing through electric motors 350 and 360 exceeds the upper threshold value, detection unit 710I determines that a mechanical failure has occurred in the transmission path of the rotational force generated by electric motors 350 and 360. can do. When an electrical failure and / or a mechanical failure is detected, the detection unit 710I notifies the switching unit 720I that a failure has occurred.
- a request signal is output to one of the application units 400 and 500 until receiving a notification of a failure from the detection unit 710I.
- the switching unit 720I switches the output destination of the request signal to the other of the application units 400 and 500.
- a request signal is output to both the application units 400 and 500 until notification of a problem from the detection unit 710I is received.
- the detection unit 710I detects an abnormality in the current level in the electric motor 350
- the detection unit 710I notifies the switching unit 720I that a failure has occurred in the route passing through the electric motor 350.
- the switching unit 720I then outputs a request signal only to the applying unit 500.
- the detection unit 710I detects an abnormality in the current level in the electric motor 360
- the detection unit 710I notifies the switching unit 720I that a failure has occurred in the route passing through the electric motor 360.
- the switching unit 720I then outputs a request signal only to the applying unit 400.
- the switching unit 720I may adjust the voltage level in response to the notification of the malfunction.
- FIG. 18 is a block diagram illustrating a schematic hardware configuration of the drive device 100J according to the thirteenth embodiment.
- the reference numerals used in common between the sixth embodiment, the tenth embodiment, and the thirteenth embodiment are the same as those in the sixth embodiment and / or the tenth embodiment. It means having a function. Therefore, the description of the sixth embodiment and / or the tenth embodiment is incorporated in these elements.
- the drive device 100J will be described with reference to FIGS.
- the driving device 100J includes three pinions 210, 220, and 230, an arithmetic circuit 730, a first determination circuit 740, a second determination circuit 750, a first application circuit 410, A second application circuit 510, a third application circuit 420, a fourth application circuit 520, a fifth application circuit 430, a sixth application circuit 530, a first capacitor 810, and a second capacitor 820.
- the description of the sixth embodiment is incorporated for these elements.
- Each of the pinions 210, 220, and 230 corresponds to the pinion 200 described with reference to FIG.
- the arithmetic circuit 730, the first determination circuit 740, and the second determination circuit 750 correspond to the control unit 700I described with reference to FIG.
- Each of the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 corresponds to the application unit 400 described with reference to FIG.
- Each of the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 corresponds to the application unit 500 described with reference to FIG.
- the drive device 100J includes six electric motors 351, 352, 353, 361, 362, and 363 and three differential gear devices 631, 632, and 633. The description of the tenth embodiment is incorporated in these elements.
- Each of the electric motors 351, 352, and 353 corresponds to the electric motor 350 described with reference to FIG.
- Each of the electric motors 361, 362, and 363 corresponds to the electric motor 360 described with reference to FIG.
- Each of the differential gear devices 631, 632, and 633 corresponds to the differential gear device 630 described with reference to FIG.
- the driving device 100J includes six speed reducers 601J, 602J, 603J, 604J, 605J, and 606J.
- Each of the reduction gears 601J, 603J, and 605J corresponds to the reduction gear 601H described with reference to FIG.
- Each of the reduction gears 602J, 604J, and 606J corresponds to the reduction gear 602H described with reference to FIG.
- the reduction gear 601J is disposed between the electric motor 351 and the differential gear device 631.
- the reducer 601J increases the torque output from the electric motor 351.
- the increased torque is output from the reduction gear 601J to the differential gear device 631.
- the reduction gear 602J is disposed between the electric motor 361 and the differential gear device 631.
- the reducer 602J increases the torque output from the electric motor 361.
- the increased torque is output from the reduction gear 602J to the differential gear device 631. Since the differential gear device 631 receives the increased torque, the differential gear device 631 can appropriately rotate the pinion 210 and the blade housing BH1.
- the reduction gear 603J is disposed between the electric motor 352 and the differential gear device 632.
- the reducer 603J increases the torque output from the electric motor 352.
- the increased torque is output from the reduction gear 603J to the differential gear device 632.
- the speed reducer 604 ⁇ / b> J is disposed between the electric motor 362 and the differential gear device 632.
- the reducer 604J increases the torque output from the electric motor 362.
- the increased torque is output from the reduction gear 604 J to the differential gear device 632. Since the differential gear unit 632 receives the increased torque, the differential gear unit 632 can appropriately rotate the pinion 220 and the blade housing BH2.
- the reduction gear 605J is disposed between the electric motor 353 and the differential gear device 633.
- the reducer 605J increases the torque output from the electric motor 353.
- the increased torque is output from the reduction gear 605J to the differential gear device 633.
- the reduction gear 606J is disposed between the electric motor 363 and the differential gear device 633.
- the speed reducer 606J increases the torque output from the electric motor 363.
- the increased torque is output from the reduction gear 606J to the differential gear device 633. Since the differential gear unit 632 receives the increased torque, the differential gear unit 632 can appropriately rotate the pinion 230 and the blade housing BH3.
- the arithmetic circuit 730 may determine an output destination of data representing the amount of rotation required for the blade casings BH1, BH2, and BH3 in accordance with the control principle described in relation to the twelfth embodiment.
- the arithmetic circuit 730 may monitor the magnitude of the current flowing through each of the electric motors 351, 352, 353, 361, 362, and 363. When the current in the electric motors 351, 352, 353, 361, 362, 363 falls below the lower limit threshold and when the current in the electric motors 351, 352, 353, 361, 362, 363 exceeds the upper limit threshold The arithmetic circuit 730 may determine that a problem has occurred in the drive device 100J.
- the arithmetic circuit 730 is described in relation to the fourth embodiment.
- data representing the rotation amount required for the blade housings BH1, BH2, and BH3 may be output to one of the first determination circuit 740 and the second determination circuit 750.
- the arithmetic circuit 730 outputs data representing the amount of rotation to the first determination circuit 740 in the absence of a malfunction, and the arithmetic circuit 730 then outputs at least one current among the electric motors 351, 352, 353.
- the arithmetic circuit 730 switches the output destination of the data representing the rotation amount from the first determination circuit 740 to the second determination circuit 750.
- the arithmetic circuit 730 outputs data representing the rotation amount to the second determination circuit 750 in the absence of a malfunction, and the arithmetic circuit 730 then outputs at least one current among the electric motors 361, 362, 363. If an abnormality is detected from the level, the arithmetic circuit 730 switches the output destination of the data representing the rotation amount from the second determination circuit 750 to the first determination circuit 740.
- the arithmetic circuit 730 is described in relation to the fifth embodiment.
- data representing the rotation amount required for the blade housings BH1, BH2, and BH3 may be output to both the first determination circuit 740 and the second determination circuit 750. If the arithmetic circuit 730 then detects an abnormality from at least one current level of the electric motors 351, 352, and 353, the arithmetic circuit 730 outputs data representing the rotation amount only to the second determination circuit 750. If the arithmetic circuit 730 then detects an abnormality from at least one current level of the electric motors 361, 362, 363, the arithmetic circuit 730 outputs data representing the rotation amount only to the first determination circuit 740.
- the blade housings BH1, BH2, and BH3 can appropriately rotate even if a malfunction occurs in the driving device 100J.
- the movable part of the windmill device receives a driving force from the pinion via the ring gear.
- the movable part may be directly connected to a power transmission piece such as a pinion (ie, a direct drive system).
- the exemplary drive technique described in connection with the various embodiments described above primarily comprises the following features.
- the drive device drives the movable portion of the power generation device that operates in accordance with the change in the fluid flow direction.
- the drive device includes: a first power generation unit that generates first power that operates the movable part; a second power generation unit that generates second power that operates the movable part; the first power generation unit; A power supply unit configured to supply power to the second power generation unit, and power transmission for transmitting at least one of the first power and the second power to the movable part and operating the movable part And a piece.
- the power supply unit supplies power to at least one of the first power generation unit and the second power generation unit, there is a problem with one of the first power generation unit and the second power generation unit. Even if it occurs, the drive device can drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
- the first power generation unit may be a first coil unit incorporated in an electric motor.
- the second power generation unit may be a second coil unit incorporated in the electric motor.
- the first coil unit may generate the first power under application of a first drive voltage from the power supply unit.
- the second coil unit may generate the second power under application of a second drive voltage from the power supply unit.
- the first coil unit generates the first power under application of the first drive voltage from the power supply unit, and the second coil unit performs the second drive from the power supply unit. Since the second power is generated under the application of the voltage, the driving device can drive the power generation device even if one of the first coil portion and the second coil portion fails. Therefore, the drive device can give high reliability to the power generation device.
- the first coil portion may surround a first region in the electric motor.
- the second coil portion may surround a second region that at least partially overlaps the first region.
- the electric motor since the second coil portion surrounds the second region at least partially overlapping the first region, the electric motor has a wide internal space for the first coil portion and the second coil portion. It does not have to be. Therefore, the designer can incorporate a small electric motor into the drive device.
- the drive device may further include a control unit that selectively controls the application of the first drive voltage and the application of the second drive voltage.
- the control unit detects a failure in the application of the first drive voltage, and applies a voltage from the application of the first drive voltage to the application of the second drive voltage when the failure occurs.
- a switching unit for switching modes.
- the switching unit switches the voltage application mode from application of the first drive voltage to application of the second drive voltage.
- the device can continue to be driven. Therefore, the drive device can give high reliability to the power generation device.
- the drive device may further include a control unit that controls the application of the first drive voltage and the application of the second drive voltage.
- the control unit detects a failure in the application of the first drive voltage, and a first control mode for simultaneously generating the first drive voltage and the second drive voltage when the failure occurs. To a second control mode for generating only the second drive voltage.
- the switching unit switches the control mode from the first control mode to the second control mode when a problem occurs in the application of the first drive voltage, so the drive device continues to drive the power generation device. be able to. Therefore, the drive device can give high reliability to the power generation device.
- the drive device may further include a power transmission device that transmits at least one of the first power and the second power to the power transmission piece.
- the first power generation unit may be a first electric motor that applies the first power to the power transmission device.
- the second power generation unit may be a second electric motor that applies the second power to the power transmission device.
- the drive device includes the first electric motor and the second electric motor. Therefore, even if a malfunction occurs in one of the first electric motor and the second electric motor, the drive device The device can be driven. Therefore, the drive device can give high reliability to the power generation device.
- the drive device may further include a speed reducer disposed between the power transmission piece and the power transmission device.
- the drive device includes the speed reducer disposed between the power transmission piece and the power transmission device. Therefore, a designer who designs the drive device uses the speed reducer to drive the power generation device. The required torque can be easily achieved.
- the drive device includes a first speed reducer disposed between the power transmission device and the first electric motor, and a second device disposed between the power transmission device and the second electric motor. And a speed reducer.
- the drive device includes the first speed reducer disposed between the power transmission device and the first electric motor, and the second speed reducer disposed between the power transmission device and the first electric motor. Therefore, the designer who designs the drive device can easily achieve the torque necessary for driving the power generation device using the first reduction gear and the second reduction gear.
- the drive device may further include a control unit that selectively controls the first electric motor and the second electric motor.
- the control unit detects a defect in transmission of the first power to the power transmission piece, and when the defect occurs, controls the control object from the first electric motor to the second electric motor.
- the switching unit switches the control target from the first electric motor to the second electric motor when a failure occurs in the transmission of the first power to the power transmission piece. Can continue to drive. Therefore, the drive device can give high reliability to the power generation device.
- the drive device may further include a control unit that controls the first electric motor and the second electric motor.
- the control unit is configured to detect a failure in transmission of the first power to the power transmission piece, and a first to simultaneously generate the first power and the second power when the failure occurs.
- a switching unit that switches the control mode from the control mode to the second control mode that generates only the second power.
- the switching unit switches the control mode from the first control mode to the second control mode when a failure occurs in the transmission of the first power to the power transmission piece. Can continue to drive. Therefore, the drive device can give high reliability to the power generation device.
- the drive device may further include a power storage unit electrically connected to the power supply unit.
- the drive device includes the power storage unit that is electrically connected to the power supply unit. Therefore, the drive device can appropriately drive the power generation device with power supplied from the power storage unit. .
- the power supply unit includes a first application unit that applies the first drive voltage to the first coil unit, and a second application unit that applies the second drive voltage to the second coil unit. And may be included.
- the controller may control the first application unit and the second application unit to switch the voltage application mode.
- the control unit controls the first application unit and the second application unit, and changes the voltage application mode from the application of the first drive voltage to the second. Since switching to the application of the drive voltage is performed, the drive device can continue to drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
- the power supply unit includes a first application unit that applies the first drive voltage to the first coil unit, and a second application unit that applies the second drive voltage to the second coil unit. And may be included.
- the control unit may control the first application unit and the second application unit, and switch the control mode from the first control mode to the second control mode.
- the control unit controls the first application unit and the second application unit, and switches the control mode from the first control mode to the second control mode. Since switching is performed, the drive device can continue to drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
- the power transmission device may be a differential gear device.
- the power transmission device is a differential gear device, even if a failure occurs in the transmission to at least one of the first power and the second power, the power transmission piece. Can move the movable part.
- the power supply unit applies a first drive voltage that generates the first power to the first electric motor, and a second drive voltage that generates the second power.
- a second application unit that applies to the two electric motors.
- the control unit may control the first application unit and the second application unit, and switch the control target from the first electric motor to the second electric motor.
- the control unit controls the first application unit and the second application unit, and switches the control target from the first electric motor to the second electric motor. Therefore, the drive device can continue to drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
- the power supply unit applies a first drive voltage that generates the first power to the first electric motor, and a second drive voltage that generates the second power.
- a second application unit that applies to the two electric motors.
- the control unit may control the first application unit and the second application unit, and switch the control mode from the first control mode to the second control mode.
- the control unit controls the first application unit and the second application unit, and switches the control mode from the first control mode to the second control mode.
- the driving device can continue to drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
- the power generation device may include a casing and a ring gear fixed in the casing.
- the power transmission piece may be a pinion that meshes with the ring gear.
- the drive device can appropriately drive the ring gear fixed in the housing.
- the principle of the above-described embodiment is suitably used for various power generation devices.
- the principle of the above-described embodiment can be suitably used for driving a power generation apparatus having a movable portion that operates in accordance with a change in the fluid flow direction. Additionally, the principle of the above-described embodiment may be applied to a power generation device that tracks sunlight and generates electric power.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
- Control Of Multiple Motors (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
The present application discloses a driving device for driving the movable portion of a generator device which operates in correspondence with the change in flow direction of a fluid. The driving device is provided with: a first power generation unit for generating a first power for operating the movable portion; a second power generation unit for generating a second power for operating the movable portion; an electrical power supply unit formed so as to supply electrical power to the first power generation unit and the second power generation unit; and a power transmission piece for transmitting the first power and/or the second power to the movable portion and causing the movable portion to operate.
Description
本発明は、発電装置を駆動する駆動装置に関する。
The present invention relates to a drive device for driving a power generation device.
流体の運動エネルギを電気エネルギへ変換する様々な発電装置が知られている。たとえば、風車機器は、空気の運動エネルギを電気エネルギへ変換する(特許文献1を参照)。
Various power generators that convert fluid kinetic energy into electrical energy are known. For example, a windmill apparatus converts the kinetic energy of air into electrical energy (see Patent Document 1).
発電装置は、電力を継続的に生成する必要があるので(たとえば、20年以上の期間)、一般的な機械設備よりもメンテナンスフリーな構造が、発電装置に望まれる。風車機器は、空気の流動方向の変化に合わせて動作する可動部位(たとえば、ナセルやブレード)と、可動部位を駆動するための駆動装置と、駆動装置を収容する筐体と、を備える。駆動装置は、筐体によって保護されるが、筐体による保護のみでは、駆動装置に生ずる電気的及び/又は機械的な不具合を完全に排除することは困難である。
Since the power generation device needs to continuously generate electric power (for example, for a period of 20 years or longer), a structure that is maintenance-free rather than general mechanical equipment is desired for the power generation device. The windmill device includes a movable part (for example, a nacelle or a blade) that operates in accordance with a change in the air flow direction, a driving device for driving the movable part, and a housing that houses the driving device. Although the drive device is protected by a housing, it is difficult to completely eliminate electrical and / or mechanical problems that occur in the drive device only by the protection by the housing.
本発明は、発電装置に高い信頼性を与えることができる駆動装置を提供することを目的とする。
An object of the present invention is to provide a drive device that can give high reliability to a power generation device.
本発明の一局面に係る駆動装置は、流体の流動方向の変化に合わせて動作する発電装置の可動部位を駆動する。駆動装置は、前記可動部位を動作させる第1動力を生成する第1動力生成部と、前記可動部位を動作させる第2動力を生成する第2動力生成部と、前記第1動力生成部及び前記第2動力生成部に電力を供給するように形成された電力供給部と、前記第1動力及び前記第2動力のうち少なくとも一方を、前記可動部位に伝達し、前記可動部位を動作させる動力伝達片と、を備える。
The drive device according to one aspect of the present invention drives the movable part of the power generation device that operates in accordance with a change in the fluid flow direction. The drive device includes: a first power generation unit that generates first power that operates the movable part; a second power generation unit that generates second power that operates the movable part; the first power generation unit; A power supply unit configured to supply power to the second power generation unit, and power transmission for transmitting at least one of the first power and the second power to the movable part and operating the movable part And a piece.
上述の駆動装置は、発電装置に高い信頼性を与えることができる。
The above-described drive device can give high reliability to the power generation device.
本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
添付の図面を参照して、駆動装置に関する様々な実施形態が以下に説明される。駆動装置に関する技術は、以下の説明によって、明確に理解可能である。以下の様々な実施形態において、発電装置は、空気の流動方向の変化に合わせて動作する可動部位を有し、空気の運動エネルギを電気エネルギに変換する風車機器によって例示される。代替的に、発電装置は、液体の流動方向の変化に合わせて動作する可動部位を有し、液体の運動エネルギを電気エネルギに変換する設備であってもよい。
DETAILED DESCRIPTION Various embodiments relating to a drive device are described below with reference to the accompanying drawings. The technology relating to the driving device can be clearly understood by the following description. In the following various embodiments, the power generation device is exemplified by a windmill device that has a movable part that operates in accordance with a change in the flow direction of air and converts the kinetic energy of air into electrical energy. Alternatively, the power generation device may be a facility that has a movable portion that operates in accordance with a change in the flow direction of the liquid and converts the kinetic energy of the liquid into electrical energy.
<第1実施形態>
本発明者等は、駆動装置を構成する複数の要素に同時に不具合が発生することは稀である一方で、風車機器は、複数の要素のうち一部の不具合に起因して使用不能な状況に陥るという課題を見出した。第1実施形態において、複数の要素のうち一部に不具合が発生した条件下においても、風車機器を適切に駆動することができる駆動装置が説明される。 <First Embodiment>
While the inventors rarely have a problem with a plurality of elements constituting the drive device at the same time, the wind turbine equipment is in an unusable situation due to some of the plurality of elements. I found the problem of falling. In 1st Embodiment, the drive device which can drive a windmill apparatus appropriately also in the conditions where malfunction generate | occur | produced in one part among several elements is demonstrated.
本発明者等は、駆動装置を構成する複数の要素に同時に不具合が発生することは稀である一方で、風車機器は、複数の要素のうち一部の不具合に起因して使用不能な状況に陥るという課題を見出した。第1実施形態において、複数の要素のうち一部に不具合が発生した条件下においても、風車機器を適切に駆動することができる駆動装置が説明される。 <First Embodiment>
While the inventors rarely have a problem with a plurality of elements constituting the drive device at the same time, the wind turbine equipment is in an unusable situation due to some of the plurality of elements. I found the problem of falling. In 1st Embodiment, the drive device which can drive a windmill apparatus appropriately also in the conditions where malfunction generate | occur | produced in one part among several elements is demonstrated.
図1は、第1実施形態の駆動装置100の概念的なブロック図である。図1を参照して、駆動装置100が説明される。図1中の実線の矢印は、電気的なエネルギの伝達を概念的に表す。図1中の鎖線の矢印は、機械的なエネルギの伝達を概念的に表す。
FIG. 1 is a conceptual block diagram of the driving apparatus 100 of the first embodiment. The drive device 100 will be described with reference to FIG. The solid arrows in FIG. 1 conceptually represent electrical energy transfer. The chain arrows in FIG. 1 conceptually represent mechanical energy transfer.
駆動装置100は、ピニオン200と、電動モータ300と、印加部400,500と、を備える。印加部400,500それぞれは、駆動電圧を、電動モータ300に印加する。電動モータ300は、駆動電圧に応じて、回転力を発生させる。回転力は、電動モータ300からピニオン200へ伝達される。印加部400,500それぞれは、インバータを含む一般的な電圧印加回路であってもよい。電動モータ300へ電圧を印加することができる様々な回路技術が、印加部400,500に適用可能である。したがって、本実施形態の原理は、印加部400,500の特定の回路構造に限定されない。
The driving device 100 includes a pinion 200, an electric motor 300, and application units 400 and 500. Each of the application units 400 and 500 applies a drive voltage to the electric motor 300. The electric motor 300 generates a rotational force according to the driving voltage. The rotational force is transmitted from the electric motor 300 to the pinion 200. Each of the application units 400 and 500 may be a general voltage application circuit including an inverter. Various circuit technologies that can apply a voltage to the electric motor 300 can be applied to the application units 400 and 500. Therefore, the principle of the present embodiment is not limited to a specific circuit structure of the application units 400 and 500.
ピニオン200は、風車機器(図示せず)の筐体(図示せず)内で固定されたリングギア(図示せず)に噛み合う。ピニオン200は、電動モータ300からの回転力を、リングギアへ伝達する。ピニオン200から伝達された回転力は、風車機器のブレード(図示せず)を駆動するために利用されてもよい。この場合、ピニオン200は、風車機器のブレードを構成するブレード筐体及び/又は風車機器のナセルを構成するナセル筐体内で固定されたリングギアに噛み合ってもよい。代替的に、ピニオン200から伝達された回転力は、風車機器のナセル(図示せず)を駆動するために利用されてもよい。この場合、ピニオン200は、風車機器のナセルを構成するナセル筐体及び/又は風車機器のタワー(図示せず)を構成するタワー筐体内で固定されたリングギアに噛み合ってもよい。更に代替的に、ピニオン200の回転運動は、風車機器の他の可動部位を動作させるために利用されてもよい。したがって、本実施形態の原理は、ピニオン200の回転運動の特定の利用用途やピニオン200が噛み合うリングギアの特定の固定位置に限定されない。本実施形態において、動力伝達片は、ピニオン200によって例示される。動力伝達片として用いられる部品は、発電装置の構造に適合するように選択されてもよい。したがって、ピニオンに代えて、他の部品(たとえば、プーリやカム)が、動力伝達片として利用されてもよい。本実施形態の原理は、動力伝達片として利用される特定の部品に限定されない。
The pinion 200 meshes with a ring gear (not shown) fixed in a casing (not shown) of a windmill device (not shown). The pinion 200 transmits the rotational force from the electric motor 300 to the ring gear. The rotational force transmitted from the pinion 200 may be used to drive a blade (not shown) of the wind turbine device. In this case, the pinion 200 may mesh with a ring housing fixed in the blade casing constituting the blade of the wind turbine equipment and / or the nacelle casing constituting the nacelle of the wind turbine equipment. Alternatively, the rotational force transmitted from the pinion 200 may be used to drive a nacelle (not shown) of the wind turbine equipment. In this case, the pinion 200 may mesh with a ring gear fixed in the nacelle casing constituting the nacelle of the windmill equipment and / or the tower casing constituting the tower (not shown) of the windmill equipment. Further alternatively, the rotational motion of the pinion 200 may be utilized to operate other movable parts of the wind turbine equipment. Therefore, the principle of the present embodiment is not limited to a specific application of the rotational motion of the pinion 200 or a specific fixed position of the ring gear with which the pinion 200 is engaged. In the present embodiment, the power transmission piece is exemplified by the pinion 200. The component used as the power transmission piece may be selected to match the structure of the power generation device. Therefore, instead of the pinion, other parts (for example, a pulley or a cam) may be used as the power transmission piece. The principle of this embodiment is not limited to a specific component used as a power transmission piece.
電動モータ300は、コイル部310,320を含む。印加部400は、コイル部310に電圧を印加する。印加部500は、コイル部320に電圧を印加する。印加部400,500それぞれは、一般的な電圧印加回路であってもよい。本実施形態において、電力供給部は、印加部400,500によって例示される。第1コイル部及び第1動力生成部は、コイル部310,320のうち一方によって例示される。第2コイル部及び第2動力生成部は、コイル部310,320のうち他方によって例示される。
The electric motor 300 includes coil portions 310 and 320. The application unit 400 applies a voltage to the coil unit 310. The application unit 500 applies a voltage to the coil unit 320. Each of the application units 400 and 500 may be a general voltage application circuit. In the present embodiment, the power supply unit is exemplified by the application units 400 and 500. The first coil unit and the first power generation unit are exemplified by one of the coil units 310 and 320. The second coil unit and the second power generation unit are exemplified by the other of the coil units 310 and 320.
第1コイル部及び第2コイル部は、共通の電圧印加回路から電圧印加を受けてもよい。この場合、電力供給部は、第1コイル部及び第2コイル部の両方に電圧を印加するように設計された電圧印加回路によって例示される。第1コイル部及び第2コイル部の両方に電圧を印加するように設計された電圧印加回路は、電圧を生成する電圧生成回路に加えて、電圧の印加先を、第1コイル部、第2コイル部或いは第1コイル部及び第2コイル部の両方に切り替える切替回路を含んでもよい。本実施形態の原理は、電力供給部として用いられる電圧印加回路の特定の構造に限定されない。
The first coil unit and the second coil unit may receive voltage application from a common voltage application circuit. In this case, the power supply unit is exemplified by a voltage application circuit designed to apply a voltage to both the first coil unit and the second coil unit. The voltage application circuit designed to apply a voltage to both the first coil unit and the second coil unit includes the first coil unit and the second coil in addition to the voltage generation circuit that generates the voltage. A switching circuit that switches to the coil unit or both the first coil unit and the second coil unit may be included. The principle of the present embodiment is not limited to a specific structure of the voltage application circuit used as the power supply unit.
電動モータ300内で回転力を生成するために、様々な既知のモータ技術が利用可能である。したがって、本実施形態の原理は、電動モータ300内で回転力を生成するための特定の技術に限定されない。
Various known motor technologies are available for generating rotational force within the electric motor 300. Therefore, the principle of this embodiment is not limited to a specific technique for generating a rotational force in the electric motor 300.
駆動装置100内で、不具合が生じていないならば、印加部400が、電圧を、コイル部310に印加している間、印加部500は、電圧を、コイル部320に印加してもよい。この場合、コイル部310,320は、協働して、回転力を生成することができる。本実施形態において、第1動力は、コイル部310,320のうち一方が生成する回転力によって例示される。第2動力は、コイル部310,320のうち他方が生成する回転力によって例示される。第1駆動電圧は、印加部400,500のうち一方から出力される電圧によって例示される。第2駆動電圧は、印加部400,500のうち他方から出力される電圧によって例示される。
In the driving apparatus 100, if there is no problem, the application unit 500 may apply a voltage to the coil unit 320 while the application unit 400 applies a voltage to the coil unit 310. In this case, the coil units 310 and 320 can generate a rotational force in cooperation. In the present embodiment, the first power is exemplified by the rotational force generated by one of the coil units 310 and 320. The second power is exemplified by the rotational force generated by the other of the coil units 310 and 320. The first drive voltage is exemplified by a voltage output from one of the application units 400 and 500. The second drive voltage is exemplified by a voltage output from the other of the application units 400 and 500.
その後、印加部400からコイル部310への電圧印加経路に不具合が生ずるならば、駆動装置100は、印加部500からの電圧印加のみを用いて、ピニオン200を回転させてもよい。このとき、駆動装置100は、印加部500からの電圧を増大させてもよい。
Thereafter, if a failure occurs in the voltage application path from the application unit 400 to the coil unit 310, the driving device 100 may rotate the pinion 200 using only the voltage application from the application unit 500. At this time, the driving device 100 may increase the voltage from the application unit 500.
印加部400,500の両方からの電圧印加が行われているときに、印加部500からコイル部320への電圧印加経路に不具合が生ずるならば、駆動装置100は、印加部400からの電圧印加のみを用いて、ピニオン200を回転させてもよい。このとき、駆動装置100は、印加部400からの電圧を増大させてもよい。
If a failure occurs in the voltage application path from the application unit 500 to the coil unit 320 when voltage application from both the application units 400 and 500 is performed, the driving device 100 applies the voltage from the application unit 400. Only the pinion 200 may be rotated. At this time, the driving device 100 may increase the voltage from the application unit 400.
代替的に、駆動装置100内で、不具合が生じていないならば、駆動装置100は、印加部400からの電圧印加のみを用いて、ピニオン200を回転させてもよい。その後、印加部400からコイル部310への電圧印加経路に不具合が生ずるならば、駆動装置100は、印加部500からの電圧印加のみを用いて、ピニオン200を回転させてもよい。
Alternatively, if there is no problem in the driving device 100, the driving device 100 may rotate the pinion 200 using only the voltage application from the application unit 400. Thereafter, if a problem occurs in the voltage application path from the application unit 400 to the coil unit 310, the driving apparatus 100 may rotate the pinion 200 using only the voltage application from the application unit 500.
更に代替的に、駆動装置100内で、不具合が生じていないならば、駆動装置100は、印加部500からの電圧印加のみを用いて、ピニオン200を回転させてもよい。その後、印加部500からコイル部320への電圧印加経路に不具合が生ずるならば、駆動装置100は、印加部400からの電圧印加のみを用いて、ピニオン200を回転させてもよい。
Further alternatively, the drive device 100 may rotate the pinion 200 using only the voltage application from the application unit 500 if there is no malfunction in the drive device 100. Thereafter, if a failure occurs in the voltage application path from the application unit 500 to the coil unit 320, the driving apparatus 100 may rotate the pinion 200 using only the voltage application from the application unit 400.
駆動装置100は、不具合が生じているか否かに応じて、電圧印加経路を切り替える。上述の如く、駆動装置100は、様々な切替パターンで、電圧印加経路を切り替えることができる。したがって、本実施形態の原理は、電圧印加経路の特定の切替パターンに限定されない。
The driving device 100 switches the voltage application path according to whether or not a failure has occurred. As described above, the driving apparatus 100 can switch the voltage application path with various switching patterns. Therefore, the principle of the present embodiment is not limited to a specific switching pattern of the voltage application path.
駆動装置100は、不具合の発生を検出するための様々な構造を有してもよい。例えば、駆動装置100は、印加部400からコイル部310への電圧印加経路を流れる電流を検出する検出素子と、印加部500からコイル部320への電圧印加経路を流れる電流を検出する検出素子と、を含んでもよい。駆動装置100は、検出された電流の大きさを表す信号を用いたフィードバック制御の下で、不具合の発生を検出してもよい。代替的に、駆動装置100は、電動モータ300のトルクを検出するための機構や電動モータ300の回転数を検出するための機構を備えてもよい。この場合、駆動装置100は、電動モータ300のトルクや回転数をモニタし、不具合が発生しているか否かを判定してもよい。本実施形態の原理は、不具合の発生を検出するための特定の技術に限定されない。
The driving device 100 may have various structures for detecting the occurrence of a malfunction. For example, the driving apparatus 100 includes a detection element that detects a current flowing through a voltage application path from the application unit 400 to the coil unit 310, and a detection element that detects a current flowing through the voltage application path from the application unit 500 to the coil unit 320. , May be included. The driving apparatus 100 may detect the occurrence of a malfunction under feedback control using a signal representing the detected current magnitude. Alternatively, the driving apparatus 100 may include a mechanism for detecting the torque of the electric motor 300 and a mechanism for detecting the rotational speed of the electric motor 300. In this case, the driving device 100 may monitor the torque and the rotational speed of the electric motor 300 to determine whether or not a failure has occurred. The principle of this embodiment is not limited to a specific technique for detecting the occurrence of a malfunction.
<第2実施形態>
第1実施形態に関連して説明された駆動装置の原理は、風車機器の様々な可動部位に適用可能である。第2実施形態において、風車機器のブレードを駆動する駆動装置が説明される。 Second Embodiment
The principle of the driving device described in relation to the first embodiment can be applied to various movable parts of the wind turbine device. In the second embodiment, a driving device for driving a blade of a wind turbine device will be described.
第1実施形態に関連して説明された駆動装置の原理は、風車機器の様々な可動部位に適用可能である。第2実施形態において、風車機器のブレードを駆動する駆動装置が説明される。 Second Embodiment
The principle of the driving device described in relation to the first embodiment can be applied to various movable parts of the wind turbine device. In the second embodiment, a driving device for driving a blade of a wind turbine device will be described.
図2は、駆動装置が組み込まれた例示的な風車機器WMLの概略的な斜視図である。図2を参照して、風車機器WMLが説明される。
FIG. 2 is a schematic perspective view of an exemplary windmill device WML in which a driving device is incorporated. With reference to FIG. 2, the windmill device WML will be described.
風車機器WMLは、タワー筐体TWHと、ナセル筐体NCHと、ハブ筐体HBHと、3つのブレード筐体BDHと、を備える。タワー筐体TWHは、地面から立設される。タワー筐体TWHは、風車機器WMLのタワーを構成する。ナセル筐体NCHは、タワー筐体TWHの上端に取り付けられる。ナセル筐体NCHは、風車機器WMLのナセルを構成する。ナセル筐体NCHは、タワー筐体TWHの上端で垂直軸周りに回転する。第1実施形態の原理に従って構築された駆動装置は、タワー筐体TWHの上端でのナセル筐体NCHの回転運動に利用されてもよい。ハブ筐体HBHは、ナセル筐体TWHに取り付けられる。ハブ筐体HBHは、風車機器WMLのハブを構成する。ハブ筐体HBHは、風車機器WMLが受ける風力に応じて回転する。3つのブレード筐体BDHは、ハブ筐体HBHから放射状に延設される。ブレード筐体BDHは、風車機器WMLのブレードを構成する。ブレード筐体BDHそれぞれは、ハブ筐体HBH上で、ブレード筐体BDHの延設方向に沿う軸周りに回転する。第1実施形態の原理に従って構築された駆動装置は、ハブ筐体HBH上でのブレード筐体BDHそれぞれの回転運動に利用されてもよい。
The windmill device WML includes a tower casing TWH, a nacelle casing NCH, a hub casing HBH, and three blade casings BDH. The tower casing TWH is erected from the ground. The tower casing TWH constitutes a tower of the wind turbine equipment WML. The nacelle casing NCH is attached to the upper end of the tower casing TWH. The nacelle housing NCH constitutes a nacelle of the wind turbine equipment WML. The nacelle casing NCH rotates around the vertical axis at the upper end of the tower casing TWH. The drive device constructed according to the principle of the first embodiment may be used for the rotational movement of the nacelle casing NCH at the upper end of the tower casing TWH. The hub housing HBH is attached to the nacelle housing TWH. Hub housing HBH constitutes a hub of windmill device WML. The hub housing HBH rotates according to the wind force received by the windmill device WML. The three blade housings BDH extend radially from the hub housing HBH. The blade housing BDH constitutes a blade of the windmill device WML. Each blade housing BDH rotates around an axis along the extending direction of the blade housing BDH on the hub housing HBH. The drive device constructed according to the principle of the first embodiment may be used for the rotational movement of each blade casing BDH on the hub casing HBH.
図3は、第2実施形態の駆動装置100Aの概略的な断面図である。図1乃至図3を参照して、駆動装置100Aが説明される。
FIG. 3 is a schematic cross-sectional view of the drive device 100A of the second embodiment. The driving device 100A will be described with reference to FIGS.
駆動装置100Aは、ハブ筐体HBH及び/又はブレード筐体BDH内に配置される。駆動装置100Aは、ブレード筐体BDHをハブ筐体HBH上で回転させるための回転力を生成する。
The driving device 100A is disposed in the hub housing HBH and / or the blade housing BDH. The driving device 100A generates a rotational force for rotating the blade casing BDH on the hub casing HBH.
駆動装置100Aは、ピニオン200Aと、電動モータ300Aと、減速部600と、を備える。電動モータ300Aが生成した回転力は、減速部600を通じて、ピニオン200Aへ伝達される。ピニオン200Aは、図1を参照して説明されたピニオン200に対応する。電動モータ300Aは、図1を参照して説明された電動モータ300に対応する。
The driving device 100A includes a pinion 200A, an electric motor 300A, and a speed reduction unit 600. The rotational force generated by the electric motor 300A is transmitted to the pinion 200A through the speed reduction unit 600. The pinion 200A corresponds to the pinion 200 described with reference to FIG. The electric motor 300A corresponds to the electric motor 300 described with reference to FIG.
電動モータ300Aは、主筐体330と、回転シャフト340と、を含む。図1を参照して説明されたコイル部310,320に相当するコイル素子(図示せず)は、主筐体330内に配置される。これらのコイル素子へ電圧が印加されると、主筐体330から延出する回転シャフト340が回転する。
The electric motor 300 </ b> A includes a main housing 330 and a rotating shaft 340. Coil elements (not shown) corresponding to the coil portions 310 and 320 described with reference to FIG. 1 are arranged in the main housing 330. When a voltage is applied to these coil elements, the rotating shaft 340 extending from the main housing 330 rotates.
第1実施形態に関連して説明された原理に従って、回転シャフト340は、上述のコイル素子のうち一方のみへの電圧印加の下でも回転することができる。したがって、上述のコイル素子のうち一方への電圧印加経路に不具合が生じても、駆動装置100Aは、他方のコイル素子への電圧印加の下で、ブレード筐体BDHに回転動作を与えることができる。
According to the principle described in connection with the first embodiment, the rotating shaft 340 can rotate even when a voltage is applied to only one of the coil elements described above. Therefore, even if a failure occurs in the voltage application path to one of the coil elements described above, the driving device 100A can apply a rotation operation to the blade housing BDH under the voltage application to the other coil element. .
減速部600は、減速機構610と、出力シャフト620と、を含む。減速機構610は、様々な減速機(例えば、遊星歯車減速機や偏心型減速機)を含むことができる。したがって、本実施形態の原理は、減速機構610の特定の構造に限定されない。
The speed reduction unit 600 includes a speed reduction mechanism 610 and an output shaft 620. The speed reduction mechanism 610 can include various speed reducers (for example, a planetary gear speed reducer and an eccentric speed reducer). Therefore, the principle of the present embodiment is not limited to a specific structure of the speed reduction mechanism 610.
減速機構610は、電動モータ300Aの回転シャフト340に接続される。減速機構610は、回転数を低減させる一方で、トルクを増大させる。増大されたトルクは、減速機構610から出力シャフト620へ伝達される。この結果、出力シャフト620は、電動モータ300Aの回転シャフト340よりも低い回転数で回転する。
Deceleration mechanism 610 is connected to rotating shaft 340 of electric motor 300A. The speed reduction mechanism 610 increases the torque while reducing the rotation speed. The increased torque is transmitted from the speed reduction mechanism 610 to the output shaft 620. As a result, the output shaft 620 rotates at a lower rotational speed than the rotating shaft 340 of the electric motor 300A.
ピニオン200Aは、出力シャフト620に取り付けられる。ピニオン200Aは、出力シャフト620とともに回転することができる。
The pinion 200A is attached to the output shaft 620. The pinion 200A can rotate with the output shaft 620.
図4は、ハブ筐体HBHとブレード筐体BDHとの境界の周囲における風車機器WMLの概略的な断面図である。図3及び図4を参照して、駆動装置100Aの例示的な配置が説明される。
FIG. 4 is a schematic cross-sectional view of the wind turbine equipment WML around the boundary between the hub housing HBH and the blade housing BDH. With reference to FIGS. 3 and 4, an exemplary arrangement of the driving device 100 </ b> A will be described.
ハブ筐体HBHには、開口部OPNが形成される。ハブ筐体HBHは、開口部OPNの輪郭を形成する輪郭面CTSを含む。駆動装置100Aは、輪郭面CTSに固定される。
The opening OPN is formed in the hub housing HBH. The hub housing HBH includes a contour surface CTS that forms the contour of the opening OPN. The driving device 100A is fixed to the contour surface CTS.
風車機器WMLは、ボールベアリングBRGを含む。ボールベアリングBRGは、ハブ筐体HBHとブレード筐体BDHとの間に配置される。
Windmill equipment WML includes a ball bearing BRG. The ball bearing BRG is disposed between the hub housing HBH and the blade housing BDH.
ハブ筐体HBHは、ハブ筐体HBHの外形輪郭を規定する外面OUSを含む。ブレード筐体BDHは、開口部OPNに対向する基端面PXSを含む。ボールベアリングBRGは、外輪部ORGと、内輪部IRGと、複数のボールBLLを含む。外輪部ORGは、外面OUSに固定される。外輪部ORG内に配置された内輪部IRGは、基端面PXSに固定される。複数のボールBLLは、外輪部ORGと、外輪部ORGと略同心に配置された内輪部IRGと、の間で転動する。したがって、内輪部IRGは、外輪部ORG内で回転することができる。ブレード筐体BDHは、内輪部IRGとともに回転する。本実施形態において、可動部位は、ブレード筐体BDHによって例示される。
The hub housing HBH includes an outer surface OUS that defines the outer contour of the hub housing HBH. The blade housing BDH includes a base end face PXS facing the opening OPN. Ball bearing BRG includes an outer ring portion ORG, an inner ring portion IRG, and a plurality of balls BLL. The outer ring portion ORG is fixed to the outer surface OUS. The inner ring portion IRG arranged in the outer ring portion ORG is fixed to the base end face PXS. The plurality of balls BLL roll between the outer ring part ORG and the inner ring part IRG arranged substantially concentrically with the outer ring part ORG. Therefore, the inner ring portion IRG can rotate within the outer ring portion ORG. The blade housing BDH rotates together with the inner ring portion IRG. In the present embodiment, the movable part is exemplified by the blade housing BDH.
内輪部IRGは、複数のボールBLLとは反対側の内面INSを含む。内面INSには、ギア歯(図示せず)が形成される。ピニオン200Aは、内面INSに形成されたギア歯に噛み合う。したがって、内輪部IRG及びブレード筐体BDHは、ピニオン200Aとともに回転することができる。
The inner ring portion IRG includes an inner surface INS opposite to the plurality of balls BLL. Gear teeth (not shown) are formed on the inner surface INS. The pinion 200A meshes with gear teeth formed on the inner surface INS. Therefore, the inner ring portion IRG and the blade housing BDH can rotate together with the pinion 200A.
<第3実施形態>
風車機器を設計する設計者は、風車機器への取付の容易性や他の設計上の理由から小型の駆動装置の利用を欲することもある。駆動装置に小型の電動モータが利用されるならば、駆動装置は、小型化される。第3実施形態において、小型の電動モータを利用可能にする技術が説明される。 <Third Embodiment>
Designers designing windmill equipment may want to use smaller drives for ease of attachment to the windmill equipment and other design reasons. If a small electric motor is used for the driving device, the driving device is reduced in size. In the third embodiment, a technique for making a small electric motor available will be described.
風車機器を設計する設計者は、風車機器への取付の容易性や他の設計上の理由から小型の駆動装置の利用を欲することもある。駆動装置に小型の電動モータが利用されるならば、駆動装置は、小型化される。第3実施形態において、小型の電動モータを利用可能にする技術が説明される。 <Third Embodiment>
Designers designing windmill equipment may want to use smaller drives for ease of attachment to the windmill equipment and other design reasons. If a small electric motor is used for the driving device, the driving device is reduced in size. In the third embodiment, a technique for making a small electric motor available will be described.
図5は、電動モータ300Aの概念図である。第2実施形態及び第3実施形態の間で共通して用いられる符号は、当該共通の符号が付された要素が、第2実施形態と同一の機能を有することを意味する。したがって、第2実施形態の説明は、これらの要素に援用される。図1及び図5を参照して、電動モータ300Aが説明される。
FIG. 5 is a conceptual diagram of the electric motor 300A. A symbol used in common between the second embodiment and the third embodiment means that an element to which the common symbol is attached has the same function as that of the second embodiment. Therefore, description of 2nd Embodiment is used for these elements. The electric motor 300A will be described with reference to FIGS.
第2実施形態に関連して説明された如く、主筐体330内には、コイル素子310A,320Aが配置される。コイル素子310Aは、図1を参照して説明されたコイル部310に対応する。コイル素子320Aは、図1を参照して説明されたコイル部320に対応する。
As described in relation to the second embodiment, the coil elements 310A and 320A are arranged in the main housing 330. The coil element 310A corresponds to the coil unit 310 described with reference to FIG. The coil element 320A corresponds to the coil part 320 described with reference to FIG.
コイル素子310A,320Aはともに、電動モータ300Aの回転軸RAX周りの領域を取り囲む。図5は、コイル素子310Aによって取り囲まれる「領域A」と、コイル素子320Aによって取り囲まれる「領域B」と、を示す。領域Aは、領域Bに部分的に重畳する。代替的に、コイル素子310Aによって取り囲まれる領域は、コイル素子320Aによって取り囲まれる領域と完全に重畳してもよい。本実施形態において、第1領域は、領域A及び領域Bのうち一方によって例示される。第2領域は、領域A及び領域Bのうち他方によって例示される。
Both the coil elements 310A and 320A surround an area around the rotation axis RAX of the electric motor 300A. FIG. 5 shows a “region A” surrounded by the coil element 310A and a “region B” surrounded by the coil element 320A. Region A partially overlaps region B. Alternatively, the area surrounded by the coil element 310A may completely overlap with the area surrounded by the coil element 320A. In the present embodiment, the first region is exemplified by one of the region A and the region B. The second region is exemplified by the other of region A and region B.
領域Aは、領域Bに重なるので、電動モータ300Aは、回転軸RAXの延設方向に長い寸法を有さなくてもよい。したがって、設計者は、電動モータ300Aを用いて、小型の駆動装置を設計することができる。
Since the area A overlaps the area B, the electric motor 300A may not have a long dimension in the extending direction of the rotation axis RAX. Therefore, the designer can design a small drive device using the electric motor 300A.
電動モータ300Aを製造する製造者は、コイル素子310A用のコイル線とコイル素子320A用のコイル線とを束ねて、巻回し、コイル素子310A,320Aを形成してもよい。この結果、領域Aの大部分が、領域Bに重なることになる。製造者は、他の手法を用いて、コイル素子310A,320A間で重なる重畳領域を形成してもよい。本実施形態の原理は、コイル素子310A,320Aを形成するための特定の技術に限定されない。
The manufacturer who manufactures the electric motor 300A may bundle the coil wire for the coil element 310A and the coil wire for the coil element 320A and wind them to form the coil elements 310A and 320A. As a result, most of the area A overlaps the area B. The manufacturer may use another method to form the overlapping region that overlaps between the coil elements 310A and 320A. The principle of this embodiment is not limited to a specific technique for forming the coil elements 310A and 320A.
<第4実施形態>
第1実施形態に関連して説明された原理に基づいて構築された駆動装置は、様々な制御の下で適切に動作することができる。第4実施形態において、駆動装置に対する例示的な制御技術が説明される。 <Fourth embodiment>
The drive device constructed based on the principle described in connection with the first embodiment can operate appropriately under various controls. In the fourth embodiment, an exemplary control technique for the driving device will be described.
第1実施形態に関連して説明された原理に基づいて構築された駆動装置は、様々な制御の下で適切に動作することができる。第4実施形態において、駆動装置に対する例示的な制御技術が説明される。 <Fourth embodiment>
The drive device constructed based on the principle described in connection with the first embodiment can operate appropriately under various controls. In the fourth embodiment, an exemplary control technique for the driving device will be described.
図6は、第4実施形態の駆動装置100Bの概略的な機能構成を表すブロック図である。第1実施形態及び第4実施形態の間で共通して用いられる符号は、当該共通の符号が付された要素が、第1実施形態と同一の機能を有することを意味する。したがって、第1実施形態の説明は、これらの要素に援用される。図1及び図6を参照して、駆動装置100Bが説明される。
FIG. 6 is a block diagram showing a schematic functional configuration of the drive device 100B of the fourth embodiment. The code | symbol used in common between 1st Embodiment and 4th Embodiment means that the element to which the said common code | symbol was attached | subjected has the same function as 1st Embodiment. Therefore, description of 1st Embodiment is used for these elements. The driving device 100B will be described with reference to FIG. 1 and FIG.
第1実施形態と同様に、駆動装置100Bは、ピニオン200と、印加部400,500と、を備える。第1実施形態の説明は、これらの要素に援用される。
As in the first embodiment, the driving device 100B includes a pinion 200 and application units 400 and 500. The description of the first embodiment is incorporated in these elements.
駆動装置100Bは、電動モータ300Bと、制御部700と、を備える。印加部400,500は、制御部700の制御下で、電圧を生成する。電圧は、電動モータ300Bに印加される。電動モータ300Bは、電圧の印加下で、回転力をピニオン200へ伝達する。電動モータ300Bは、図1を参照して説明された電動モータ300に対応する。
The driving device 100B includes an electric motor 300B and a control unit 700. The application units 400 and 500 generate a voltage under the control of the control unit 700. The voltage is applied to the electric motor 300B. The electric motor 300B transmits the rotational force to the pinion 200 under application of a voltage. The electric motor 300B corresponds to the electric motor 300 described with reference to FIG.
電動モータ300Bは、主コイル部310Bと、副コイル部320Bと、を含む。主コイル部310Bは、図1を参照して説明されたコイル部310,320のうち一方に対応する。副コイル部320Bは、図1を参照して説明されたコイル部310,320のうち他方に対応する。したがって、主コイル部310B及び副コイル部320Bは、第3実施形態に関連して説明された技術に基づいて形成されてもよい。
The electric motor 300B includes a main coil portion 310B and a sub coil portion 320B. The main coil portion 310B corresponds to one of the coil portions 310 and 320 described with reference to FIG. The sub-coil portion 320B corresponds to the other of the coil portions 310 and 320 described with reference to FIG. Therefore, the main coil part 310B and the subcoil part 320B may be formed based on the technique described in relation to the third embodiment.
制御部700は、検出部710と、切替部720と、を含む。切替部720は、電圧の印加を要求する要求信号を、印加部400へ出力する。印加部400は、要求信号に応じて、電圧を生成する。電圧は、その後、印加部400から主コイル部310Bへ印加される。
The control unit 700 includes a detection unit 710 and a switching unit 720. The switching unit 720 outputs a request signal for requesting voltage application to the application unit 400. The application unit 400 generates a voltage in response to the request signal. The voltage is then applied from the application unit 400 to the main coil unit 310B.
検出部710は、印加部400と主コイル部310Bとに連なる電気的な経路を流れる電流を測定する。代替的に、検出部710は、電動モータ300Bに組み込まれた検出素子から、印加部400と主コイル部310Bとに連なる電気的な経路を流れる電流の大きさを表す信号を受け取ってもよい。電流が、過度に小さいならば、検出信号710は、印加部400と主コイル部310Bとに連なる電気的な経路に不具合が生じていると判定してもよい。したがって、検出部710は、印加部400と主コイル部310Bとに連なる電気的な経路に不具合が生じているか否かを適切に判定することができる。検出部710は、一般的な電流計と、電流計からの出力信号から不具合を判定するように設計されたプログラムを実行する一般的なマイクロコンピュータであってもよい。マイクロコンピュータに代えて、CPU(Central Processing Unit)やPLD(Progrmmable Logic Device)といった電子部品が用いられてもよい。本実施形態の原理は、検出部710として利用される特定の電子部品に限定されない。
The detection unit 710 measures a current flowing through an electrical path connected to the application unit 400 and the main coil unit 310B. Alternatively, the detection unit 710 may receive a signal indicating the magnitude of the current flowing through the electrical path connected to the application unit 400 and the main coil unit 310B from the detection element incorporated in the electric motor 300B. If the current is excessively small, the detection signal 710 may determine that a failure has occurred in the electrical path connecting the application unit 400 and the main coil unit 310B. Therefore, the detection unit 710 can appropriately determine whether or not a failure has occurred in the electrical path connecting the application unit 400 and the main coil unit 310B. The detection unit 710 may be a general microcomputer that executes a program designed to determine a malfunction from a general ammeter and an output signal from the ammeter. Instead of the microcomputer, an electronic component such as a CPU (Central Processing Unit) or a PLD (Programmable Logic Device) may be used. The principle of this embodiment is not limited to a specific electronic component used as the detection unit 710.
要求信号が、検出部710から印加部400へ出力されている間、印加部500は、要求信号を受け取らない。したがって、副コイル部320Bは、電圧を受けない。この結果、ピニオン200は、主コイル部310Bへの電圧印加によって生成された回転力によって回転される。
While the request signal is being output from the detection unit 710 to the application unit 400, the application unit 500 does not receive the request signal. Therefore, sub coil part 320B does not receive a voltage. As a result, the pinion 200 is rotated by the rotational force generated by the voltage application to the main coil unit 310B.
図7は、印加部400と主コイル部310Bとに連なる電気的な経路に不具合が生じたときの駆動装置100Bの機能構成を表す概略的なブロック図である。図6及び図7を参照して、駆動装置100Bが更に説明される。
FIG. 7 is a schematic block diagram showing a functional configuration of the driving device 100B when a failure occurs in an electrical path connected to the application unit 400 and the main coil unit 310B. The drive device 100B will be further described with reference to FIGS.
印加部400と主コイル部310Bとに連なる電気的な経路に不具合が生ずるならば、検出部710は、過度に低い電流を検出する。検出された電流の大きさが閾値を下回ると、検出部710は、切替信号を生成してもよい。切替信号は、検出部710から切替部720へ出力される。
If a failure occurs in the electrical path connecting the application unit 400 and the main coil unit 310B, the detection unit 710 detects an excessively low current. When the magnitude of the detected current falls below the threshold value, the detection unit 710 may generate a switching signal. The switching signal is output from the detection unit 710 to the switching unit 720.
切替部720は、切替信号に応じて、上述の要求信号の出力先を、印加部400から印加部500へ切り替える。この結果、印加部500は、要求信号に応じて、電圧を生成する。電圧は、その後、印加部500から副コイル部320Bに印加される。したがって、印加部400と主コイル部310Bとに連なる電気的な経路に不具合が生じた後、ピニオン200は、副コイル部320Bへの電圧印加によって生成された回転力によって回転されることとなる。切替部720は、切替信号に応じて、要求信号の出力先を切り替えるように設計された一般的な切替回路であってもよい。本実施形態の原理は、切替部720の特定の回路構造に限定されない。
The switching unit 720 switches the output destination of the above request signal from the applying unit 400 to the applying unit 500 in accordance with the switching signal. As a result, the application unit 500 generates a voltage according to the request signal. The voltage is then applied from the application unit 500 to the sub coil unit 320B. Therefore, after a failure occurs in the electrical path connected to the application unit 400 and the main coil unit 310B, the pinion 200 is rotated by the rotational force generated by the voltage application to the sub coil unit 320B. The switching unit 720 may be a general switching circuit designed to switch the output destination of the request signal according to the switching signal. The principle of the present embodiment is not limited to a specific circuit structure of the switching unit 720.
制御部700及び印加部400,500は、共通の回路基板上に構築されてもよい。代替的に、制御部700は、印加部400,500とは異なる回路基板上に構築されてもよい。本実施形態の原理は、制御部700及び印加部400,500を形成する回路の特定の構造に限定されない。
The control unit 700 and the application units 400 and 500 may be constructed on a common circuit board. Alternatively, the control unit 700 may be constructed on a circuit board different from the application units 400 and 500. The principle of the present embodiment is not limited to a specific structure of a circuit that forms the control unit 700 and the application units 400 and 500.
図8は、駆動装置100Bの制御を表す概略的なフローチャートである。図2、図6乃至図8を参照して、駆動装置100Bの制御が説明される。
FIG. 8 is a schematic flowchart showing the control of the driving device 100B. The control of the drive device 100B will be described with reference to FIGS.
(ステップS110)
検出部710は、印加部400と主コイル部310Bとに連なる電気的な経路を流れる電流が、閾値を上回って否かを判定する。電流が閾値を上回っているならば、ステップS120が実行される。他の場合には、ステップS140が実行される。 (Step S110)
Thedetection unit 710 determines whether or not the current flowing through the electrical path connected to the application unit 400 and the main coil unit 310B exceeds a threshold value. If the current exceeds the threshold value, step S120 is executed. In other cases, step S140 is executed.
検出部710は、印加部400と主コイル部310Bとに連なる電気的な経路を流れる電流が、閾値を上回って否かを判定する。電流が閾値を上回っているならば、ステップS120が実行される。他の場合には、ステップS140が実行される。 (Step S110)
The
(ステップS120)
切替部720は、電圧の印加を要求する要求信号を、印加部400へ出力する。印加部400は、要求信号に応じて、主コイル部310Bへ電圧を印加する。その後、ステップS130が実行される。 (Step S120)
Theswitching unit 720 outputs a request signal for requesting voltage application to the application unit 400. The application unit 400 applies a voltage to the main coil unit 310B according to the request signal. Thereafter, step S130 is executed.
切替部720は、電圧の印加を要求する要求信号を、印加部400へ出力する。印加部400は、要求信号に応じて、主コイル部310Bへ電圧を印加する。その後、ステップS130が実行される。 (Step S120)
The
(ステップS130)
主コイル部310Bへの電圧印加の下で、電動モータ300Bは、回転力を生成する。回転力は、電動モータ300Bからピニオン200へ伝達される。ブレード筐体BDHの回転角が目標の回転角に到達すると、制御は終了する。他の場合には、ステップS110乃至ステップS130の処理ループが実行され続ける。ブレード筐体BDHの回転角に対する角度位置制御は、一般的なPID制御に基づいてもよい。本実施形態の原理は、ブレード筐体BDHの回転角に対する特定の角度制御技術に限定されない。 (Step S130)
Under the application of voltage to themain coil portion 310B, the electric motor 300B generates a rotational force. The rotational force is transmitted from the electric motor 300B to the pinion 200. When the rotation angle of the blade housing BDH reaches the target rotation angle, the control ends. In other cases, the processing loop from step S110 to step S130 continues to be executed. The angular position control with respect to the rotation angle of the blade housing BDH may be based on general PID control. The principle of the present embodiment is not limited to a specific angle control technique for the rotation angle of the blade housing BDH.
主コイル部310Bへの電圧印加の下で、電動モータ300Bは、回転力を生成する。回転力は、電動モータ300Bからピニオン200へ伝達される。ブレード筐体BDHの回転角が目標の回転角に到達すると、制御は終了する。他の場合には、ステップS110乃至ステップS130の処理ループが実行され続ける。ブレード筐体BDHの回転角に対する角度位置制御は、一般的なPID制御に基づいてもよい。本実施形態の原理は、ブレード筐体BDHの回転角に対する特定の角度制御技術に限定されない。 (Step S130)
Under the application of voltage to the
(ステップS140)
検出部710は、切替信号を生成する。切替信号は、検出部710から切替部720へ出力される。切替部720は、切替信号に応じて、要求信号の出力先を、印加部400から印加部500へ切り替える。この結果、要求信号は、切替部720から印加部500へ伝達される。印加部500は、要求信号に応じて電圧を生成する。電圧は、その後、印加部500から副コイル部320Bへ印加される。 (Step S140)
Thedetection unit 710 generates a switching signal. The switching signal is output from the detection unit 710 to the switching unit 720. The switching unit 720 switches the output destination of the request signal from the applying unit 400 to the applying unit 500 according to the switching signal. As a result, the request signal is transmitted from the switching unit 720 to the application unit 500. The application unit 500 generates a voltage according to the request signal. The voltage is then applied from the application unit 500 to the sub coil unit 320B.
検出部710は、切替信号を生成する。切替信号は、検出部710から切替部720へ出力される。切替部720は、切替信号に応じて、要求信号の出力先を、印加部400から印加部500へ切り替える。この結果、要求信号は、切替部720から印加部500へ伝達される。印加部500は、要求信号に応じて電圧を生成する。電圧は、その後、印加部500から副コイル部320Bへ印加される。 (Step S140)
The
(ステップS150)
副コイル部320Bへの電圧印加の下で、電動モータ300Bは、回転力を生成する。回転力は、電動モータ300Bからピニオン200へ伝達される。ブレード筐体BDHの回転角が目標の回転角に到達すると、制御は終了する。他の場合には、ステップS140及びステップS150の処理ループが実行され続ける。 (Step S150)
Theelectric motor 300B generates a rotational force under application of a voltage to the sub coil unit 320B. The rotational force is transmitted from the electric motor 300B to the pinion 200. When the rotation angle of the blade housing BDH reaches the target rotation angle, the control ends. In other cases, the processing loop of step S140 and step S150 continues to be executed.
副コイル部320Bへの電圧印加の下で、電動モータ300Bは、回転力を生成する。回転力は、電動モータ300Bからピニオン200へ伝達される。ブレード筐体BDHの回転角が目標の回転角に到達すると、制御は終了する。他の場合には、ステップS140及びステップS150の処理ループが実行され続ける。 (Step S150)
The
<第5実施形態>
第4実施形態の駆動装置は、不具合が発生したとき、1つのコイル部から他のもう1つのコイル部へ電圧の印加先を切り替える。代替的に、駆動装置は、不具合が生じていないときに、複数のコイル部に電圧を印加する制御モードを実行する一方で、不具合が生じたときに、複数のコイル部のうち1つに電圧を印加する他のもう1つの制御モードを実行してもよい。第5実施形態において、制御モードを切り替える機能を有する駆動装置が説明される。 <Fifth Embodiment>
The drive device of the fourth embodiment switches the voltage application destination from one coil unit to another coil unit when a failure occurs. Alternatively, the drive device executes a control mode in which a voltage is applied to the plurality of coil portions when no failure occurs, while the voltage is applied to one of the plurality of coil portions when the failure occurs. Another control mode may be executed that applies. In the fifth embodiment, a drive device having a function of switching control modes will be described.
第4実施形態の駆動装置は、不具合が発生したとき、1つのコイル部から他のもう1つのコイル部へ電圧の印加先を切り替える。代替的に、駆動装置は、不具合が生じていないときに、複数のコイル部に電圧を印加する制御モードを実行する一方で、不具合が生じたときに、複数のコイル部のうち1つに電圧を印加する他のもう1つの制御モードを実行してもよい。第5実施形態において、制御モードを切り替える機能を有する駆動装置が説明される。 <Fifth Embodiment>
The drive device of the fourth embodiment switches the voltage application destination from one coil unit to another coil unit when a failure occurs. Alternatively, the drive device executes a control mode in which a voltage is applied to the plurality of coil portions when no failure occurs, while the voltage is applied to one of the plurality of coil portions when the failure occurs. Another control mode may be executed that applies. In the fifth embodiment, a drive device having a function of switching control modes will be described.
図9は、第5実施形態の駆動装置100Cの概略的な機能構成を表すブロック図である。第1実施形態及び第5実施形態の間で共通して用いられる符号は、当該共通の符号が付された要素が、第1実施形態と同一の機能を有することを意味する。したがって、第1実施形態の説明は、これらの要素に援用される。図1及び図9を参照して、駆動装置100Cが説明される。
FIG. 9 is a block diagram illustrating a schematic functional configuration of the drive device 100C of the fifth embodiment. The code | symbol used in common between 1st Embodiment and 5th Embodiment means that the element to which the said common code | symbol was attached | subjected has the same function as 1st Embodiment. Therefore, description of 1st Embodiment is used for these elements. The drive device 100C will be described with reference to FIGS.
第1実施形態と同様に、駆動装置100Cは、ピニオン200と、電動モータ300と、印加部400,500と、を備える。第1実施形態の説明は、これらの要素に援用される。
As in the first embodiment, the drive device 100C includes a pinion 200, an electric motor 300, and application units 400 and 500. The description of the first embodiment is incorporated in these elements.
駆動装置100Cは、制御部700Cを備える。印加部400,500は、制御部700Cの制御下で、電圧を生成する。電圧は、電動モータ300に印加される。電動モータ300は、電圧の印加下で、回転力をピニオン200へ伝達する。
The driving device 100C includes a control unit 700C. The application units 400 and 500 generate a voltage under the control of the control unit 700C. The voltage is applied to the electric motor 300. The electric motor 300 transmits a rotational force to the pinion 200 under application of a voltage.
制御部700Cは、検出部710Cと、切替部720Cと、を含む。切替部720Cは、電圧の印加を要求する第1要求信号を、印加部400へ出力する。切替部720Cは、電圧の印加を要求する第2要求信号を、印加部500へ出力する。
Control unit 700C includes a detection unit 710C and a switching unit 720C. The switching unit 720C outputs a first request signal requesting application of a voltage to the applying unit 400. The switching unit 720 </ b> C outputs a second request signal for requesting voltage application to the application unit 500.
印加部400は、第1要求信号に応じて、第1電圧を生成する。第1電圧は、その後、印加部400からコイル部310へ印加される。
Application unit 400 generates the first voltage in response to the first request signal. Thereafter, the first voltage is applied from the application unit 400 to the coil unit 310.
印加部500は、第2要求信号に応じて、第2電圧を生成する。第2電圧は、その後、印加部500からコイル部320へ印加される。
Application unit 500 generates a second voltage in response to the second request signal. The second voltage is then applied from the application unit 500 to the coil unit 320.
検出部710Cは、印加部400とコイル部310とに連なる第1経路を流れる電流を測定する。加えて、検出部710Cは、印加部500とコイル部320とに連なる第2経路を流れる電流を測定する。代替的に、検出部710Cは、電動モータ300に組み込まれた検出素子から、第1経路と第2経路とを流れる電流の大きさを表す信号を受け取ってもよい。コイル部310を流れる電流が、過度に小さいならば、検出信号710Cは、印加部400とコイル部310とに連なる電気的な経路に不具合が生じていると判定してもよい。コイル部320を流れる電流が、過度に小さいならば、検出信号710Cは、印加部500とコイル部320とに連なる電気的な経路に不具合が生じていると判定してもよい。したがって、検出部710Cは、第1経路及び/又は第2経路に不具合が生じているか否かを適切に判定することができる。
Detecting unit 710 </ b> C measures the current flowing through the first path connected to application unit 400 and coil unit 310. In addition, the detection unit 710 </ b> C measures the current flowing through the second path connected to the application unit 500 and the coil unit 320. Alternatively, the detection unit 710 </ b> C may receive a signal representing the magnitude of the current flowing through the first path and the second path from the detection element incorporated in the electric motor 300. If the current flowing through the coil unit 310 is excessively small, the detection signal 710 </ b> C may determine that a failure has occurred in the electrical path that connects the application unit 400 and the coil unit 310. If the current flowing through the coil unit 320 is excessively small, the detection signal 710C may determine that a failure has occurred in the electrical path that connects the application unit 500 and the coil unit 320. Therefore, the detection unit 710C can appropriately determine whether or not a failure occurs in the first route and / or the second route.
第1経路及び第2経路の両方に不具合が生じていないならば、制御部700Cは、第1制御モード下での制御動作を行う。切替部720Cは、第1制御モード下で、第1要求信号を印加部400へ出力し、且つ、第2要求信号を印加部500へ出力する。この結果、印加部400は、第1電圧を生成し、且つ、印加部500は、第2電圧を生成する。第1電圧は、印加部400からコイル部310へ印加される。第2電圧は、印加部500からコイル部320へ印加される。この結果、ピニオン200は、コイル部310,320の両方への電圧印加下で発生した回転力によって回転される。本実施形態において、第1駆動電圧は、第1電圧及び第2電圧のうち一方によって例示される。第2駆動電圧は、第1電圧及び第2電圧のうち他方によって例示される。
If there is no problem in both the first route and the second route, the control unit 700C performs a control operation under the first control mode. The switching unit 720C outputs the first request signal to the applying unit 400 and the second request signal to the applying unit 500 under the first control mode. As a result, the application unit 400 generates a first voltage, and the application unit 500 generates a second voltage. The first voltage is applied from the application unit 400 to the coil unit 310. The second voltage is applied from the application unit 500 to the coil unit 320. As a result, the pinion 200 is rotated by the rotational force generated when voltage is applied to both the coil units 310 and 320. In the present embodiment, the first drive voltage is exemplified by one of the first voltage and the second voltage. The second drive voltage is exemplified by the other of the first voltage and the second voltage.
第1経路及び第2経路のうち一方に不具合が生ずるならば、制御部700Cは、第2制御モード下での制御動作を行う。第1経路及び第2経路のうち一方に不具合が生ずると、検出部710Cは、不具合の発生を通知する通知信号を生成してもよい。通知信号は、検出部710Cから切替部720Cへ出力される。
If a problem occurs in one of the first route and the second route, the control unit 700C performs a control operation under the second control mode. When a failure occurs in one of the first route and the second route, the detection unit 710C may generate a notification signal that notifies the occurrence of the failure. The notification signal is output from detection unit 710C to switching unit 720C.
第1経路中での不具合が通知された切替部720Cは、電圧印加を、第2経路を通じて要求する。このとき、切替部720Cは、第2要求信号に、電圧の増加を要求する指示を含ませてもよい。この結果、印加部500は、第1制御モード下での第2電圧よりも高い値の電圧を第2電圧として印加することができる。したがって、第1経路で生じた不具合に起因する回転力の逸失は、コイル部320によって生成された高い回転力によって補填される。
The switching unit 720C that is notified of the malfunction in the first path requests voltage application through the second path. At this time, the switching unit 720C may include an instruction for requesting an increase in voltage in the second request signal. As a result, the application unit 500 can apply a voltage having a higher value than the second voltage under the first control mode as the second voltage. Therefore, the loss of the rotational force due to the malfunction occurring in the first path is compensated by the high rotational force generated by the coil unit 320.
第2経路中での不具合が通知された切替部720Cは、電圧印加を、第1経路を通じて要求する。このとき、切替部720Cは、第1要求信号に、電圧の増加を要求する指示を含ませてもよい。この結果、印加部400は、第1制御モード下での第1電圧よりも高い値の電圧を第1電圧として印加することができる。したがって、第2経路で生じた不具合に起因する回転力の逸失は、コイル部310によって生成された高い回転力によって補填される。
The switching unit 720C notified of the malfunction in the second path requests voltage application through the first path. At this time, the switching unit 720C may include an instruction for requesting an increase in voltage in the first request signal. As a result, the application unit 400 can apply a voltage having a value higher than the first voltage under the first control mode as the first voltage. Therefore, the loss of rotational force due to the malfunction that has occurred in the second path is compensated by the high rotational force generated by the coil unit 310.
図10は、駆動装置100Cの制御を表す概略的なフローチャートである。図2、図9及び図10を参照して、駆動装置100Cの制御が説明される。
FIG. 10 is a schematic flowchart showing the control of the driving device 100C. The control of the driving device 100C will be described with reference to FIGS.
(ステップS210)
検出部710Cは、第1経路を流れる電流が、閾値を下回って否かを判定する。電流が閾値を下回っているならば、ステップS220が実行される。他の場合には、ステップS240が実行される。 (Step S210)
Thedetection unit 710C determines whether or not the current flowing through the first path is below a threshold value. If the current is below the threshold, step S220 is executed. In other cases, step S240 is executed.
検出部710Cは、第1経路を流れる電流が、閾値を下回って否かを判定する。電流が閾値を下回っているならば、ステップS220が実行される。他の場合には、ステップS240が実行される。 (Step S210)
The
(ステップS220)
検出部710Cは、第1経路での電気的な不具合を通知するための通知信号を生成する。通知信号は、検出部710Cから切替部720Cへ出力される。切替部720Cは、通知信号に応じて、第1要求信号を、印加部400へ出力する。印加部400は、第1要求信号に応じて、コイル部310へ第1電圧を印加する。その後、ステップS230が実行される。 (Step S220)
Thedetection unit 710C generates a notification signal for notifying an electrical failure in the first path. The notification signal is output from detection unit 710C to switching unit 720C. The switching unit 720C outputs a first request signal to the applying unit 400 in response to the notification signal. The application unit 400 applies a first voltage to the coil unit 310 in response to the first request signal. Thereafter, step S230 is executed.
検出部710Cは、第1経路での電気的な不具合を通知するための通知信号を生成する。通知信号は、検出部710Cから切替部720Cへ出力される。切替部720Cは、通知信号に応じて、第1要求信号を、印加部400へ出力する。印加部400は、第1要求信号に応じて、コイル部310へ第1電圧を印加する。その後、ステップS230が実行される。 (Step S220)
The
(ステップS230)
コイル部310への第1電圧の印加の下で、電動モータ300は、回転力を生成する。回転力は、電動モータ300からピニオン200へ伝達される。ブレード筐体BDHの回転角が、目標の回転角に到達すると制御は終了する。他の場合には、ステップS220及びステップS230の処理ループが実行され続ける。ブレード筐体BDHの回転角に対する角度位置制御は、一般的なPID制御に基づいてもよい。本実施形態の原理は、ブレード筐体BDHの回転角に対する特定の角度制御技術に限定されない。 (Step S230)
Under the application of the first voltage to thecoil unit 310, the electric motor 300 generates a rotational force. The rotational force is transmitted from the electric motor 300 to the pinion 200. Control ends when the rotation angle of the blade housing BDH reaches the target rotation angle. In other cases, the processing loop of step S220 and step S230 continues to be executed. The angular position control with respect to the rotation angle of the blade housing BDH may be based on general PID control. The principle of the present embodiment is not limited to a specific angle control technique for the rotation angle of the blade housing BDH.
コイル部310への第1電圧の印加の下で、電動モータ300は、回転力を生成する。回転力は、電動モータ300からピニオン200へ伝達される。ブレード筐体BDHの回転角が、目標の回転角に到達すると制御は終了する。他の場合には、ステップS220及びステップS230の処理ループが実行され続ける。ブレード筐体BDHの回転角に対する角度位置制御は、一般的なPID制御に基づいてもよい。本実施形態の原理は、ブレード筐体BDHの回転角に対する特定の角度制御技術に限定されない。 (Step S230)
Under the application of the first voltage to the
(ステップS240)
検出部710Cは、第2経路を流れる電流が、閾値を下回って否かを判定する。電流が閾値を下回っているならば、ステップS250が実行される。他の場合には、ステップS270が実行される。 (Step S240)
Thedetection unit 710C determines whether or not the current flowing through the second path is below a threshold value. If the current is below the threshold, step S250 is executed. In other cases, step S270 is executed.
検出部710Cは、第2経路を流れる電流が、閾値を下回って否かを判定する。電流が閾値を下回っているならば、ステップS250が実行される。他の場合には、ステップS270が実行される。 (Step S240)
The
(ステップS250)
検出部710Cは、第2経路での電気的な不具合を通知するための通知信号を生成する。通知信号は、検出部710Cから切替部720Cへ出力される。切替部720Cは、通知信号に応じて、第2要求信号を、印加部500へ出力する。印加部500は、第2要求信号に応じて、コイル部320へ第2電圧を印加する。その後、ステップS260が実行される。 (Step S250)
Thedetection unit 710C generates a notification signal for notifying an electrical failure in the second path. The notification signal is output from detection unit 710C to switching unit 720C. The switching unit 720C outputs a second request signal to the applying unit 500 in response to the notification signal. The application unit 500 applies the second voltage to the coil unit 320 in response to the second request signal. Thereafter, step S260 is executed.
検出部710Cは、第2経路での電気的な不具合を通知するための通知信号を生成する。通知信号は、検出部710Cから切替部720Cへ出力される。切替部720Cは、通知信号に応じて、第2要求信号を、印加部500へ出力する。印加部500は、第2要求信号に応じて、コイル部320へ第2電圧を印加する。その後、ステップS260が実行される。 (Step S250)
The
(ステップS260)
コイル部320への第2電圧の印加の下で、電動モータ300は、回転力を生成する。回転力は、電動モータ300からピニオン200へ伝達される。ブレード筐体BDHの回転角が、目標の回転角に到達すると制御は終了する。他の場合には、ステップS250及びステップS260の処理ループが実行され続ける。 (Step S260)
Under the application of the second voltage to thecoil unit 320, the electric motor 300 generates a rotational force. The rotational force is transmitted from the electric motor 300 to the pinion 200. Control ends when the rotation angle of the blade housing BDH reaches the target rotation angle. In other cases, the processing loop of step S250 and step S260 continues to be executed.
コイル部320への第2電圧の印加の下で、電動モータ300は、回転力を生成する。回転力は、電動モータ300からピニオン200へ伝達される。ブレード筐体BDHの回転角が、目標の回転角に到達すると制御は終了する。他の場合には、ステップS250及びステップS260の処理ループが実行され続ける。 (Step S260)
Under the application of the second voltage to the
(ステップS270)
切替部720Cは、第1要求信号を、印加部400へ出力し、且つ、第2要求信号を、印加部500へ出力する。印加部400は、第1要求信号に応じて、コイル部310へ第1電圧を印加する。印加部500は、第2要求信号に応じて、コイル部320へ第2電圧を印加する。ステップS270においてコイル部310へ印加される第1電圧の値は、ステップS220においてコイル部310へ印加される第1電圧の値よりも低くてもよい。ステップS270においてコイル部320へ印加される第2電圧の値は、ステップS250においてコイル部320へ印加される第2電圧の値よりも低くてもよい。第1電圧及び第2電圧の印加の後、ステップS280が実行される。 (Step S270)
Theswitching unit 720C outputs the first request signal to the applying unit 400 and outputs the second request signal to the applying unit 500. The application unit 400 applies a first voltage to the coil unit 310 in response to the first request signal. The application unit 500 applies the second voltage to the coil unit 320 in response to the second request signal. The value of the first voltage applied to the coil unit 310 in step S270 may be lower than the value of the first voltage applied to the coil unit 310 in step S220. The value of the second voltage applied to the coil unit 320 in step S270 may be lower than the value of the second voltage applied to the coil unit 320 in step S250. Step S280 is performed after the application of the first voltage and the second voltage.
切替部720Cは、第1要求信号を、印加部400へ出力し、且つ、第2要求信号を、印加部500へ出力する。印加部400は、第1要求信号に応じて、コイル部310へ第1電圧を印加する。印加部500は、第2要求信号に応じて、コイル部320へ第2電圧を印加する。ステップS270においてコイル部310へ印加される第1電圧の値は、ステップS220においてコイル部310へ印加される第1電圧の値よりも低くてもよい。ステップS270においてコイル部320へ印加される第2電圧の値は、ステップS250においてコイル部320へ印加される第2電圧の値よりも低くてもよい。第1電圧及び第2電圧の印加の後、ステップS280が実行される。 (Step S270)
The
(ステップS280)
コイル部320への第2電圧の印加の下で、電動モータ300は、回転力を生成する。回転力は、電動モータ300からピニオン200へ伝達される。ブレード筐体BDHの回転角が、目標の回転角に到達すると制御は終了する。他の場合には、ステップS210が再度実行される。 (Step S280)
Under the application of the second voltage to thecoil unit 320, the electric motor 300 generates a rotational force. The rotational force is transmitted from the electric motor 300 to the pinion 200. Control ends when the rotation angle of the blade housing BDH reaches the target rotation angle. In other cases, step S210 is executed again.
コイル部320への第2電圧の印加の下で、電動モータ300は、回転力を生成する。回転力は、電動モータ300からピニオン200へ伝達される。ブレード筐体BDHの回転角が、目標の回転角に到達すると制御は終了する。他の場合には、ステップS210が再度実行される。 (Step S280)
Under the application of the second voltage to the
<第6実施形態>
設計者は、第1実施形態乃至第5実施形態に関連して説明された技術的原理に基づいて、駆動装置の様々なハードウェア構成を設計することができる。第6実施形態において、駆動装置の例示的なハードウェア構成が説明される。 <Sixth Embodiment>
The designer can design various hardware configurations of the driving device based on the technical principle described in relation to the first to fifth embodiments. In the sixth embodiment, an exemplary hardware configuration of the drive device will be described.
設計者は、第1実施形態乃至第5実施形態に関連して説明された技術的原理に基づいて、駆動装置の様々なハードウェア構成を設計することができる。第6実施形態において、駆動装置の例示的なハードウェア構成が説明される。 <Sixth Embodiment>
The designer can design various hardware configurations of the driving device based on the technical principle described in relation to the first to fifth embodiments. In the sixth embodiment, an exemplary hardware configuration of the drive device will be described.
図11は、第6実施形態の駆動装置100Dの概略的なハードウェア構成を表すブロック図である。図1乃至図3及び図11を参照して、駆動装置100Dが説明される。
FIG. 11 is a block diagram illustrating a schematic hardware configuration of the driving apparatus 100D according to the sixth embodiment. The drive device 100D will be described with reference to FIGS. 1 to 3 and FIG.
駆動装置100Dは、ブレード筐体BH1,BH2,BH3を駆動する。ブレード筐体BH1,BH2,BH3は、図2を参照して説明された3つのブレード筐体BDHにそれぞれ対応する。
The driving device 100D drives the blade casings BH1, BH2, and BH3. The blade housings BH1, BH2, and BH3 correspond to the three blade housings BDH described with reference to FIG.
駆動装置100Dは、3つのピニオン210,220,230を備える。ピニオン210は、ブレード筐体BH1に取り付けられたリングギア(図示せず)に噛み合う。ピニオン220は、ブレード筐体BH2に取り付けられたリングギア(図示せず)に噛み合う。ピニオン230は、ブレード筐体BH3に取り付けられたリングギア(図示せず)に噛み合う。ピニオン210,220,230とブレード筐体BH1,BH2,BH3との間の接続は、第2実施形態に関連して説明された技術に基づいてもよい。
The driving device 100D includes three pinions 210, 220, and 230. The pinion 210 meshes with a ring gear (not shown) attached to the blade housing BH1. The pinion 220 meshes with a ring gear (not shown) attached to the blade housing BH2. The pinion 230 meshes with a ring gear (not shown) attached to the blade housing BH3. The connection between the pinion 210, 220, 230 and the blade housings BH1, BH2, BH3 may be based on the technique described in connection with the second embodiment.
駆動装置100Dは、3つの電動モータ301,302,303と、3つの減速機601,602,603と、を含む。電動モータ301,302,303それぞれは、図1を参照して説明された電動モータ300に対応する。減速機601,602,603それぞれは、図3を参照して説明された減速部600に対応する。
The driving device 100D includes three electric motors 301, 302, and 303, and three speed reducers 601, 602, and 603. Each of the electric motors 301, 302, and 303 corresponds to the electric motor 300 described with reference to FIG. Each of the reduction gears 601, 602, 603 corresponds to the reduction gear unit 600 described with reference to FIG.
電動モータ301,302,303は、回転力を、減速機601,602,603へそれぞれ伝達する。減速機601,602,603それぞれは、回転力を増大させる。増大された回転力は、減速機601,602,603からピニオン210,220,230へそれぞれ伝達される。この結果、ピニオン210,220,230は、回転運動を、ブレード筐体BH1,BH2,BH3にそれぞれ与えることができる。
The electric motors 301, 302, and 303 transmit the rotational force to the speed reducers 601, 602, and 603, respectively. Each of the reduction gears 601, 602, 603 increases the rotational force. The increased rotational force is transmitted from the speed reducers 601, 602, 603 to the pinions 210, 220, 230, respectively. As a result, the pinions 210, 220, and 230 can impart rotational motion to the blade casings BH1, BH2, and BH3, respectively.
駆動装置100Dは、第1印加回路410と、第2印加回路510と,第3印加回路420と、第4印加回路520と、第5印加回路430と、第6印加回路530と、を含む。第1印加回路410、第3印加回路420及び第5印加回路430それぞれは、図1を参照して説明された印加部400に対応する。第2印加回路510、第4印加回路520及び第6印加回路530は、図1を参照して説明された印加部500に対応する。
The driving device 100D includes a first application circuit 410, a second application circuit 510, a third application circuit 420, a fourth application circuit 520, a fifth application circuit 430, and a sixth application circuit 530. Each of the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 corresponds to the application unit 400 described with reference to FIG. The second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 correspond to the application unit 500 described with reference to FIG.
第1印加回路410及び第2印加回路510それぞれは、電圧を、電動モータ301に印加する。
Each of the first application circuit 410 and the second application circuit 510 applies a voltage to the electric motor 301.
第4実施形態の制御原理に従うならば、不具合の不存在下において、第1印加回路410は、電圧を、電動モータ301に専ら印加してもよい。この場合、第1印加回路410から電動モータ301への電圧印加に不具合が生じた後、第2印加回路510は、電圧を、電動モータ301に印加する。したがって、第1印加回路410から電動モータ301への電圧印加に不具合が生じても、ブレード筐体BH1は、回転動作を適切に継続することができる。代替的に、第2印加回路510は、電圧を、電動モータ301に専ら印加してもよい。この場合、第2印加回路510から電動モータ301への電圧印加に不具合が生じた後、第1印加回路410は、電圧を、電動モータ301に印加する。したがって、第2印加回路510から電動モータ301への電圧印加に不具合が生じても、ブレード筐体BH1は、回転動作を適切に継続することができる。
If the control principle of the fourth embodiment is followed, the first application circuit 410 may apply the voltage exclusively to the electric motor 301 in the absence of a malfunction. In this case, after a failure occurs in the voltage application from the first application circuit 410 to the electric motor 301, the second application circuit 510 applies a voltage to the electric motor 301. Therefore, even if a failure occurs in the voltage application from the first application circuit 410 to the electric motor 301, the blade casing BH1 can continue the rotation operation appropriately. Alternatively, the second application circuit 510 may apply the voltage exclusively to the electric motor 301. In this case, after a failure occurs in the voltage application from the second application circuit 510 to the electric motor 301, the first application circuit 410 applies a voltage to the electric motor 301. Therefore, even if a problem occurs in the voltage application from the second application circuit 510 to the electric motor 301, the blade casing BH1 can continue the rotation operation appropriately.
第5実施形態の制御原理に従うならば、不具合の不存在下において、第1印加回路410は、第2印加回路510と協働して、電圧を、電動モータ301に印加してもよい。第1印加回路410及び第2印加回路510のうち一方に不具合が生ずるならば、電動モータ301は、第1印加回路410及び第2印加回路510のうち他方によって駆動される。したがって、第1印加回路410及び第2印加回路510のうち一方に不具合が生じても、ブレード筐体BH1は、回転動作を適切に継続することができる。
If the control principle of the fifth embodiment is followed, the first application circuit 410 may apply a voltage to the electric motor 301 in cooperation with the second application circuit 510 in the absence of a malfunction. If a malfunction occurs in one of the first application circuit 410 and the second application circuit 510, the electric motor 301 is driven by the other of the first application circuit 410 and the second application circuit 510. Therefore, even if one of the first application circuit 410 and the second application circuit 510 has a problem, the blade housing BH1 can continue the rotation operation appropriately.
第3印加回路420及び第4印加回路520それぞれは、電圧を、電動モータ302に印加する。第5印加回路430及び第6印加回路530それぞれは、電圧を、電動モータ303に印加する。第1印加回路410及び第2印加回路510の組と同様に、第3印加回路420及び第4印加回路520の組並びに第5印加回路430及び第6印加回路530の組は、第4実施形態及び/又は第5実施形態に関連して説明された制御原理の下で、電動モータ302,303に回転力をそれぞれ発生させることができる。したがって、上述の第1印加回路410及び第2印加回路510の組に対する説明は、これらの組に援用される。
Each of the third application circuit 420 and the fourth application circuit 520 applies a voltage to the electric motor 302. Each of the fifth application circuit 430 and the sixth application circuit 530 applies a voltage to the electric motor 303. Similar to the set of the first applying circuit 410 and the second applying circuit 510, the set of the third applying circuit 420 and the fourth applying circuit 520 and the set of the fifth applying circuit 430 and the sixth applying circuit 530 are the fourth embodiment. And / or, under the control principle described in connection with the fifth embodiment, the electric motors 302 and 303 can each generate a rotational force. Therefore, the above description of the first application circuit 410 and the second application circuit 510 is incorporated in these sets.
第4実施形態の制御原理に従うならば、不具合の不存在下において、第5印加回路430は、電圧を、電動モータ303に専ら印加してもよい。この場合、第5印加回路430から電動モータ303への電圧印加に不具合が生じた後、第6印加回路530は、電圧を、電動モータ303に印加する。したがって、第5印加回路430から電動モータ303への電圧印加に不具合が生じても、ブレード筐体BH3は、回転動作を適切に継続することができる。代替的に、第6印加回路530は、電圧を、電動モータ303に専ら印加してもよい。この場合、第6印加回路530から電動モータ303への電圧印加に不具合が生じた後、第5印加回路430は、電圧を、電動モータ303に印加する。したがって、第6印加回路530から電動モータ303への電圧印加に不具合が生じても、ブレード筐体BH3は、回転動作を適切に継続することができる。
If the control principle of the fourth embodiment is followed, the fifth application circuit 430 may apply the voltage exclusively to the electric motor 303 in the absence of a malfunction. In this case, after a failure occurs in the voltage application from the fifth application circuit 430 to the electric motor 303, the sixth application circuit 530 applies a voltage to the electric motor 303. Therefore, even if a failure occurs in the voltage application from the fifth application circuit 430 to the electric motor 303, the blade casing BH3 can continue the rotation operation appropriately. Alternatively, the sixth application circuit 530 may apply the voltage exclusively to the electric motor 303. In this case, after a failure occurs in the voltage application from the sixth application circuit 530 to the electric motor 303, the fifth application circuit 430 applies a voltage to the electric motor 303. Therefore, even if a failure occurs in the voltage application from the sixth application circuit 530 to the electric motor 303, the blade casing BH3 can continue the rotation operation appropriately.
第5実施形態の制御原理に従うならば、不具合の不存在下において、第5印加回路430は、第6印加回路530と協働して、電圧を、電動モータ303に印加してもよい。第5印加回路430及び第6印加回路530のうち一方に不具合が生ずるならば、電動モータ303は、第5印加回路430及び第6印加回路530のうち他方によって駆動される。したがって、第5印加回路430及び第6印加回路530のうち一方に不具合が生じても、ブレード筐体BH3は、回転動作を適切に継続することができる。
If the control principle of the fifth embodiment is followed, the fifth application circuit 430 may apply a voltage to the electric motor 303 in cooperation with the sixth application circuit 530 in the absence of a malfunction. If a malfunction occurs in one of the fifth application circuit 430 and the sixth application circuit 530, the electric motor 303 is driven by the other of the fifth application circuit 430 and the sixth application circuit 530. Therefore, even if one of the fifth application circuit 430 and the sixth application circuit 530 has a problem, the blade housing BH3 can continue the rotation operation appropriately.
駆動装置100Dは、演算回路730と、第1決定回路740と、第2決定回路750と、を含む。演算回路730は、ブレード筐体BH1,BH2,BH3それぞれの現在位置、ナセル筐体NCHの現在位置、風向や風力といった様々なデータを風車機器WML(図2を参照)から受け取ってもよい。演算回路730は、風車機器WMLから受け取ったデータに応じて、ブレード筐体BH1,BH2,BH3の目標回転位置を算出する。ブレード筐体BH1は、電動モータ301、減速機601及びピニオン210によって、ブレード筐体BH1の長手方向軸周りに回転され、演算回路730によって算出された目標回転位置に到達する。ブレード筐体BH2は、電動モータ302、減速機602及びピニオン220によって、ブレード筐体BH2の長手方向軸周りに回転され、演算回路730によって算出された目標回転位置に到達する。ブレード筐体BH3は、電動モータ303、減速機603及びピニオン230によって、ブレード筐体BH3の長手方向軸周りに回転され、演算回路730によって算出された目標回転位置に到達する。
The driving device 100D includes an arithmetic circuit 730, a first determination circuit 740, and a second determination circuit 750. The arithmetic circuit 730 may receive various data such as the current position of each of the blade casings BH1, BH2, and BH3, the current position of the nacelle casing NCH, the wind direction, and the wind force from the windmill device WML (see FIG. 2). The arithmetic circuit 730 calculates target rotation positions of the blade casings BH1, BH2, and BH3 according to the data received from the windmill device WML. The blade housing BH1 is rotated around the longitudinal axis of the blade housing BH1 by the electric motor 301, the speed reducer 601 and the pinion 210, and reaches the target rotation position calculated by the arithmetic circuit 730. The blade housing BH2 is rotated around the longitudinal axis of the blade housing BH2 by the electric motor 302, the speed reducer 602, and the pinion 220, and reaches the target rotation position calculated by the arithmetic circuit 730. The blade housing BH3 is rotated around the longitudinal axis of the blade housing BH3 by the electric motor 303, the speed reducer 603, and the pinion 230, and reaches the target rotation position calculated by the arithmetic circuit 730.
第4実施形態の制御原理に従うならば、不具合の不存在下において、算出された目標回転位置を表すデータは、演算回路730から第1決定回路740へ専ら伝達されてもよい。第1決定回路740は、演算回路730から受け取ったデータから、電動モータ301,302,303へ印加される電圧の大きさを決定する。決定された電圧の大きさを表す信号は、第1決定回路740から、第1印加回路410、第3印加回路420及び第5印加回路430へ出力される。第1印加回路410、第3印加回路420及び第5印加回路430は、第1決定回路740から受け取った信号に応じて、電動モータ301,302,303へ電圧をそれぞれ印加する。
If the control principle of the fourth embodiment is followed, the data representing the calculated target rotational position may be transmitted exclusively from the arithmetic circuit 730 to the first determination circuit 740 in the absence of a malfunction. The first determination circuit 740 determines the magnitude of the voltage applied to the electric motors 301, 302, 303 from the data received from the arithmetic circuit 730. A signal indicating the magnitude of the determined voltage is output from the first determination circuit 740 to the first application circuit 410, the third application circuit 420, and the fifth application circuit 430. The first application circuit 410, the third application circuit 420, and the fifth application circuit 430 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the first determination circuit 740.
演算回路730は、第1決定回路740から電動モータ301,302,303までの電気的な伝達経路に不具合が生じているか否かを検出してもよい。様々な既知の検出技術が、第1決定回路740から電動モータ301,302,303までの電気的な伝達経路中の不具合の発生の検出に適用されてもよい。本実施形態の原理は、不具合の発生を検出するための特定の技術に限定されない。
The arithmetic circuit 730 may detect whether or not a failure has occurred in the electrical transmission path from the first determination circuit 740 to the electric motors 301, 302, and 303. Various known detection techniques may be applied to detect the occurrence of a failure in the electrical transmission path from the first determination circuit 740 to the electric motors 301, 302, and 303. The principle of this embodiment is not limited to a specific technique for detecting the occurrence of a malfunction.
第1決定回路740から電動モータ301,302,303までの電気的な伝達経路に不具合が生ずるならば、演算回路730は、算出された目標回転位置を表すデータの出力先を、第1決定回路740から第2決定回路750へ切り替えてもよい。第2決定回路750は、演算回路730から受け取ったデータから、電動モータ301,302,303へ印加される電圧の大きさを決定する。決定された電圧の大きさを表す信号は、第2決定回路750から、第2印加回路510、第4印加回路520及び第6印加回路530へ出力される。第2印加回路510、第4印加回路520及び第6印加回路530は、第2決定回路750から受け取った信号に応じて、電動モータ301,302,303へ電圧をそれぞれ印加する。
If a failure occurs in the electrical transmission path from the first determination circuit 740 to the electric motors 301, 302, and 303, the arithmetic circuit 730 determines the output destination of the data representing the calculated target rotation position as the first determination circuit. Switching from 740 to the second decision circuit 750 may be performed. The second determination circuit 750 determines the magnitude of the voltage applied to the electric motors 301, 302, 303 from the data received from the arithmetic circuit 730. A signal indicating the magnitude of the determined voltage is output from the second determination circuit 750 to the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530. The second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the second determination circuit 750.
代替的に、第4実施形態の制御原理に従うならば、不具合の不存在下において、目標回転位置を表すデータは、演算回路730から第2決定回路750へ専ら伝達されてもよい。第2決定回路750は、演算回路730から受け取ったデータから、電動モータ301,302,303へ印加される電圧の大きさを決定する。決定された電圧の大きさを表す信号は、第2決定回路750から、第2印加回路510、第4印加回路520及び第6印加回路530へ出力される。第2印加回路510、第4印加回路520及び第6印加回路530は、第2決定回路750から受け取った信号に応じて、電動モータ301,302,303へ電圧をそれぞれ印加する。
Alternatively, if the control principle of the fourth embodiment is followed, data representing the target rotational position may be transmitted exclusively from the arithmetic circuit 730 to the second determination circuit 750 in the absence of a malfunction. The second determination circuit 750 determines the magnitude of the voltage applied to the electric motors 301, 302, 303 from the data received from the arithmetic circuit 730. A signal indicating the magnitude of the determined voltage is output from the second determination circuit 750 to the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530. The second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the second determination circuit 750.
演算回路730は、第2決定回路750から電動モータ301,302,303までの電気的な伝達経路に不具合が生じているか否かを検出してもよい。様々な既知の検出技術が、第2決定回路750から電動モータ301,302,303までの電気的な伝達経路中の不具合の発生の検出に適用されてもよい。本実施形態の原理は、不具合の発生を検出するための特定の技術に限定されない。
The arithmetic circuit 730 may detect whether or not a failure has occurred in the electrical transmission path from the second determination circuit 750 to the electric motors 301, 302, and 303. Various known detection techniques may be applied to detect the occurrence of a fault in the electrical transmission path from the second determination circuit 750 to the electric motors 301, 302, and 303. The principle of this embodiment is not limited to a specific technique for detecting the occurrence of a malfunction.
第2決定回路750から電動モータ301,302,303までの電気的な伝達経路に不具合が生ずるならば、演算回路730は、算出された目標回転位置を表すデータの出力先を、第2決定回路750から第1決定回路740へ切り替えてもよい。第1決定回路740は、演算回路730から受け取ったデータから、電動モータ301,302,303へ印加される電圧の大きさを決定する。決定された電圧の大きさを表す信号は、第1決定回路740から、第1印加回路410、第3印加回路420及び第5印加回路430へ出力される。第1印加回路410、第3印加回路420及び第5印加回路430は、第1決定回路740から受け取った信号に応じて、電動モータ301,302,303へ電圧をそれぞれ印加する。
If a failure occurs in the electrical transmission path from the second determination circuit 750 to the electric motors 301, 302, and 303, the arithmetic circuit 730 determines the output destination of the data representing the calculated target rotation position as the second determination circuit. Switching from 750 to the first decision circuit 740 may be performed. The first determination circuit 740 determines the magnitude of the voltage applied to the electric motors 301, 302, 303 from the data received from the arithmetic circuit 730. A signal indicating the magnitude of the determined voltage is output from the first determination circuit 740 to the first application circuit 410, the third application circuit 420, and the fifth application circuit 430. The first application circuit 410, the third application circuit 420, and the fifth application circuit 430 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the first determination circuit 740.
第5実施形態の制御原理に従うならば、不具合の不存在下において、算出された目標回転位置を表すデータは、演算回路730から、第1決定回路740及び第2決定回路750へ伝達されてもよい。第1決定回路740及び第2決定回路750それぞれは、演算回路730から受け取ったデータから、電動モータ301,302,303へ印加される電圧の大きさを決定する。決定された電圧の大きさを表す信号は、第1決定回路740から、第1印加回路410、第3印加回路420及び第5印加回路430へ出力され、且つ、第2決定回路750から、第2印加回路510、第4印加回路520及び第6印加回路530へ出力される。第1印加回路410、第3印加回路420及び第5印加回路430は、第1決定回路740から受け取った信号に応じて、電動モータ301,302,303へ電圧をそれぞれ印加する。第2印加回路510、第4印加回路520及び第6印加回路530は、第2決定回路750から受け取った信号に応じて、電動モータ301,302,303へ電圧をそれぞれ印加する。
If the control principle of the fifth embodiment is followed, the data representing the calculated target rotational position can be transmitted from the arithmetic circuit 730 to the first determination circuit 740 and the second determination circuit 750 in the absence of a problem. Good. Each of the first determination circuit 740 and the second determination circuit 750 determines the magnitude of the voltage applied to the electric motors 301, 302, and 303 from the data received from the arithmetic circuit 730. A signal indicating the magnitude of the determined voltage is output from the first determination circuit 740 to the first application circuit 410, the third application circuit 420, and the fifth application circuit 430, and from the second determination circuit 750, And output to the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530. The first application circuit 410, the third application circuit 420, and the fifth application circuit 430 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the first determination circuit 740. The second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 apply voltages to the electric motors 301, 302, and 303, respectively, according to the signal received from the second determination circuit 750.
第1決定回路740から電動モータ301,302,303までの電気的な伝達経路に不具合が生ずるならば、演算回路730は、算出された目標回転位置を表すデータの出力先を、第2決定回路750のみに設定してもよい。この場合、演算回路730は、不具合の発生を、第2決定回路750へ通知してもよい。第2決定回路750は、不具合の発生の通知に応じて、電圧の大きさを増大させてもよい。この結果、増大された電圧は、第2印加回路510、第4印加回路520及び第6印加回路530から電動モータ301,302,303へ印加される。
If a failure occurs in the electrical transmission path from the first determination circuit 740 to the electric motors 301, 302, and 303, the arithmetic circuit 730 determines the output destination of data representing the calculated target rotation position as the second determination circuit. Only 750 may be set. In this case, the arithmetic circuit 730 may notify the second determination circuit 750 of the occurrence of the problem. The second determination circuit 750 may increase the magnitude of the voltage in response to the notification of the occurrence of the malfunction. As a result, the increased voltage is applied from the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 to the electric motors 301, 302, and 303.
第2決定回路750から電動モータ301,302,303までの電気的な伝達経路に不具合が生ずるならば、演算回路730は、算出された目標回転位置を表すデータの出力先を、第1決定回路740のみに設定してもよい。この場合、演算回路730は、不具合の発生を、第1決定回路740へ通知してもよい。第1決定回路740は、不具合の発生の通知に応じて、電圧の大きさを増大させてもよい。この結果、増大された電圧は、第1印加回路410、第3印加回路420及び第5印加回路430から電動モータ301,302,303へ印加される。
If a failure occurs in the electrical transmission path from the second determination circuit 750 to the electric motors 301, 302, and 303, the arithmetic circuit 730 determines the output destination of the data representing the calculated target rotation position as the first determination circuit. Only 740 may be set. In this case, the arithmetic circuit 730 may notify the first determination circuit 740 of the occurrence of the malfunction. The first determination circuit 740 may increase the magnitude of the voltage in response to the notification of the occurrence of the malfunction. As a result, the increased voltage is applied from the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 to the electric motors 301, 302, and 303.
本実施形態において、制御部は、演算回路730、第1決定回路740及び第2決定回路750によって例示される。
In the present embodiment, the control unit is exemplified by the arithmetic circuit 730, the first determination circuit 740, and the second determination circuit 750.
駆動装置100Dは、第1蓄電器810と、第2蓄電器820と、を備える。第1印加回路410、第3印加回路420及び第5印加回路430の組は、第1蓄電器810に電気的に接続される。第1印加回路410、第3印加回路420及び第5印加回路430の組は、第1蓄電器810に蓄えられた電力を用いて、電動モータ301,302,303に電圧を印加する。第2印加回路510、第4印加回路520及び第6印加回路530の組は、第2蓄電器820に電気的に接続される。第2印加回路510、第4印加回路520及び第6印加回路530の組は、第2蓄電器820に蓄えられた電力を用いて、電動モータ301,302,303に電圧を印加する。本実施形態において、蓄電部は、第1蓄電器810と第2蓄電器820とによって例示される。
The driving device 100D includes a first battery 810 and a second battery 820. A set of the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 is electrically connected to the first battery 810. A set of the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 applies a voltage to the electric motors 301, 302, and 303 using the electric power stored in the first battery 810. A set of the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 is electrically connected to the second capacitor 820. A set of the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 applies a voltage to the electric motors 301, 302, and 303 using the electric power stored in the second battery 820. In the present embodiment, the power storage unit is exemplified by the first battery 810 and the second battery 820.
第1蓄電器810及び第2蓄電器820それぞれは、演算回路730を通じて、電力を受け取ってもよい。代替的に、他の電力供給技術が、第1蓄電器810及び第2蓄電器820への電力供給に用いられてもよい。本実施形態の原理は、第1蓄電器810及び第2蓄電器820への特定の電力供給技術に限定されない。
Each of the first capacitor 810 and the second capacitor 820 may receive power through the arithmetic circuit 730. Alternatively, other power supply technologies may be used to supply power to the first battery 810 and the second battery 820. The principle of this embodiment is not limited to a specific power supply technology to the first battery 810 and the second battery 820.
第1蓄電器810及び第2蓄電器820それぞれは、ブレード筐体BH1,BH2,BH3が任意の回転位置からフェザ位置(ブレード筐体BH1,BH2,BH3が風から受ける力が最小限化される位置)に戻るのに必要とされる電力を蓄えることができる容量を有する。したがって、第1決定回路740から電動モータ301,302,303までの電気的な伝達経路及び第2決定回路750から電動モータ301,302,303までの電気的な伝達経路のうち一方に深刻な不具合が生じても、ブレード筐体BH1,BH2,BH3は、フェザ位置に戻ることができる。
In each of the first capacitor 810 and the second capacitor 820, the blade housings BH1, BH2, and BH3 are in a feather position from an arbitrary rotational position (a position at which the force that the blade housings BH1, BH2, and BH3 receive from the wind is minimized). It has the capacity to store the power needed to return to Therefore, a serious problem occurs in one of the electrical transmission path from the first determination circuit 740 to the electric motors 301, 302, and 303 and the electrical transmission path from the second determination circuit 750 to the electric motors 301, 302, and 303. Even if this occurs, the blade housings BH1, BH2, and BH3 can return to the feather position.
<第7実施形態>
第1実施形態乃至第6実施形態の技術原理は、1つの電動モータ内に配置された2つのコイル部を利用して、不具合発生時にも、ブレード筐体を駆動することを可能にする。代替的に、複数の電動モータによって、不具合発生時のブレード筐体の駆動が実現されてもよい。第7実施形態において、複数の電動モータを備える駆動装置が説明される。 <Seventh embodiment>
The technical principles of the first to sixth embodiments make it possible to drive the blade casing even when a failure occurs, using two coil portions arranged in one electric motor. Alternatively, the blade housing may be driven when a problem occurs by a plurality of electric motors. In the seventh embodiment, a drive device including a plurality of electric motors will be described.
第1実施形態乃至第6実施形態の技術原理は、1つの電動モータ内に配置された2つのコイル部を利用して、不具合発生時にも、ブレード筐体を駆動することを可能にする。代替的に、複数の電動モータによって、不具合発生時のブレード筐体の駆動が実現されてもよい。第7実施形態において、複数の電動モータを備える駆動装置が説明される。 <Seventh embodiment>
The technical principles of the first to sixth embodiments make it possible to drive the blade casing even when a failure occurs, using two coil portions arranged in one electric motor. Alternatively, the blade housing may be driven when a problem occurs by a plurality of electric motors. In the seventh embodiment, a drive device including a plurality of electric motors will be described.
図12は、第7実施形態の駆動装置100Eの概念的なブロック図である。第1実施形態及び第7実施形態の間で共通して用いられる符号は、当該共通の符号が付された要素が、第1実施形態と同一の機能を有することを意味する。したがって、第1実施形態の説明は、これらの要素に援用される。図12を参照して、駆動装置100Eが説明される。図12中の実線の矢印は、電気的なエネルギの伝達を概念的に表す。図12中の鎖線の矢印は、機械的なエネルギの伝達を概念的に表す。
FIG. 12 is a conceptual block diagram of the driving apparatus 100E of the seventh embodiment. The code | symbol used in common between 1st Embodiment and 7th Embodiment means that the element to which the said common code | symbol was attached | subjected has the same function as 1st Embodiment. Therefore, description of 1st Embodiment is used for these elements. The drive device 100E will be described with reference to FIG. Solid arrows in FIG. 12 conceptually represent electrical energy transfer. A chain line arrow in FIG. 12 conceptually represents mechanical energy transfer.
第1実施形態と同様に、駆動装置100Eは、ピニオン200と、印加部400,500と、を備える。第1実施形態の説明は、ピニオン200及び印加部400,500に援用される。第2実施形態に関連して説明された接続技術は、ピニオン200と風車機器(図示せず)の筐体(図示せず)に取り付けられたリングギアとの接続に適用されてもよい。
As in the first embodiment, the driving device 100E includes a pinion 200 and application units 400 and 500. The description of the first embodiment is applied to the pinion 200 and the application units 400 and 500. The connection technique described in relation to the second embodiment may be applied to the connection between the pinion 200 and a ring gear attached to a casing (not shown) of a windmill device (not shown).
駆動装置100は、電動モータ350,360と、差動歯車装置630と、を更に備える。電動モータ350は、印加部400から電圧印加を受ける。電動モータ360は、印加部500から電圧印加を受ける。これらの電圧印加の結果、電動モータ350,360それぞれは、回転力を発生させる。回転力は、電動モータ350,360それぞれから差動歯車装置630へ伝達される。差動歯車装置630は、電動モータ350,360それぞれからの回転力に応じて、ピニオン200を回転させる。本実施形態において、第1電動モータは、電動モータ350,360のうち一方によって例示される。第2電動モータは、電動モータ350,360のうち他方によって例示される。第1回転力は、電動モータ350,360のうち一方から出力される回転力によって例示される。第2回転力は、電動モータ350,360のうち他方から出力される回転力によって例示される。本実施形態において、動力伝達装置は、差動歯車装置630によって例示される。代替的に、動力伝達装置は、クラッチ機構や、電動モータ350,360のうち一方或いは両方が生成した回転力をピニオン200へ伝達することが可能な他の機構であってもよい。本実施形態の原理は、動力伝達装置として用いられる特定の装置に限定されない。
The driving device 100 further includes electric motors 350 and 360 and a differential gear device 630. The electric motor 350 receives voltage application from the application unit 400. The electric motor 360 receives voltage application from the application unit 500. As a result of the voltage application, each of the electric motors 350 and 360 generates a rotational force. The rotational force is transmitted from each of the electric motors 350 and 360 to the differential gear device 630. The differential gear device 630 rotates the pinion 200 according to the rotational force from each of the electric motors 350 and 360. In the present embodiment, the first electric motor is exemplified by one of the electric motors 350 and 360. The second electric motor is exemplified by the other of the electric motors 350 and 360. The first rotational force is exemplified by the rotational force output from one of the electric motors 350 and 360. The second rotational force is exemplified by the rotational force output from the other of the electric motors 350 and 360. In the present embodiment, the power transmission device is exemplified by a differential gear device 630. Alternatively, the power transmission device may be a clutch mechanism or another mechanism capable of transmitting the rotational force generated by one or both of the electric motors 350 and 360 to the pinion 200. The principle of this embodiment is not limited to a specific device used as a power transmission device.
第4実施形態に関連して説明された制御原理は、駆動装置100Eにも適用可能である。不具合の不存在下において、ピニオン200は、印加部400、電動モータ350及び差動歯車装置630の組によって駆動されてもよい。その後、印加部400、電動モータ350及び差動歯車装置630の組の中で不具合が発生するならば、ピニオン200は、印加部500、電動モータ360及び差動歯車装置630の組によって駆動される。代替的に、不具合の不存在下において、ピニオン200は、印加部500、電動モータ360及び差動歯車装置630の組によって駆動されてもよい。その後、印加部500、電動モータ360及び差動歯車装置630の組の中で不具合が発生するならば、ピニオン200は、印加部400、電動モータ350及び差動歯車装置630の組によって駆動される。
The control principle described in relation to the fourth embodiment can also be applied to the drive device 100E. In the absence of a defect, the pinion 200 may be driven by a set of the application unit 400, the electric motor 350, and the differential gear device 630. Thereafter, if a problem occurs in the combination of the application unit 400, the electric motor 350, and the differential gear device 630, the pinion 200 is driven by the combination of the application unit 500, the electric motor 360, and the differential gear device 630. . Alternatively, the pinion 200 may be driven by the combination of the application unit 500, the electric motor 360, and the differential gear device 630 in the absence of a malfunction. Thereafter, if a problem occurs in the combination of the application unit 500, the electric motor 360, and the differential gear device 630, the pinion 200 is driven by the combination of the application unit 400, the electric motor 350, and the differential gear device 630. .
第5実施形態に関連して説明された制御原理は、駆動装置100Eにも適用可能である。不具合の不存在下において、印加部400は、印加部500から電動モータ360への電圧印加に同期して、電動モータ350に電圧を印加してもよい。この結果、電動モータ350は、電動モータ360と協働して、差動歯車装置630及びピニオン200を駆動することができる。
The control principle described in relation to the fifth embodiment can also be applied to the driving device 100E. In the absence of a defect, the application unit 400 may apply a voltage to the electric motor 350 in synchronization with voltage application from the application unit 500 to the electric motor 360. As a result, the electric motor 350 can drive the differential gear device 630 and the pinion 200 in cooperation with the electric motor 360.
印加部400及び/又は電動モータ350に不具合が生ずるならば、ピニオン200は、印加部500、電動モータ360及び差動歯車装置630の組によって駆動されてもよい。このとき、印加部500は、電動モータ360から出力されるトルクを増大させてもよい。
If a failure occurs in the application unit 400 and / or the electric motor 350, the pinion 200 may be driven by the combination of the application unit 500, the electric motor 360, and the differential gear device 630. At this time, the application unit 500 may increase the torque output from the electric motor 360.
印加部500及び/又は電動モータ360に不具合が生ずるならば、ピニオン200は、印加部400、電動モータ350及び差動歯車装置630の組によって駆動されてもよい。このとき、印加部400は、電動モータ350から出力されるトルクを増大させてもよい。
If a failure occurs in the application unit 500 and / or the electric motor 360, the pinion 200 may be driven by the combination of the application unit 400, the electric motor 350, and the differential gear device 630. At this time, the application unit 400 may increase the torque output from the electric motor 350.
<第8実施形態>
第7実施形態に関連して説明された駆動装置は、差動歯車装置を備える。設計者は、様々な構造の差動歯車装置を利用して、駆動装置を設計することができる。第8実施形態において、差動歯車装置の例示的な構造が説明される。 <Eighth Embodiment>
The drive device described in connection with the seventh embodiment includes a differential gear device. The designer can design the drive device using the differential gear device having various structures. In the eighth embodiment, an exemplary structure of the differential gear device will be described.
第7実施形態に関連して説明された駆動装置は、差動歯車装置を備える。設計者は、様々な構造の差動歯車装置を利用して、駆動装置を設計することができる。第8実施形態において、差動歯車装置の例示的な構造が説明される。 <Eighth Embodiment>
The drive device described in connection with the seventh embodiment includes a differential gear device. The designer can design the drive device using the differential gear device having various structures. In the eighth embodiment, an exemplary structure of the differential gear device will be described.
図13は、差動歯車装置630の例示的な構造を表す概略的な断面図である。図12及び図13を参照して、差動歯車装置630が説明される。
FIG. 13 is a schematic cross-sectional view illustrating an exemplary structure of the differential gear device 630. The differential gear device 630 will be described with reference to FIGS. 12 and 13.
差動歯車装置630は、筐体640と、ギアケース650と、第1入力部660と、第2入力部670と、内部ギアシャフト680と、出力シャフト690と、を含む。
The differential gear device 630 includes a housing 640, a gear case 650, a first input unit 660, a second input unit 670, an internal gear shaft 680, and an output shaft 690.
図13は、第1伝達シャフト371と、第2伝達シャフト372と、を示す。第1伝達シャフト371は、電動モータ350から差動歯車装置630へ回転力を伝達する。第2伝達シャフト372は、電動モータ360から差動歯車装置630へ回転力を伝達する。
FIG. 13 shows a first transmission shaft 371 and a second transmission shaft 372. The first transmission shaft 371 transmits the rotational force from the electric motor 350 to the differential gear device 630. The second transmission shaft 372 transmits the rotational force from the electric motor 360 to the differential gear device 630.
第1伝達シャフト371は、電動モータ350に接続されるギア構造の一部であってもよい。代替的に、第1伝達シャフト371は、電動モータ350の回転シャフトであってもよい。
The first transmission shaft 371 may be a part of a gear structure connected to the electric motor 350. Alternatively, the first transmission shaft 371 may be a rotating shaft of the electric motor 350.
第2伝達シャフト372は、電動モータ360に接続されるギア構造の一部であってもよい。代替的に、第2伝達シャフト372は、電動モータ360の回転シャフトであってもよい。
The second transmission shaft 372 may be a part of a gear structure connected to the electric motor 360. Alternatively, the second transmission shaft 372 may be a rotating shaft of the electric motor 360.
第1伝達シャフト371は、シャフト部373と、ギア部374と、を含む。ギア部374は、シャフト部373の先端に配置される。ギア部374は、第1入力部660に接続される。
The first transmission shaft 371 includes a shaft portion 373 and a gear portion 374. The gear part 374 is disposed at the tip of the shaft part 373. The gear unit 374 is connected to the first input unit 660.
第2伝達シャフト372は、シャフト部375と、ギア部376と、を含む。ギア部376は、シャフト部375の先端に配置される。ギア部376は、第2入力部670に接続される。
The second transmission shaft 372 includes a shaft portion 375 and a gear portion 376. The gear part 376 is disposed at the tip of the shaft part 375. The gear unit 376 is connected to the second input unit 670.
第1入力部660は、サポートシャフト661と、外歯車662と、内歯車663と、を含む。サポートシャフト661は、筐体640に接続された基端部と、ギアケース650内に配置された先端部と、を含む。外歯車662は、筐体640とギアケース650との間においてサポートシャフト661に固定される。外歯車662は、第1伝達シャフト371のギア部374に噛み合う。したがって、サポートシャフト661及び外歯車662は、第1伝達シャフト371とともに回転することができる。
The first input unit 660 includes a support shaft 661, an external gear 662, and an internal gear 663. The support shaft 661 includes a proximal end portion connected to the housing 640 and a distal end portion disposed in the gear case 650. The external gear 662 is fixed to the support shaft 661 between the housing 640 and the gear case 650. The external gear 662 meshes with the gear portion 374 of the first transmission shaft 371. Accordingly, the support shaft 661 and the external gear 662 can rotate together with the first transmission shaft 371.
内歯車663は、ギアケース650内で、サポートシャフト661に固定される。したがって、内歯車663は、サポートシャフト661及び外歯車662とともに回転することができる。
The internal gear 663 is fixed to the support shaft 661 in the gear case 650. Therefore, the internal gear 663 can rotate together with the support shaft 661 and the external gear 662.
内歯車663は、ギアケース650内で、内部ギアシャフト680に噛み合う。したがって、内歯車663は、サポートシャフト661及び外歯車662から内部ギアシャフト680へ回転力を伝達することができる。
The internal gear 663 meshes with the internal gear shaft 680 in the gear case 650. Therefore, the internal gear 663 can transmit a rotational force from the support shaft 661 and the external gear 662 to the internal gear shaft 680.
第2入力部670は、サポートシャフト671と、外歯車672と、内歯車673と、を含む。サポートシャフト671は、筐体640に接続された基端部と、ギアケース650内に配置された先端部と、を含む。第2入力部670のサポートシャフト671は、第1入力部660のサポートシャフト661の延長線上に配置される。したがって、第2入力部670のサポートシャフト671は、第1入力部660のサポートシャフト661と協働して、ギアケース650を保持することができる。
The second input unit 670 includes a support shaft 671, an external gear 672, and an internal gear 673. The support shaft 671 includes a proximal end portion connected to the housing 640 and a distal end portion disposed in the gear case 650. The support shaft 671 of the second input unit 670 is disposed on an extension line of the support shaft 661 of the first input unit 660. Accordingly, the support shaft 671 of the second input unit 670 can hold the gear case 650 in cooperation with the support shaft 661 of the first input unit 660.
外歯車672は、筐体640とギアケース650との間においてサポートシャフト671に固定される。外歯車672は、第2伝達シャフト372のギア部376に噛み合う。したがって、サポートシャフト671及び外歯車672は、第2伝達シャフト372とともに回転することができる。
The external gear 672 is fixed to the support shaft 671 between the housing 640 and the gear case 650. The external gear 672 meshes with the gear portion 376 of the second transmission shaft 372. Accordingly, the support shaft 671 and the external gear 672 can rotate together with the second transmission shaft 372.
内歯車673は、ギアケース650内で、サポートシャフト671に固定される。したがって、内歯車673は、サポートシャフト671及び外歯車672とともに回転することができる。
The internal gear 673 is fixed to the support shaft 671 in the gear case 650. Therefore, the internal gear 673 can rotate together with the support shaft 671 and the external gear 672.
内歯車673は、ギアケース650内で、内部ギアシャフト680に噛み合う。したがって、内歯車673は、サポートシャフト671及び外歯車672から内部ギアシャフト680へ回転力を伝達することができる。
The internal gear 673 meshes with the internal gear shaft 680 in the gear case 650. Therefore, the internal gear 673 can transmit a rotational force from the support shaft 671 and the external gear 672 to the internal gear shaft 680.
内部ギアシャフト680は、シャフト部681と、ギア682,683と、を含む。シャフト部681は、ギアケース650に接続される。ギア682,683は、内歯車663,673にそれぞれ接続される。したがって、内部ギアシャフト680は、内歯車663,664の回転に応じて、ギアケース650を回転させることができる。
The internal gear shaft 680 includes a shaft portion 681 and gears 682 and 683. The shaft portion 681 is connected to the gear case 650. The gears 682 and 683 are connected to the internal gears 663 and 673, respectively. Therefore, the internal gear shaft 680 can rotate the gear case 650 according to the rotation of the internal gears 663 and 664.
ギアケース650は、収容壁651と、ギア部652と、を含む。収容壁651は、内部ギアシャフト680及び内歯車663,673が収容される収容空間を規定する。内部ギアシャフト680は、収容壁651に接続される。ギア部652は、収容壁651から外方に延出する。ギア部652は、出力シャフト690に接続される。したがって、ギアケース650の回転は、出力シャフト690へ伝達される。
The gear case 650 includes an accommodation wall 651 and a gear portion 652. The storage wall 651 defines a storage space in which the internal gear shaft 680 and the internal gears 663 and 673 are stored. The internal gear shaft 680 is connected to the accommodation wall 651. The gear portion 652 extends outward from the housing wall 651. The gear portion 652 is connected to the output shaft 690. Accordingly, the rotation of the gear case 650 is transmitted to the output shaft 690.
出力シャフト690は、シャフト部691と、ギア部692と、を含む。出力シャフト690のギア部692は、ギアケース650のギア部652に噛み合う。したがって、ギアケース650の回転は、出力シャフト690のシャフト部691に接続される。シャフト部691は、ピニオン200に直接的又は間接的に接続されてもよい。ピニオン200は、シャフト部691とともに回転することができる。
The output shaft 690 includes a shaft portion 691 and a gear portion 692. The gear portion 692 of the output shaft 690 meshes with the gear portion 652 of the gear case 650. Therefore, the rotation of the gear case 650 is connected to the shaft portion 691 of the output shaft 690. The shaft portion 691 may be directly or indirectly connected to the pinion 200. The pinion 200 can rotate with the shaft portion 691.
駆動装置100Eが、第4実施形態の制御原理の下で動作するならば、不具合の不存在下において、ギアケース650は、第1入力部660及び第2入力部670のうち一方への回転力の入力によって回転される。その後、第1入力部660及び第2入力部670のうち一方への回転力の伝達に不具合が生ずるならば、ギアケース650は、第1入力部660及び第2入力部670のうち他方への回転力の入力によって回転される。したがって、第1入力部660及び第2入力部670のうち一方への回転力の伝達に不具合が生じても、回転力は、出力シャフト690を通じて、ギアケース650からピニオン200へ伝達され続ける。
If the driving device 100E operates under the control principle of the fourth embodiment, the gear case 650 can rotate to one of the first input unit 660 and the second input unit 670 in the absence of malfunction. Rotated by input. Thereafter, if a problem occurs in transmission of the rotational force to one of the first input unit 660 and the second input unit 670, the gear case 650 is connected to the other of the first input unit 660 and the second input unit 670. It is rotated by the input of torque. Therefore, even if a failure occurs in the transmission of the rotational force to one of the first input unit 660 and the second input unit 670, the rotational force continues to be transmitted from the gear case 650 to the pinion 200 through the output shaft 690.
駆動装置100Eが、第5実施形態の制御原理の下で動作するならば、不具合の不存在下において、ギアケース650は、第1入力部660及び第2入力部670の両方への回転力の入力によって回転される。その後、第1入力部660及び第2入力部670のうち一方への回転力の伝達に不具合が生ずるならば、ギアケース650は、第1入力部660及び第2入力部670のうち他方への回転力の入力によって回転される。したがって、第1入力部660及び第2入力部670のうち一方への回転力の伝達に不具合が生じても、回転力は、出力シャフト690を通じて、ギアケース650からピニオン200へ伝達され続ける。
If the driving device 100E operates under the control principle of the fifth embodiment, the gear case 650 is free from rotational force applied to both the first input unit 660 and the second input unit 670 in the absence of malfunction. Rotated by input. Thereafter, if a problem occurs in transmission of the rotational force to one of the first input unit 660 and the second input unit 670, the gear case 650 is connected to the other of the first input unit 660 and the second input unit 670. It is rotated by the input of torque. Therefore, even if a failure occurs in the transmission of the rotational force to one of the first input unit 660 and the second input unit 670, the rotational force continues to be transmitted from the gear case 650 to the pinion 200 through the output shaft 690.
<第9実施形態>
第7実施形態の駆動装置は、差動歯車装置を備える。設計者は、減速機を用いて、差動歯車装置から出力されるトルクを増大させてもよい。第9実施形態において、減速機を備える駆動装置が説明される。 <Ninth Embodiment>
The drive device according to the seventh embodiment includes a differential gear device. The designer may increase the torque output from the differential gear device using a reduction gear. In the ninth embodiment, a drive device including a reduction gear will be described.
第7実施形態の駆動装置は、差動歯車装置を備える。設計者は、減速機を用いて、差動歯車装置から出力されるトルクを増大させてもよい。第9実施形態において、減速機を備える駆動装置が説明される。 <Ninth Embodiment>
The drive device according to the seventh embodiment includes a differential gear device. The designer may increase the torque output from the differential gear device using a reduction gear. In the ninth embodiment, a drive device including a reduction gear will be described.
図14は、第9実施形態の駆動装置100Fの概念的なブロック図である。第7実施形態及び第9実施形態の間で共通して用いられる符号は、当該共通の符号が付された要素が、第7実施形態と同一の機能を有することを意味する。したがって、第7実施形態の説明は、これらの要素に援用される。図14を参照して、駆動装置100Fが説明される。図14中の実線の矢印は、電気的なエネルギの伝達を概念的に表す。図14中の鎖線の矢印は、機械的なエネルギの伝達を概念的に表す。
FIG. 14 is a conceptual block diagram of the drive device 100F of the ninth embodiment. The code | symbol used in common between 7th Embodiment and 9th Embodiment means that the element to which the said common code | symbol was attached | subjected has the same function as 7th Embodiment. Therefore, description of 7th Embodiment is used for these elements. The drive device 100F will be described with reference to FIG. The solid arrows in FIG. 14 conceptually represent electrical energy transfer. A chain line arrow in FIG. 14 conceptually represents mechanical energy transfer.
第7実施形態と同様に、駆動装置100Fは、ピニオン200と、電動モータ350,360と、印加部400,500と、差動歯車装置630と、を備える。第7実施形態の説明は、これらの要素に援用される。
As in the seventh embodiment, the drive device 100F includes a pinion 200, electric motors 350 and 360, application units 400 and 500, and a differential gear device 630. The description of the seventh embodiment is incorporated in these elements.
駆動装置100Fは、減速機600Fを更に備える。減速機600Fは、差動歯車装置630とピニオン200との間に配置される。減速機600Fは、差動歯車装置630から出力されたトルクを増大させる。増大されたトルクは、減速機600Fからピニオン200へ伝達される。この結果、風車機器(図示せず)は、適切に駆動される。
The driving device 100F further includes a speed reducer 600F. The reduction gear 600 </ b> F is disposed between the differential gear device 630 and the pinion 200. The reduction gear 600F increases the torque output from the differential gear device 630. The increased torque is transmitted from the speed reducer 600F to the pinion 200. As a result, the wind turbine device (not shown) is driven appropriately.
減速機600Fは、遊星歯車減速機、偏心型減速機やトルクを適切に増大させることができる他の減速機であってもよい。本実施形態の原理は、減速機600Fの特定の種類に限定されない。
The speed reducer 600F may be a planetary gear speed reducer, an eccentric speed reducer, or another speed reducer capable of appropriately increasing torque. The principle of the present embodiment is not limited to a specific type of speed reducer 600F.
<第10実施形態>
設計者は、第7実施形態乃至第9実施形態に関連して説明された技術的原理に基づいて、駆動装置の様々なハードウェア構成を設計することができる。第10実施形態において、駆動装置の例示的なハードウェア構成が説明される。 <Tenth Embodiment>
The designer can design various hardware configurations of the driving device based on the technical principle described in relation to the seventh to ninth embodiments. In the tenth embodiment, an exemplary hardware configuration of the drive device will be described.
設計者は、第7実施形態乃至第9実施形態に関連して説明された技術的原理に基づいて、駆動装置の様々なハードウェア構成を設計することができる。第10実施形態において、駆動装置の例示的なハードウェア構成が説明される。 <Tenth Embodiment>
The designer can design various hardware configurations of the driving device based on the technical principle described in relation to the seventh to ninth embodiments. In the tenth embodiment, an exemplary hardware configuration of the drive device will be described.
図15は、第10実施形態の駆動装置100Gの概略的なハードウェア構成を表すブロック図である。第6実施形態及び第10実施形態の間で共通して用いられる符号は、当該共通の符号が付された要素が、第6実施形態と同一の機能を有することを意味する。したがって、第6実施形態の説明は、これらの要素に援用される。図14及び図15を参照して、駆動装置100Gが説明される。
FIG. 15 is a block diagram illustrating a schematic hardware configuration of the driving device 100G according to the tenth embodiment. The code | symbol used in common between 6th Embodiment and 10th Embodiment means that the element to which the said common code | symbol was attached | subjected has the same function as 6th Embodiment. Therefore, description of 6th Embodiment is used for these elements. The drive device 100G will be described with reference to FIGS.
第6実施形態と同様に、駆動装置100Gは、3つのピニオン210,220,230と、3つの減速機601,602,603と、を備える。ピニオン210,220,230は、図14を参照して説明されたピニオン200に対応する。減速機601,602,603それぞれは、図14を参照して説明された減速機600Fに対応する。
As in the sixth embodiment, the drive device 100G includes three pinions 210, 220, and 230, and three speed reducers 601, 602, and 603. The pinions 210, 220, and 230 correspond to the pinion 200 described with reference to FIG. Each of the reduction gears 601, 602, 603 corresponds to the reduction gear 600F described with reference to FIG.
ピニオン210及び減速機601は、ブレード筐体BH1を駆動する。ピニオン220及び減速機602は、ブレード筐体BH2を駆動する。ピニオン230及び減速機603は、ブレード筐体BH3を駆動する。
The pinion 210 and the speed reducer 601 drive the blade casing BH1. The pinion 220 and the speed reducer 602 drive the blade housing BH2. The pinion 230 and the speed reducer 603 drive the blade housing BH3.
第6実施形態と同様に、駆動装置100Gは、演算回路730と、第1決定回路740と、第2決定回路750と、第1印加回路410と、第2印加回路510と、第3印加回路420と、第4印加回路520と、第5印加回路430と、第6印加回路530と、を備える。第6実施形態の説明は、これらの要素に対して援用される。
Similar to the sixth embodiment, the driving device 100G includes an arithmetic circuit 730, a first determination circuit 740, a second determination circuit 750, a first application circuit 410, a second application circuit 510, and a third application circuit. 420, a fourth application circuit 520, a fifth application circuit 430, and a sixth application circuit 530. The description of the sixth embodiment is incorporated for these elements.
駆動装置100Gは、電動モータ351,352,353,361,362,363を備える。電動モータ351,352,353それぞれは、図14を参照して説明された電動モータ350に対応する。電動モータ361,362,363それぞれは、図14を参照して説明された電動モータ360に対応する。
The driving device 100G includes electric motors 351, 352, 353, 361, 362, and 363. Each of the electric motors 351, 352, and 353 corresponds to the electric motor 350 described with reference to FIG. Each of the electric motors 361, 362, and 363 corresponds to the electric motor 360 described with reference to FIG.
電動モータ351は、第1印加回路410からの電圧印加の下で回転力を生成する。電動モータ361は、第2印加回路510からの電圧印加の下で回転力を生成する。電動モータ352は、第3印加回路420からの電圧印加の下で回転力を生成する。電動モータ362は、第4印加回路520からの電圧印加の下で回転力を生成する。電動モータ353は、第5印加回路430からの電圧印加の下で回転力を生成する。電動モータ363は、第6印加回路530からの電圧印加の下で回転力を生成する。
The electric motor 351 generates a rotational force under application of a voltage from the first application circuit 410. The electric motor 361 generates a rotational force under application of a voltage from the second application circuit 510. The electric motor 352 generates a rotational force under voltage application from the third application circuit 420. The electric motor 362 generates a rotational force under voltage application from the fourth application circuit 520. The electric motor 353 generates a rotational force under voltage application from the fifth application circuit 430. The electric motor 363 generates a rotational force under application of a voltage from the sixth application circuit 530.
駆動装置100Gは、3つの差動歯車装置631,632,633を備える。差動歯車装置631は、電動モータ351,361のうち少なくとも一方から回転力を受ける。回転力は、その後、差動歯車装置631から減速機601、ピニオン210及びブレード筐体BH1へ順次伝達される。差動歯車装置632は、電動モータ352,362のうち少なくとも一方から回転力を受ける。回転力は、その後、差動歯車装置632から減速機602、ピニオン220及びブレード筐体BH2へ順次伝達される。差動歯車装置633は、電動モータ353,363のうち少なくとも一方から回転力を受ける。回転力は、その後、差動歯車装置633から減速機603、ピニオン230及びブレード筐体BH3へ順次伝達される。
駆 動 Drive device 100G includes three differential gear devices 631, 632, and 633. The differential gear device 631 receives a rotational force from at least one of the electric motors 351 and 361. Thereafter, the rotational force is sequentially transmitted from the differential gear device 631 to the speed reducer 601, the pinion 210, and the blade housing BH1. The differential gear device 632 receives a rotational force from at least one of the electric motors 352 and 362. Thereafter, the rotational force is sequentially transmitted from the differential gear device 632 to the speed reducer 602, the pinion 220, and the blade housing BH2. The differential gear device 633 receives a rotational force from at least one of the electric motors 353 and 363. Thereafter, the rotational force is sequentially transmitted from the differential gear device 633 to the speed reducer 603, the pinion 230, and the blade housing BH3.
駆動装置100Gが、第4実施形態に関連して説明された制御原理に従って動作するならば、不具合の不存在下において、電動モータ351,352,353の組及び電動モータ361,362,363の組のうち一方が、演算回路730の制御下で、回転力を発生させる。この間、電動モータ351,352,353の組及び電動モータ361,362,363の組のうち他方は静止していてもよい。
If the driving device 100G operates according to the control principle described in relation to the fourth embodiment, in the absence of a failure, the set of electric motors 351, 352, 353 and the set of electric motors 361, 362, 363 One of them generates a rotational force under the control of the arithmetic circuit 730. During this time, the other of the set of electric motors 351, 352, 353 and the set of electric motors 361, 362, 363 may be stationary.
電動モータ351,352,353の組及び電動モータ361,362,363の組のうち一方が、その後、適切に動作しなくなるならば、電動モータ351,352,353の組及び電動モータ361,362,363の組のうち他方が、演算回路730によって起動される。したがって、ブレード筐体BH1,BH2,BH3は、不具合発生時においても、適切な動作を行うことができる。
If one of the set of electric motors 351, 352, 353 and the set of electric motors 361, 362, 363 does not operate properly thereafter, the set of electric motors 351, 352, 353 and the electric motors 361, 362 The other of the 363 sets is activated by the arithmetic circuit 730. Therefore, the blade housings BH1, BH2, and BH3 can perform an appropriate operation even when a failure occurs.
駆動装置100Gが、第5実施形態に関連して説明された制御原理に従って動作するならば、不具合の不存在下において、電動モータ351,352,353の組及び電動モータ361,362,363の組の両方が回転力を発生させる。電動モータ351,352,353の組及び電動モータ361,362,363の組のうち一方が、その後、適切に動作しなくなるならば、電動モータ351,352,353の組及び電動モータ361,362,363の組のうち他方が起動される。このとき、起動された電動モータの組から出力されるトルクは、不具合の不存在下で生成されたトルクから増大されてもよい。したがって、ブレード筐体BH1,BH2,BH3は、不具合発生時においても、適切な動作を行うことができる。
If the driving device 100G operates according to the control principle described in connection with the fifth embodiment, the set of the electric motors 351, 352, and 353 and the set of the electric motors 361, 362, and 363 in the absence of a defect. Both generate rotational force. If one of the set of electric motors 351, 352, 353 and the set of electric motors 361, 362, 363 does not operate properly thereafter, the set of electric motors 351, 352, 353 and the electric motors 361, 362 The other of the 363 sets is activated. At this time, the torque output from the set of activated electric motors may be increased from the torque generated in the absence of a malfunction. Therefore, the blade housings BH1, BH2, and BH3 can perform an appropriate operation even when a failure occurs.
不具合発生時における制御モードの切替は、第6実施形態に関連して説明された技術と同様である。したがって、第6実施形態の説明は、演算回路730、第1決定回路740及び第2決定回路750による信号処理に適用される。本実施形態において、制御部は、演算回路730、第1決定回路740及び第2決定回路750によって例示される。切替部は、演算回路730によって例示される。
The switching of the control mode when a failure occurs is the same as the technology described in relation to the sixth embodiment. Therefore, the description of the sixth embodiment is applied to signal processing by the arithmetic circuit 730, the first determination circuit 740, and the second determination circuit 750. In the present embodiment, the control unit is exemplified by an arithmetic circuit 730, a first determination circuit 740, and a second determination circuit 750. The switching unit is exemplified by the arithmetic circuit 730.
駆動装置100Gは、3つの蓄電器801,802,803を備える。第1印加回路410は、蓄電器801に蓄えられた電力を用いて、電圧を、電動モータ351へ印加する。第2印加回路510は、蓄電器801に蓄えられた電力を用いて、電圧を、電動モータ361へ印加する。第3印加回路420は、蓄電器802に蓄えられた電力を用いて、電圧を、電動モータ352へ印加する。第4印加回路520は、蓄電器802に蓄えられた電力を用いて、電圧を、電動モータ362へ印加する。第5印加回路430は、蓄電器803に蓄えられた電力を用いて、電圧を、電動モータ353へ印加する。第6印加回路530は、蓄電器803に蓄えられた電力を用いて、電圧を、電動モータ363へ印加する。
The driving device 100G includes three capacitors 801, 802, and 803. The first application circuit 410 applies a voltage to the electric motor 351 using the electric power stored in the battery 801. The second application circuit 510 applies a voltage to the electric motor 361 using the electric power stored in the battery 801. The third application circuit 420 applies a voltage to the electric motor 352 using the electric power stored in the battery 802. The fourth application circuit 520 applies a voltage to the electric motor 362 using the electric power stored in the battery 802. The fifth application circuit 430 applies a voltage to the electric motor 353 using the electric power stored in the battery 803. The sixth application circuit 530 applies a voltage to the electric motor 363 using the electric power stored in the battery 803.
蓄電器801は、ブレード筐体BH1が任意の回転位置からフェザ位置に戻るのに必要とされる電力を蓄えることができる容量を有する。蓄電器802は、ブレード筐体BH2が任意の回転位置からフェザ位置に戻るのに必要とされる電力を蓄えることができる容量を有する。蓄電器803は、ブレード筐体BH3が任意の回転位置からフェザ位置に戻るのに必要とされる電力を蓄えることができる容量を有する。蓄電器801,802,803は、ブレード筐体BH1,BH2,BH3に対応して設けられているので、蓄電器801,802,803それぞれの蓄電容量は、第6実施形態に関連して説明された蓄電容量よりも小さくてもよい。
The battery 801 has a capacity capable of storing electric power required for the blade housing BH1 to return from an arbitrary rotation position to the feather position. The battery 802 has a capacity capable of storing electric power required for the blade housing BH2 to return from the arbitrary rotation position to the feather position. The battery 803 has a capacity capable of storing electric power required for the blade housing BH3 to return from the arbitrary rotation position to the feather position. Since the capacitors 801, 802, and 803 are provided corresponding to the blade casings BH1, BH2, and BH3, the respective storage capacities of the capacitors 801, 802, and 803 are the same as those described in connection with the sixth embodiment. It may be smaller than the capacity.
蓄電器801,802,803は、演算回路730を通じて、電力を受け取ってもよい。代替的に、蓄電器801,802,803は、他の電力供給経路を通じて、電力を受け取ってもよい。本実施形態の原理は、蓄電器801,802,803への特定の電力供給経路に限定されない。
The capacitors 801, 802, 803 may receive power through the arithmetic circuit 730. Alternatively, the capacitors 801, 802, 803 may receive power through other power supply paths. The principle of the present embodiment is not limited to a specific power supply path to the capacitors 801, 802, and 803.
<第11実施形態>
第9実施形態の駆動装置は、差動歯車装置とピニオンの間に配置された減速機を備える。設計者は、駆動装置の他の部位に減速機を配置してもよい。第11実施形態において、減速機を備える他の駆動装置が説明される。 <Eleventh embodiment>
The drive device of 9th Embodiment is equipped with the reduction gear arrange | positioned between a differential gear apparatus and a pinion. The designer may arrange the speed reducer at another part of the drive device. In the eleventh embodiment, another drive device including a reduction gear will be described.
第9実施形態の駆動装置は、差動歯車装置とピニオンの間に配置された減速機を備える。設計者は、駆動装置の他の部位に減速機を配置してもよい。第11実施形態において、減速機を備える他の駆動装置が説明される。 <Eleventh embodiment>
The drive device of 9th Embodiment is equipped with the reduction gear arrange | positioned between a differential gear apparatus and a pinion. The designer may arrange the speed reducer at another part of the drive device. In the eleventh embodiment, another drive device including a reduction gear will be described.
図16は、第11実施形態の駆動装置100Hの概念的なブロック図である。第9実施形態及び第11実施形態の間で共通して用いられる符号は、当該共通の符号が付された要素が、第9実施形態と同一の機能を有することを意味する。したがって、第9実施形態の説明は、これらの要素に援用される。図13及び図16を参照して、駆動装置100Hが説明される。図16中の実線の矢印は、電気的なエネルギの伝達を概念的に表す。図16中の鎖線の矢印は、機械的なエネルギの伝達を概念的に表す。
FIG. 16 is a conceptual block diagram of the driving apparatus 100H according to the eleventh embodiment. The code | symbol used in common between 9th Embodiment and 11th Embodiment means that the element to which the said common code | symbol was attached | subjected has the same function as 9th Embodiment. Therefore, description of 9th Embodiment is used for these elements. The drive device 100H will be described with reference to FIGS. The solid arrows in FIG. 16 conceptually represent electrical energy transfer. A chain line arrow in FIG. 16 conceptually represents mechanical energy transfer.
第9実施形態と同様に、駆動装置100Hは、ピニオン200と、電動モータ350,360と、印加部400,500と、差動歯車装置630と、を備える。第9実施形態の説明は、これらの要素に援用される。
As in the ninth embodiment, the drive device 100H includes a pinion 200, electric motors 350 and 360, application units 400 and 500, and a differential gear device 630. The description of the ninth embodiment is incorporated in these elements.
駆動装置100Hは、2つの減速機601H,602Hを更に備える。減速機601Hは、電動モータ350と差動歯車装置630との間に配置される。減速機602Hは、電動モータ360と差動歯車装置630との間に配置される。本実施形態において、第1減速機は、減速機601H,602Hのうち一方によって例示される。第2減速機は、減速機601H,602Hのうち他方によって例示される。
The driving device 100H further includes two speed reducers 601H and 602H. The reduction gear 601H is disposed between the electric motor 350 and the differential gear device 630. The reduction gear 602H is disposed between the electric motor 360 and the differential gear device 630. In the present embodiment, the first speed reducer is exemplified by one of the speed reducers 601H and 602H. The second reducer is exemplified by the other of the reducers 601H and 602H.
減速機601Hは、電動モータ350から出力されたトルクを増大させる。減速機602Hは、電動モータ360から出力されたトルクを増大させる。増大されたトルクは、減速機601H,602Hから差動歯車装置630へ入力される。
Reduction gear 601H increases the torque output from electric motor 350. Reducer 602H increases the torque output from electric motor 360. The increased torque is input from the reduction gears 601H and 602H to the differential gear device 630.
図13を参照して説明された第1伝達シャフト371は、減速機601Hの回転シャフトであってもよい。図13を参照して説明された第2伝達シャフト372は、減速機602Hの回転シャフトであってもよい。したがって、第8実施形態に関連して説明された差動歯車装置630の構造は、駆動装置100Hにも好適に利用可能である。
The first transmission shaft 371 described with reference to FIG. 13 may be a rotating shaft of the speed reducer 601H. The second transmission shaft 372 described with reference to FIG. 13 may be a rotating shaft of the speed reducer 602H. Therefore, the structure of the differential gear device 630 described in relation to the eighth embodiment can be suitably used for the drive device 100H.
減速機601H,602Hそれぞれは、遊星歯車減速機、偏心型減速機やトルクを適切に増大させることができる他の減速機であってもよい。本実施形態の原理は、減速機601H,602Hそれぞれの特定の種類に限定されない。
Each of the speed reducers 601H and 602H may be a planetary gear speed reducer, an eccentric speed reducer, or another speed reducer capable of appropriately increasing torque. The principle of this embodiment is not limited to a specific type of each of the speed reducers 601H and 602H.
<第12実施形態>
第11実施形態の駆動装置は、第4実施形態及び第5実施形態に関連して説明された制御原理に従って適切に動作することができる。設計者は、駆動装置内で生じた不具合を検出するための様々な検出設備を駆動装置に組み込んでもよい。例えば、設計者は、レゾルバといった回転数を検出するための機器を駆動装置に組み込むことができる。この場合、印加部から電動モータへの電圧印加下において、過度に低い回転数が検出されるならば、制御部は、駆動装置内で不具合が生じていると判定することができる。しかしながら、この場合、制御部は、電圧印加のプロセスに不具合が生じているのか、電動モータから差動歯車装置への回転力の伝達プロセスに不具合が生じているのか、を判別することはできない。第12実施形態において、不具合の種別を判別することを可能にする技術が説明される。不具合の種別を表す情報は、所定の記録媒体に記録されてもよい。風車機器を管理する管理者は、記録された情報を参照して、駆動装置を効率的に修復することができる。不具合の種別を表す情報の処理及び用途は、第12実施形態の原理を何ら限定しない。 <Twelfth embodiment>
The drive device of the eleventh embodiment can appropriately operate according to the control principle described in relation to the fourth and fifth embodiments. The designer may incorporate various detection facilities in the drive device for detecting a malfunction occurring in the drive device. For example, the designer can incorporate a device for detecting the number of rotations, such as a resolver, in the driving device. In this case, if an excessively low rotational speed is detected under voltage application from the application unit to the electric motor, the control unit can determine that a problem has occurred in the drive device. However, in this case, the control unit cannot determine whether there is a problem in the voltage application process or whether there is a problem in the rotational force transmission process from the electric motor to the differential gear device. In the twelfth embodiment, a technique that makes it possible to determine the type of defect will be described. Information representing the type of defect may be recorded on a predetermined recording medium. An administrator who manages the wind turbine device can efficiently repair the drive device with reference to the recorded information. The processing and use of information representing the type of defect does not limit the principle of the twelfth embodiment.
第11実施形態の駆動装置は、第4実施形態及び第5実施形態に関連して説明された制御原理に従って適切に動作することができる。設計者は、駆動装置内で生じた不具合を検出するための様々な検出設備を駆動装置に組み込んでもよい。例えば、設計者は、レゾルバといった回転数を検出するための機器を駆動装置に組み込むことができる。この場合、印加部から電動モータへの電圧印加下において、過度に低い回転数が検出されるならば、制御部は、駆動装置内で不具合が生じていると判定することができる。しかしながら、この場合、制御部は、電圧印加のプロセスに不具合が生じているのか、電動モータから差動歯車装置への回転力の伝達プロセスに不具合が生じているのか、を判別することはできない。第12実施形態において、不具合の種別を判別することを可能にする技術が説明される。不具合の種別を表す情報は、所定の記録媒体に記録されてもよい。風車機器を管理する管理者は、記録された情報を参照して、駆動装置を効率的に修復することができる。不具合の種別を表す情報の処理及び用途は、第12実施形態の原理を何ら限定しない。 <Twelfth embodiment>
The drive device of the eleventh embodiment can appropriately operate according to the control principle described in relation to the fourth and fifth embodiments. The designer may incorporate various detection facilities in the drive device for detecting a malfunction occurring in the drive device. For example, the designer can incorporate a device for detecting the number of rotations, such as a resolver, in the driving device. In this case, if an excessively low rotational speed is detected under voltage application from the application unit to the electric motor, the control unit can determine that a problem has occurred in the drive device. However, in this case, the control unit cannot determine whether there is a problem in the voltage application process or whether there is a problem in the rotational force transmission process from the electric motor to the differential gear device. In the twelfth embodiment, a technique that makes it possible to determine the type of defect will be described. Information representing the type of defect may be recorded on a predetermined recording medium. An administrator who manages the wind turbine device can efficiently repair the drive device with reference to the recorded information. The processing and use of information representing the type of defect does not limit the principle of the twelfth embodiment.
図17は、第12実施形態の駆動装置100Iの概念的なブロック図である。第11実施形態及び第12実施形態の間で共通して用いられる符号は、当該共通の符号が付された要素が、第11実施形態と同一の機能を有することを意味する。したがって、第11実施形態の説明は、これらの要素に援用される。図13及び図17を参照して、駆動装置100Iが説明される。図17中の実線の矢印は、電気的なエネルギの伝達を概念的に表す。図17中の鎖線の矢印は、機械的なエネルギの伝達を概念的に表す。
FIG. 17 is a conceptual block diagram of the driving apparatus 100I of the twelfth embodiment. The code | symbol used in common between 11th Embodiment and 12th Embodiment means that the element to which the said common code | symbol was attached | subjected has the same function as 11th Embodiment. Therefore, description of 11th Embodiment is used for these elements. The drive device 100I will be described with reference to FIGS. The solid arrows in FIG. 17 conceptually represent electrical energy transfer. A chain line arrow in FIG. 17 conceptually represents mechanical energy transfer.
第11実施形態と同様に、駆動装置100Iは、ピニオン200と、電動モータ350,360と、印加部400,500と、減速機601H,602Hと、差動歯車装置630と、を備える。第11実施形態の説明は、これらの要素に援用される。
As in the eleventh embodiment, the drive device 100I includes a pinion 200, electric motors 350 and 360, application units 400 and 500, speed reducers 601H and 602H, and a differential gear device 630. The description of the eleventh embodiment is incorporated in these elements.
駆動装置100Iは、制御部700Iを更に備える。制御部700Iは、検出部710Iと、切替部720Iと、を含む。検出部710Iが、駆動装置100I中の不具合を検出すると、切替部720Iは、第4実施形態又は第5実施形態に関連して説明された制御原理に従って、電圧印加を要求する要求信号の出力経路を変更する。
The driving device 100I further includes a control unit 700I. Control unit 700I includes a detection unit 710I and a switching unit 720I. When the detection unit 710I detects a malfunction in the driving device 100I, the switching unit 720I outputs an output path of a request signal for requesting voltage application according to the control principle described in relation to the fourth embodiment or the fifth embodiment. To change.
検出部710Iは、電動モータ350,360中を流れる電流の大きさを監視する。電動モータ350,360中を流れる電流の大きさを表す情報の取得には、様々な既知の検出技術が用いられる。本実施形態の原理は、電動モータ350,360中を流れる電流の大きさを表す情報を取得するための特定の技術に限定されない。
Detecting unit 710I monitors the magnitude of the current flowing through electric motors 350 and 360. Various known detection techniques are used to acquire information indicating the magnitude of the current flowing through the electric motors 350 and 360. The principle of this embodiment is not limited to a specific technique for acquiring information indicating the magnitude of the current flowing through the electric motors 350 and 360.
検出部710Iは、不具合の検出に、下限閾値と、下限閾値よりも大きな値を用いて設定された上限閾値と、を用いる。電動モータ350,360中を流れる電流の大きさが下限閾値を下回るならば、検出部710Iは、電動モータ350,360へ連なる信号伝達経路において電気的な不具合が生じていると判定することができる。電動モータ350,360中を流れる電流の大きさが上限閾値を上回るならば、検出部710Iは、電動モータ350,360によって生成された回転力の伝達経路において機械的な不具合が生じていると判定することができる。電気的な不具合及び/又は機械的な不具合が検出されると、検出部710Iは、不具合が生じていることを切替部720Iへ通知する。
The detection unit 710I uses a lower limit threshold and an upper limit threshold set by using a value larger than the lower limit threshold for detecting a malfunction. If the magnitude of the current flowing through electric motors 350 and 360 is less than the lower threshold value, detection unit 710I can determine that an electrical failure has occurred in the signal transmission path connected to electric motors 350 and 360. . If the magnitude of the current flowing through electric motors 350 and 360 exceeds the upper threshold value, detection unit 710I determines that a mechanical failure has occurred in the transmission path of the rotational force generated by electric motors 350 and 360. can do. When an electrical failure and / or a mechanical failure is detected, the detection unit 710I notifies the switching unit 720I that a failure has occurred.
切替部720Iが、第4実施形態の原理に従って、動作するならば、検出部710Iからの不具合の通知を受けるまで、印加部400,500のうち一方に、要求信号を出力する。切替部720Iが、不具合の通知を受け取ると、要求信号の出力先を、印加部400,500のうち他方へ切り替える。
If the switching unit 720I operates according to the principle of the fourth embodiment, a request signal is output to one of the application units 400 and 500 until receiving a notification of a failure from the detection unit 710I. When the switching unit 720I receives the notification of the malfunction, the switching unit 720I switches the output destination of the request signal to the other of the application units 400 and 500.
切替部720Iが、第5実施形態の原理に従って、動作するならば、検出部710Iからの不具合の通知を受けるまで、印加部400,500の両方へ、要求信号を出力する。検出部710Iが、電動モータ350中の電流レベルに異常を検知すると、検出部710Iは、電動モータ350を経由する経路に不具合が発生したことを切替部720Iに通知する。この場合、切替部720Iは、その後、要求信号を、印加部500のみに出力する。検出部710Iが、電動モータ360中の電流レベルに異常を検知すると、検出部710Iは、電動モータ360を経由する経路に不具合が発生したことを切替部720Iに通知する。この場合、切替部720Iは、その後、要求信号を、印加部400のみに出力する。第5実施形態に関連して説明された如く、切替部720Iは、不具合の通知に応じて、電圧レベルを調整してもよい。
If the switching unit 720I operates in accordance with the principle of the fifth embodiment, a request signal is output to both the application units 400 and 500 until notification of a problem from the detection unit 710I is received. When the detection unit 710I detects an abnormality in the current level in the electric motor 350, the detection unit 710I notifies the switching unit 720I that a failure has occurred in the route passing through the electric motor 350. In this case, the switching unit 720I then outputs a request signal only to the applying unit 500. When the detection unit 710I detects an abnormality in the current level in the electric motor 360, the detection unit 710I notifies the switching unit 720I that a failure has occurred in the route passing through the electric motor 360. In this case, the switching unit 720I then outputs a request signal only to the applying unit 400. As described in connection with the fifth embodiment, the switching unit 720I may adjust the voltage level in response to the notification of the malfunction.
<第13実施形態>
設計者は、第11実施形態及び第12実施形態に関連して説明された技術的原理に基づいて、駆動装置の様々なハードウェア構成を設計することができる。第13実施形態において、例示的な駆動装置のハードウェア構成が説明される。 <13th Embodiment>
The designer can design various hardware configurations of the drive device based on the technical principle described in relation to the eleventh and twelfth embodiments. In the thirteenth embodiment, a hardware configuration of an exemplary drive device will be described.
設計者は、第11実施形態及び第12実施形態に関連して説明された技術的原理に基づいて、駆動装置の様々なハードウェア構成を設計することができる。第13実施形態において、例示的な駆動装置のハードウェア構成が説明される。 <13th Embodiment>
The designer can design various hardware configurations of the drive device based on the technical principle described in relation to the eleventh and twelfth embodiments. In the thirteenth embodiment, a hardware configuration of an exemplary drive device will be described.
図18は、第13実施形態の駆動装置100Jの概略的なハードウェア構成を表すブロック図である。第6実施形態、第10実施形態及び第13実施形態の間で共通して用いられる符号は、当該共通の符号が付された要素が、第6実施形態及び/又は第10実施形態と同一の機能を有することを意味する。したがって、第6実施形態及び/又は第10実施形態の説明は、これらの要素に援用される。図17及び図18を参照して、駆動装置100Jが説明される。
FIG. 18 is a block diagram illustrating a schematic hardware configuration of the drive device 100J according to the thirteenth embodiment. The reference numerals used in common between the sixth embodiment, the tenth embodiment, and the thirteenth embodiment are the same as those in the sixth embodiment and / or the tenth embodiment. It means having a function. Therefore, the description of the sixth embodiment and / or the tenth embodiment is incorporated in these elements. The drive device 100J will be described with reference to FIGS.
第6実施形態と同様に、駆動装置100Jは、3つのピニオン210,220,230と、演算回路730と、第1決定回路740と、第2決定回路750と、第1印加回路410と、第2印加回路510と、第3印加回路420と、第4印加回路520と、第5印加回路430と、第6印加回路530と、第1蓄電器810と、第2蓄電器820と、を備える。第6実施形態の説明は、これらの要素に対して援用される。
Similarly to the sixth embodiment, the driving device 100J includes three pinions 210, 220, and 230, an arithmetic circuit 730, a first determination circuit 740, a second determination circuit 750, a first application circuit 410, A second application circuit 510, a third application circuit 420, a fourth application circuit 520, a fifth application circuit 430, a sixth application circuit 530, a first capacitor 810, and a second capacitor 820. The description of the sixth embodiment is incorporated for these elements.
ピニオン210,220,230それぞれは、図17を参照して説明されたピニオン200に対応する。演算回路730、第1決定回路740及び第2決定回路750は、図17を参照して説明された制御部700Iに対応する。第1印加回路410、第3印加回路420及び第5印加回路430それぞれは、図17を参照して説明された印加部400に対応する。第2印加回路510、第4印加回路520及び第6印加回路530それぞれは、図17を参照して説明された印加部500に対応する。
Each of the pinions 210, 220, and 230 corresponds to the pinion 200 described with reference to FIG. The arithmetic circuit 730, the first determination circuit 740, and the second determination circuit 750 correspond to the control unit 700I described with reference to FIG. Each of the first application circuit 410, the third application circuit 420, and the fifth application circuit 430 corresponds to the application unit 400 described with reference to FIG. Each of the second application circuit 510, the fourth application circuit 520, and the sixth application circuit 530 corresponds to the application unit 500 described with reference to FIG.
第10実施形態と同様に、駆動装置100Jは、6つの電動モータ351,352,353,361,362,363と、3つの差動歯車装置631,632,633を備える。第10実施形態の説明は、これらの要素に援用される。
As in the tenth embodiment, the drive device 100J includes six electric motors 351, 352, 353, 361, 362, and 363 and three differential gear devices 631, 632, and 633. The description of the tenth embodiment is incorporated in these elements.
電動モータ351,352,353それぞれは、図17を参照して説明された電動モータ350に対応する。電動モータ361,362,363それぞれは、図17を参照して説明された電動モータ360に対応する。差動歯車装置631,632,633それぞれは、図17を参照して説明された差動歯車装置630に対応する。
Each of the electric motors 351, 352, and 353 corresponds to the electric motor 350 described with reference to FIG. Each of the electric motors 361, 362, and 363 corresponds to the electric motor 360 described with reference to FIG. Each of the differential gear devices 631, 632, and 633 corresponds to the differential gear device 630 described with reference to FIG.
駆動装置100Jは、6つの減速機601J,602J,603J,604J,605J,606Jを備える。減速機601J,603J,605Jそれぞれは、図17を参照して説明された減速機601Hに対応する。減速機602J,604J,606Jそれぞれは、図17を参照して説明された減速機602Hに対応する。
The driving device 100J includes six speed reducers 601J, 602J, 603J, 604J, 605J, and 606J. Each of the reduction gears 601J, 603J, and 605J corresponds to the reduction gear 601H described with reference to FIG. Each of the reduction gears 602J, 604J, and 606J corresponds to the reduction gear 602H described with reference to FIG.
減速機601Jは、電動モータ351と差動歯車装置631との間に配置される。減速機601Jは、電動モータ351から出力されたトルクを増大させる。増大されたトルクは、減速機601Jから差動歯車装置631へ出力される。減速機602Jは、電動モータ361と差動歯車装置631との間に配置される。減速機602Jは、電動モータ361から出力されたトルクを増大させる。増大されたトルクは、減速機602Jから差動歯車装置631へ出力される。差動歯車装置631は、増大されたトルクを受け取るので、差動歯車装置631は、ピニオン210及びブレード筐体BH1を適切に回転させることができる。
The reduction gear 601J is disposed between the electric motor 351 and the differential gear device 631. The reducer 601J increases the torque output from the electric motor 351. The increased torque is output from the reduction gear 601J to the differential gear device 631. The reduction gear 602J is disposed between the electric motor 361 and the differential gear device 631. The reducer 602J increases the torque output from the electric motor 361. The increased torque is output from the reduction gear 602J to the differential gear device 631. Since the differential gear device 631 receives the increased torque, the differential gear device 631 can appropriately rotate the pinion 210 and the blade housing BH1.
減速機603Jは、電動モータ352と差動歯車装置632との間に配置される。減速機603Jは、電動モータ352から出力されたトルクを増大させる。増大されたトルクは、減速機603Jから差動歯車装置632へ出力される。減速機604Jは、電動モータ362と差動歯車装置632との間に配置される。減速機604Jは、電動モータ362から出力されたトルクを増大させる。増大されたトルクは、減速機604Jから差動歯車装置632へ出力される。差動歯車装置632は、増大されたトルクを受け取るので、差動歯車装置632は、ピニオン220及びブレード筐体BH2を適切に回転させることができる。
The reduction gear 603J is disposed between the electric motor 352 and the differential gear device 632. The reducer 603J increases the torque output from the electric motor 352. The increased torque is output from the reduction gear 603J to the differential gear device 632. The speed reducer 604 </ b> J is disposed between the electric motor 362 and the differential gear device 632. The reducer 604J increases the torque output from the electric motor 362. The increased torque is output from the reduction gear 604 J to the differential gear device 632. Since the differential gear unit 632 receives the increased torque, the differential gear unit 632 can appropriately rotate the pinion 220 and the blade housing BH2.
減速機605Jは、電動モータ353と差動歯車装置633との間に配置される。減速機605Jは、電動モータ353から出力されたトルクを増大させる。増大されたトルクは、減速機605Jから差動歯車装置633へ出力される。減速機606Jは、電動モータ363と差動歯車装置633との間に配置される。減速機606Jは、電動モータ363から出力されたトルクを増大させる。増大されたトルクは、減速機606Jから差動歯車装置633へ出力される。差動歯車装置632は、増大されたトルクを受け取るので、差動歯車装置632は、ピニオン230及びブレード筐体BH3を適切に回転させることができる。
The reduction gear 605J is disposed between the electric motor 353 and the differential gear device 633. The reducer 605J increases the torque output from the electric motor 353. The increased torque is output from the reduction gear 605J to the differential gear device 633. The reduction gear 606J is disposed between the electric motor 363 and the differential gear device 633. The speed reducer 606J increases the torque output from the electric motor 363. The increased torque is output from the reduction gear 606J to the differential gear device 633. Since the differential gear unit 632 receives the increased torque, the differential gear unit 632 can appropriately rotate the pinion 230 and the blade housing BH3.
演算回路730は、第12実施形態に関連して説明された制御原理にしたがって、ブレード筐体BH1,BH2,BH3に要求される回転量を表すデータの出力先を決定してもよい。演算回路730は、電動モータ351,352,353,361,362,363それぞれの中を流れる電流の大きさを監視してもよい。電動モータ351,352,353,361,362,363内の電流が、下限閾値を下回った場合及び電動モータ351,352,353,361,362,363内の電流が、上限閾値を上回った場合には、演算回路730は、駆動装置100Jに不具合が生じていると判定してもよい。
The arithmetic circuit 730 may determine an output destination of data representing the amount of rotation required for the blade casings BH1, BH2, and BH3 in accordance with the control principle described in relation to the twelfth embodiment. The arithmetic circuit 730 may monitor the magnitude of the current flowing through each of the electric motors 351, 352, 353, 361, 362, and 363. When the current in the electric motors 351, 352, 353, 361, 362, 363 falls below the lower limit threshold and when the current in the electric motors 351, 352, 353, 361, 362, 363 exceeds the upper limit threshold The arithmetic circuit 730 may determine that a problem has occurred in the drive device 100J.
電動モータ351,352,353,361,362,363内の電流が、下限閾値と上限閾値との間の適正範囲内にあるならば、演算回路730は、第4実施形態に関連して説明された制御原理に従って、第1決定回路740及び第2決定回路750のうち一方に、ブレード筐体BH1,BH2,BH3に要求される回転量を表すデータを出力してもよい。演算回路730が、不具合の不存在下において、第1決定回路740に、回転量を表すデータを出力し、且つ、演算回路730が、その後、電動モータ351,352,353のうち少なくとも1つの電流レベルから異常を検出するならば、演算回路730は、回転量を表すデータの出力先を、第1決定回路740から第2決定回路750に切り替える。演算回路730が、不具合の不存在下において、第2決定回路750に、回転量を表すデータを出力し、且つ、演算回路730が、その後、電動モータ361,362,363のうち少なくとも1つの電流レベルから異常を検出するならば、演算回路730は、回転量を表すデータの出力先を、第2決定回路750から第1決定回路740に切り替える。
If the current in the electric motors 351, 352, 353, 361, 362, 363 is within an appropriate range between the lower limit threshold and the upper limit threshold, the arithmetic circuit 730 is described in relation to the fourth embodiment. According to the control principle, data representing the rotation amount required for the blade housings BH1, BH2, and BH3 may be output to one of the first determination circuit 740 and the second determination circuit 750. The arithmetic circuit 730 outputs data representing the amount of rotation to the first determination circuit 740 in the absence of a malfunction, and the arithmetic circuit 730 then outputs at least one current among the electric motors 351, 352, 353. If an abnormality is detected from the level, the arithmetic circuit 730 switches the output destination of the data representing the rotation amount from the first determination circuit 740 to the second determination circuit 750. The arithmetic circuit 730 outputs data representing the rotation amount to the second determination circuit 750 in the absence of a malfunction, and the arithmetic circuit 730 then outputs at least one current among the electric motors 361, 362, 363. If an abnormality is detected from the level, the arithmetic circuit 730 switches the output destination of the data representing the rotation amount from the second determination circuit 750 to the first determination circuit 740.
電動モータ351,352,353,361,362,363内の電流が、下限閾値と上限閾値との間の適正範囲内にあるならば、演算回路730は、第5実施形態に関連して説明された制御原理に従って、第1決定回路740及び第2決定回路750の両方に、ブレード筐体BH1,BH2,BH3に要求される回転量を表すデータを出力してもよい。演算回路730が、その後、電動モータ351,352,353のうち少なくとも1つの電流レベルから異常を検出するならば、演算回路730は、回転量を表すデータを第2決定回路750にのみ出力する。演算回路730が、その後、電動モータ361,362,363のうち少なくとも1つの電流レベルから異常を検出するならば、演算回路730は、回転量を表すデータを第1決定回路740にのみ出力する。
If the current in the electric motors 351, 352, 353, 361, 362, 363 is within an appropriate range between the lower limit threshold and the upper limit threshold, the arithmetic circuit 730 is described in relation to the fifth embodiment. According to the control principle, data representing the rotation amount required for the blade housings BH1, BH2, and BH3 may be output to both the first determination circuit 740 and the second determination circuit 750. If the arithmetic circuit 730 then detects an abnormality from at least one current level of the electric motors 351, 352, and 353, the arithmetic circuit 730 outputs data representing the rotation amount only to the second determination circuit 750. If the arithmetic circuit 730 then detects an abnormality from at least one current level of the electric motors 361, 362, 363, the arithmetic circuit 730 outputs data representing the rotation amount only to the first determination circuit 740.
上述の演算回路730の制御の結果、駆動装置100J内で不具合が生じても、ブレード筐体BH1,BH2,BH3は適切に回転動作をすることができる。
As a result of the control of the arithmetic circuit 730, the blade housings BH1, BH2, and BH3 can appropriately rotate even if a malfunction occurs in the driving device 100J.
上述の様々な実施形態の原理は、発電装置に要求される性能に適合するように、組み合わされてもよいし、変更されてもよい。上述の様々な実施形態において、風車機器の可動部位は、リングギアを介して、ピニオンから駆動力を受ける。代替的に、可動部位は、ピニオンといった動力伝達片に直接的に接続されてもよい(すなわち、ダイレクトドライブ方式)。
The principles of the various embodiments described above may be combined or modified to suit the performance required for the power generator. In the various embodiments described above, the movable part of the windmill device receives a driving force from the pinion via the ring gear. Alternatively, the movable part may be directly connected to a power transmission piece such as a pinion (ie, a direct drive system).
上述の様々な実施形態に関連して説明された例示的な駆動技術は、以下の特徴を主に備える。
The exemplary drive technique described in connection with the various embodiments described above primarily comprises the following features.
上述の実施形態の一局面に係る駆動装置は、流体の流動方向の変化に合わせて動作する発電装置の可動部位を駆動する。駆動装置は、前記可動部位を動作させる第1動力を生成する第1動力生成部と、前記可動部位を動作させる第2動力を生成する第2動力生成部と、前記第1動力生成部及び前記第2動力生成部に電力を供給するように形成された電力供給部と、前記第1動力及び前記第2動力のうち少なくとも一方を、前記可動部位に伝達し、前記可動部位を動作させる動力伝達片と、を備える。
The drive device according to one aspect of the above-described embodiment drives the movable portion of the power generation device that operates in accordance with the change in the fluid flow direction. The drive device includes: a first power generation unit that generates first power that operates the movable part; a second power generation unit that generates second power that operates the movable part; the first power generation unit; A power supply unit configured to supply power to the second power generation unit, and power transmission for transmitting at least one of the first power and the second power to the movable part and operating the movable part And a piece.
上記構成によれば、電力供給部は、第1動力生成部及び第2動力生成部のうち少なくとも一方に電力を供給するので、第1動力生成部及び第2動力生成部のうち一方で不具合が生じても、駆動装置は、発電装置を駆動することができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, since the power supply unit supplies power to at least one of the first power generation unit and the second power generation unit, there is a problem with one of the first power generation unit and the second power generation unit. Even if it occurs, the drive device can drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、前記第1動力生成部は、電動モータに組み込まれた第1コイル部であってもよい。前記第2動力生成部は、前記電動モータに組み込まれた第2コイル部であってもよい。前記第1コイル部は、前記電力供給部からの第1駆動電圧の印加の下で、前記第1動力を生成してもよい。前記第2コイル部は、前記電力供給部からの第2駆動電圧の印加の下で、前記第2動力を生成してもよい。
Regarding the above configuration, the first power generation unit may be a first coil unit incorporated in an electric motor. The second power generation unit may be a second coil unit incorporated in the electric motor. The first coil unit may generate the first power under application of a first drive voltage from the power supply unit. The second coil unit may generate the second power under application of a second drive voltage from the power supply unit.
上記構成によれば、第1コイル部は、電力供給部からの第1駆動電圧の印加の下で、第1動力を生成し、且つ、第2コイル部は、電力供給部からの第2駆動電圧の印加の下で、第2動力を生成するので、第1コイル部及び第2コイル部のうち一方で不具合が生じても、駆動装置は、発電装置を駆動することができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, the first coil unit generates the first power under application of the first drive voltage from the power supply unit, and the second coil unit performs the second drive from the power supply unit. Since the second power is generated under the application of the voltage, the driving device can drive the power generation device even if one of the first coil portion and the second coil portion fails. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、前記第1コイル部は、前記電動モータ内の第1領域を取り巻いてもよい。前記第2コイル部は、前記第1領域と少なくとも部分的に重畳する第2領域を取り巻いてもよい。
Regarding the above configuration, the first coil portion may surround a first region in the electric motor. The second coil portion may surround a second region that at least partially overlaps the first region.
上記構成によれば、第2コイル部は、第1領域と少なくとも部分的に重畳する第2領域を取り巻くので、電動モータは、第1コイル部及び第2コイル部のために広い内部空間を有さなくてもよい。したがって、設計者は、小型の電動モータを駆動装置に組み込むことができる。
According to the above configuration, since the second coil portion surrounds the second region at least partially overlapping the first region, the electric motor has a wide internal space for the first coil portion and the second coil portion. It does not have to be. Therefore, the designer can incorporate a small electric motor into the drive device.
上記構成に関して、駆動装置は、前記第1駆動電圧の前記印加と、前記第2駆動電圧の前記印加と、を選択的に制御する制御部を更に備えてもよい。前記制御部は、前記第1駆動電圧の前記印加の不具合を検出する検出部と、前記不具合が生じたときに、前記第1駆動電圧の前記印加から前記第2駆動電圧の前記印加へ電圧印加モードを切り替える切替部と、を含んでもよい。
Regarding the above configuration, the drive device may further include a control unit that selectively controls the application of the first drive voltage and the application of the second drive voltage. The control unit detects a failure in the application of the first drive voltage, and applies a voltage from the application of the first drive voltage to the application of the second drive voltage when the failure occurs. And a switching unit for switching modes.
上記構成によれば、第1駆動電圧の印加に不具合が生じたときに、切替部は、電圧印加モードを第1駆動電圧の印加から第2駆動電圧の印加へ切り替えるので、駆動装置は、発電装置を駆動し続けることができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, when a failure occurs in the application of the first drive voltage, the switching unit switches the voltage application mode from application of the first drive voltage to application of the second drive voltage. The device can continue to be driven. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、駆動装置は、前記第1駆動電圧の前記印加と、前記第2駆動電圧の前記印加と、を制御する制御部を更に備えてもよい。前記制御部は、前記第1駆動電圧の前記印加の不具合を検出する検出部と、前記不具合が生じたときに、前記第1駆動電圧と前記第2駆動電圧とを同時に発生させる第1制御モードから、前記第2駆動電圧のみを発生させる第2制御モードへ、制御モードを切り替える切替部と、を含んでもよい。
Regarding the above configuration, the drive device may further include a control unit that controls the application of the first drive voltage and the application of the second drive voltage. The control unit detects a failure in the application of the first drive voltage, and a first control mode for simultaneously generating the first drive voltage and the second drive voltage when the failure occurs. To a second control mode for generating only the second drive voltage.
上記構成によれば、切替部は、第1駆動電圧の印加に不具合が生じたときに、第1制御モードから第2制御モードへ制御モードを切り替えるので、駆動装置は、発電装置を駆動し続けることができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, the switching unit switches the control mode from the first control mode to the second control mode when a problem occurs in the application of the first drive voltage, so the drive device continues to drive the power generation device. be able to. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、駆動装置は、前記第1動力及び前記第2動力のうち少なくとも一方を前記動力伝達片へ伝達する動力伝達装置を更に備えてもよい。前記第1動力生成部は、前記第1動力を前記動力伝達装置に与える第1電動モータであってもよい。前記第2動力生成部は、前記第2動力を前記動力伝達装置に与える第2電動モータであってもよい。
Regarding the above configuration, the drive device may further include a power transmission device that transmits at least one of the first power and the second power to the power transmission piece. The first power generation unit may be a first electric motor that applies the first power to the power transmission device. The second power generation unit may be a second electric motor that applies the second power to the power transmission device.
上記構成によれば、駆動装置は、第1電動モータと第2電動モータとを備えるので、第1電動モータ及び第2電動モータのうち一方の中で不具合が生じても、駆動装置は、発電装置を駆動することができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, the drive device includes the first electric motor and the second electric motor. Therefore, even if a malfunction occurs in one of the first electric motor and the second electric motor, the drive device The device can be driven. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、駆動装置は、前記動力伝達片と前記動力伝達装置との間に配置された減速機を更に備えてもよい。
Regarding the above configuration, the drive device may further include a speed reducer disposed between the power transmission piece and the power transmission device.
上記構成によれば、駆動装置は、動力伝達片と動力伝達装置との間に配置された減速機を備えるので、駆動装置を設計する設計者は、減速機を用いて、発電装置の駆動に必要なトルクを容易に達成することができる。
According to the above configuration, the drive device includes the speed reducer disposed between the power transmission piece and the power transmission device. Therefore, a designer who designs the drive device uses the speed reducer to drive the power generation device. The required torque can be easily achieved.
上記構成に関して、駆動装置は、前記動力伝達装置と前記第1電動モータとの間に配置された第1減速機と、前記動力伝達装置と前記第2電動モータとの間に配置された第2減速機と、を更に備えてもよい。
With regard to the above configuration, the drive device includes a first speed reducer disposed between the power transmission device and the first electric motor, and a second device disposed between the power transmission device and the second electric motor. And a speed reducer.
上記構成によれば、駆動装置は、動力伝達装置と第1電動モータとの間に配置された第1減速機と、動力伝達装置と第1電動モータとの間に配置された第2減速機と、を備えるので、駆動装置を設計する設計者は、第1減速機と第2減速機とを用いて、発電装置の駆動に必要なトルクを容易に達成することができる。
According to the above configuration, the drive device includes the first speed reducer disposed between the power transmission device and the first electric motor, and the second speed reducer disposed between the power transmission device and the first electric motor. Therefore, the designer who designs the drive device can easily achieve the torque necessary for driving the power generation device using the first reduction gear and the second reduction gear.
上記構成に関して、駆動装置は、前記第1電動モータと前記第2電動モータとを選択的に制御する制御部を更に備えてもよい。前記制御部は、前記動力伝達片への前記第1動力の伝達の不具合を検出する検出部と、前記不具合が生じたときに、制御対象を、前記第1電動モータから前記第2電動モータへ切り替える切替部と、を含んでもよい。
Regarding the above configuration, the drive device may further include a control unit that selectively controls the first electric motor and the second electric motor. The control unit detects a defect in transmission of the first power to the power transmission piece, and when the defect occurs, controls the control object from the first electric motor to the second electric motor. A switching unit for switching.
上記構成によれば、切替部は、動力伝達片への第1動力の伝達に不具合が生じたときに、制御対象を第1電動モータから第2電動モータへ切り替えるので、駆動装置は、発電装置を駆動し続けることができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, the switching unit switches the control target from the first electric motor to the second electric motor when a failure occurs in the transmission of the first power to the power transmission piece. Can continue to drive. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、駆動装置は、前記第1電動モータと前記第2電動モータとを制御する制御部を更に備えてもよい。前記制御部は、前記動力伝達片への前記第1動力の伝達の不具合を検出する検出部と、前記不具合が生じたときに、前記第1動力と前記第2動力とを同時に発生させる第1制御モードから、前記第2動力のみを発生させる第2制御モードへ、制御モードを切り替える切替部と、を含んでもよい。
Regarding the above configuration, the drive device may further include a control unit that controls the first electric motor and the second electric motor. The control unit is configured to detect a failure in transmission of the first power to the power transmission piece, and a first to simultaneously generate the first power and the second power when the failure occurs. And a switching unit that switches the control mode from the control mode to the second control mode that generates only the second power.
上記構成によれば、切替部は、動力伝達片への第1動力の伝達に不具合が生じたときに、第1制御モードから第2制御モードへ制御モードを切り替えるので、駆動装置は、発電装置を駆動し続けることができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, the switching unit switches the control mode from the first control mode to the second control mode when a failure occurs in the transmission of the first power to the power transmission piece. Can continue to drive. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、駆動装置は、前記電力供給部に電気的に接続された蓄電部を更に備えてもよい。
Regarding the above configuration, the drive device may further include a power storage unit electrically connected to the power supply unit.
上記構成によれば、駆動装置は、電力供給部に電気的に接続された蓄電部を備えるので、駆動装置は、蓄電部からの電力供給の下で、発電装置を適切に駆動することができる。
According to the above configuration, the drive device includes the power storage unit that is electrically connected to the power supply unit. Therefore, the drive device can appropriately drive the power generation device with power supplied from the power storage unit. .
上記構成に関して、前記電力供給部は、前記第1駆動電圧を、前記第1コイル部へ印加する第1印加部と、前記第2駆動電圧を、前記第2コイル部へ印加する第2印加部と、を含んでもよい。前記制御部は、前記第1印加部及び前記第2印加部を制御し、前記電圧印加モードを切り替えてもよい。
With regard to the above configuration, the power supply unit includes a first application unit that applies the first drive voltage to the first coil unit, and a second application unit that applies the second drive voltage to the second coil unit. And may be included. The controller may control the first application unit and the second application unit to switch the voltage application mode.
上記構成によれば、第1駆動電圧の印加に不具合が生じたときに、制御部は、第1印加部及び第2印加部を制御し、電圧印加モードを第1駆動電圧の印加から第2駆動電圧の印加へ切り替えるので、駆動装置は、発電装置を駆動し続けることができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, when a problem occurs in the application of the first drive voltage, the control unit controls the first application unit and the second application unit, and changes the voltage application mode from the application of the first drive voltage to the second. Since switching to the application of the drive voltage is performed, the drive device can continue to drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、前記電力供給部は、前記第1駆動電圧を、前記第1コイル部へ印加する第1印加部と、前記第2駆動電圧を、前記第2コイル部へ印加する第2印加部と、を含んでもよい。前記制御部は、前記第1印加部及び前記第2印加部を制御し、前記第1制御モードから前記第2制御モードへ前記制御モードを切り替えてもよい。
With regard to the above configuration, the power supply unit includes a first application unit that applies the first drive voltage to the first coil unit, and a second application unit that applies the second drive voltage to the second coil unit. And may be included. The control unit may control the first application unit and the second application unit, and switch the control mode from the first control mode to the second control mode.
上記構成によれば、第1駆動電圧の印加に不具合が生じたときに、制御部は、第1印加部及び第2印加部を制御し、第1制御モードから第2制御モードへ制御モードを切り替えるので、駆動装置は、発電装置を駆動し続けることができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, when a problem occurs in the application of the first drive voltage, the control unit controls the first application unit and the second application unit, and switches the control mode from the first control mode to the second control mode. Since switching is performed, the drive device can continue to drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、前記動力伝達装置は、差動歯車装置であってもよい。
Regarding the above configuration, the power transmission device may be a differential gear device.
上記構成によれば、動力伝達装置は、差動歯車装置であるので、前記第1動力及び前記第2動力のうち少なくとも一方の前記動力伝達片への伝達に不具合が生じても、動力伝達片は、可動部位を動作させることができる。
According to the above configuration, since the power transmission device is a differential gear device, even if a failure occurs in the transmission to at least one of the first power and the second power, the power transmission piece. Can move the movable part.
上記構成に関して、前記電力供給部は、前記第1動力を生じさせる第1駆動電圧を前記第1電動モータに印加する第1印加部と、前記第2動力を生じさせる第2駆動電圧を前記第2電動モータに印加する第2印加部と、を含んでもよい。前記制御部は、前記第1印加部及び前記第2印加部を制御し、前記制御対象を、前記第1電動モータから前記第2電動モータへ切り替えてもよい。
With respect to the above configuration, the power supply unit applies a first drive voltage that generates the first power to the first electric motor, and a second drive voltage that generates the second power. And a second application unit that applies to the two electric motors. The control unit may control the first application unit and the second application unit, and switch the control target from the first electric motor to the second electric motor.
上記構成によれば、第1電動モータに不具合が生じたときに、制御部は、第1印加部及び第2印加部を制御し、制御対象を、第1電動モータから第2電動モータへ切り替えるので、駆動装置は、発電装置を駆動し続けることができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, when a problem occurs in the first electric motor, the control unit controls the first application unit and the second application unit, and switches the control target from the first electric motor to the second electric motor. Therefore, the drive device can continue to drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、前記電力供給部は、前記第1動力を生じさせる第1駆動電圧を前記第1電動モータに印加する第1印加部と、前記第2動力を生じさせる第2駆動電圧を前記第2電動モータに印加する第2印加部と、を含んでもよい。前記制御部は、前記第1印加部及び前記第2印加部を制御し、前記第1制御モードから前記第2制御モードへ前記制御モードを切り替えてもよい。
With respect to the above configuration, the power supply unit applies a first drive voltage that generates the first power to the first electric motor, and a second drive voltage that generates the second power. And a second application unit that applies to the two electric motors. The control unit may control the first application unit and the second application unit, and switch the control mode from the first control mode to the second control mode.
上記構成によれば、第1電動モータに不具合が生じたときに、制御部は、第1印加部及び第2印加部を制御し、第1制御モードから第2制御モードへ制御モードを切り替えるので、駆動装置は、発電装置を駆動し続けることができる。したがって、駆動装置は、発電装置に高い信頼性を与えることができる。
According to the above configuration, when a failure occurs in the first electric motor, the control unit controls the first application unit and the second application unit, and switches the control mode from the first control mode to the second control mode. The driving device can continue to drive the power generation device. Therefore, the drive device can give high reliability to the power generation device.
上記構成に関して、前記発電装置は、筐体と、前記筐体内で固定されたリングギアと、を含んでもよい。前記動力伝達片は、前記リングギアに噛み合うピニオンであってもよい。
Regarding the above configuration, the power generation device may include a casing and a ring gear fixed in the casing. The power transmission piece may be a pinion that meshes with the ring gear.
上記構成によれば、ピニオンは、リングギアに噛み合うので、駆動装置は、筐体内で固定されたリングギアを適切に駆動することができる。
According to the above configuration, since the pinion meshes with the ring gear, the drive device can appropriately drive the ring gear fixed in the housing.
上述の実施形態の原理は、様々な発電装置に好適に利用される。上述の実施形態の原理は、流体の流動方向の変化に合わせて動作する可動部位を有する発電装置の駆動に好適に利用可能である。追加的に、上述の実施形態の原理は、太陽光を追尾し、電力を生じさせる発電装置に適用されてもよい。
The principle of the above-described embodiment is suitably used for various power generation devices. The principle of the above-described embodiment can be suitably used for driving a power generation apparatus having a movable portion that operates in accordance with a change in the fluid flow direction. Additionally, the principle of the above-described embodiment may be applied to a power generation device that tracks sunlight and generates electric power.
Claims (11)
- 流体の流動方向の変化に合わせて動作する発電装置の可動部位を駆動する駆動装置であって、
前記可動部位を動作させる第1動力を生成する第1動力生成部と、
前記可動部位を動作させる第2動力を生成する第2動力生成部と、
前記第1動力生成部及び前記第2動力生成部に電力を供給するように形成された電力供給部と、
前記第1動力及び前記第2動力のうち少なくとも一方を、前記可動部位に伝達し、前記可動部位を動作させる動力伝達片と、を備える
駆動装置。 A driving device that drives a movable part of a power generation device that operates in accordance with a change in the flow direction of fluid,
A first power generation unit that generates first power for operating the movable part;
A second power generation unit for generating second power for operating the movable part;
A power supply unit configured to supply power to the first power generation unit and the second power generation unit;
A power transmission piece that transmits at least one of the first power and the second power to the movable part and operates the movable part. - 前記第1動力生成部は、電動モータに組み込まれた第1コイル部であり、
前記第2動力生成部は、前記電動モータに組み込まれた第2コイル部であり、
前記第1コイル部は、前記電力供給部からの第1駆動電圧の印加の下で、前記第1動力を生成し、
前記第2コイル部は、前記電力供給部からの第2駆動電圧の印加の下で、前記第2動力を生成する
請求項1に記載の駆動装置。 The first power generation unit is a first coil unit incorporated in an electric motor,
The second power generation unit is a second coil unit incorporated in the electric motor,
The first coil unit generates the first power under application of a first drive voltage from the power supply unit,
The drive device according to claim 1, wherein the second coil unit generates the second power under application of a second drive voltage from the power supply unit. - 前記第1コイル部は、前記電動モータ内の第1領域を取り巻き、
前記第2コイル部は、前記第1領域と少なくとも部分的に重畳する第2領域を取り巻く
請求項2に記載の駆動装置。 The first coil portion surrounds a first region in the electric motor,
The drive device according to claim 2, wherein the second coil portion surrounds a second region that at least partially overlaps the first region. - 前記第1駆動電圧の前記印加と、前記第2駆動電圧の前記印加と、を選択的に制御する制御部を更に備え、
前記制御部は、前記第1駆動電圧の前記印加の不具合を検出する検出部と、前記不具合が生じたときに、前記第1駆動電圧の前記印加から前記第2駆動電圧の前記印加へ電圧印加モードを切り替える切替部と、を含む
請求項2又は3に記載の駆動装置。 A controller that selectively controls the application of the first drive voltage and the application of the second drive voltage;
The control unit detects a failure in the application of the first drive voltage, and applies a voltage from the application of the first drive voltage to the application of the second drive voltage when the failure occurs. The drive unit according to claim 2, further comprising a switching unit that switches modes. - 前記第1駆動電圧の前記印加と、前記第2駆動電圧の前記印加と、を制御する制御部を更に備え、
前記制御部は、前記第1駆動電圧の前記印加の不具合を検出する検出部と、前記不具合が生じたときに、前記第1駆動電圧と前記第2駆動電圧とを同時に発生させる第1制御モードから、前記第2駆動電圧のみを発生させる第2制御モードへ、制御モードを切り替える切替部と、を含む
請求項2又は3に記載の駆動装置。 A controller that controls the application of the first drive voltage and the application of the second drive voltage;
The control unit detects a failure in the application of the first drive voltage, and a first control mode for simultaneously generating the first drive voltage and the second drive voltage when the failure occurs. The drive unit according to claim 2, further comprising: a switching unit that switches the control mode to a second control mode that generates only the second drive voltage. - 前記第1動力及び前記第2動力のうち少なくとも一方を前記動力伝達片へ伝達する動力伝達装置を更に備え、
前記第1動力生成部は、前記第1動力を前記動力伝達装置に与える第1電動モータであり、
前記第2動力生成部は、前記第2動力を前記動力伝達装置に与える第2電動モータである
請求項1に記載の駆動装置。 A power transmission device that transmits at least one of the first power and the second power to the power transmission piece;
The first power generation unit is a first electric motor that gives the first power to the power transmission device,
The drive device according to claim 1, wherein the second power generation unit is a second electric motor that applies the second power to the power transmission device. - 前記動力伝達片と前記動力伝達装置との間に配置された減速機を更に備える
請求項6に記載の駆動装置。 The drive device according to claim 6, further comprising a speed reducer disposed between the power transmission piece and the power transmission device. - 前記動力伝達装置と前記第1電動モータとの間に配置された第1減速機と、
前記動力伝達装置と前記第2電動モータとの間に配置された第2減速機と、を更に備える
請求項6に記載の駆動装置。 A first speed reducer disposed between the power transmission device and the first electric motor;
The drive device according to claim 6, further comprising: a second speed reducer disposed between the power transmission device and the second electric motor. - 前記第1電動モータと前記第2電動モータとを選択的に制御する制御部を更に備え、
前記制御部は、前記動力伝達片への前記第1動力の伝達の不具合を検出する検出部と、前記不具合が生じたときに、制御対象を、前記第1電動モータから前記第2電動モータへ切り替える切替部と、を含む
請求項6乃至8のいずれか1項に記載の駆動装置。 A control unit that selectively controls the first electric motor and the second electric motor;
The control unit detects a defect in transmission of the first power to the power transmission piece, and when the defect occurs, controls the control object from the first electric motor to the second electric motor. The drive unit according to any one of claims 6 to 8, further comprising a switching unit for switching. - 前記第1電動モータと前記第2電動モータとを制御する制御部を更に備え、
前記制御部は、前記動力伝達片への前記第1動力の伝達の不具合を検出する検出部と、前記不具合が生じたときに、前記第1動力と前記第2動力とを同時に発生させる第1制御モードから、前記第2動力のみを発生させる第2制御モードへ、制御モードを切り替える切替部と、を含む
請求項6乃至8のいずれか1項に記載の駆動装置。 A controller for controlling the first electric motor and the second electric motor;
The control unit is configured to detect a failure in transmission of the first power to the power transmission piece, and a first to simultaneously generate the first power and the second power when the failure occurs. The drive unit according to any one of claims 6 to 8, further comprising a switching unit that switches the control mode from a control mode to a second control mode that generates only the second power. - 前記電力供給部に電気的に接続された蓄電部を更に備える
請求項1乃至10のいずれか1項に記載の駆動装置。 The drive device according to claim 1, further comprising a power storage unit electrically connected to the power supply unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016560238A JPWO2016080390A1 (en) | 2014-11-20 | 2015-11-17 | Drive device for driving power generation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-235555 | 2014-11-20 | ||
JP2014235555 | 2014-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016080390A1 true WO2016080390A1 (en) | 2016-05-26 |
Family
ID=56013925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082256 WO2016080390A1 (en) | 2014-11-20 | 2015-11-17 | Driving device for driving generator device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016080390A1 (en) |
WO (1) | WO2016080390A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018091314A (en) * | 2016-12-07 | 2018-06-14 | ナブテスコ株式会社 | Driving device, driving device unit and windmill |
JP2018091309A (en) * | 2016-12-07 | 2018-06-14 | ナブテスコ株式会社 | Windmill drive system and windmill |
JP2019216574A (en) * | 2018-06-14 | 2019-12-19 | ファナック株式会社 | Motor control device that drives one spindle by switching between two motors |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08258728A (en) * | 1995-03-27 | 1996-10-08 | Koyo Seiko Co Ltd | Electric power steering device |
JP2003222070A (en) * | 2002-01-30 | 2003-08-08 | Mitsubishi Heavy Ind Ltd | Windmill |
JP2005009373A (en) * | 2003-06-18 | 2005-01-13 | Ts Corporation | Wind turbine blade pitch angle control device |
JP2012228065A (en) * | 2011-04-19 | 2012-11-15 | Asmo Co Ltd | Motor drive device |
-
2015
- 2015-11-17 WO PCT/JP2015/082256 patent/WO2016080390A1/en active Application Filing
- 2015-11-17 JP JP2016560238A patent/JPWO2016080390A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08258728A (en) * | 1995-03-27 | 1996-10-08 | Koyo Seiko Co Ltd | Electric power steering device |
JP2003222070A (en) * | 2002-01-30 | 2003-08-08 | Mitsubishi Heavy Ind Ltd | Windmill |
JP2005009373A (en) * | 2003-06-18 | 2005-01-13 | Ts Corporation | Wind turbine blade pitch angle control device |
JP2012228065A (en) * | 2011-04-19 | 2012-11-15 | Asmo Co Ltd | Motor drive device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018091314A (en) * | 2016-12-07 | 2018-06-14 | ナブテスコ株式会社 | Driving device, driving device unit and windmill |
JP2018091309A (en) * | 2016-12-07 | 2018-06-14 | ナブテスコ株式会社 | Windmill drive system and windmill |
JP2019216574A (en) * | 2018-06-14 | 2019-12-19 | ファナック株式会社 | Motor control device that drives one spindle by switching between two motors |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016080390A1 (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5520715B2 (en) | Pitch control device for windmill | |
US9276453B2 (en) | Electrical system and method for sustaining an external load | |
WO2016080390A1 (en) | Driving device for driving generator device | |
CN102159831A (en) | Power generation system including multiple motors/generators | |
MX2013008121A (en) | Horizontal axis wind turbine systems and methods. | |
US20120009066A1 (en) | Drive device for a wind turbine | |
JP2018538635A (en) | Method of controlling machine or process with improved safety | |
CN111315980A (en) | Capsule buoy type wave energy generator | |
CN103071995A (en) | Equipment and method for assembling impeller of offshore wind generating set | |
EP3091227B1 (en) | Autonomous yaw control for a wind turbine | |
JP6091047B2 (en) | Uniaxial continuous power generation system | |
JP2018091309A (en) | Windmill drive system and windmill | |
KR101643989B1 (en) | Two-stage output generator | |
US10208732B2 (en) | Intelligent wind turbine generator | |
KR101473587B1 (en) | In-wheel driving system for vehicle | |
KR101368799B1 (en) | Windmill | |
KR101505435B1 (en) | Wind power generator | |
JP6984384B2 (en) | Mobile power car | |
EP3450747A1 (en) | System for controlling a yaw drive of a wind turbine when a native yaw drive control system is non-operational | |
JP2012180929A (en) | Processing machine | |
JP2007215295A (en) | Wind power generating apparatus | |
CN206389230U (en) | A kind of generator speedup arrangement of clutch | |
JP2006057469A (en) | Wind power generation system and method for controlling the same | |
JP6272147B2 (en) | Wind power generator | |
JP2006148989A (en) | Wind power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15861749 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016560238 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15861749 Country of ref document: EP Kind code of ref document: A1 |