WO2016049743A1 - Synthetic acid compositions and uses thereof - Google Patents
Synthetic acid compositions and uses thereof Download PDFInfo
- Publication number
- WO2016049743A1 WO2016049743A1 PCT/CA2015/000516 CA2015000516W WO2016049743A1 WO 2016049743 A1 WO2016049743 A1 WO 2016049743A1 CA 2015000516 W CA2015000516 W CA 2015000516W WO 2016049743 A1 WO2016049743 A1 WO 2016049743A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid composition
- composition according
- synthetic acid
- industry
- synthetic
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 100
- 239000002253 acid Substances 0.000 title claims abstract description 92
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 104
- 239000004202 carbamide Substances 0.000 claims abstract description 23
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 19
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 14
- 230000000694 effects Effects 0.000 claims abstract description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000003007 phosphonic acid derivatives Chemical class 0.000 claims abstract 3
- 238000004519 manufacturing process Methods 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000011282 treatment Methods 0.000 claims description 16
- -1 methylene phosphonic acid Chemical compound 0.000 claims description 14
- 238000004140 cleaning Methods 0.000 claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 235000013305 food Nutrition 0.000 claims description 7
- 235000013365 dairy product Nutrition 0.000 claims description 6
- 238000005554 pickling Methods 0.000 claims description 6
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- 239000002689 soil Substances 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 5
- 239000004567 concrete Substances 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 5
- 238000005065 mining Methods 0.000 claims description 5
- 229920002472 Starch Polymers 0.000 claims description 4
- 238000005342 ion exchange Methods 0.000 claims description 4
- 239000003456 ion exchange resin Substances 0.000 claims description 4
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 4
- 230000003472 neutralizing effect Effects 0.000 claims description 4
- 235000018102 proteins Nutrition 0.000 claims description 4
- 108090000623 proteins and genes Proteins 0.000 claims description 4
- 102000004169 proteins and genes Human genes 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- 239000008107 starch Substances 0.000 claims description 4
- 239000007983 Tris buffer Substances 0.000 claims description 3
- 239000005862 Whey Substances 0.000 claims description 3
- 102000007544 Whey Proteins Human genes 0.000 claims description 3
- 108010046377 Whey Proteins Proteins 0.000 claims description 3
- 239000005018 casein Substances 0.000 claims description 3
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims description 3
- 235000021240 caseins Nutrition 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 230000002328 demineralizing effect Effects 0.000 claims description 3
- 239000003337 fertilizer Substances 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 description 40
- 238000005260 corrosion Methods 0.000 description 40
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 24
- 150000007513 acids Chemical class 0.000 description 19
- 238000000034 method Methods 0.000 description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 description 12
- 239000011707 mineral Substances 0.000 description 12
- 235000010755 mineral Nutrition 0.000 description 12
- 239000000123 paper Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000002588 toxic effect Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 231100000331 toxic Toxicity 0.000 description 7
- 241000282412 Homo Species 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 244000303965 Cyamopsis psoralioides Species 0.000 description 5
- VYWQTJWGWLKBQA-UHFFFAOYSA-N [amino(hydroxy)methylidene]azanium;chloride Chemical compound Cl.NC(N)=O VYWQTJWGWLKBQA-UHFFFAOYSA-N 0.000 description 5
- 150000007524 organic acids Chemical class 0.000 description 5
- 239000004753 textile Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000003517 fume Substances 0.000 description 4
- 231100001261 hazardous Toxicity 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 235000005985 organic acids Nutrition 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000002455 scale inhibitor Substances 0.000 description 4
- 159000000000 sodium salts Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 235000019534 high fructose corn syrup Nutrition 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000007794 irritation Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 235000011007 phosphoric acid Nutrition 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 206010015946 Eye irritation Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 206010038731 Respiratory tract irritation Diseases 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- FUSUHKVFWTUUBE-UHFFFAOYSA-N buten-2-one Chemical compound CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000008504 concentrate Nutrition 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 238000006253 efflorescence Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 229910001511 metal iodide Inorganic materials 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- OSDZHDOKXGSWOD-UHFFFAOYSA-N nitroxyl;hydrochloride Chemical class Cl.O=N OSDZHDOKXGSWOD-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 206010037844 rash Diseases 0.000 description 2
- 230000037390 scarring Effects 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 241000592335 Agathis australis Species 0.000 description 1
- 244000106483 Anogeissus latifolia Species 0.000 description 1
- 235000011514 Anogeissus latifolia Nutrition 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 235000017399 Caesalpinia tinctoria Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000001922 Gum ghatti Substances 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920002752 Konjac Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 206010073310 Occupational exposures Diseases 0.000 description 1
- 244000134552 Plantago ovata Species 0.000 description 1
- 235000003421 Plantago ovata Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000009223 Psyllium Substances 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 206010068956 Respiratory tract inflammation Diseases 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 240000004584 Tamarindus indica Species 0.000 description 1
- 235000004298 Tamarindus indica Nutrition 0.000 description 1
- 241000388430 Tara Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000159 acid neutralizing agent Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 231100000584 environmental toxicity Toxicity 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 231100000013 eye irritation Toxicity 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000019314 gum ghatti Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 231100000824 inhalation exposure Toxicity 0.000 description 1
- ICIWUVCWSCSTAQ-UHFFFAOYSA-N iodic acid Chemical class OI(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 235000010485 konjac Nutrition 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 231100000067 mild irritant Toxicity 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 231100000675 occupational exposure Toxicity 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 231100000822 oral exposure Toxicity 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 208000017983 photosensitivity disease Diseases 0.000 description 1
- 231100000434 photosensitization Toxicity 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- SSOLNOMRVKKSON-UHFFFAOYSA-N proguanil Chemical compound CC(C)\N=C(/N)N=C(N)NC1=CC=C(Cl)C=C1 SSOLNOMRVKKSON-UHFFFAOYSA-N 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940070687 psyllium Drugs 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 238000004076 pulp bleaching Methods 0.000 description 1
- 238000004045 reactive dyeing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000013349 risk mitigation Methods 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C21/00—Whey; Whey preparations
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
- A23L2/68—Acidifying substances
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/82—Acid flavourants
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
- C02F5/10—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
- C02F5/12—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
- C02F5/125—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen combined with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
- C02F5/10—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
- C02F5/14—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
- C02F5/145—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus combined with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/53—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
- C04B41/5315—Cleaning compositions, e.g. for removing hardened cement from ceramic tiles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/53—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
- C04B41/5338—Etching
- C04B41/5353—Wet etching, e.g. with etchants dissolved in organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/60—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
- C04B41/72—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone involving the removal of part of the materials of the treated articles, e.g. etching
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0073—Anticorrosion compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/02—Inorganic compounds
- C11D7/04—Water-soluble compounds
- C11D7/08—Acids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/26—Organic compounds containing oxygen
- C11D7/261—Alcohols; Phenols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3272—Urea, guanidine or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/36—Organic compounds containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F14/00—Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes
- C23F14/02—Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes by chemical means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
- C23G1/088—Iron or steel solutions containing organic acids
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C7/00—Other dairy technology
- A23C7/02—Chemical cleaning of dairy apparatus; Use of sterilisation methods therefor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/10—Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/42—Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Definitions
- This invention relates to compositions for use in performing various operations in industries including, but not limited to, pulp & paper, mining, dairy, ion exchange bed regeneration, manufacturing, food-brewery-sugar production and textiles manufacturing more specifically to synthetic acid compositions as alternatives to HCl (hydrochloric acid).
- industries including, but not limited to, pulp & paper, mining, dairy, ion exchange bed regeneration, manufacturing, food-brewery-sugar production and textiles manufacturing more specifically to synthetic acid compositions as alternatives to HCl (hydrochloric acid).
- HCl hydrochloric acid
- hydrochloric acid releases airborne toxins that can have serious side effects on plant and mill workers, as well as the environment in the surrounding area.
- hydrochloric acid is not properly filtered through air purification ducts and is released into the atmosphere, in its aerosol form hydrogen chloride gas is highly toxic and corrosive. So while the need for acids in industries will never diminish, the toxins released in the air by their application needs to be.
- Hydrochloric acid is corrosive to the eyes, skin, and mucous membranes.
- Acute (short-term) inhalation exposure may cause eye, nose, and respiratory tract irritation and inflammation and pulmonary edema in humans.
- Acute oral exposure may cause corrosion of the mucous membranes, esophagus, and stomach and dermal contact may produce severe burns, ulceration, and scarring in humans.
- Chronic (long- term) occupational exposure to hydrochloric acid has been reported to cause gastritis, chronic bronchitis, dermatitis, and photosensitization in workers. Prolonged exposure to low concentrations may also cause dental discoloration and erosion.
- hydrochloric acid HCl
- Corrosion and fumes are the major concerns when HCl is applied in industry.
- the total annual corrosion costs for the pulp, paper, and paperboard industry, as determined as a fraction of the maintenance cost is estimated to be over $2.0 billion per year in the US alone. Therefore it is highly desirable to have a non-fuming product that has very low corrosion rates that can replace the harsh acids typically utilized.
- Paper production consists of a series of processes and can be roughly divided according to the five major manufacturing steps: (1) pulp production, (2) pulp processing and chemical recovery, (3) pulp bleaching, (4) stock preparation, and (5) paper manufacturing.
- Each manufacturing step has its own corrosion problems related to the size and quality of the wood fibers, the amount of and temperature of the process water, the concentration of the treatment chemicals, and the materials used for machinery construction. Examples of corrosion affecting production are: (1) corrosion products polluting the paper; and (2) corrosion of rolls leading to scarring of the sheets of paper. Corrosion of components may also result in fractures or leaks in the machines, causing production loss and safety hazards.
- Table 1 sets out the main chemicals and amounts release in total and on average in the pulp and paper industry.
- hydrochloric acid In industries demanding purity (e.g. food, pharmaceutical, drinking water), high- quality hydrochloric acid is used to control the pH of process water streams. In less demanding industry, technical quality hydrochloric acid suffices for the neutralization of waste streams and for swimming pool treatment. It is desirable to have a synthetic option to HC1 having very low levels of toxicity and corrosion and being non-fuming which can be safely handled and utilized in those industries.
- Some major industrial uses of HC1 include the food and dairy industry. In the food industry, hydrochloric acid is used in the manufacture of protein and starch. It is also used in demineralizing whey. Moreover, it is also extensively used in casein manufacturing, as well as the regeneration of ion exchange resins.
- Ion exchange resins are used to remove impurities in the production of corn syrups such as high-fructose corn syrup (HFCS).
- HFCS high-fructose corn syrup
- HFCS are widely used in the food industry but by far their largest use (upwards of 70%) is in the manufacturing of soft drinks. It is also used for hydrolyzing starch and proteins in the preparation of various food product.
- acid cleaners remove or prevent accumulated mineral deposits or milkstone buildup. It is advantageous to have an alternative to harsh acids that is non-hazardous.
- hydrochloric acid is widely used as an effective neutralization agent for alkaline (high pH) effluent.
- HC1 is also used in neutralizing alkaline soils in agricultural and landscaping applications. It is also commonly used in the manufacture of fertilizers.
- HC1 is also used as an efflorescence cleaner for retaining walls, driveways, brick and as a mortar cleaner. It is also used to etch concrete which is typically treated with phosphoric acid. Phosphoric acid is another strong acid which emits toxic fumes irritating the nasal passages, eyes and skin.
- HC1 is also used as cement cleaner, more specifically in the removal of cement based material from equipment or structures as well as in the treatment of boiler scale, as well as being a scale cleaner applicable to ships, submarines, offshore vessels, and evaporators.
- HC1 can also be used as a catalyst and solvent in organic syntheses, as a laboratory reagent, for refining ore in the production of tin and tantalum among other minerals.
- HC1 is thus widely used in this industry as well.
- HC1 is also used extensively in steel pickling. Steel pickling of carbon, alloy and stainless steels is a process where the acid removes surface impurities on steel. Such impurities include iron oxides and scale. The iron oxides are removed by contact with the acid which solubilizes the oxides.
- Steel pickling is a necessary step in further processing steel products into such items as: wires, coating of sheet and strip as well as tin mill products.
- HC1 can also be used to perform aluminum etching, metal galvanizing, soldering and metal cleaning as well as a number of other operations.
- HC1 is also used in several retail applications as a component in typical household cleaners for cleaning tiles and sinks etc.
- HCL is also commonly employed in the photographic and rubber industries, electronics manufacturing, as well as the textile industry in which waste from textile industries is rarely neutral. Certain processes such as reactive dyeing require large quantities of alkali but pre-treatments and some washes can be acidic. It is therefore necessary to adjust the pH in the treatment process to make the wastewater neutral. This is particularly important if biological treatment is being used, as the microbes used in biological treatment require a pH in the range of 6-8 and will be killed by highly acidic or alkali wastewater. In PCETP, the wastewater is mostly alkali wastes (high pH). For this purpose, hydrochloric acid (HC1) is added to maintain the pH value from 7.5 to 7.8 to save the microbes used in biological treatment as well as to reduce the wastage of chemicals. Therefore, it is advantageous to have an alternative pH control mechanism that is non-hazardous.
- HC1 hydrochloric acid
- Another concern is the potential for spills on locations due to high corrosion levels of acids causing storage container failures and/or deployment equipment failures caused by high corrosion rates.
- Other concerns include: inconsistent strength or quality level of mineral & organic acids; potential supply issues based on industrial output levels; and ongoing risks to individuals handling acid containing containers.
- Typical organic and mineral acids used in a pH control situation can or will cause degradation of certain additives/systems requiring further chemicals to be added to counter these potentially negative effects.
- acid to pickle steel very careful attention must be paid to the process due to high levels of corrosion. Acids are very destructive to many typical elastomers found in various industries such as in water treatment/transfer pumps. It is advantageous to have an HC1 alternative that preferably does no damage to elastomers.
- Acids perform many critical functions in various industries and are considered indispensable to achieve a desired result.
- the associated dangers that come with using acids are expansive and risk mitigation through various control measures (whether they are chemically or mechanically engineered) are both costly and complex and/or time- consuming.
- US patent no. 4,402,852 discloses compositions containing 5 to 75% of urea, 5 to 85% of sulfuric acid and from 5 to 75% of water. These compositions are said to have reduced corrosivity to carbon steels.
- US patent no. 6, 147,042 discloses compositions comprising a polyphosphoric acid- urea condensate or polymer which results from the reaction of orthophosphoric acid and urea used in the removal of etching residue containing organometal residues.
- US patent no. 7,938,912 discloses compositions containing hydrochloric acid, urea, a complex substituted keto-amine-hydrochloride, an alcohol, an ethoxylate and a ketone for use to clean surfaces having cementitious compositions.
- US patent no. 5,672,279 discloses a composition containing urea hydrochloride prepared by mixing urea and hydrochloric acid.
- Urea hydrochloride is used to remove scale in hot water boilers and other industrial equipment such as papermaking equipment. Scale is caused by the presence of calcium carbonate which is poorly soluble in water and tends to accumulate on surfaces and affect equipment exposed to it.
- 4,466,893 teaches gelled acid compositions comprising a gelling agent selected from the group consisting of galactomannans such as guar gum, gum karaya, gum tragacanth, gum ghatti, gum acacia, gum konjak, shariz, locus, psyllium, tamarind, gum tara, carrageenan, gum kauri, modified guars such as hydroxypropyl guar, hydroxyethyl guar, carboxymethyl hydroxyethyl guar, carboxymethyl hydroxypropyl guar and alkoxylated amines.
- a gelling agent selected from the group consisting of galactomannans such as guar gum, gum karaya, gum tragacanth, gum ghatti, gum acacia, gum konjak, shariz, locus, psyllium, tamarind, gum tara, carrageenan, gum kauri, modified guars such as
- Synthetic acid compositions are mostly applicable in the cleaning industry. However, such compositions require the additional of a number of various chemical compounds which are dangerous in their undiluted states.
- the physical process to make such cleaning compositions involves multiple steps of mixing, blending and dilution.
- the present invention proposes the removal of certain chemicals used which would rationalize the process to make the compositions of the present invention and therefore render the manufacturing process safer from a production point of view.
- the composition according to the present invention exhibits stability for operations at elevated temperature (above 65°C) and therefore makes them useful in various operations across several industries.
- Metal iodides or iodates such as potassium iodide, sodium iodide, lithium iodide and cuprous iodide can potentially be used as corrosion inhibitor intensifier.
- potassium iodide is a metal iodide traditionally used as corrosion inhibitor intensifier, it is expensive, but works extremely well. It is non-regulated and friendly to handle.
- potassium iodide presents several handling problems. Potassium iodide needs to be preferably stored in closed containers away from direct sunlight at ambient temperature. Moreover, during handling it is strongly recommended that direct contact with human body should be avoided. Safety goggles and gloves are recommended for safe handling. It comes in the form of white crystals, granules or powder. It is odorless, and irritating to body tissues. It is labelled as a possible sensitizer, in handling one must avoid all body tissue contact.
- Irritation to the respiratory tract has the following symptoms: coughing and shortness of breath. Irritation to the skin is accompanied by redness and pain. Oral ingestion of large oral of potassium iodide can lead to GI tract irritation. Potassium iodide is typically ingested in the form of tablets with copious amounts of water.
- compositions which do not contain this chemical but which provide an adequate and preferably, comparable, level of efficacy in synthetic acid compositions with respect to its effect on corrosion inhibition.
- compositions for use in various industry which can be used over a range of applications which can decrease a number of the associated dangers/issues typically associated with acid applications to the extent that these acid compositions are considered much safer for handling on worksites.
- Certain embodiments of the present invention provide both a simpler manufacturing process and abridged synthetic acid compositions for use in high volume operations.
- composition according to the present invention exhibits stability for operations at elevated temperature (above 65°C) and therefore makes them useful for various operations in a number of industries where water usage and discharge in the environment is a concern.
- compositions according to the present invention have been developed for, but not limited to, pulp & paper, mining, dairy, ion exchange bed regeneration, manufacturing, food- brewery-sugar production and textiles manufacturing industries and associated applications, by targeting the problems of corrosion, logistics, storage, human/environmental exposure and equipment/fluid-product compatibilities.
- a synthetic acid composition for use in industry which has a methodically spending (reacting) nature that is linear at higher temperature, non-fuming, non-toxic, high quality-consistent controlled.
- a synthetic acid composition for use in industry which has a pH below 1.
- a synthetic acid composition for use in industry which has minimal exothermic reactivity.
- a synthetic acid composition for use in industry which is compatible with most existing industries additives and pump elastomers/seals.
- a synthetic acid composition that has a very low evaporation rate.
- a synthetic acid composition for use in industry which provides an easily adjustable, methodical and comprehensive reaction rate.
- a synthetic acid composition for use in the mining industry the use being selected from, but not limited to, the group consisting of treating scale and adjusting pH levels in fluid systems.
- a synthetic acid composition for use in the water treatment industry said use being selected from the group consisting of adjusting pH and neutralizing alkaline effluent.
- a synthetic acid composition for use in the fertilizer/landscaping industry to adjust the pH level of a soil.
- a synthetic acid composition for use in the construction industry said use being selected from the group consisting of etching concrete and cleaning concrete of efflorescence.
- a synthetic acid composition for use in the electrical generation industry said use being selected from the group consisting of descaling pipelines and related equipment and descaling facilities.
- a synthetic acid composition for use in the food and dairy industry said use being selected from the group consisting of: manufacturing protein, manufacturing starch, demineralizing whey, manufacturing casein, milk stone removal and regenerating ion exchange resins.
- a synthetic acid composition for use in the swimming pool industry to lower the pH of fluids.
- a synthetic acid composition for use in the manufacturing industry to perform an operation selected from the group consisting of pickling steel and cleaning metal.
- a synthetic acid composition for use in the retail industry as a low pH cleaning additive.
- composition according to the present invention is intended to overcome many of the drawbacks found in the use of prior art compositions of HC1 in various industries.
- Urea-HCl is the main component in terms of volume and weight percent of the composition of the present invention, and consists basically of a carbonyl group connecting with nitrogen and hydrogen.
- hydrochloric acid When added to hydrochloric acid, there is a reaction that results in urea hydrochloride, which basically traps the chloride ion within the molecular structure.
- This reaction greatly reduces the hazardous effects of the hydrochloric acid on its own, such as the fuming effects, the hygroscopic effects, and the highly corrosive nature (the CI " ion will not readily bond with the Fe ion).
- the excess nitrogen can also act as a corrosion inhibitor at higher temperatures.
- Urea & hydrogen chloride in a molar ratio of not less than 0.1 : 1 ; preferably in a molar ratio not less than 0.5: 1 , and more preferably in a molar ratio not less than 0.8: 1.
- this ratio can be increased depending on the application.
- the composition according to the present invention comprises 1.1 moles of urea per 1.0 moles of HCI.
- the urea (hydrochloride) also allows for a reduced rate of reaction when in the presence of carbonate-based materials. This again due to the stronger molecular bonds associated over what hydrochloric acid traditionally displays.
- the composition according to the present invention is mainly comprised of urea (which is naturally biodegradable), the product testing has shown that the urea hydrochloride will maintain the same biodegradability function, something that hydrochloric acid will not.
- Alcohols and derivatives thereof such as alkyne alcohols and derivatives and preferably propargyl alcohol and derivatives thereof can be used as corrosion inhibitors.
- Propargyl alcohol itself is traditionally used as a corrosion inhibitor which works extremely well at low concentrations. It is a toxic/flammable chemical to handle as a concentrate, so care must be taken during handling the concentrate. In the composition according to the present invention, the toxic effect does not negatively impact the safety of the composition.
- ATMP amino tris methylene phosphonic acid
- Amino tris (methylenephosphonic acid) (ATMP) and its sodium salts are typically used in water treatment operations as scale inhibitors. They also find use as detergents and in cleaning applications, in paper, textile and photographic industries and in off-shore oil applications. Pure ATMP presents itself as a solid but it is generally obtained through process steps leading to a solution ranging from being colourless to having a pale yellow colour. ATMP acid and some of its sodium salts may cause corrosion to metals and may cause serious eye irritation to a varying degree dependent upon the pH/degree of neutralization.
- Amino tris (methylenephosphonic acid) and its sodium salts belong to the ATMP category in that all category members are various ionized forms of the acid. This category includes potassium and ammonium salts of that acid. The properties of the members of a category are usually consistent. Moreover, certain properties for a salt, in ecotoxicity studies, for example, can be directly appreciated by analogy to the properties of the parent acid.
- Amino tris (methylenephosphonic acid) may specifically be used as an intermediate for producing the phosphonates salts. The salt is used in situ (usually the case) or stored separately for further neutralization.
- One of the common uses of phosphonates is as scale inhibitors in the treatment of cooling and boiler water systems. In particular, for ATMP and its sodium salts are used in order to prevent the formation of calcium carbonate scale.
- a synthetic acid composition comprising: - urea & hydrogen chloride in a molar ratio of not less than 0.1 : 1 ; preferably in a molar ratio not less than 0.5: 1 , more preferably in a molar ratio not less than 1 : 1 ; - an alcohol or derivatives thereof, preferably alkynyl alcohol or derivatives thereof, more preferably propargyl alcohol or a derivative of; and
- a phosphonic acid or derivatives preferably alkylphosphonic acid or derivatives thereof and more preferably amino tris methylene phosphonic acid and derivatives thereof.
- Example 1 Process to prepare a composition according to a preferred embodiment of the invention
- Table 2 lists the components of the composition of Example 1 including their weight percentage as compared to the total weight of the composition and the CAS numbers of each component. Table 2 - Composition of a preferred embodiment of the present invention
- Example 1 The resulting composition of Example 1 is a clear, odourless liquid having shelf-life of greater than 1 year. It has a freezing point temperature of approximately minus 30°C and a boiling point temperature of approximately 100°C. It has a specific gravity of 1.15 ⁇ 0.02. It is completely soluble in water and its pH is less than 1.
- the composition is biodegradable and is classified as a mild irritant according to the classifications for skin tests.
- the composition is non-fuming and has no volatile organic compounds nor does it have any BTEX levels above the drinking water quality levels.
- BTEX refers to the chemicals benzene, toluene, ethylbenzene and xylene. Toxicity testing was carried out on rats and the LD50 was determined to be greater than 2000mg/kg.
- Example 3 The composition according to the present invention of Example 1 was exposed to corrosion testing. The results of the corrosion tests are reported in Table 3.
- This type of corrosion testing helps to determine the impact of the use of such synthetic replacement acid composition according to the present invention compared to the industry standard (HC1 blends or any other mineral or organic acid blends).
- the results obtained for the composition containing only HC1 and urea were used as a baseline to compare the other compositions.
- compositions according to the present invention will allow the end user to utilize an alternative to conventional acids that has transportation and storage advantages as well as health, safety and environmental advantages. Enhancement in short/long term corrosion control is one of the key advantages of the present invention. The reduction in skin corrosiveness, the controlled spending nature, and the high salt tolerance are some other advantages of compositions according to the present invention.
- compositions according to the present invention can be used directly (ready-to- use) or be diluted with water depending on their use.
- compositions according to the present invention upon dilution thereof ranging from approximately 1 to 75% dilution, include, but are not limited to: water treatment; boiler/pipe de-scaling; soil treatment; pH control; ion regeneration; pipeline scale treatments; pH control; retail cleaner; cement etching; soil pH control and various pulp and paper industrial applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Structural Engineering (AREA)
- Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Inorganic Chemistry (AREA)
- Nutrition Science (AREA)
- Emergency Medicine (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
A synthetic acid composition for replacing hydrochloric acid in industrial activities requiring large amounts of hydrochloric acid, said composition comprising: urea and hydrogen chloride in a molar ratio of not less than 0.1 : 1; and an alcohol or derivative thereof optionally, it may further comprise a phosphonic acid derivative.
Description
SYNTHETIC ACID COMPOSITIONS AND USES THEREOF
FIELD OF THE INVENTION
This invention relates to compositions for use in performing various operations in industries including, but not limited to, pulp & paper, mining, dairy, ion exchange bed regeneration, manufacturing, food-brewery-sugar production and textiles manufacturing more specifically to synthetic acid compositions as alternatives to HCl (hydrochloric acid).
BACKGROUND OF THE INVENTION
Multiple industries work with HCl in large amounts and on a daily basis. One of the problems encountered with HCl (hydrochloric acid) is that it releases airborne toxins that can have serious side effects on plant and mill workers, as well as the environment in the surrounding area. For example, if hydrochloric acid is not properly filtered through air purification ducts and is released into the atmosphere, in its aerosol form hydrogen chloride gas is highly toxic and corrosive. So while the need for acids in industries will never diminish, the toxins released in the air by their application needs to be.
It is advantageous to have an alternative to HCl that does not create hydrogen chloride gas and has low rates of corrosion. Hydrochloric acid is corrosive to the eyes, skin, and mucous membranes. Acute (short-term) inhalation exposure may cause eye, nose, and respiratory tract irritation and inflammation and pulmonary edema in humans. Acute oral exposure may cause corrosion of the mucous membranes, esophagus, and stomach and dermal contact may produce severe burns, ulceration, and scarring in humans. Chronic (long- term) occupational exposure to hydrochloric acid has been reported to cause gastritis, chronic bronchitis, dermatitis, and photosensitization in workers. Prolonged exposure to low concentrations may also cause dental discoloration and erosion.
There are many different mineral and organic acids used to perform various functions in these industries. A common type of acid employed is hydrochloric acid (HCl), which is useful in, but not limited to, cleaning scale or to lower the pH of a fluid. Corrosion and fumes are the major concerns when HCl is applied in industry.
As an example, the total annual corrosion costs for the pulp, paper, and paperboard industry, as determined as a fraction of the maintenance cost, is estimated to be over $2.0 billion per year in the US alone. Therefore it is highly desirable to have a non-fuming product that has very low corrosion rates that can replace the harsh acids typically utilized.
Paper production consists of a series of processes and can be roughly divided according to the five major manufacturing steps: (1) pulp production, (2) pulp processing and chemical recovery, (3) pulp bleaching, (4) stock preparation, and (5) paper manufacturing. Each manufacturing step has its own corrosion problems related to the size and quality of the wood fibers, the amount of and temperature of the process water, the concentration of the treatment chemicals, and the materials used for machinery construction. Examples of corrosion affecting production are: (1) corrosion products polluting the paper; and (2) corrosion of rolls leading to scarring of the sheets of paper. Corrosion of components may also result in fractures or leaks in the machines, causing production loss and safety hazards. Table 1 sets out the main chemicals and amounts release in total and on average in the pulp and paper industry.
Table 1 - Top five highest amounts of toxics release inventory (TRI) chemicals released in 1995 by pulp and paper facilities
In industries demanding purity (e.g. food, pharmaceutical, drinking water), high- quality hydrochloric acid is used to control the pH of process water streams. In less demanding industry, technical quality hydrochloric acid suffices for the neutralization of waste streams and for swimming pool treatment. It is desirable to have a synthetic option to HC1 having very low levels of toxicity and corrosion and being non-fuming which can be safely handled and utilized in those industries.
Some major industrial uses of HC1 include the food and dairy industry. In the food industry, hydrochloric acid is used in the manufacture of protein and starch. It is also used in demineralizing whey. Moreover, it is also extensively used in casein manufacturing, as well as the regeneration of ion exchange resins. Ion exchange resins are used to remove impurities in the production of corn syrups such as high-fructose corn syrup (HFCS). HFCS are widely used in the food industry but by far their largest use (upwards of 70%) is in the manufacturing of soft drinks. It is also used for hydrolyzing starch and proteins in the preparation of various food product. In the dairy industry acid cleaners remove or prevent accumulated mineral deposits or milkstone buildup. It is advantageous to have an alternative to harsh acids that is non-hazardous.
As part of water treatment processes, hydrochloric acid is widely used as an effective neutralization agent for alkaline (high pH) effluent. HC1 is also used in neutralizing alkaline soils in agricultural and landscaping applications. It is also commonly used in the manufacture of fertilizers.
HC1 is also used as an efflorescence cleaner for retaining walls, driveways, brick and as a mortar cleaner. It is also used to etch concrete which is typically treated with phosphoric acid. Phosphoric acid is another strong acid which emits toxic fumes irritating the nasal passages, eyes and skin.
HC1 is also used as cement cleaner, more specifically in the removal of cement based material from equipment or structures as well as in the treatment of boiler scale, as well as being a scale cleaner applicable to ships, submarines, offshore vessels, and evaporators.
HC1 can also be used as a catalyst and solvent in organic syntheses, as a laboratory reagent, for refining ore in the production of tin and tantalum among other minerals. In the mining industry, there is heavy reliance on the acid leaching of certain minerals from ore deposits, an economical method of recovering valuable minerals from otherwise inaccessible bodies of ore. HC1 is thus widely used in this industry as well.
Moreover, HC1 is also used extensively in steel pickling. Steel pickling of carbon, alloy and stainless steels is a process where the acid removes surface impurities on steel. Such impurities include iron oxides and scale. The iron oxides are removed by contact with the acid which solubilizes the oxides. Steel pickling is a necessary step in further processing steel products into such items as: wires, coating of sheet and strip as well as tin mill products. Other than pickling operations, HC1 can also be used to perform aluminum etching, metal galvanizing, soldering and metal cleaning as well as a number of other operations.
HC1 is also used in several retail applications as a component in typical household cleaners for cleaning tiles and sinks etc.
HCL is also commonly employed in the photographic and rubber industries, electronics manufacturing, as well as the textile industry in which waste from textile industries is rarely neutral. Certain processes such as reactive dyeing require large quantities of alkali but pre-treatments and some washes can be acidic. It is therefore necessary to adjust the pH in the treatment process to make the wastewater neutral. This is particularly important if biological treatment is being used, as the microbes used in biological treatment require a pH in the range of 6-8 and will be killed by highly acidic or alkali wastewater. In PCETP, the wastewater is mostly alkali wastes (high pH). For this purpose, hydrochloric acid (HC1) is added to maintain the pH value from 7.5 to 7.8 to save the microbes used in biological treatment as well as to reduce the wastage of chemicals. Therefore, it is advantageous to have an alternative pH control mechanism that is non-hazardous.
Some of the major challenges faced in various industries include the following: general high levels of corrosion due to the use of acids. These corrosion problems are typically countered by the addition of corrosion inhibitors that are typically themselves sometimes toxic and harmful to humans, the environment and or even the equipment. Reactions between acids and various types of metals can vary greatly, but softer metals, such as aluminum, are very susceptible to severe corrosion causing immediate damage. Toxicity levels of acids applied (including multiple additives used to control corrosion, emulsions, compatibility with oils/liquids, iron controls, water wetting agents etc.). Hydrochloric acid produces hydrogen chloride gas which is toxic and corrosive to skin, eyes and metals. At levels above 50 ppm (parts per million), hydrogen chloride gas can be Immediately
Dangerous to Life and Health (IDHL). At levels ranging from 1300-2000 ppm, death can occur in 2-3 minutes.
The inherent environmental dangers (organic sterility, poisoning of wildlife etc.) of the use of acids in the event of an unintended/accidental release into water aquifers or sources of water are devastating as they can cause significant pH reduction of such and can substantially increase the toxicity and could potentially cause a mass culling of aquatic species and potential poisoning of humans/livestock and wildlife exposed to/or drinking the water. An unintended surface release can also cause the release of a hydrogen chloride gas cloud, potentially endangering human and animal health. This is a common event at large storage sites when tanks split or leak or during a traffic accident involving an acid tanker. Typically, if near the public, large areas need to be evacuated post-event. Because of its acidic nature, hydrogen chloride gas is also corrosive, particularly in the presence of moisture.
The inability for acids and blends of such to biodegrade naturally without neutralizing the soil results in expensive cleanup-reclamation costs for the operator should an unintended release occur. Moreover, the toxic fumes produced by mineral & organic acids are harmful to humans/animals and are highly corrosive and/or explosive potentially blending exposure dangers for personnel exposed to handling harmful acids.
Another concern is the potential for spills on locations due to high corrosion levels of acids causing storage container failures and/or deployment equipment failures caused by high corrosion rates. Other concerns include: inconsistent strength or quality level of mineral & organic acids; potential supply issues based on industrial output levels; and ongoing risks to individuals handling acid containing containers.
Price fluctuations with typical mineral and organic acids based on industrial output causing end users an inability to establish long term costs in their respective budgets; severe reaction with dermal/eye tissue; major PPE requirements (personal protective equipment) for handling, such as on-site shower units; extremely high corrosion rates as temperature increases.
When used to treat scaling issues on surface due to precipitation of minerals, acids are exposed to humans and mechanical devices as well as expensive equipment causing increased risk for the operator and corrosion effects that damage equipment and create hazardous fumes. When mixed with bases or higher pH fluids, acids will create a large amount of thermal energy (exothermic reaction) causing potential safety concerns and equipment damage.
Typical organic and mineral acids used in a pH control situation can or will cause degradation of certain additives/systems requiring further chemicals to be added to counter these potentially negative effects. When using an acid to pickle steel, very careful attention must be paid to the process due to high levels of corrosion. Acids are very destructive to many typical elastomers found in various industries such as in water treatment/transfer pumps. It is advantageous to have an HC1 alternative that preferably does no damage to elastomers.
Acids perform many critical functions in various industries and are considered indispensable to achieve a desired result. However, the associated dangers that come with using acids are expansive and risk mitigation through various control measures (whether they are chemically or mechanically engineered) are both costly and complex and/or time- consuming.
Eliminating or even simply reducing the negative effects of acids while maintaining their usefulness is a struggle for many industries. As the public demand for the use of cleaner/safer/greener products increases, companies are looking for alternatives that perform the required function without all or most of the drawbacks associated with the use of acids.
US patent no. 4,402,852 discloses compositions containing 5 to 75% of urea, 5 to 85% of sulfuric acid and from 5 to 75% of water. These compositions are said to have reduced corrosivity to carbon steels.
US patent no. 6, 147,042 discloses compositions comprising a polyphosphoric acid- urea condensate or polymer which results from the reaction of orthophosphoric acid and urea used in the removal of etching residue containing organometal residues.
US patent no. 7,938,912 discloses compositions containing hydrochloric acid, urea, a complex substituted keto-amine-hydrochloride, an alcohol, an ethoxylate and a ketone for use to clean surfaces having cementitious compositions. US patent no. 8,430,971 and 8,580,047 disclose and claim compositions containing specific amounts of hydrochloric acid (55% by wt), urea (42% by wt), a complex substituted keto-amine-hydrochloride (0.067% by wt), propargyl alcohol (0.067% by wt), an ethoxylated nonylphenyl (0.022% by wt), methyl vinyl ketone (0.022% by wt), acetone (0.0022% by wt), and acetophenone (0.0022% by wt).
US patent no. 5,672,279 discloses a composition containing urea hydrochloride prepared by mixing urea and hydrochloric acid. Urea hydrochloride is used to remove scale in hot water boilers and other industrial equipment such as papermaking equipment. Scale is caused by the presence of calcium carbonate which is poorly soluble in water and tends to accumulate on surfaces and affect equipment exposed to it. US Patent no. 4,466,893 teaches gelled acid compositions comprising a gelling agent selected from the group consisting of galactomannans such as guar gum, gum karaya, gum tragacanth, gum ghatti, gum acacia, gum konjak, shariz, locus, psyllium, tamarind, gum tara, carrageenan, gum kauri, modified guars such as hydroxypropyl guar, hydroxyethyl guar, carboxymethyl hydroxyethyl guar, carboxymethyl hydroxypropyl guar and alkoxylated amines. This patent teaches that presence of urea has a marked impact on the viscosity of the gelled acid.
Synthetic acid compositions are mostly applicable in the cleaning industry. However, such compositions require the additional of a number of various chemical compounds which are dangerous in their undiluted states. The physical process to make such cleaning compositions involves multiple steps of mixing, blending and dilution. The present invention proposes the removal of certain chemicals used which would rationalize the process to make the compositions of the present invention and therefore render the manufacturing process safer from a production point of view. Moreover, it was discovered that the composition according to the present invention exhibits stability for operations at elevated temperature (above 65°C) and therefore makes them useful in various operations across several industries.
Metal iodides or iodates such as potassium iodide, sodium iodide, lithium iodide and cuprous iodide can potentially be used as corrosion inhibitor intensifier. In fact, potassium
iodide is a metal iodide traditionally used as corrosion inhibitor intensifier, it is expensive, but works extremely well. It is non-regulated and friendly to handle.
However, potassium iodide presents several handling problems. Potassium iodide needs to be preferably stored in closed containers away from direct sunlight at ambient temperature. Moreover, during handling it is strongly recommended that direct contact with human body should be avoided. Safety goggles and gloves are recommended for safe handling. It comes in the form of white crystals, granules or powder. It is odorless, and irritating to body tissues. It is labelled as a possible sensitizer, in handling one must avoid all body tissue contact.
Contact with potassium iodide in its pure form, or inhalation of potassium iodide, can result in skin, eye and/or respiratory tract irritation. Irritation to the respiratory tract has the following symptoms: coughing and shortness of breath. Irritation to the skin is accompanied by redness and pain. Oral ingestion of large oral of potassium iodide can lead to GI tract irritation. Potassium iodide is typically ingested in the form of tablets with copious amounts of water.
Given the list of hazards related to human exposure it is desirable to prepare compositions which do not contain this chemical but which provide an adequate and preferably, comparable, level of efficacy in synthetic acid compositions with respect to its effect on corrosion inhibition.
Consequently, there is still a need for compositions for use in various industry which can be used over a range of applications which can decrease a number of the associated dangers/issues typically associated with acid applications to the extent that these acid compositions are considered much safer for handling on worksites.
Certain embodiments of the present invention provide both a simpler manufacturing process and abridged synthetic acid compositions for use in high volume operations.
Moreover, it was discovered that the composition according to the present invention exhibits stability for operations at elevated temperature (above 65°C) and therefore makes
them useful for various operations in a number of industries where water usage and discharge in the environment is a concern.
SUMMARY OF THE INVENTION
Compositions according to the present invention have been developed for, but not limited to, pulp & paper, mining, dairy, ion exchange bed regeneration, manufacturing, food- brewery-sugar production and textiles manufacturing industries and associated applications, by targeting the problems of corrosion, logistics, storage, human/environmental exposure and equipment/fluid-product compatibilities.
It is an object of the present invention to provide a synthetic acid composition which can be used over a broad range of applications in these industries and which exhibit advantageous properties over HC1. According to one aspect of the present invention, there is provided a synthetic acid composition which, upon proper use, results in a very low corrosion rate of various industry activities equipment.
According to another aspect of the present invention, there is provided a synthetic acid composition for use in various industries which is biodegradable.
According to a preferred embodiment of the present invention, there is provided a synthetic acid composition for use in industry which has a methodically spending (reacting) nature that is linear at higher temperature, non-fuming, non-toxic, high quality-consistent controlled.
According to a preferred embodiment of the present invention, there is provided a synthetic acid composition for use in industry which has a pH below 1. According to a preferred embodiment of the present invention, there is provided a synthetic acid composition for use in industry which has minimal exothermic reactivity.
According to a preferred embodiment of the present invention, there is provided a synthetic acid composition for use in industry which is compatible with most existing industries additives and pump elastomers/seals. According to a preferred embodiment of the present invention, there is provided a synthetic acid composition that has a very low evaporation rate.
According to a preferred embodiment of the present invention, there is provided a synthetic acid composition for use in industry which is reactive upon contact/application.
According to a preferred embodiment of the present invention, there is provided a synthetic acid composition for use in industry which provides an easily adjustable, methodical and comprehensive reaction rate. In most industrial applications it is advantageous to have a more methodical reacting product as it will produce less potential for precipitation of minerals due to increased "free" room of a lower chloride fluid in the present invention.
According to an aspect of the present invention, there is provided a synthetic acid composition for use in the mining industry, the use being selected from, but not limited to, the group consisting of treating scale and adjusting pH levels in fluid systems.
According to another aspect of the present invention, there is provided a synthetic acid composition for use in the water treatment industry said use being selected from the group consisting of adjusting pH and neutralizing alkaline effluent.
According to another aspect of the present invention, there is provided a synthetic acid composition for use in the fertilizer/landscaping industry to adjust the pH level of a soil.
According to yet another aspect of the present invention, there is provided a synthetic acid composition for use to regenerate ion exchange beds.
According to an aspect of the present invention, there is provided a synthetic acid composition for use in the construction industry said use being selected from the group consisting of etching concrete and cleaning concrete of efflorescence.
According to an aspect of the present invention, there is provided a synthetic acid composition for use in the electrical generation industry, said use being selected from the group consisting of descaling pipelines and related equipment and descaling facilities.
According to another aspect of the present invention, there is provided a synthetic acid composition for use in the food and dairy industry, said use being selected from the group consisting of: manufacturing protein, manufacturing starch, demineralizing whey, manufacturing casein, milk stone removal and regenerating ion exchange resins.
According to a preferred embodiment of the present invention, there is provided a synthetic acid composition for use in the swimming pool industry to lower the pH of fluids.
According to an aspect of the present invention, there is provided a synthetic acid composition for use in the manufacturing industry to perform an operation selected from the group consisting of pickling steel and cleaning metal.
According to an aspect of the present invention, there is provided a synthetic acid composition for use in the retail industry as a low pH cleaning additive.
According to an aspect of the present invention, there is provided a synthetic acid which has an extremely low rate of corrosion on aluminum.
Accordingly, the composition according to the present invention is intended to overcome many of the drawbacks found in the use of prior art compositions of HC1 in various industries.
It is understood that other uses or applications within these industries can be accomplished with the compositions according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Urea-HCl is the main component in terms of volume and weight percent of the composition of the present invention, and consists basically of a carbonyl group connecting with nitrogen and hydrogen. When added to hydrochloric acid, there is a reaction that results
in urea hydrochloride, which basically traps the chloride ion within the molecular structure. This reaction greatly reduces the hazardous effects of the hydrochloric acid on its own, such as the fuming effects, the hygroscopic effects, and the highly corrosive nature (the CI" ion will not readily bond with the Fe ion). The excess nitrogen can also act as a corrosion inhibitor at higher temperatures. Urea & hydrogen chloride in a molar ratio of not less than 0.1 : 1 ; preferably in a molar ratio not less than 0.5: 1 , and more preferably in a molar ratio not less than 0.8: 1. However, this ratio can be increased depending on the application.
It is preferable to add the urea at a molar ratio greater than 1 to the moles of HCI acid (or any acid). This is done in order to bind any available CI" ions, thereby creating a safer, more inhibited product. Preferably, the composition according to the present invention comprises 1.1 moles of urea per 1.0 moles of HCI. The urea (hydrochloride) also allows for a reduced rate of reaction when in the presence of carbonate-based materials. This again due to the stronger molecular bonds associated over what hydrochloric acid traditionally displays. Further, since the composition according to the present invention is mainly comprised of urea (which is naturally biodegradable), the product testing has shown that the urea hydrochloride will maintain the same biodegradability function, something that hydrochloric acid will not.
Alcohols and derivatives thereof, such as alkyne alcohols and derivatives and preferably propargyl alcohol and derivatives thereof can be used as corrosion inhibitors. Propargyl alcohol itself is traditionally used as a corrosion inhibitor which works extremely well at low concentrations. It is a toxic/flammable chemical to handle as a concentrate, so care must be taken during handling the concentrate. In the composition according to the present invention, the toxic effect does not negatively impact the safety of the composition.
Phosphonic acids and derivatives such as amino tris methylene phosphonic acid (ATMP) have some value as scale inhibitors. In fact, ATMP is a chemical traditionally used as an oilfield scale inhibitor, it has been found, when used in combination with urea/HCl, to increase the corrosion inhibition. It has a good environmental profile, is readily available and reasonably priced.
Amino tris (methylenephosphonic acid) (ATMP) and its sodium salts are typically used in water treatment operations as scale inhibitors. They also find use as detergents and in cleaning applications, in paper, textile and photographic industries and in off-shore oil
applications. Pure ATMP presents itself as a solid but it is generally obtained through process steps leading to a solution ranging from being colourless to having a pale yellow colour. ATMP acid and some of its sodium salts may cause corrosion to metals and may cause serious eye irritation to a varying degree dependent upon the pH/degree of neutralization.
Amino tris (methylenephosphonic acid) and its sodium salts belong to the ATMP category in that all category members are various ionized forms of the acid. This category includes potassium and ammonium salts of that acid. The properties of the members of a category are usually consistent. Moreover, certain properties for a salt, in ecotoxicity studies, for example, can be directly appreciated by analogy to the properties of the parent acid. Amino tris (methylenephosphonic acid) may specifically be used as an intermediate for producing the phosphonates salts. The salt is used in situ (usually the case) or stored separately for further neutralization. One of the common uses of phosphonates is as scale inhibitors in the treatment of cooling and boiler water systems. In particular, for ATMP and its sodium salts are used in order to prevent the formation of calcium carbonate scale.
According to an aspect of the invention, there is provided a synthetic acid composition comprising: - urea & hydrogen chloride in a molar ratio of not less than 0.1 : 1 ; preferably in a molar ratio not less than 0.5: 1 , more preferably in a molar ratio not less than 1 : 1 ; - an alcohol or derivatives thereof, preferably alkynyl alcohol or derivatives thereof, more preferably propargyl alcohol or a derivative of; and
optionally, a phosphonic acid or derivatives, preferably alkylphosphonic acid or derivatives thereof and more preferably amino tris methylene phosphonic acid and derivatives thereof.
Example 1 - Process to prepare a composition according to a preferred embodiment of the invention
Start with a 50% by weight solution of pure urea liquor. Add a 36% by weight solution of hydrogen chloride while circulating until all reactions have completely ceased. The ATMP is then added followed by propargyl alcohol. Circulation is maintained until all products have been solubilized.
Table 2 lists the components of the composition of Example 1 including their weight percentage as compared to the total weight of the composition and the CAS numbers of each component. Table 2 - Composition of a preferred embodiment of the present invention
The resulting composition of Example 1 is a clear, odourless liquid having shelf-life of greater than 1 year. It has a freezing point temperature of approximately minus 30°C and a boiling point temperature of approximately 100°C. It has a specific gravity of 1.15±0.02. It is completely soluble in water and its pH is less than 1.
The composition is biodegradable and is classified as a mild irritant according to the classifications for skin tests. The composition is non-fuming and has no volatile organic compounds nor does it have any BTEX levels above the drinking water quality levels. BTEX refers to the chemicals benzene, toluene, ethylbenzene and xylene. Toxicity testing was carried out on rats and the LD50 was determined to be greater than 2000mg/kg.
With respect to the corrosion impact of the composition on typical oilfield grade steel, it was established that it was clearly well below the acceptable corrosion limits set by industry. This is true for the compositions even when exposed to temperatures exceeding 100°C.
Corrosion testing
The composition according to the present invention of Example 1 was exposed to corrosion testing. The results of the corrosion tests are reported in Table 3.
Samples of J55 grade steel were exposed to various synthetic acid solutions for 6 hours at 90°C temperatures. All of the tested compositions contained HCl and urea in a 1 : 1.05 ratio
3 - Corrosion testing comparison between HCl-Urea and the composition
Example 1 of the present invention
This type of corrosion testing helps to determine the impact of the use of such synthetic replacement acid composition according to the present invention compared to the industry standard (HC1 blends or any other mineral or organic acid blends). The results obtained for the composition containing only HC1 and urea were used as a baseline to compare the other compositions.
Additionally, the compositions according to the present invention will allow the end user to utilize an alternative to conventional acids that has transportation and storage advantages as well as health, safety and environmental advantages. Enhancement in short/long term corrosion control is one of the key advantages of the present invention. The reduction in skin corrosiveness, the controlled spending nature, and the high salt tolerance are some other advantages of compositions according to the present invention.
The compositions according to the present invention can be used directly (ready-to- use) or be diluted with water depending on their use.
The uses (or applications) of the compositions according to the present invention upon dilution thereof ranging from approximately 1 to 75% dilution, include, but are not limited to: water treatment; boiler/pipe de-scaling; soil treatment; pH control; ion regeneration; pipeline scale treatments; pH control; retail cleaner; cement etching; soil pH control and various pulp and paper industrial applications.
While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be appreciated by those skilled in the relevant arts, once they have been made familiar with this disclosure, that various changes in form and detail can be made without departing from the true scope of the invention in the appended claims.
Claims
1. A synthetic acid composition for use in industrial activities, said composition comprising:
- urea and hydrogen chloride in a molar ratio of not less than 0.1 : 1 ;
- an alcohol or derivative thereof; and
- optionally, a phosphonic acid derivative.
2. The synthetic acid composition according to claim, wherein the urea and hydrogen chloride are in a molar ratio of not less than 0.5: 1.
3. The synthetic acid composition according to claim 2, wherein the urea and hydrogen chloride are in a molar ratio of not less than 0.8: 1.
4. The synthetic acid composition according to claim 3, wherein the urea and hydrogen chloride are in a molar ratio of not less than 1 : 1.
5. The synthetic acid composition according to any one of claims 1 to 4, wherein the phosphonic acid derivative is aminoalkylphosphonic salt.
6. The synthetic acid composition according to claim 5, wherein the aminoalkylphosphonic salt is amino tris methylene phosphonic acid.
7. The synthetic acid composition according to any one of claims 1 to 6, wherein the alcohol or derivative thereof is an alkynyl alcohol or derivative thereof.
8. The synthetic acid composition according to claim 7, wherein the alkynyl alcohol or derivative thereof is propargyl alcohol or a derivative thereof.
9. The synthetic acid composition according to claim 5, wherein the aminoalkylphosphonic salt is present in a concentration ranging from 0.25 to 1.0% w/w.
10. The synthetic acid composition according to claim 9, wherein the aminoalkylphosphonic salt is present in a concentration of 0.5% w/w.
1 1. The synthetic acid composition according to claim 7 or 8, wherein the alkynyl alcohol or derivative thereof is present in a concentration ranging from 0.01 to 0.25% w/w.
12. The synthetic acid composition according to claim 1 1 , wherein the alkynyl alcohol or derivative thereof is present in a concentration of 0.1 % w/w.
13. The use of a synthetic acid composition according to any one of claims 1 to 12 in the mining industry said use being selected from the group consisting of: treating scale and adjusting pH levels in fluid systems.
14. The use of a synthetic acid composition according to any one of claims 1 to 12 in the water treatment industry said use being selected from the group consisting of: adjusting pH and neutralizing alkaline effluent.
15. The use of a synthetic acid composition according to any one of claims 1 to 12 in the fertilizer/landscaping industry to adjust the pH level of a soil.
16. The use of a synthetic acid composition according to any one of claims 1 to 12 to regenerate ion exchange beds.
17. The use of a synthetic acid composition according to any one of claims 1 to 12 in the construction industry said use being selected from the group consisting of: etching concrete and cleaning concrete.
18. The use of a synthetic acid composition according to any one of claims 1 to 12 in the electrical generation industry, said use being selected from the group consisting of: descaling pipelines and related equipment and descaling facilities.
19. The use of a synthetic acid composition according to any one of claims 1 to 12 in the food and dairy industry, said use being selected from the group consisting of: manufacturing protein, manufacturing starch, demineralizing whey, manufacturing casein and regenerating ion exchange resins.
20. The use of a synthetic acid composition according to any one of claims 1 to 12 in the pool industry to lower the pH of fluids.
21. The use of a synthetic acid composition according to any one of claims 1 to 12 in the manufacturing industry to perform an operation selected from the group consisting of: pickling steel and cleaning metal.
22. The use of a synthetic acid composition according to any one of claims 1 to 12 in the retail industry as a low pH cleaning additive.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2866511A CA2866511A1 (en) | 2014-10-02 | 2014-10-02 | Synthetic acid compositions and uses thereof |
CA2,866,511 | 2014-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016049743A1 true WO2016049743A1 (en) | 2016-04-07 |
Family
ID=55590208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2015/000516 WO2016049743A1 (en) | 2014-10-02 | 2015-09-29 | Synthetic acid compositions and uses thereof |
Country Status (2)
Country | Link |
---|---|
CA (1) | CA2866511A1 (en) |
WO (1) | WO2016049743A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6340660B1 (en) * | 2001-03-22 | 2002-01-22 | Charles Gastgaber | Urea hydrochloride stabilized solvent for cleaning stainless steel and aluminum |
US7938912B1 (en) * | 2009-04-07 | 2011-05-10 | Green Products & Technologies, L.L.C. | Composition for removing cementitious material from a surface and associated methods |
US8430971B1 (en) * | 2009-04-07 | 2013-04-30 | Green Products & Technologies, L.L.C. | Composition for treatment of a drilling fluid and associated methods |
US8940106B1 (en) * | 2009-04-07 | 2015-01-27 | Green Products & Technologies, LLC | Methods for using improved urea hydrochloride compositions |
-
2014
- 2014-10-02 CA CA2866511A patent/CA2866511A1/en not_active Abandoned
-
2015
- 2015-09-29 WO PCT/CA2015/000516 patent/WO2016049743A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6340660B1 (en) * | 2001-03-22 | 2002-01-22 | Charles Gastgaber | Urea hydrochloride stabilized solvent for cleaning stainless steel and aluminum |
US7938912B1 (en) * | 2009-04-07 | 2011-05-10 | Green Products & Technologies, L.L.C. | Composition for removing cementitious material from a surface and associated methods |
US8430971B1 (en) * | 2009-04-07 | 2013-04-30 | Green Products & Technologies, L.L.C. | Composition for treatment of a drilling fluid and associated methods |
US8580047B1 (en) * | 2009-04-07 | 2013-11-12 | Green Products & Technologies, LLC | Methods for using improved urea hydrochloride compositions |
US8940106B1 (en) * | 2009-04-07 | 2015-01-27 | Green Products & Technologies, LLC | Methods for using improved urea hydrochloride compositions |
Also Published As
Publication number | Publication date |
---|---|
CA2866511A1 (en) | 2016-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2892875C (en) | Synthetic acid compositions and uses thereof | |
AU2015268045B2 (en) | Using synthetic acid compositions as alternatives to conventional acids tn the oil and gas industry | |
CA2838299A1 (en) | Improved corrosion resistance when using chelating agents in chromium-containing equipment | |
CA2852729A1 (en) | Synthetic acid compositions and uses thereof | |
CA2961792C (en) | Synthetic acid compositions alternatives to conventional acids in the oil and gas industry | |
CA2984705C (en) | Corrosion inhibitor formulations | |
CA2925635A1 (en) | Synthetic acids for use in various industrial acrivities | |
WO2016049737A1 (en) | Synthetic acid compositions and uses thereof | |
US9085748B2 (en) | Stabilized pipe scaling remover and inhibitor compound | |
WO2016049735A1 (en) | Synthetic acid compositions and uses thereof | |
CA2886149A1 (en) | Synthetic acid compositions and uses thereof | |
WO2016049738A1 (en) | Synthetic acid compositions and uses thereof | |
WO2016049743A1 (en) | Synthetic acid compositions and uses thereof | |
CA2925634A1 (en) | Using synthetic acid compositions as alternatives to conventional acids in the oil and gas industry | |
CA2961787C (en) | Synthetic acid compositions alternatives to conventional acids in the oil and gas industry | |
WO2016049736A1 (en) | Synthetic acid compositions alternatives to conventional acids in the oil and gas industry | |
KR20210021384A (en) | New corrosion inhibitor for various acids | |
WO2016049741A1 (en) | Synthetic acid compositions and uses thereof | |
WO2016049739A1 (en) | Synthetic acid compositions alternatives to conventional acids for use in the oil and gas industry | |
WO2016049744A1 (en) | Synthetic acid compositions alternatives to conventional acids in the oil and gas industry | |
GB2432154A (en) | Corrosion Inhibition | |
CA2866688A1 (en) | Using synthetic acid compositions as alternatives to conventional acids in the oil and gas industry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15846376 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15846376 Country of ref document: EP Kind code of ref document: A1 |