WO2016021196A1 - 高強度鋼板およびその製造方法 - Google Patents
高強度鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2016021196A1 WO2016021196A1 PCT/JP2015/003947 JP2015003947W WO2016021196A1 WO 2016021196 A1 WO2016021196 A1 WO 2016021196A1 JP 2015003947 W JP2015003947 W JP 2015003947W WO 2016021196 A1 WO2016021196 A1 WO 2016021196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- temperature
- hot
- strength
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 160
- 239000010959 steel Substances 0.000 title claims abstract description 160
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 23
- 238000005096 rolling process Methods 0.000 claims abstract description 47
- 238000011282 treatment Methods 0.000 claims abstract description 44
- 238000000137 annealing Methods 0.000 claims abstract description 43
- 238000001816 cooling Methods 0.000 claims abstract description 43
- 238000003303 reheating Methods 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 238000004804 winding Methods 0.000 claims abstract description 10
- 229910000859 α-Fe Inorganic materials 0.000 claims description 97
- 229910001566 austenite Inorganic materials 0.000 claims description 73
- 229910000734 martensite Inorganic materials 0.000 claims description 62
- 230000000717 retained effect Effects 0.000 claims description 48
- 238000005097 cold rolling Methods 0.000 claims description 18
- 238000005246 galvanizing Methods 0.000 claims description 18
- 239000010960 cold rolled steel Substances 0.000 claims description 16
- 230000009467 reduction Effects 0.000 claims description 15
- 239000013078 crystal Substances 0.000 claims description 13
- 238000005554 pickling Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 229910052748 manganese Inorganic materials 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 230000008520 organization Effects 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 229910052787 antimony Inorganic materials 0.000 claims description 7
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 abstract description 28
- 239000002253 acid Substances 0.000 abstract 2
- 238000004140 cleaning Methods 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 23
- 229910001563 bainite Inorganic materials 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 15
- 239000002244 precipitate Substances 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 9
- 238000005728 strengthening Methods 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 238000009661 fatigue test Methods 0.000 description 7
- 229910001562 pearlite Inorganic materials 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 229910001335 Galvanized steel Inorganic materials 0.000 description 5
- 239000008397 galvanized steel Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- -1 Al: 0.01% to 1.00% Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 229920001074 Tenite Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F17/00—Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
Definitions
- the present invention relates to a high-strength steel sheet excellent in formability suitable mainly for automobile structural members and a method for producing the same, and particularly has a tensile strength (TS) of 780 MPa or more, and has not only ductility but also stretch flangeability and fatigue characteristics. It is intended to obtain a high-strength steel sheet with excellent productivity under high productivity.
- TS tensile strength
- Patent Document 1 discloses that “mass%, C: 0.06 to 0.6%, Si + Al: 0.5 to 3%, Mn: 0.5 to 3%, P: 0.15% or less (excluding 0%), S: 0.02% or less (including 0%), and tempered martensite: 15% or more in area ratio with respect to the entire structure, ferrite : 5 to 60% in area ratio with respect to the entire structure, retained austenite: 5% or more in volume ratio with respect to the entire structure, and further having a structure that may contain bainite and / or martensite, and Disclosed is a high-strength steel sheet excellent in workability and shape freezeability, characterized in that the proportion of retained austenite that transforms to martensite by applying 2% strain is 20 to 50%. Yes.
- Patent Document 2 states that “in mass%, C: 0.05 to 0.35%, Si: 0.05% to 2.0%, Mn: 0.8% to 3. 0% or less, P: 0.0010% or more, 0.1% or less, S: 0.0005% or more, 0.05% or less, N: 0.0010% or more, 0.010% or less, Al: 0. Containing not less than 01% and not more than 2.0%, and having a steel composition composed of the balance iron and inevitable impurities, the metal structure is mainly composed of ferrite, bainite or tempered martensite, and the residual austenite phase is not less than 3%.
- the average C concentration in the austenite phase is 0.6% or more and 1.2% or less, Oh High strength with excellent elongation and hole expansibility, characterized by 50% or more of austenite grains in which the center concentration Cgc of the tenite phase and the concentration Cgb of the austenite grain boundary satisfy Cgb / Cgc> 1.3
- a “thin steel plate” is disclosed.
- Patent Document 3 states that “in mass%, C: 0.17% or more and 0.73% or less, Si: 3.0% or less, Mn: 0.5% or more and 3.0% or less, P: 0.1 %, S: 0.07% or less, Al: 3.0% or less, and N: 0.010% or less, and Si + Al satisfies 0.7% or more, with the balance being the composition of Fe and inevitable impurities
- the area ratio of martensite to the entire steel sheet structure is 10% to 90%, the amount of retained austenite is 5% to 50%, and the area ratio of bainitic ferrite in the upper bainite to the entire steel sheet structure.
- the total area ratio of the initial ferrite to the entire steel sheet structure is 65% or more, the area ratio of polygonal ferrite to the entire steel sheet structure is 10% or less (including 0%), and the average C content in the retained austenite Is a high-strength steel sheet characterized by having a tensile strength of 980 MPa or more.
- Patent Document 4 states that “mass%, C: more than 0.06 to 0.24%, Si ⁇ 0.3%, Mn: 0.5 to 2.0%, P ⁇ 0.06%, S ⁇ 0.005%, Al ⁇ 0.06%, N ⁇ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.2%, V: more than 0.15 to 1.
- the content of C, Ti, Mo, V is 0.8 ⁇ (C / 12) / ⁇ (Ti / 48) + (Mo / 96) + (V /51) ⁇ 1.5, the ferrite phase is 95% or more in area ratio, and carbide containing Ti, Mo and V having an average particle size of less than 10 nm is dispersed and precipitated.
- the carbide containing Ti, Mo and V has an average composition in which Ti, Mo and V expressed in atomic% satisfy V / (Ti + Mo + V) ⁇ 0.3.
- High yield ratio tensile strength wherein at least 980MPa high strength cold rolled steel sheet "has been disclosed that.
- Patent Document 5 “C: 0.05 to 0.3 mass%, Si: 0.01 to 2.5 mass%, Mn: 0.5 to 3.5 mass%, P: 0.003 to 0 mass%. 100% by mass, S: 0.02% by mass or less, Al: 0.010 to 1.5% by mass, and the total content of Si and Al is 0.5 to 3.0% by mass, The balance is composed of iron and inevitable impurities, and the ferrite content is 20% or more by area ratio, tempered martensite is 10-60%, martensite is 0-10%, and the retained austenite is 3% by volume.
- Patent Document 6 states that “in mass%, C: 0.06 to 0.6%, Si + Al: 0.5 to 3%, Mn: 0.5 to 3%, P: 0.15% or less (0% S): not more than 0.02% (including 0%), balance: iron and inevitable impurities, and the structure is occupying the tempered martensite at a space factor of the entire structure. 15 to 60%, ferrite 5 to 50%, retained austenite 5% or more, and 15 to 45% of massive martensite with an aspect ratio of 3 or less. In the massive martensite, the average particle size is 5 ⁇ m.
- the space factor occupied by the following fine martensite is 30% or more, an ultrahigh strength steel sheet excellent in elongation in the ultrahigh strength region with a tensile strength of 1180 MPa or more and excellent resistance to hydrogen embrittlement ” It is disclosed.
- this Patent Document 6 a method for manufacturing the ultra-high strength steel plate, the steel satisfying the above components, after heating maintained for more than 10 seconds to a temperature of 1100 ° C. or less than 3 points A, Including at least two steps of cooling to a temperature below the Ms point at an average cooling rate of 30 ° C./s or more, and holding at 120 to 600 seconds at a temperature of (A 3 point ⁇ 25 ° C.) to A 3 point Then, it is cooled to a temperature not lower than the Ms point and not higher than the Bs point at an average cooling rate of 3 ° C./s or higher, and includes a step of maintaining the temperature range for 1 second or longer. A method is also disclosed.
- the high-strength steel sheet described in Patent Document 1 is excellent in workability and shape freezing property
- the high-strength thin steel sheet described in Patent Document 2 is excellent in elongation and hole expandability. It is disclosed that the high-strength steel sheet described is excellent in ductility and stretch flangeability among workability.
- the fatigue properties are not considered in any steel sheet.
- TS of 980 MPa or more shows TS ⁇ EL of about 24000 MPa ⁇ %, which is higher than general-purpose materials, but responds to the recent demand for steel sheets. Is still inadequate.
- the ultra-high strength steel sheet described in Patent Document 6 needs to be subjected to at least three annealing treatments in the manufacturing process, so that the productivity in manufacturing the actual machine is low.
- the present invention builds a fine structure containing an appropriate amount of ferrite, bainitic ferrite, and retained austenite by one annealing treatment in a two-phase region of ferrite and austenite.
- a high-strength steel sheet having a tensile strength (TS) of 780 MPa or more and excellent in not only ductility but also stretch flangeability and fatigue properties is high.
- the object is to provide a method that can be produced under productivity.
- an object of this invention is to provide the high strength steel plate manufactured by said manufacturing method.
- the high-strength steel plate here also includes a high-strength galvanized steel plate whose surface is galvanized.
- the target characteristics in the steel sheet obtained according to the present invention are as follows.
- the critical hole expansion ratio ⁇ (%) ⁇ (D f ⁇ D 0 ) / D 0 ⁇ ⁇ 100, where D f is the hole diameter (mm) when the crack occurs, and D 0 is the initial hole diameter (mm ).
- the durability ratio is a value obtained by dividing the fatigue limit strength
- ferrite and bainitic ferrite are prepared after appropriately preparing the component composition. It is important to build a structure containing a proper amount of retained austenite and finely dispersing retained austenite and bainitic ferrite.
- the annealing conditions are appropriately controlled, and the steel sheet structure before annealing is martensite single-phase structure, bainite single-phase structure, or a mixture of martensite and bainite. It is important to focus on the organization.
- the gist configuration of the present invention is as follows. 1. In mass%, C: 0.10% to 0.35%, Si: 0.50% to 2.50%, Mn: 2.00% to less than 3.50%, P: 0.001% or more A steel slab containing 0.100% or less, S: 0.0001% or more and 0.0200% or less and N: 0.0005% or more and 0.0100% or less, with the balance being Fe and inevitable impurities, Heat heated to 1100 ° C. or higher and 1300 ° C. or lower, hot rolled at the finish rolling exit temperature: 800 ° C. or higher and 1000 ° C. or lower, and then wound at an average winding temperature: 200 ° C. or higher and 500 ° C.
- the hot-rolled steel sheet is held at a temperature of 740 ° C. or higher and 840 ° C. or lower for 10 s or more and 900 s or less, and then cooled to a cooling stop temperature of 150 ° C. or higher and 350 ° C. or lower at an average cooling rate of 5 ° C./s or higher and 30 ° C. or lower.
- the cold-rolled steel sheet is held at a temperature of 740 ° C. or higher and 840 ° C. or lower for 10 s or more and 900 s or less, and cooled at an average cooling rate of 5 ° C. or more and 30 ° C. or less and 150 ° C. or more and 350 ° C. or less. Cool to the stop temperature, 2.
- the steel slab further contains, in mass%, at least one selected from Ti: 0.005% to 0.100% and B: 0.0001% to 0.0050%. 4.
- the steel slab is further mass%, Al: 0.01% to 1.00%, Nb: 0.005% to 0.100%, Cr: 0.05% to 1.00%, Cu : 0.05% to 1.00%, Sb: 0.002% to 0.200%, Sn: 0.002% to 0.200%, Ta: 0.001% to 0.100% , Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, and REM: 0.0005% or more and 0.0050% or less.
- the method for producing a high-strength steel sheet according to any one of 1 to 4 above.
- C 0.10% to 0.35%
- Si 0.50% to 2.50%
- Mn 2.00% to less than 3.50%
- P 0.001% or more 0.100% or less
- S 0.0001% or more and 0.0200% or less
- N 0.0005% or more and 0.0100% or less
- the balance has a steel composition composed of Fe and inevitable impurities, Steel whose total area ratio of ferrite and bainitic ferrite is 30% to 75%, tempered martensite is 5% to 15% by area ratio, and retained austenite is 8% or more by volume ratio.
- a high-strength steel sheet having an average crystal grain size of the retained austenite of 2 ⁇ m or less and an average free path of the bainitic ferrite of 3 ⁇ m or less.
- the steel composition further includes, in mass%, at least one selected from Ti: 0.005% to 0.100% and B: 0.0001% to 0.0050%, High strength steel sheet as described.
- the steel composition is further mass%, Al: 0.01% to 1.00%, Nb: 0.005% to 0.100%, Cr: 0.05% to 1.00%, Cu : 0.05% to 1.00%, Sb: 0.002% to 0.200%, Sn: 0.002% to 0.200%, Ta: 0.001% to 0.100% , Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, and REM: 0.0005% or more and 0.0050% or less.
- the high-strength steel plate according to 6 or 7 above.
- a high-strength steel sheet having a tensile strength (TS) of 780 MPa or more and excellent in not only ductility but also stretch flangeability and fatigue characteristics can be produced with high productivity. Further, by applying the high-strength steel plate obtained according to the manufacturing method of the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.
- TS tensile strength
- the hot rolled sheet structure is mainly composed of a martensite single phase structure, a bainite single phase structure, or a structure in which martensite and bainite are mixed. This is very important.
- CT average coiling temperature
- cold rolling it is also important to keep the above-described structure obtained in the hot-rolled steel sheet as much as possible without breaking by controlling the reduction rate as low as possible.
- the annealing treatment in the two-phase region of ferrite and austenite is made mainly by the martensitic single-phase structure, the bainite single-phase structure, or the mixed structure of martensite and bainite before annealing.
- the amount of the austenite is one time, it is possible to build a structure containing appropriate amounts of ferrite, bainitic ferrite, and retained austenite, and further finely dispersing the retained austenite and bainitic ferrite.
- a high-strength steel sheet having a tensile strength (TS) of 780 MPa or more and excellent not only in ductility but also in stretch flange fatigue characteristics can be produced with high productivity.
- TS tensile strength
- C 0.10% or more and 0.35% or less C is an important element for strengthening steel, and has a high solid solution strengthening ability and secures a desired amount of retained austenite to improve ductility. It is an indispensable element.
- the amount of C is less than 0.10%, it becomes difficult to obtain a necessary amount of retained austenite.
- the amount of C exceeds 0.35%, there is a concern about the embrittlement and delayed fracture of the steel sheet. Therefore, the C content is 0.10% or more and 0.35% or less, preferably 0.15% or more and 0.30% or less, more preferably 0.18% or more and 0.26% or less.
- Si 0.50% or more and 2.50% or less
- Si is an element effective for suppressing the decomposition of residual austenite and the formation of carbides.
- it has the property of purifying ferrite by discharging solid solution C from ferrite to austenite and improving ductility.
- Si dissolved in ferrite improves work hardening ability and increases the ductility of the ferrite itself.
- the Si amount needs to be 0.50% or more.
- the Si content is 0.50% or more and 2.50% or less, preferably 0.80% or more and 2.00% or less, more preferably 1.20% or more and 1.80% or less.
- Mn 2.00% or more and less than 3.50%
- Mn is effective for securing strength.
- the hardenability is improved to facilitate complex organization.
- Mn has the effect of suppressing the formation of ferrite and pearlite during the cooling process after hot rolling, and is an effective element for making the hot rolled sheet structure mainly composed of low-temperature transformation phase (bainite or martensite). It is.
- Mn amount 2.00% or more.
- the amount of Mn is 3.50% or more, Mn segregation in the thickness direction becomes remarkable, leading to deterioration of fatigue characteristics. Therefore, the Mn content is 2.00% or more and less than 3.50%, preferably 2.00% or more and 3.00% or less, more preferably 2.00% or more and 2.80% or less.
- P 0.001% or more and 0.100% or less
- P is an element that has a solid solution strengthening action and can be added according to a desired strength.
- it is an element effective for complex organization in order to promote ferrite transformation.
- P amount 0.001% or more.
- the amount of P exceeds 0.100%, weldability is deteriorated and, when galvanizing is alloyed, the alloying speed is reduced to deteriorate the quality of galvanizing. Therefore, the P content is 0.001% to 0.100%, preferably 0.005% to 0.050%.
- S 0.0001% or more and 0.0200% or less S segregates at the grain boundary and embrittles the steel during hot working, and also exists as a sulfide to reduce local deformability. Therefore, the amount needs to be 0.0200% or less. However, the amount of S needs to be 0.0001% or more due to restrictions on production technology. Therefore, the S content is 0.0001% to 0.0200%, preferably 0.0001% to 0.0050%.
- N 0.0005% or more and 0.0100% or less
- N is an element that deteriorates the aging resistance of steel.
- the N content exceeds 0.0100%, the deterioration of aging resistance becomes significant. The smaller the amount, the better.
- the amount of N needs to be 0.0005% or more due to restrictions on production technology. Therefore, the N content is 0.0005% or more and 0.0100% or less, preferably 0.0005% or more and 0.0070% or less.
- the basic component has been described above, but in addition to the above components, at least one selected from Ti and B can be further contained.
- the hot-rolled sheet structure is more advantageously formed into a structure mainly composed of a martensite single-phase structure, a bainite single-phase structure, or a structure in which martensite and bainite are mixed.
- Ti: 0.005% or more and 0.100% or less Ti improves the strength by forming fine precipitates during hot rolling or annealing.
- Ti precipitates N as TiN the precipitation of BN can be suppressed when B is added, and the effect of B described below is effectively expressed. In order to obtain such an effect, the Ti amount needs to be 0.005% or more.
- the Ti content is preferably 0.005% or more and 0.100% or less. More preferably, it is 0.010% or more and 0.080% or less.
- B 0.0001% or more and 0.0050% or less
- B is a low-temperature transformation phase (bainite, martensite), particularly martensite, which suppresses ferrite-pearlite transformation in the cooling process after hot rolling. It has the effect of being a main organization.
- B is an element effective for strengthening steel. In order to obtain such an effect, the B content needs to be 0.0001% or more. However, when B is added excessively exceeding 0.0050%, the amount of martensite becomes excessive, and there is a concern that ductility is lowered due to an increase in strength. Therefore, the B content is preferably 0.0001% or more and 0.0050% or less. More preferably, it is 0.0005% or more and 0.0030% or less.
- Value obtained by dividing the amount of Mn by the amount of B: 2100 or less In particular, in the low Mn component system, the ferrite-pearlite transformation proceeds in the cooling process after hot rolling, and the hot-rolled sheet structure exhibits ferrite and pearlite. It is easy to become an organization including. For this reason, in order to fully express the addition effect of B mentioned above, it is preferable to make the value which remove
- the lower limit of the value obtained by dividing the Mn amount by the B amount is not particularly limited, but is preferably about 300.
- Al 0.01% to 1.00%, Nb: 0.005% to 0.100%, Cr: 0.05% to 1.00%, Cu : 0.05% to 1.00%, Sb: 0.002% to 0.200%, Sn: 0.002% to 0.200%, Ta: 0.001% to 0.100%
- Ca 0.0005% or more and 0.0050% or less
- Mg 0.0005% or more and 0.0050% or less
- REM containing at least one element selected from 0.0005% or more and 0.0050% or less Can be made.
- Al 0.01% or more and 1.00% or less
- Al is an element effective for generating ferrite and improving the balance between strength and ductility.
- the Al amount needs to be 0.01% or more.
- the Al content exceeds 1.00%, the surface properties are deteriorated. Therefore, when adding Al, the content is made 0.01% to 1.00%. Preferably it is 0.03% to 0.50%.
- Nb 0.005% or more and 0.100% or less Nb increases the strength by forming fine precipitates during hot rolling or annealing. In order to obtain such an effect, the Nb amount needs to be 0.005% or more. On the other hand, if the amount of Nb exceeds 0.100%, the moldability deteriorates. Therefore, when adding Nb, the content is made 0.005% or more and 0.100% or less.
- Cr 0.05% or more and 1.00% or less
- Cu 0.05% or more and 1.00% or less
- Cr and Cu not only play a role as solid solution strengthening elements, but also austenite in the cooling process during annealing. Stabilizes and facilitates complex organization. In order to obtain such effects, the Cr amount and the Cu amount must be 0.05% or more, respectively. On the other hand, when the amount of Cr and Cu exceeds 1.00%, formability is deteriorated. Therefore, when adding Cr and Cu, the content is 0.05% or more and 1.00% or less, respectively.
- Sb 0.002% or more and 0.200% or less
- Sn 0.002% or more and 0.200% or less
- Sb and Sn are decarburized in the region of several tens of ⁇ m on the surface layer of the steel sheet caused by nitriding or oxidation of the steel sheet surface From the viewpoint of suppressing the above, it can be added as necessary. If such nitriding and oxidation are suppressed, it is possible to prevent a reduction in the amount of martensite produced on the steel sheet surface and to ensure strength. In order to obtain such an effect, the Sb amount and the Sn amount must be 0.002% or more, respectively. On the other hand, if any of these elements is added in excess of 0.200%, the toughness is reduced. Therefore, when adding Sb and Sn, the content shall be 0.002% or more and 0.200% or less, respectively.
- Ta 0.001% or more and 0.100% or less Ta, like Ti and Nb, generates alloy carbide and alloy carbonitride and contributes to high strength.
- Nb carbide and Nb carbonitride by partially dissolving in Nb carbide and Nb carbonitride to produce composite precipitates such as (Nb, Ta) (C, N), the coarsening of the precipitates is remarkably suppressed, and precipitation strengthening It is thought that there is an effect of stabilizing the contribution to the strength due to.
- Such an effect of stabilizing the precipitate can be obtained by setting Ta to 0.001% or more.
- Ta is added in excess of 0.100%, the effect of stabilizing the precipitate is saturated and the alloy cost also increases. Therefore, when Ta is added, its content is made 0.001% or more and 0.100% or less.
- Ca, Mg, and REM are elements used for deoxidation In addition, it is an element effective for spheroidizing the shape of sulfide and improving the adverse effect of sulfide on local ductility and stretch flangeability. In order to obtain such an effect, it is necessary to add 0.0005% or more of each. However, when Ca, Mg, and REM are added excessively exceeding 0.0050%, inclusions and the like are increased, and defects and the like are caused on the steel sheet surface and inside. Therefore, when adding Ca, Mg, and REM, the content is 0.0005% or more and 0.0050% or less, respectively.
- components other than the above are Fe and inevitable impurities.
- the method for producing a high-strength steel sheet according to the present invention comprises heating a steel slab having the above-described composition to 1100 ° C. or higher and 1300 ° C. or lower and hot rolling at a finish rolling exit temperature of 800 ° C. or higher and 1000 ° C. or lower.
- Average winding temperature Hot rolling step of winding at 200 ° C. or more and 500 ° C.
- Steel slab heating temperature 1100 ° C or higher and 1300 ° C or lower
- Precipitates present in the steel slab heating stage exist as coarse precipitates in the finally obtained steel sheet and do not contribute to strength. It is necessary to redissolve the deposited Ti and Nb-based precipitates.
- the heating temperature of the steel slab is less than 1100 ° C., it is difficult to sufficiently dissolve the carbide, and problems such as an increased risk of trouble occurring during hot rolling due to an increase in rolling load arise. It is also necessary to scale off defects such as bubbles and segregation on the surface of the slab, reduce cracks and irregularities on the steel sheet surface, and achieve a smooth steel sheet surface. Therefore, the heating temperature of the steel slab needs to be 1100 ° C. or higher.
- the heating temperature of the steel slab exceeds 1300 ° C., the scale loss increases as the oxidation amount increases. Therefore, the heating temperature of the steel slab needs to be 1300 ° C. or lower. Therefore, the heating temperature of the steel slab is set to 1100 ° C. or higher and 1300 ° C. or lower. Preferably, it is 1150 degreeC or more and 1250 degrees C or less.
- the steel slab is preferably manufactured by a continuous casting method in order to prevent macro segregation, but it can also be manufactured by an ingot-making method or a thin slab casting method.
- the steel slab in addition to the conventional method of once cooling to room temperature and then heating again, without cooling to room temperature, it was charged in a heating furnace as a warm piece, or a slight heat retention was performed. Energy saving processes such as direct feed rolling and direct rolling, which are rolled immediately afterwards, can be applied without any problem.
- steel slabs are made into sheet bars by rough rolling under normal conditions, but if the heating temperature is lowered, a bar heater or the like is used before finish rolling from the viewpoint of preventing troubles during hot rolling. It is preferable to heat the sheet bar.
- Finishing rolling exit temperature of hot rolling 800 ° C. or more and 1000 ° C. or less
- the heated steel slab is hot rolled by rough rolling and finish rolling to become a hot rolled steel plate.
- the finish rolling exit temperature exceeds 1000 ° C.
- the amount of oxide (scale) generated increases rapidly, the interface between the base iron and the oxide becomes rough, and the surface quality after pickling and cold rolling is high. It tends to deteriorate.
- the ductility is adversely affected.
- the crystal grain size becomes excessively coarse, and the fatigue characteristics are degraded.
- the finish rolling exit temperature is less than 800 ° C.
- the rolling load increases, the rolling load increases, the rolling reduction in the state of austenite being unrecrystallized increases, and an abnormal texture develops.
- the in-plane anisotropy in the final product becomes remarkable, not only the uniformity of the material is impaired, but also the ductility itself is lowered. Therefore, it is necessary to set the finish rolling outlet temperature of hot rolling to 800 ° C. or higher and 1000 ° C. or lower.
- the temperature is 820 ° C. or higher and 950 ° C. or lower.
- Average winding temperature after hot rolling 200 ° C. or more and 500 ° C. or less
- the average winding temperature after hot rolling is extremely important in the production method of the present invention. That is, when the average coiling temperature after hot rolling exceeds 500 ° C., ferrite and pearlite are generated in the cooling and holding process after hot rolling, and the hot-rolled sheet structure is changed to a martensite single-phase structure or bainite single-piece structure. It becomes difficult to have a phase structure or a structure in which martensite and bainite are mixed as a main component, and in a steel sheet obtained after annealing, it becomes difficult to ensure a desired ductility and a balance between strength and ductility.
- the average winding temperature after hot rolling needs to be 200 ° C. or higher and 500 ° C. or lower.
- they are 300 degreeC or more and 450 degrees C or less, More preferably, they are 350 degreeC or more and 450 degrees C or less.
- rough rolling sheets may be joined together during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once. Moreover, in order to reduce the rolling load during hot rolling, part or all of the finish rolling may be lubricated rolling. Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable that the friction coefficient at the time of lubrication rolling shall be 0.10 or more and 0.25 or less.
- pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion properties and plating quality of the high-strength steel sheet as the final product. Moreover, pickling may be performed once, or pickling may be performed in a plurality of times.
- Cold rolling reduction less than 30% It is also possible to cold-roll a hot-rolled steel sheet to obtain a cold-rolled steel sheet.
- the reduction ratio of cold rolling is extremely important. That is, when the rolling reduction is 30% or more, the low temperature transformation phase of the hot-rolled sheet structure is destroyed, and the steel sheet obtained after annealing contains an appropriate amount of ferrite, bainitic ferrite and residual austenite, It becomes difficult to create a structure in which austenite and bainitic ferrite are finely dispersed, and it becomes difficult to ensure the balance between ductility, strength and ductility and to ensure good fatigue properties. Therefore, the rolling reduction of cold rolling is less than 30%. Preferably it is 25% or less, more preferably 20% or less.
- the lower limit of the cold rolling reduction is not particularly limited, and may be more than 0%.
- Annealing temperature 740 ° C. or more and 840 ° C. or less If the annealing temperature is less than 740 ° C., a sufficient amount of austenite cannot be secured during annealing. For this reason, a desired amount of retained austenite is not ensured in the end, and it becomes difficult to ensure good ductility and a balance between strength and ductility. On the other hand, if the annealing temperature exceeds 840 ° C., the temperature range of the austenite single phase is reached, so that a desired amount of fine retained austenite is not finally produced, and it is difficult to ensure good ductility and a balance between strength and ductility. Become. Therefore, annealing temperature shall be 740 degreeC or more and 840 degrees C or less. Preferably they are 750 degreeC or more and 830 degrees C or less.
- Holding time of annealing treatment 10 s or more and 900 s or less If the holding time of annealing treatment is less than 10 s, a sufficient amount of austenite cannot be secured during annealing. For this reason, a desired amount of retained austenite is not ensured in the end, and it becomes difficult to ensure good ductility and a balance between strength and ductility. On the other hand, if the holding time of the annealing treatment exceeds 900 s, a desired amount of fine retained austenite is not finally produced due to the coarsening of the crystal grains, and it becomes difficult to ensure good ductility and a balance between strength and ductility. Moreover, productivity is also inhibited. Accordingly, the holding time for the annealing treatment is set to 10 s or more and 900 s or less. Preferably they are 30 seconds or more and 750 seconds or less, More preferably, they are 60 seconds or more and 600 seconds or less.
- Average cooling rate up to a cooling stop temperature of 150 ° C. or higher and 350 ° C. or lower 5 ° C./s or higher and 30 ° C. or lower
- the average cooling rate up to a cooling stop temperature of 150 ° C. or higher and 350 ° C. or lower is lower than 5 ° C./s
- cooling is performed A large amount of ferrite is generated therein, making it difficult to ensure the desired strength.
- the average cooling rate to the cooling stop temperature of 150 ° C. or higher and 350 ° C. or lower is set to 5 ° C./s or higher and 30 ° C. or lower.
- they are 10 degreeC / s or more and 30 degrees C / s or less.
- the cooling in this case is preferably gas cooling, but can be performed in combination using furnace cooling, mist cooling, roll cooling, water cooling, or the like.
- the cooling stop temperature exceeds 350 ° C.
- the stop temperature is higher than the martensite transformation start point (Ms point), and therefore tempered martensite is not generated even after the subsequent reheating treatment.
- hard fresh martensite martensite that has not been tempered
- hole expandability stress flangeability
- the cooling stop temperature is set to 150 ° C. or higher and 350 ° C. or lower. Preferably they are 180 degreeC or more and 320 degrees C or less.
- Reheating temperature Over 350 ° C. and below 550 ° C.
- the reheating temperature exceeds 550 ° C.
- the decomposition of residual austenite occurs, and eventually the desired amount of retained austenite is not secured, and good ductility and the balance between strength and ductility are achieved. It becomes difficult to secure.
- the heating temperature is 350 ° C. or lower, a desired amount of tempered martensite is not ensured, and it becomes difficult to ensure hole expandability (stretch flangeability).
- the reheating temperature is set to be higher than 350 ° C. and lower than 550 ° C. Preferably they are 370 degreeC or more and 530 degrees C or less.
- Holding time at the reheating temperature 10 s or more If the holding time at the reheating temperature is less than 10 s, the time for C concentration to austenite to proceed is insufficient, and it is difficult to finally secure a desired amount of retained austenite. Become. Accordingly, the holding time at the reheating temperature is 10 s or longer. On the other hand, even if retained for more than 600 s, the amount of retained austenite does not increase, and a remarkable improvement in ductility is not confirmed, and a tendency to saturation occurs. For this reason, the holding time at the reheating temperature is preferably 600 s or less. More preferably, it is 30 s or more and 500 s or less, More preferably, it is 60 s or more and 400 s or less. The cooling after the holding does not need to be specified, and may be cooled to a desired temperature by any method.
- the steel sheet obtained as described above can be subjected to galvanizing treatment such as hot dip galvanizing treatment.
- galvanizing treatment such as hot dip galvanizing treatment
- the steel plate subjected to the annealing treatment is immersed in a galvanizing bath at 440 ° C. or higher and 500 ° C. or lower, hot dip galvanizing treatment is applied, and then the plating adheres by gas wiping or the like. Adjust the amount.
- the galvanizing alloying treatment is performed, the galvanizing alloying treatment is performed in the temperature range of 470 ° C. or more and 600 ° C.
- the hot dip galvanizing treatment is performed at a temperature exceeding 600 ° C.
- untransformed austenite is transformed into pearlite, and a desired volume ratio of retained austenite cannot be secured, and ductility may be lowered. Therefore, when the galvanizing alloying treatment is performed, it is preferable to perform the galvanizing alloying treatment in a temperature range of 470 ° C. or more and 600 ° C. or less. Moreover, you may perform an electrogalvanization process.
- the rolling reduction is preferably in the range of 0.1% to 1.0%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit of the good range. Moreover, since productivity will fall remarkably when it exceeds 1.0%, this is made the upper limit of a favorable range.
- the skin pass rolling may be performed online or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.
- Other production method conditions are not particularly limited, but from the viewpoint of productivity, the series of treatments such as annealing, hot dip galvanization, galvanizing alloying treatment, etc. are performed by CGL (Continuous Galvanizing). Line). After hot dip galvanization, wiping is possible to adjust the amount of plating.
- the high-strength steel sheet produced by the production method of the present invention is a residual mainly responsible for ductility in a structure mainly composed of soft ferrite rich in ductility. It consists of a composite structure in which austenite, more preferably a small amount of martensite that bears strength, is dispersed. Bainitic ferrite is formed adjacent to ferrite and retained austenite / martensite, relieving the hardness difference between ferrite and retained austenite, and ferrite and martensite. Suppresses fatigue cracks that occur during fatigue tests.
- the total area ratio of ferrite and bainitic ferrite needs to be 30% or more.
- the total area ratio of ferrite and bainitic ferrite needs to be 75% or less.
- the total area ratio of ferrite and bainitic ferrite is preferably 35% or more and 70% or less.
- the area ratio of bainitic ferrite is preferably 5% or more.
- the area ratio of bainitic ferrite is preferably 25% or less.
- the bainitic ferrite referred to here is a ferrite formed in the process of cooling and holding to 600 ° C. or lower after annealing at a temperature of 740 ° C. or higher and 840 ° C. or lower, and the dislocation density compared with normal ferrite. It is a high ferrite.
- acicular ferrite is mainly used, but polygonal ferrite and non-recrystallized ferrite may be included.
- the area ratio of polygonal ferrite is preferably 20% or less, and the area ratio of non-recrystallized ferrite is preferably 5% or less.
- the area ratios of polygonal ferrite and non-recrystallized ferrite may each be 0%.
- the area ratio of ferrite and bainitic ferrite was determined by corroding 3 vol.% Nital after polishing the plate thickness cross section (L cross section) parallel to the rolling direction of the steel plate, and 1/4 thickness position (depth from the steel plate surface). 10 positions at a magnification of 2000 using a SEM (scanning electron microscope), and using the obtained tissue image, the image of Media Cybernetics was used. -The area ratio of ferrite and bainitic ferrite can be calculated for 10 visual fields by Pro, and these values can be obtained by averaging. In the above structure image, ferrite and bainitic ferrite have a gray structure (underground structure), and retained austenite and martensite have a white structure.
- ferrite and bainitic ferrite are performed by EBSD (electron beam backscatter diffraction) measurement. That is, a crystal grain (phase) including a sub-grain boundary having a grain boundary angle of less than 15 ° is determined as bainitic ferrite, and the area ratio thereof is obtained as the area ratio of bainitic ferrite.
- the area ratio of ferrite can be calculated by subtracting the area ratio of bainitic ferrite from the area ratio of the gray structure.
- Tempered martensite area ratio 5% or more and 15% or less
- the area ratio of tempered martensite needs to be 5% or more.
- the area ratio of tempered martensite is preferably 8% or more.
- the area ratio of tempered martensite exceeds 15%, it becomes difficult to secure a sufficient amount of retained austenite. As a result, it becomes difficult to ensure good ductility and a balance between strength and ductility, so the area ratio of tempered martensite needs to be 15% or less.
- tempered martensite can be identified by whether or not cementite or residual austenite is contained in martensite (those containing cementite or residual austenite in martensite is tempered martensite). Further, the area ratio of tempered martensite is obtained by corroding 3 vol.% Nital after polishing the L cross section of the steel sheet, and observing 10 fields at a magnification of 2000 times using a SEM at a thickness of 1/4 position. Using the tissue images, 10 fields of view can be calculated using Image-Pro of Media Cybernetics, and those values can be averaged.
- volume ratio of retained austenite 8% or more
- the volume ratio of retained austenite needs to be 8% or more.
- the volume ratio of retained austenite is preferably 10% or more.
- the upper limit of the volume ratio of retained austenite is not particularly limited, but is about 35%. Further, the volume ratio of retained austenite is determined by diffracted X-ray intensity of the 1/4 thickness of the steel plate after polishing the steel plate to 1/4 of the thickness direction.
- MoK ⁇ rays are used as incident X-rays, and ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ , ⁇ 311 ⁇ planes of the retained austenite have peak integrated intensities of ferrite ⁇ 110 ⁇ , ⁇ 200 ⁇ , ⁇ 211 ⁇ .
- the intensity ratios of all 12 combinations with respect to the integrated intensity of the peak of the surface are obtained, and the average value thereof is taken as the volume ratio of retained austenite.
- Average crystal grain size of retained austenite 2 ⁇ m or less Refinement of crystal grains of retained austenite contributes to improvement of ductility and fatigue characteristics of the steel sheet. Therefore, in order to ensure good ductility and fatigue characteristics, the average crystal grain size of retained austenite needs to be 2 ⁇ m or less. In order to ensure better ductility and fatigue properties, it is preferable that the average crystal grain size of retained austenite be 1.5 ⁇ m or less.
- the lower limit is not particularly limited, but is about 0.1 ⁇ m.
- the average crystal grain size of residual austenite was observed with 20 fields of view at a magnification of 15000 times using a TEM (transmission electron microscope), and each residual austenite crystal was observed with Image-Pro using the obtained structure image. It is possible to obtain the area of the grains, calculate the equivalent circle diameter, and average the values.
- the average free path of bainitic ferrite is extremely important. That is, bainitic ferrite is generated in a cooling and holding process at 600 ° C. or lower after annealing in a temperature range of 740 ° C. or higher and 840 ° C. or lower.
- bainitic ferrite is produced adjacent to ferrite and retained austenite, and has the effect of reducing the hardness difference between ferrite and retained austenite to suppress the occurrence of fatigue cracks and crack propagation. For this reason, it is advantageous that the bainitic ferrite is densely dispersed, that is, the mean free path of the bainitic ferrite is small.
- the mean free path of bainitic ferrite needs to be 3 ⁇ m or less. In order to ensure better fatigue characteristics, it is preferable that the mean free path of bainitic ferrite is 2.5 ⁇ m or less.
- the lower limit is not particularly limited, but is about 0.5 ⁇ m.
- the mean free path (L BF ) of bainitic ferrite can be calculated by the following equation.
- L BF Mean free path of bainitic ferrite ( ⁇ m)
- d BF Average crystal grain size of bainitic ferrite ( ⁇ m)
- f Area ratio (%) of bainitic ferrite / 100
- the average grain size of bainitic ferrite is the area of bainitic ferrite within the measurement range calculated by EBSD (electron beam backscatter diffraction) measurement. By dividing by the number, the average area of crystal grains can be obtained and the equivalent circle diameter can be calculated.
- EBSD electron beam backscatter diffraction
- microstructure according to the present invention may include carbides such as martensite, pearlite, cementite, and other steel structures other than ferrite and bainitic ferrite, tempered martensite, and retained austenite. If the area ratio is 15% or less, the effect of the present invention is not impaired.
- the plating adhesion amount was 45 g / m 2 per side (double-sided plating), and GA had an Fe concentration in the plating layer of 9% by mass to 12% by mass.
- TS780MPa class EL ⁇ 34%
- TS980MPa class EL ⁇ 27%
- TS1180MPa class EL ⁇ 23%
- TS ⁇ EL ⁇ 27000 MPa ⁇ % were judged to be good.
- the hole expansion test was conducted in accordance with JIS Z 2256 (2010).
- Each steel plate obtained as described above was cut into 100 mm ⁇ 100 mm, and a hole with a diameter of 10 mm was punched out with a clearance of 12% ⁇ 1%.
- these steel plates are held down by a die having an inner diameter of 75 mm with a wrinkle holding force: 8 ton (7.845 kN), and a punch having a 60 ° conical shape is pushed into the hole in that state, and the hole diameter at the time of crack generation (hole diameter at the crack generation limit). ) was measured. From the measured hole diameter at the time of crack generation, the critical hole expansion ratio ⁇ (%) was obtained by the following equation, and the hole expansion property was evaluated.
- Limit hole expansion ratio ⁇ (%) ⁇ (D f ⁇ D 0 ) / D 0 ⁇ ⁇ 100
- D f is a hole diameter (mm) when a crack is generated
- D 0 is an initial hole diameter (mm).
- TS780 MPa class ⁇ ⁇ 40%
- TS980 MPa class ⁇ ⁇ 30%
- TS1180 MPa class ⁇ ⁇ 20% was determined to be good.
- Hot rolled steel sheet has a defective shape
- the lead time cost such as when the austemper holding time (holding time in the reheating temperature range of annealing treatment) is long, the case where it does not fall under any of (1) to (4) is “High” , (4) is judged as “medium”, and (1) to (3) are judged as “bad”.
- the plateability of hot rolling was judged to be poor when the risk of trouble occurrence during rolling due to an increase in rolling load increased.
- the plateability of cold rolling was also judged as poor when the risk of trouble occurring during rolling due to an increase in rolling load increased.
- TS is 780 MPa or more, and it can be seen that a high-strength steel sheet excellent in not only ductility but also hole expansibility (stretch flangeability) and fatigue characteristics can be manufactured with high productivity. Moreover, in all of the examples of the present invention, the plate properties of hot rolling and cold rolling, and the surface properties of the final annealed plate are also excellent. On the other hand, the comparative example is inferior in any one or more of tensile strength, ductility, balance between strength and ductility, hole expandability (stretch flangeability), fatigue characteristics, and productivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
特に、最近では、980MPa級、1180MPa級のTSを有する極めて強度の高い高強度鋼板の適用も検討されている。
また、自動車が走行可能な距離(総走行距離)は、自動車構造部材へ適用される鋼板の疲労強度にも依存するため、優れた疲労特性を有する鋼板も望まれている。
また、本発明は、上記の製造方法により製造される高強度鋼板を提供することを目的とする。
なお、ここでいう高強度鋼板は、表面に亜鉛めっき処理を施した高強度亜鉛めっき鋼板も含むものとする。
・引張強度(TS)
780MPa以上
・延性
TS780MPa級:EL≧34%
TS980MPa級:EL≧27%
TS1180MPa級:EL≧23%
・強度と延性のバランス
TS×EL≧27000MPa・%
・伸びフランジ性
TS780MPa級:λ≧40%
TS980MPa級:λ≧30%
TS1180MPa級:λ≧20%
ここで、限界穴広げ率λ(%)={(Df-D0)/D0}×100であり、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)である。
・疲労特性
疲労限強度≧400MPaでかつ耐久比≧0.40
ここで、耐久比とは、疲労限強度を引張強度で除した値である。
(2)また、このような組織を造り込むには、焼鈍処理条件を適正に制御するとともに、焼鈍処理前の鋼板組織をマルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトが混在した組織を主体とすることが重要である。
ここで、別途の焼鈍処理を行なうことなく、かような焼鈍処理前の鋼板組織を得るには、適正なスラブ加熱を行うとともに、熱間圧延条件の適正化、特に熱間圧延後の平均巻き取り温度(CT)を低温化することが重要である。
(3)さらに、熱間圧延後に冷間圧延を施す場合には、圧下率を低くすることにより、熱延鋼板において得られる、マルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトが混在した組織を主体とした組織を破壊させずに、なるべく残存させることが重要である。
(4)加えて、伸びフランジ性の向上には、焼戻しマルテンサイトが適正量含まれる組織とすることが重要であり、そのためには、焼鈍後の冷却停止温度を低下させた上で、適正な条件で再加熱処理を施すことが重要である。
本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
1.質量%で、C:0.10%以上0.35%以下、Si:0.50%以上2.50%以下、Mn:2.00%以上3.50%未満、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下およびN:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、
1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度:800℃以上1000℃以下で熱間圧延したのち、平均巻き取り温度:200℃以上500℃以下で巻き取り、熱延鋼板とする熱間圧延工程と、
前記熱延鋼板に酸洗処理を施す酸洗処理工程と、
前記熱延鋼板を、740℃以上840℃以下の温度で10s以上900s以下保持したのち、5℃/s以上30℃/s以下の平均冷却速度で150℃以上350℃以下の冷却停止温度まで冷却する焼鈍工程と、ついで、
前記熱延鋼板を、350℃超550℃以下の温度まで再加熱し、該再加熱温度において10s以上保持する再加熱処理工程と、をそなえる、高強度鋼板の製造方法。
前記焼鈍工程では、前記冷延鋼板を、740℃以上840℃以下の温度で10s以上900s以下保持し、5℃/s以上30℃/s以下の平均冷却速度で150℃以上350℃以下の冷却停止温度まで冷却し、
前記再加熱処理工程では、前記冷延鋼板を、350℃超550℃以下の温度まで再加熱し、該再加熱温度で10s以上保持する、前記1に記載の高強度鋼板の製造方法。
面積率でフェライトとベイニティックフェライトの合計が30%以上75%以下であり、面積率で焼戻しマルテンサイトが5%以上15%以下であり、かつ体積率で残留オーステナイトが8%以上である鋼組織を有し、
上記残留オーステナイトの平均結晶粒径が2μm以下であり、上記ベイニティックフェライトの平均自由行程が3μm以下である、高強度鋼板。
また、本発明の製造方法に従って得られた高強度鋼板を、例えば自動車構造部材に適用することにより、車体軽量化による燃費改善を図ることができ、産業的な利用価値は極めて大きい。
本発明の製造方法では、所定の成分組成からなる鋼スラブを加熱し、ついで熱間圧延を施す。この際、熱間圧延の平均巻き取り温度(CT)を低温化することにより、熱延板組織をマルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトが混在した組織を主体とすることが重要である。
また、熱間圧延後に冷間圧延を施す場合には、圧下率を極力低く制御することにより、熱延鋼板において得られる上記の組織を破壊させずになるべく残存させることも重要である。
また、焼鈍後の冷却停止温度を350℃以下に低下させ、適正な条件で再加熱処理を施すことで、焼戻しマルテンサイトが適正量含まれる組織とすることができる。
その結果、780MPa以上の引張強度(TS)を有し、延性のみならず伸びフランジ疲労特性にも優れる高強度鋼板を、高い生産性の下、製造することが可能となるのである。
なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
Cは、鋼を強化するにあたり重要な元素であり、高い固溶強化能を有するとともに、所望量の残留オーステナイトを確保して、延性を向上させるのに必要不可欠な元素である。
ここに、C量が0.10%未満では、必要な量の残留オーステナイトを得ることが困難になる。一方、C量が0.35%を超えると、鋼板の脆化や遅れ破壊の懸念が生じる。
従って、C量は0.10%以上0.35%以下、好ましくは0.15%以上0.30%以下、より好ましくは0.18%以上0.26%以下とする。
Siは、残留オーステナイトが分解して、炭化物が生成することを抑制するのに有効な元素である。また、フェライト中で高い固溶強化能を有するとともに、フェライトからオーステナイトへ固溶Cを排出してフェライトを清浄化し、延性を向上させる性質を有する。さらに、フェライトに固溶したSiは、加工硬化能を向上させ、フェライト自身の延性を高める。こうした効果を得るには、Si量を0.50%以上にする必要がある。一方、Si量が2.50%を超えると、異常組織が発達し、延性が低下する。
従って、Si量は0.50%以上2.50%以下、好ましくは0.80%以上2.00%以下、より好ましくは1.20%以上1.80%以下とする。
Mnは、強度確保のために有効である。また、焼入れ性を向上させて複合組織化を容易にする。同時に、Mnは、熱間圧延後の冷却過程でのフェライトやパーライトの生成を抑制する作用があり、熱延板組織を低温変態相(ベイナイトもしくはマルテンサイト)主体の組織とするのに有効な元素である。こうした効果を得るには、Mn量を2.00%以上にする必要がある。一方、Mn量を3.50%以上にすると、板厚方向のMn偏析が顕著となり、疲労特性の低下を招く。
従って、Mn量は2.00%以上3.50%未満、好ましくは2.00%以上3.00%以下、より好ましくは2.00%以上2.80%以下とする。
Pは、固溶強化の作用を有し、所望とする強度に応じて添加できる元素である。また、フェライト変態を促進するため、複合組織化にも有効な元素である。こうした効果を得るためには、P量を0.001%以上にする必要がある。一方、P量が0.100%を超えると、溶接性の劣化を招くとともに、亜鉛めっきを合金化処理する場合には、合金化速度を低下させて亜鉛めっきの品質を損なわせる。
従って、P量は0.001%以上0.100%以下、好ましくは0.005%以上0.050%以下とする。
Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させる。そのため、その量は0.0200%以下とする必要がある。しかし、生産技術上の制約から、S量は0.0001%以上にする必要がある。
従って、S量は0.0001%以上0.0200%以下、好ましくは0.0001%以上0.0050%以下とする。
Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.0100%を超えると、耐時効性の劣化が顕著となる。その量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする必要がある。
従って、N量は0.0005%以上0.0100%以下、好ましくは0.0005%以上0.0070%以下とする。
Ti:0.005%以上0.100%以下
Tiは、熱間圧延時あるいは焼鈍時に、微細な析出物を形成して強度を向上させる。また、TiはNをTiNとして析出させるため、Bを添加した場合にBNの析出を抑制でき、次に説明するBの効果を有効に発現させる。こうした効果を得るには、Ti量を0.005%以上にする必要がある。一方、Ti量が0.100%を超えると、析出強化が過度に働き、延性の低下を招く。
従って、Ti量は0.005%以上0.100%以下とすることが好ましい。より好ましくは0.010%以上0.080%以下である。
Bは、熱間圧延後の冷却過程において、フェライト・パーライト変態を抑制し、熱延板組織を低温変態相(ベイナイト、マルテンサイト)、中でもマルテンサイト主体の組織とする効果を有する。また、Bは、鋼の強化にも有効な元素である。このような効果を得るには、B量を0.0001%以上とすることが必要である。しかしながら、Bは0.0050%を超えて過剰に添加すると、マルテンサイトの量が過大となって、強度上昇による延性の低下の懸念が生じる。
従って、B量は0.0001%以上0.0050%以下とすることが好ましい。より好ましくは0.0005%以上0.0030%以下である。
また、特に、低Mn成分系においては、熱間圧延後の冷却過程において、フェライト・パーライト変態が進行して、熱延板組織がフェライトやパーライトを含む組織となり易い。このため、上記したBの添加効果を十分に発現させるためには、Mn量をB量で除した値を2100以下とすることが好ましく、2000以下とすることがより好ましい。なお、Mn量をB量で除した値の下限は特に限定されないが、300程度が好ましい。
Alは、フェライトを生成させ、強度と延性のバランスを向上させるのに有効な元素である。こうした効果を得るには、Al量を0.01%以上にする必要がある。一方、Al量が1.00%を超えると、表面性状の劣化を招く。
従って、Alを添加する場合、その含有量は0.01%以上1.00%以下とする。好ましくは0.03%以上0.50%以下とする。
Nbは、熱間圧延時あるいは焼鈍時に微細な析出物を形成して強度を上昇させる。こうした効果を得るには、Nb量を0.005%以上にする必要がある。一方、Nb量が0.100%を超えると、成形性が低下する。
従って、Nbを添加する場合、その含有量は0.005%以上0.100%以下とする。
CrおよびCuは、固溶強化元素としての役割のみならず、焼鈍時の冷却過程において、オーステナイトを安定化し、複合組織化を容易にする。こうした効果を得るには、Cr量およびCu量を、それぞれ0.05%以上にする必要がある。一方、CrおよびCu量がそれぞれ1.00%を超えると、成形性が低下する。
従って、CrおよびCuを添加する場合は、その含有量はそれぞれ0.05%以上1.00%以下とする。
SbおよびSnは、鋼板表面の窒化や酸化によって生じる鋼板表層の数十μm程度の領域の脱炭を抑制する観点から、必要に応じて添加することができる。このような窒化や酸化を抑制すれば、鋼板表面においてマルテンサイトの生成量が減少するのを防止し、強度の確保に有効である。こうした効果を得るには、Sb量およびSn量を、それぞれ0.002%以上にする必要がある。一方で、これらいずれの元素についても、0.200%を超えて過剰に添加すると靭性の低下を招く。
従って、SbおよびSnを添加する場合は、その含有量はそれぞれ0.002%以上0.200%以下とする。
Taは、TiやNbと同様に、合金炭化物や合金炭窒化物を生成して高強度化に寄与する。加えて、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成することで析出物の粗大化を著しく抑制し、析出強化による強度への寄与を安定化させる効果があると考えられる。このような析出物安定化の効果は、Taを0.001%以上とすることで得られる。一方、Taは0.100%を超えて過剰に添加しても、析出物安定化効果が飽和する上、合金コストも増加する。
従って、Taを添加する場合には、その含有量は0.001%以上0.100%以下とする。
Ca、MgおよびREMは、脱酸に用いる元素であるとともに、硫化物の形状を球状化し、局部延性および伸びフランジ性への硫化物の悪影響を改善するために有効な元素である。このような効果を得るには、それぞれ0.0005%以上添加することが必要である。しかしながら、Ca、MgおよびREMは0.0050%を超えて過剰に添加されると、介在物等の増加を引き起こし、鋼板表面および内部に欠陥などを引き起こす。
従って、Ca、MgおよびREMを添加する場合は、その含有量はそれぞれ0.0005%以上0.0050%以下とする。
本発明の高強度鋼板の製造方法は、上記の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度:800℃以上1000℃以下で熱間圧延したのち、平均巻き取り温度:200℃以上500℃以下で巻き取り、熱延鋼板とする熱間圧延工程と、熱延鋼板に酸洗処理を施す酸洗処理工程と、必要に応じて熱延鋼板を30%未満の圧下率で冷間圧延して冷延鋼板とする冷間圧延工程と、熱延鋼板または冷延鋼板を、740℃以上840℃以下の温度で10s以上900s以下保持したのち、5℃/s以上30℃/s以下の平均冷却速度で150℃以上350℃以下の冷却停止温度まで冷却する焼鈍工程と、ついで、熱延鋼板または冷延鋼板を、350℃超550℃以下の温度まで再加熱し、該再加熱温度において10s以上保持する再加熱処理工程と、をそなえるものである。
なお、上記した各工程における仕上げ圧延温度や平均巻き取り温度などの温度は、いずれも、鋼板表面の温度である。また、平均冷却速度も、鋼板表面の温度をもとに算出される。
以下、これらの製造条件の限定理由について、説明する。
鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出したTi、Nb系析出物を再溶解させる必要がある。
ここに、鋼スラブの加熱温度が1100℃未満では、炭化物の十分な溶解が困難であり、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂、凹凸を減少し、平滑な鋼板表面を達成する必要もある。従って、鋼スラブの加熱温度は1100℃以上にする必要がある。
一方、鋼スラブの加熱温度が1300℃超では、酸化量の増加に伴いスケールロスが増大してしまう。そのため、鋼スラブの加熱温度は1300℃以下にする必要がある。
従って、鋼スラブの加熱温度は1100℃以上1300℃以下とする。好ましくは、1150℃以上1250℃以下である。
加熱後の鋼スラブは、粗圧延および仕上げ圧延により熱間圧延され熱延鋼板となる。このとき、仕上げ圧延出側温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する傾向にある。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、延性に悪影響を及ぼす。さらに、結晶粒径が過度に粗大となり、疲労特性が低下する。
一方、仕上げ圧延出側温度が800℃未満では、圧延荷重が増大し、圧延負荷が大きくなることや、オーステナイトが未再結晶の状態での圧下率が高くなり、異常な集合組織が発達し、結果的に、最終製品における面内異方性が顕著となり、材質の均一性が損なわれるだけでなく、延性そのものも低下する。
従って、熱間圧延の仕上げ圧延出側温度を800℃以上1000℃以下にする必要がある。好ましくは820℃以上950℃以下とする。
熱間圧延後の平均巻き取り温度は、本発明の製造方法において極めて重要である。
すなわち、熱間圧延後の平均巻き取り温度が500℃を超えると、熱間圧延後の冷却および保持過程において、フェライトやパーライトが生成し、熱延板組織をマルテンサイト単相組織、もしくはベイナイト単相組織、もしくはマルテンサイトとベイナイトが混在した組織を主体とすることが困難となり、焼鈍後に得られる鋼板において、所望の延性および強度と延性のバランスを確保することが難しくなる。一方、熱間圧延後の平均巻き取り温度が200℃未満では、熱延鋼板の形状が悪化し、生産性が低下する。
従って、熱間圧延後の平均巻き取り温度は200℃以上500℃以下にする必要がある。好ましくは300℃以上450℃以下、より好ましくは350℃以上450℃以下である。
また、熱延鋼板に冷間圧延を施し、冷延鋼板とすることも可能である。冷間圧延を施す場合、冷間圧延の圧下率が極めて重要である。
すなわち、圧下率が30%以上の場合には、熱延板組織の低温変態相が破壊され、焼鈍後に得られる鋼板において、フェライトとベイニティックフェライト、残留オーステナイトを適正量含み、さらには、残留オーステナイトとベイニティックフェライトを微細に分散させた組織を造り込むことが困難となり、延性や強度と延性のバランスの確保と良好な疲労特性の確保が難しくなる。
従って、冷間圧延の圧下率は30%未満とする。好ましくは25%以下、より好ましくは20%以下である。また、冷間圧延の圧下率の下限については特に限定されるものではなく、0%超であればよい。
なお、圧延パスの回数、および各パスの圧下率については、特に限定する必要はなく、いずれであっても本発明の効果は発揮される。
焼鈍温度が740℃未満では、焼鈍中に十分な量のオーステナイトを確保できない。このため、最終的に所望量の残留オーステナイトが確保されず、良好な延性および強度と延性のバランスの確保が困難となる。一方、焼鈍温度が840℃を超えると、オーステナイト単相の温度域になるため、最終的に微細な残留オーステナイトが所望量生成されず、やはり良好な延性および強度と延性のバランスの確保が困難となる。
従って、焼鈍温度は740℃以上840℃以下とする。好ましくは750℃以上830℃以下である。
焼鈍処理の保持時間が10s未満では、焼鈍中に十分な量のオーステナイトを確保できない。このため、最終的に所望量の残留オーステナイトが確保されず、良好な延性および強度と延性のバランスの確保が困難となる。一方、焼鈍処理の保持時間が900sを超えると、結晶粒の粗大化により、最終的に微細な残留オーステナイトが所望量生成されず、良好な延性および強度と延性のバランスの確保が困難となる。また、生産性も阻害する。
従って、焼鈍処理の保持時間は10s以上900s以下とする。好ましくは30s以上750s以下、より好ましくは60s以上600s以下である。
150℃以上350℃以下の冷却停止温度までの平均冷却速度が5℃/s未満では、冷却中に多量のフェライトが生成し、所望の強度確保が困難となる。一方で、30℃/sを超えると、過度に低温変態相が生成し、延性が低下する。
従って、150℃以上350℃以下の冷却停止温度までの平均冷却速度は5℃/s以上30℃/s以下とする。好ましくは10℃/s以上30℃/s以下である。
なお、この場合の冷却は、ガス冷却が好ましいが、炉冷、ミスト冷却、ロール冷却、水冷などを用いて組み合わせて行うことが可能である。
従って、冷却停止温度は150℃以上350℃以下とする。好ましくは180℃以上320℃以下である。
再加熱温度が550℃を超える場合、残留オーステナイトの分解が生じ、最終的に所望量の残留オーステナイトが確保されず、良好な延性および強度と延性のバランスの確保が困難となる。一方、加熱温度が350℃以下となる場合、所望量の焼戻しマルテンサイトが確保されず、穴広げ性(伸びフランジ性)の確保が困難となる。
従って、再加熱温度は350℃超550℃以下とする。好ましくは370℃以上530℃以下である。
再加熱温度での保持時間が10s未満では、オーステナイトへのC濃化が進行する時間が不十分となり、最終的に所望量の残留オーステナイトの確保が困難となる。従って、再加熱温度での保持時間は10s以上とする。
一方、600sを超えて滞留させても、残留オーステナイト量は増加せず、延性の顕著な向上は確認されずに、飽和傾向となる。このため、再加熱温度での保持時間は、600s以下が好ましい。
より好ましくは30s以上500s以下、さらに好ましくは60s以上400s以下である。
なお、保持後の冷却はとくに規定する必要がなく、任意の方法により所望の温度に冷却してよい。
例えば、溶融亜鉛めっき処理を施すときは、前記焼鈍処理を施した鋼板を440℃以上500℃以下の亜鉛めっき浴中に浸漬し、溶融亜鉛めっき処理を施し、その後、ガスワイピング等によって、めっき付着量を調整する。溶融亜鉛めっきはAl量が0.10%以上0.22%以下である亜鉛めっき浴を用いることが好ましい。また、亜鉛めっきの合金化処理を施すときは、溶融亜鉛めっき処理後に、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施す。600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、所望の残留オーステナイトの体積率を確保できず、延性が低下する場合がある。したがって、亜鉛めっきの合金化処理を行うときは、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施すことが好ましい。また、電気亜鉛めっき処理を施してもよい。
フェライトとベイニティックフェライトの面積率の合計:30%以上75%以下
本発明の製造方法により製造される高強度鋼板は、延性に富む軟質なフェライトを主体とする組織に、主として延性を担う残留オーステナイト、さらに好ましくは強度を担う少量のマルテンサイトを分散させた複合組織からなる。また、ベイニティックフェライトは、フェライトと残留オーステナイト/マルテンサイトに隣接して生成し、フェライトと残留オーステナイト、さらにはフェライトとマルテンサイトとの硬度差を緩和して、穴広げ試験時に発生する亀裂や疲労試験時に発生する疲労亀裂を抑制する。
ここに、十分な延性を確保するため、フェライトとベイニティックフェライトの面積率の合計を30%以上にする必要がある。一方、強度確保のため、フェライトとベイニティックフェライトの面積率の合計を75%以下にする必要がある。より良好な延性を確保するために、フェライトとベイニティックフェライトの面積率の合計は、35%以上70%以下であることが好ましい。
また、ベイニティックフェライトは、上述したように、フェライトと残留オーステナイト/マルテンサイトに隣接して生成し、フェライトと残留オーステナイト、さらにはフェライトとマルテンサイトとの硬度差を緩和して、穴広げ試験時に発生する亀裂や疲労試験時に発生する疲労亀裂を抑制する効果があるため、より良好な穴広げ性と疲労特性の確保に有効である。そのため、ベイニティックフェライトの面積率は5%以上とすることが好ましい。一方、安定的に強度を確保するため、ベイニティックフェライトの面積率は25%以下とすることが好ましい。
また、フェライトの形態としては、アシキュラーフェライトが主体であるが、ポリゴナルフェライト、未再結晶フェライトを含んでも良い。しかし、良好な延性の確保のため、ポリゴナルフェライトの面積率は20%以下、未再結晶フェライトの面積率は5%以下であることが好ましい。なお、ポリゴナルフェライトおよび未再結晶フェライトの面積率はそれぞれ0%であってもよい。
なお、上記の組織画像において、フェライトおよびベイニティックフェライトは灰色の組織(下地組織)、残留オーステナイトやマルテンサイトは白色の組織を呈している。
良好な穴広げ性(伸びフランジ性)を確保するため、焼戻しマルテンサイトの面積率は5%以上にする必要がある。より良好な穴広げ性(伸びフランジ性)を確保するために、焼戻しマルテンサイトの面積率は8%以上であることが好ましい。一方、焼戻しマルテンサイトの面積率が15%を超えると、十分な量の残留オーステナイトの確保が困難となる。その結果、良好な延性および強度と延性のバランスの確保が困難となるため、焼戻しマルテンサイトの面積率は15%以下にする必要がある。
良好な延性および強度と延性のバランスを確保するため、残留オーステナイトの体積率は8%以上にする必要がある。より良好な延性および強度と延性のバランスを確保するには、残留オーステナイトの体積率は10%以上であることが好ましい。なお、残留オーステナイトの体積率の上限は特に限定されるものではないが35%程度である。
また、残留オーステナイトの体積率は、鋼板を板厚方向の1/4面まで研磨し、この板厚1/4面の回折X線強度により求める。入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}面のピークの積分強度の、フェライトの{110}、{200}、{211}面のピークの積分強度に対する、12通り全ての組み合わせの強度比を求め、これらの平均値を残留オーステナイトの体積率とする。
残留オーステナイトの結晶粒の微細化は、鋼板の延性および疲労特性の向上に寄与する。そのため、良好な延性および疲労特性を確保するには、残留オーステナイトの平均結晶粒径を2μm以下にする必要がある。より良好な延性および疲労特性を確保するには、残留オーステナイトの平均結晶粒径を1.5μm以下とすることが好ましい。また、下限については特に限定されるものではないが、0.1μm程度である。
なお、残留オーステナイトの平均結晶粒径は、TEM(透過型電子顕微鏡)を用いて15000倍の倍率で20視野観察し、得られた組織画像を用いて、前記Image-Proにより各々の残留オーステナイト結晶粒の面積を求め、円相当直径を算出し、それらの値を平均して求めることができる。
ベイニティックフェライトの平均自由行程は極めて重要である。すなわち、ベイニティックフェライトは740℃以上840℃以下の温度域での焼鈍後の600℃以下の冷却および保持過程で生成する。ここで、ベイニティックフェライトは、フェライトと残留オーステナイトに隣接して生成し、フェライトと残留オーステナイトの硬度差を緩和して、疲労亀裂の発生や亀裂伝播を抑制する効果がある。このため、ベイニティックフェライトが密な分散状態、つまり、ベイニティックフェライトの平均自由行程が小さい方が有利である。
ここに、良好な疲労特性を確保するためには、ベイニティックフェライトの平均自由行程を3μm以下とする必要がある。より良好な疲労特性を確保するためには、ベイニティックフェライトの平均自由行程を2.5μm以下とすることが好ましい。また、下限については特に限定されるものではないが、0.5μm程度である。
dBF:ベイニティックフェライトの平均結晶粒径(μm)
f:ベイニティックフェライトの面積率(%)÷100
なお、溶融亜鉛めっき浴はGIでは、Al:0.19質量%含有亜鉛浴を使用し、GAでは、Al:0.14質量%含有亜鉛浴を使用し、浴温は465℃とした。めっき付着量は片面あたり45g/m2(両面めっき)とし、GAは、めっき層中のFe濃度を9質量%以上12質量%以下とした。
なお、表1中のAc1変態点(℃)は、以下の式を用いて求めた。
Ac1変態点(℃)=751-16×(%C)+11×(%Si)-28×(%Mn)-5.5×(%Cu)+13×(%Cr)
ただし、(%X)は、元素Xの鋼中含有量(質量%)を示す。
ここで、引張試験は、引張試験片の長手が鋼板の圧延方向と垂直(C方向)になるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、TS(引張強度)およびEL(全伸び)を測定した。
なお、ここでは、TS780MPa級:EL≧34%、TS980MPa級:EL≧27%、TS1180MPa級:EL≧23%でかつ、TS×EL≧27000MPa・%の場合を良好と判断した。
限界穴広げ率λ(%)={(Df-D0)/D0}×100
ここで、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)である。
なお、ここでは、TS780MPa級:λ≧40%、TS980MPa級:λ≧30%、TS1180MPa級:λ≧20%の場合を良好と判定した。
両振り平面曲げ疲労試験において、107サイクルまで破断が認められなかった応力を測定し、この応力を疲労限強度とした。
なお、疲労限強度を引張強度TSで除した値(耐久比)を算出した。なお、ここでは、疲労限強度≧400MPaでかつ耐久比≧0.40の場合を、疲労特性が良好と判断した。
ここで、生産性については、
(1)熱延鋼板の形状不良が発生し、
(2)次工程に進むために熱延鋼板の形状矯正が必要であるときや、
(3)焼鈍処理の保持時間が長いとき、
(4)オーステンパー保持時間(焼鈍処理の再加熱温度域での保持時間)が長いとき
などのリードタイムコストに応じて、(1)~(4)のいずれにも該当しない場合を「高」、(4)にのみ該当する場合を「中」、(1)~(3)のいずれかに該当する場合を「不良」と判断した。
同様に、冷間圧延の通板性も、圧延荷重の増大による圧延時のトラブル発生の危険が増大する場合を不良と判断した。
なお、組織観察については、前述した方法により行った。
これらの結果を表3および表4に示す。
一方、比較例では、引張強度、延性、強度と延性のバランス、穴広げ性(伸びフランジ性)、疲労特性、生産性のいずれか一つ以上が劣っている。
Claims (8)
- 質量%で、C:0.10%以上0.35%以下、Si:0.50%以上2.50%以下、Mn:2.00%以上3.50%未満、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下およびN:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを、
1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度:800℃以上1000℃以下で熱間圧延したのち、平均巻き取り温度:200℃以上500℃以下で巻き取り、熱延鋼板とする熱間圧延工程と、
前記熱延鋼板に酸洗処理を施す酸洗処理工程と、
前記熱延鋼板を、740℃以上840℃以下の温度で10s以上900s以下保持したのち、5℃/s以上30℃/s以下の平均冷却速度で150℃以上350℃以下の冷却停止温度まで冷却する焼鈍工程と、ついで、
前記熱延鋼板を、350℃超550℃以下の温度まで再加熱し、該再加熱温度において10s以上保持する再加熱処理工程と、をそなえる、高強度鋼板の製造方法。 - 前記焼鈍工程前に、前記熱延鋼板を30%未満の圧下率で冷間圧延して冷延鋼板とする冷間圧延工程をさらにそなえ、
前記焼鈍工程では、前記冷延鋼板を、740℃以上840℃以下の温度で10s以上900s以下保持し、5℃/s以上30℃/s以下の平均冷却速度で150℃以上350℃以下の冷却停止温度まで冷却し、
前記再加熱処理工程では、前記冷延鋼板を、350℃超550℃以下の温度まで再加熱し、該再加熱温度で10s以上保持する、請求項1に記載の高強度鋼板の製造方法。 - 前記再加熱処理工程後に、前記熱延鋼板または前記冷延鋼板に亜鉛めっき処理を施す工程をさらにそなえる、請求項1または2に記載の高強度鋼板の製造方法。
- 前記鋼スラブが、さらに質量%で、Ti:0.005%以上0.100%以下およびB:0.0001%以上0.0050%以下のうちから選ばれる少なくとも1種を含有する、請求項1~3のいずれかに記載の高強度鋼板の製造方法。
- 前記鋼スラブが、さらに質量%で、Al:0.01%以上1.00%以下、Nb:0.005%以上0.100%以下、Cr:0.05%以上1.00%以下、Cu:0.05%以上1.00%以下、Sb:0.002%以上0.200%以下、Sn:0.002%以上0.200%以下、Ta:0.001%以上0.100%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種を含有する、請求項1~4のいずれかに記載の高強度鋼板の製造方法。
- 質量%で、C:0.10%以上0.35%以下、Si:0.50%以上2.50%以下、Mn:2.00%以上3.50%未満、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下およびN:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる鋼組成を有し、
面積率でフェライトとベイニティックフェライトの合計が30%以上75%以下であり、面積率で焼戻しマルテンサイトが5%以上15%以下であり、かつ体積率で残留オーステナイトが8%以上である鋼組織を有し、
上記残留オーステナイトの平均結晶粒径が2μm以下であり、上記ベイニティックフェライトの平均自由行程が3μm以下である、高強度鋼板。 - 前記鋼組成が、さらに質量%で、Ti:0.005%以上0.100%以下およびB:0.0001%以上0.0050%以下のうちから選ばれる少なくとも1種を含有する、請求項6に記載の高強度鋼板。
- 前記鋼組成が、さらに質量%で、Al:0.01%以上1.00%以下、Nb:0.005%以上0.100%以下、Cr:0.05%以上1.00%以下、Cu:0.05%以上1.00%以下、Sb:0.002%以上0.200%以下、Sn:0.002%以上0.200%以下、Ta:0.001%以上0.100%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0050%以下のうちから選ばれる少なくとも1種を含有する、請求項6または7に記載の高強度鋼板。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2017001527A MX387989B (es) | 2014-08-07 | 2015-08-05 | Lámina de acero de alta resistencia y método para fabricar la misma. |
CN201580041892.2A CN106574319B (zh) | 2014-08-07 | 2015-08-05 | 高强度钢板及其制造方法 |
US15/326,793 US20170204491A1 (en) | 2014-08-07 | 2015-08-05 | High-strength steel sheet and method for manufacturing same |
JP2015558683A JP5967319B2 (ja) | 2014-08-07 | 2015-08-05 | 高強度鋼板およびその製造方法 |
EP15830601.9A EP3178949B1 (en) | 2014-08-07 | 2015-08-05 | High-strength steel sheet and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-161677 | 2014-08-07 | ||
JP2014161677 | 2014-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016021196A1 true WO2016021196A1 (ja) | 2016-02-11 |
Family
ID=55263487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/003947 WO2016021196A1 (ja) | 2014-08-07 | 2015-08-05 | 高強度鋼板およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170204491A1 (ja) |
EP (1) | EP3178949B1 (ja) |
JP (1) | JP5967319B2 (ja) |
CN (1) | CN106574319B (ja) |
MX (1) | MX387989B (ja) |
WO (1) | WO2016021196A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017145469A (ja) * | 2016-02-18 | 2017-08-24 | 新日鐵住金株式会社 | 高強度鋼板の製造方法 |
WO2017169329A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
JP2017186647A (ja) * | 2016-03-31 | 2017-10-12 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
CN108699648A (zh) * | 2016-02-18 | 2018-10-23 | 杰富意钢铁株式会社 | 高强度冷轧钢板 |
EP3399066A4 (en) * | 2016-03-07 | 2019-01-23 | JFE Steel Corporation | HIGH-RESISTANCE STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF |
CN114150215A (zh) * | 2021-10-19 | 2022-03-08 | 首钢集团有限公司 | 一种汽车用低合金高强钢及其制备方法 |
JP2023506395A (ja) * | 2019-12-19 | 2023-02-16 | アルセロールミタル | 熱間圧延熱処理鋼板及びその製造方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016046582A1 (en) * | 2014-09-22 | 2016-03-31 | Arcelormittal | Bumper-reinforcing system for motor vehicle |
RU2749413C2 (ru) | 2016-05-10 | 2021-06-09 | Юнайтид Стейтс Стил Корпорэйшн | Изделия из высокопрочной стали и способы их изготовления |
US11993823B2 (en) | 2016-05-10 | 2024-05-28 | United States Steel Corporation | High strength annealed steel products and annealing processes for making the same |
US11560606B2 (en) | 2016-05-10 | 2023-01-24 | United States Steel Corporation | Methods of producing continuously cast hot rolled high strength steel sheet products |
JP6414246B2 (ja) * | 2017-02-15 | 2018-10-31 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP6860420B2 (ja) * | 2017-05-24 | 2021-04-14 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
WO2019092483A1 (en) * | 2017-11-10 | 2019-05-16 | Arcelormittal | Cold rolled and heat treated steel sheet and a method of manufacturing thereof |
WO2019107042A1 (ja) * | 2017-11-29 | 2019-06-06 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
JP6614397B1 (ja) | 2018-02-19 | 2019-12-04 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP6760543B1 (ja) * | 2018-10-17 | 2020-09-23 | 日本製鉄株式会社 | 鋼板及び鋼板の製造方法 |
JP6897874B2 (ja) | 2019-01-09 | 2021-07-07 | Jfeスチール株式会社 | 高強度冷延鋼板及びその製造方法 |
JP7638902B2 (ja) * | 2019-05-07 | 2025-03-04 | ユナイテッド ステイツ スチール コーポレイション | 連続鋳造された熱間圧延高強度鋼板製品を製造する方法 |
CN113396239B (zh) * | 2019-06-14 | 2022-11-08 | 日铁不锈钢株式会社 | 奥氏体系不锈钢及其制造方法 |
CN111944970A (zh) * | 2020-09-02 | 2020-11-17 | 湖州南浔超盛金属制品有限公司 | 一种热轧角钢的热处理方法 |
CN112647014B (zh) * | 2020-11-23 | 2022-03-22 | 首钢集团有限公司 | 一种适用于海洋大气环境用建筑结构钢及其生产方法 |
CN113462856B (zh) * | 2021-07-02 | 2022-06-21 | 太原理工大学 | 一种提高刮板运输机中部槽槽帮铸钢件强韧性的热处理方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011214081A (ja) * | 2010-03-31 | 2011-10-27 | Sumitomo Metal Ind Ltd | 冷延鋼板およびその製造方法 |
WO2012147898A1 (ja) * | 2011-04-25 | 2012-11-01 | Jfeスチール株式会社 | 加工性と材質安定性に優れた高強度鋼板およびその製造方法 |
WO2013005714A1 (ja) * | 2011-07-06 | 2013-01-10 | 新日鐵住金株式会社 | 冷延鋼板の製造方法 |
WO2013046697A1 (ja) * | 2011-09-29 | 2013-04-04 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
JP2013072101A (ja) * | 2011-09-27 | 2013-04-22 | Jfe Steel Corp | 高強度鋼板およびその製造方法 |
WO2015019557A1 (ja) * | 2013-08-09 | 2015-02-12 | Jfeスチール株式会社 | 高降伏比高強度冷延鋼板およびその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101152655B1 (ko) * | 2010-06-18 | 2012-06-05 | 한국과학기술연구원 | 머리카락 내 dhea 설페이트 및 콜레스테롤 설페이트의 검출에 의한 여드름 질환의 평가방법 |
US9745639B2 (en) * | 2011-06-13 | 2017-08-29 | Kobe Steel, Ltd. | High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof |
CA2850332C (en) * | 2011-09-30 | 2016-06-21 | Nippon Steel & Sumitomo Metal Corporation | High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet excellent in mechanical cutting property, and manufacturing method thereof |
KR101618477B1 (ko) * | 2011-10-04 | 2016-05-04 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
KR101359281B1 (ko) * | 2011-12-20 | 2014-02-06 | 주식회사 포스코 | 점용접성, 강도 및 연신율이 우수한 자동차용 강판 및 그 제조방법 |
JP5632947B2 (ja) * | 2012-12-12 | 2014-11-26 | 株式会社神戸製鋼所 | 加工性と低温靭性に優れた高強度鋼板およびその製造方法 |
WO2015151419A1 (ja) * | 2014-03-31 | 2015-10-08 | Jfeスチール株式会社 | 高降伏比高強度冷延鋼板及びその製造方法 |
-
2015
- 2015-08-05 US US15/326,793 patent/US20170204491A1/en not_active Abandoned
- 2015-08-05 WO PCT/JP2015/003947 patent/WO2016021196A1/ja active Application Filing
- 2015-08-05 CN CN201580041892.2A patent/CN106574319B/zh active Active
- 2015-08-05 JP JP2015558683A patent/JP5967319B2/ja active Active
- 2015-08-05 MX MX2017001527A patent/MX387989B/es unknown
- 2015-08-05 EP EP15830601.9A patent/EP3178949B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011214081A (ja) * | 2010-03-31 | 2011-10-27 | Sumitomo Metal Ind Ltd | 冷延鋼板およびその製造方法 |
WO2012147898A1 (ja) * | 2011-04-25 | 2012-11-01 | Jfeスチール株式会社 | 加工性と材質安定性に優れた高強度鋼板およびその製造方法 |
WO2013005714A1 (ja) * | 2011-07-06 | 2013-01-10 | 新日鐵住金株式会社 | 冷延鋼板の製造方法 |
JP2013072101A (ja) * | 2011-09-27 | 2013-04-22 | Jfe Steel Corp | 高強度鋼板およびその製造方法 |
WO2013046697A1 (ja) * | 2011-09-29 | 2013-04-04 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
WO2015019557A1 (ja) * | 2013-08-09 | 2015-02-12 | Jfeスチール株式会社 | 高降伏比高強度冷延鋼板およびその製造方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017145469A (ja) * | 2016-02-18 | 2017-08-24 | 新日鐵住金株式会社 | 高強度鋼板の製造方法 |
CN108699648A (zh) * | 2016-02-18 | 2018-10-23 | 杰富意钢铁株式会社 | 高强度冷轧钢板 |
CN108699648B (zh) * | 2016-02-18 | 2020-11-03 | 杰富意钢铁株式会社 | 高强度冷轧钢板 |
US11008635B2 (en) | 2016-02-18 | 2021-05-18 | Jfe Steel Corporation | High-strength cold-rolled steel sheet |
EP3399066A4 (en) * | 2016-03-07 | 2019-01-23 | JFE Steel Corporation | HIGH-RESISTANCE STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF |
US11078552B2 (en) | 2016-03-07 | 2021-08-03 | Jfe Steel Corporation | High-strength steel sheet and method for manufacturing the same |
WO2017169329A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
JP2017186647A (ja) * | 2016-03-31 | 2017-10-12 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
JP2023506395A (ja) * | 2019-12-19 | 2023-02-16 | アルセロールミタル | 熱間圧延熱処理鋼板及びその製造方法 |
JP7592718B2 (ja) | 2019-12-19 | 2024-12-02 | アルセロールミタル | 熱間圧延熱処理鋼板及びその製造方法 |
CN114150215A (zh) * | 2021-10-19 | 2022-03-08 | 首钢集团有限公司 | 一种汽车用低合金高强钢及其制备方法 |
CN114150215B (zh) * | 2021-10-19 | 2022-10-21 | 首钢集团有限公司 | 一种汽车用低合金高强钢及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3178949B1 (en) | 2020-01-29 |
JP5967319B2 (ja) | 2016-08-10 |
EP3178949A4 (en) | 2017-07-05 |
JPWO2016021196A1 (ja) | 2017-04-27 |
EP3178949A1 (en) | 2017-06-14 |
MX2017001527A (es) | 2017-05-11 |
US20170204491A1 (en) | 2017-07-20 |
MX387989B (es) | 2025-03-19 |
CN106574319B (zh) | 2019-01-01 |
CN106574319A (zh) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967319B2 (ja) | 高強度鋼板およびその製造方法 | |
JP5967320B2 (ja) | 高強度鋼板およびその製造方法 | |
JP5943156B1 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP5983895B2 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP6179676B2 (ja) | 高強度鋼板およびその製造方法 | |
JP6179677B2 (ja) | 高強度鋼板およびその製造方法 | |
JP5943157B1 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP6179675B2 (ja) | 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 | |
JP5983896B2 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP6179674B2 (ja) | 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 | |
JP6372633B1 (ja) | 高強度鋼板およびその製造方法 | |
WO2018043473A1 (ja) | 高強度鋼板およびその製造方法 | |
WO2019188640A1 (ja) | 高強度鋼板およびその製造方法 | |
JP6372632B1 (ja) | 高強度鋼板およびその製造方法 | |
JP6930682B1 (ja) | 高強度鋼板およびその製造方法 | |
WO2021070639A1 (ja) | 高強度鋼板および衝撃吸収部材ならびに高強度鋼板の製造方法 | |
JP7107464B1 (ja) | 高強度鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015558683 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15830601 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15326793 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/001527 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015830601 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015830601 Country of ref document: EP |