WO2015092982A1 - 高強度鋼板およびその製造方法 - Google Patents
高強度鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2015092982A1 WO2015092982A1 PCT/JP2014/005941 JP2014005941W WO2015092982A1 WO 2015092982 A1 WO2015092982 A1 WO 2015092982A1 JP 2014005941 W JP2014005941 W JP 2014005941W WO 2015092982 A1 WO2015092982 A1 WO 2015092982A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- less
- ferrite
- temperature
- strength steel
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/285—Thermal after-treatment, e.g. treatment in oil bath for remelting the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high-strength steel plate excellent in spot weldability, ductility and bending workability suitable for use as a steel plate for automobiles and a method for producing the same.
- Patent Document 1 discloses a technique related to a 1180 MPa class steel plate having high yield strength and excellent bending workability.
- the amount of C contained in the 1180 MPa class steel plate is as high as 0.16% or more. For this reason, it cannot be said that the 1180 MPa class steel plate of Patent Document 1 has sufficient spot weldability as a steel plate for automobiles.
- Patent Document 2 discloses a technique related to a high-strength steel sheet in which the C content in the steel sheet is suppressed to 0.15% by mass or less. Although the high-strength steel sheet described in Patent Document 2 has good spot weldability and bending workability, the yield strength is as low as less than 780 MPa, and no improvement has been studied for the yield strength.
- the present invention advantageously solves the above-mentioned problems of the prior art, and is suitable as a material for automobile parts.
- Yield strength (YS) is 780 MPa or more
- tensile strength (TS) is 1180 MPa or more
- spot weldability is 1180 MPa or more
- ductility An object of the present invention is to provide a high-strength steel sheet excellent in bending workability and a method for producing the same.
- the present inventors achieve the above-mentioned problems, and in order to produce a high-strength steel plate excellent in spot weldability, ductility and bending workability while ensuring YS of 780 MPa or more and TS of 1180 MPa or more, the component composition of the steel plate In addition, earnest research was repeated from the viewpoint of structure and manufacturing method.
- the amount of C is 0.15% by mass or less
- the area ratio of ferrite is 8 to 45%
- the area ratio of martensite is 55 to 85%
- the average crystal grain size of ferrite and martensite is 10 ⁇ m or less
- the area of ferrite having a crystal grain size of 10 ⁇ m or more among ferrites present in the range of 20 ⁇ m depth from the steel sheet surface to 100 ⁇ m depth from the steel sheet surface It has been found that a high strength steel sheet having YS of 780 MPa or more, TS of 1180 MPa or more, excellent spot weldability, ductility and bending workability can be obtained by setting the rate to less than 5%. More specifically, the present invention provides the following.
- the average grain size of ferrite and martensite is 10 ⁇ m or less, and Spot weldability, ductility, and bending with a structure in which the area ratio of ferrite having a crystal grain size of 10 ⁇ m or more is less than 5% of ferrite existing in the range of 20 ⁇ m depth from the plate surface to 100 ⁇ m depth from the steel plate surface High strength steel plate with excellent properties.
- composition according to (1) or (2) further comprising at least one element selected from Ca: 0.001 to 0.005% and REM: 0.001 to 0.005% by mass%.
- High strength steel plate with excellent spot weldability, ductility and bending workability.
- the high-strength steel plate further having spot weldability, ductility and bending workability according to any one of (1) to (4), further having a hot-dip galvanized film on the surface of the steel plate.
- the total residence time at 600 to 700 ° C. after the finish rolling is 10 seconds or less.
- the hot-rolled sheet is cold-rolled at a reduction ratio exceeding 20%, and the cold-rolling process is performed.
- the cold-rolled sheet is heated at an average heating rate of 5 ° C./s or higher to an ultimate temperature that is an arbitrary temperature in the range of 680 ° C. or higher, and then annealed at an arbitrary temperature in the range of 720 to 820 ° C.
- An annealing process in which the temperature is heated to 500 seconds or less and held at that temperature for 10 to 1000 seconds, and the cold-rolled sheet after the annealing process is in the range of 450 to 550 ° C. at an average cooling rate of 3 ° C./s or more.
- a cooling stop temperature which is an arbitrary temperature of Spot weldability, characterized in that it has a 0-second cooling step of holding the following, a method for producing a high-strength steel sheet having excellent ductility and bending workability.
- a high-strength steel sheet having YS: 780 MPa or more, TS: 1180 MPa or more, and excellent in spot weldability, ductility and bending workability can be obtained.
- the high-strength steel sheet of the present invention may be a high-strength cold-rolled steel sheet, a high-strength hot-dip galvanized steel sheet, or a high-strength galvannealed steel sheet. These can be preferably used as materials for automobile parts.
- the high-strength steel plate of the present invention (sometimes referred to as “steel plate” in this specification) will be described.
- the high-strength steel sheet of the present invention is, in mass%, C: 0.05 to 0.15%, Si: 0.01 to 1.00%, Mn: 1.5 to 4.0%, P: 0.100. %: S: 0.02% or less, Al: 0.01 to 0.50%, Cr: 0.010 to 2.000%, Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, B: 0.0005 to 0.0050%, with the balance being Fe and inevitable impurities, and having a component composition in which K represented by the specific formula (I) is 3.0 or more .
- the component composition will be described.
- % means the mass%.
- C 0.05 to 0.15% C is an element necessary for generating martensite and increasing TS. If the amount of C is less than 0.05%, the strength of martensite is low and TS does not exceed 1180 MPa. On the other hand, when the amount of C exceeds 0.15%, bending workability and spot weldability deteriorate. Therefore, the C content is 0.05 to 0.15%, preferably 0.06 to 0.12%.
- Si 0.01 to 1.00% Si is an element effective for increasing TS by solid solution strengthening of steel. In order to obtain such effects, the Si amount needs to be 0.01% or more. On the other hand, when the amount of Si exceeds 1.00%, the plating property and spot weldability are deteriorated. Therefore, the Si content is 0.01 to 1.00%, preferably 0.01 to 0.80%, more preferably 0.01 to 0.60%.
- Mn 1.5 to 4.0%
- Mn is an element that raises TS by solid-solution strengthening steel, suppresses ferrite transformation and bainite transformation, generates martensite, and raises YS and TS. In order to acquire such an effect, it is necessary to make Mn amount 1.5% or more. On the other hand, when the amount of Mn exceeds 4.0%, the increase of inclusions becomes remarkable, which causes a decrease in the cleanliness of steel and bending workability. Therefore, the amount of Mn is 1.5 to 4.0%, preferably 1.8 to 3.5%, more preferably 2.0 to 3.0%.
- P 0.100% or less P lowers bending workability due to grain boundary segregation and degrades spot weldability. For this reason, it is desirable to reduce the amount of P as much as possible.
- the amount of P should just be 0.100% or less from the surface of manufacturing cost.
- the lower limit is not particularly defined, but if the P amount is made less than 0.001%, the production efficiency is lowered, so the P amount is preferably 0.001% or more.
- S 0.02% or less S is present as inclusions such as MnS and degrades spot weldability. For this reason, it is preferable to reduce the amount of S as much as possible.
- the amount of S should just be 0.02% or less from the surface of manufacturing cost.
- the lower limit is not particularly defined, but if the S amount is made less than 0.0005%, the production efficiency is lowered, so the S amount is preferably 0.0005% or more.
- Al acts as a deoxidizer and is preferably added in the deoxidation step. In order to obtain such effects, the Al amount needs to be 0.01% or more. On the other hand, if the Al content exceeds 0.50%, the risk of slab cracking during continuous casting increases. Therefore, the Al content is set to 0.01 to 0.50%.
- Cr 0.010 to 2.000% Cr is an element that suppresses ferrite transformation and bainite transformation to generate martensite and raises YS and TS. In order to obtain such an effect, the Cr amount needs to be 0.010% or more. On the other hand, if the Cr content exceeds 2.000%, the effect is saturated without further increase, and the manufacturing cost increases. Therefore, the Cr content is 0.010 to 2.000%, preferably 0.010 to 1.500%, more preferably 0.010 to 1.000%.
- Nb 0.005 to 0.100%
- Nb is an element effective in suppressing recrystallization of ferrite during annealing and refining crystal grains.
- the Nb amount needs to be 0.005% or more.
- the Nb content is 0.005 to 0.100%, preferably 0.010 to 0.080%, more preferably 0.010 to 0.060%.
- Ti 0.005 to 0.100%
- Ti is an element effective in suppressing recrystallization of ferrite during annealing and refining crystal grains. In order to obtain such an effect, the Ti amount needs to be 0.005% or more. On the other hand, if the amount of Ti exceeds 0.100%, the effect is saturated without further increase, and the manufacturing cost is increased. Therefore, the Ti content is 0.005 to 0.100%, preferably 0.010 to 0.080%, more preferably 0.010 to 0.060%.
- B 0.0005 to 0.0050%
- B is an element effective in suppressing marine nucleation of ferrite and bainite from grain boundaries and obtaining martensite.
- the B amount needs to be 0.0005% or more.
- the B content is 0.0005 to 0.0050%, preferably 0.0015 to 0.0050%, more preferably 0.0020 to 0.0050%.
- K is an equation obtained empirically as an index for maintaining the martensite connection in the structure and reducing the ratio of martensite adjacent to the ferrite alone to the entire structure to 15% or less. If K is less than 3.0, the martensite adjacent only to the ferrite increases and the bending workability deteriorates. Therefore, K is 3.0 or more, preferably 3.2 or more.
- [Si] is the Si content [mass%]
- [Mn] is the Mn content [mass%]
- [Cr] is the Cr content [mass%]
- [B] Is the B content [% by mass].
- the steel sheet may contain the following optional components.
- Mo at least one selected from 0.005 to 2.000%, V: 0.005 to 2.000%, Ni: 0.005 to 2.000%, Cu: 0.005 to 2.000%
- Mo , V, Ni, and Cu are elements that generate a low-temperature transformation phase such as martensite and contribute to high strength.
- the content of at least one element selected from Mo, V, Ni, and Cu needs to be 0.005% or more.
- the contents of Mo, V, Ni, and Cu are each 0.005 to 2.000%.
- Ca and REM are both effective elements for improving workability by controlling the form of sulfide. It is. In order to obtain such an effect, the content of at least one element selected from Ca and REM needs to be 0.001% or more. On the other hand, if the content of either Ca or REM exceeds 0.005%, the cleanliness of the steel may be adversely affected and the properties may be reduced. Therefore, the Ca and REM contents are set to 0.001% to 0.005%.
- the structure of the steel sheet (sometimes referred to as “microstructure”) is ferrite in the area ratio of 8 to 45%, martensite in the structure observation at the position of the quarter thickness of the cross section perpendicular to the steel sheet surface.
- the proportion of martensite in the entire structure of 55 to 85% and adjacent to ferrite alone is 15% or less, the average crystal grain size of ferrite and martensite is 10 ⁇ m or less, and the depth is 20 ⁇ m from the steel sheet surface.
- the area ratio of ferrite having a crystal grain size of 10 ⁇ m or more among ferrites existing within a range of 100 ⁇ m depth from the steel sheet surface is less than 5%.
- the reasons for limitation are as follows.
- Ferrite area ratio 8-45%
- the area ratio of ferrite is 8 to 45%, preferably 15 to 40%, more preferably 20 to 40%.
- Martensite area ratio 55-85% If the area ratio of martensite is less than 55%, it is difficult to set YS to 780 MPa or more and TS to 1180 MPa or more. On the other hand, when the area ratio of martensite exceeds 85%, ductility is lowered and bending workability is also lowered. Therefore, the area ratio of martensite is 55 to 85%, preferably 60 to 80%, more preferably 60 to 75%.
- Ratio of martensite adjacent to only ferrite in the total structure 15% or less
- isolated martensite adjacent only to ferrite leads to deterioration of bending workability.
- microcracks are likely to occur at the interface between martensite and ferrite due to non-uniform stress distribution. If the ratio of martensite adjacent to ferrite alone exceeds 15%, sufficient bending workability cannot be obtained. Therefore, the ratio of martensite adjacent to only ferrite is 15% or less, preferably 10% or less, more preferably 5% or less.
- Average grain size of ferrite and martensite 10 ⁇ m or less
- the average crystal grain size of ferrite and martensite is 10 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 3 ⁇ m or less.
- this effect is significant in the surface layer where cracking and extension occur.
- the area ratio of ferrite having a crystal grain size of 10 ⁇ m or more among ferrite existing in the surface layer portion is set to less than 5%.
- the “steel plate surface” of “20 ⁇ m from the steel plate surface” and “100 ⁇ m from the steel plate surface” means the surface of the steel plate itself, and indicates the surface of the cold rolled steel plate when the high strength steel plate is a high strength cold rolled steel plate.
- the high-strength steel plate is a high-strength hot-dip galvanized steel plate, it refers to the surface of the hot-dip galvanized steel plate. The same applies to a high-strength galvannealed steel sheet.
- bainite, pearlite, and retained austenite may be included as phases other than ferrite and martensite. Since these phases are not preferable for improving YS and bending workability, the total area ratio of these phases is less than 20%, preferably less than 15%, more preferably less than 8%.
- the area ratio is the ratio of the area of each phase to the observation area.
- the area ratio of each phase was derived by the following method. After polishing the cross section perpendicular to the surface of the steel plate, it was corroded with 3% nital, and the position of the plate thickness 1 ⁇ 4 was photographed with three fields of view at a magnification of 1500 times with a SEM (scanning electron microscope), and from the obtained image data, Media The area ratio of each phase was determined using Image-Pro manufactured by Cybernetics, and the average area ratio of the three fields was defined as the area ratio of each phase. In the image data, ferrite can be distinguished as black and martensite as white.
- the average crystal grain size of ferrite and martensite is obtained by dividing the total area of ferrite and martensite in the visual field by the number of ferrite and martensite in the above image data for which the area ratio was obtained. Derived by a method in which / square is the average crystal grain size.
- the high-strength steel sheet of the present invention may be a high-strength cold-rolled steel sheet, and also has a high-strength hot-dip galvanized steel sheet having a hot-dip galvanized film on the surface of the steel sheet or an alloyed hot-dip galvanized film on the surface of the steel sheet. It may be a high-strength galvannealed steel sheet.
- Hot-dip galvanized film and alloyed hot-dip galvanized film The hot-dip galvanized film is a layer mainly containing Zn.
- the alloyed hot-dip galvanized film is a layer mainly containing an Fe—Zn alloy formed by diffusing Fe in steel during galvanization by an alloying reaction.
- hot dip galvanized film and alloyed galvanized film include Fe, Al, Sb, Pb, Bi, Mg, Ca, Be, Ti, Cu, Ni, Co, Cr, Mn, P, B, Sn , Zr, Hf, Sr, V, Se, and REM may be included as long as the effects of the present invention are not impaired.
- the preferable manufacturing method of the high strength steel plate of this invention has a hot rolling process, a cold rolling process, an annealing process, and a cooling process, and also has a galvanizing process and an alloying process as needed.
- a hot rolling process a cold rolling process
- an annealing process a hot rolling process
- a cooling process a galvanizing process and an alloying process as needed.
- Hot-rolling process is the finish rolling of the slab, and after the finish rolling is finished, the slab is cooled so that the total residence time at 600 to 700 ° C. is 10 seconds or less. This is a step of winding at temperature.
- a slab having the component composition of the steel sheet is manufactured.
- the slab is preferably produced by a continuous casting method in order to prevent macro segregation.
- the slab can be manufactured by a method other than the continuous casting method, and other methods such as an ingot-making method and a thin slab casting method may be employed.
- the ingot-making method a slab can be produced by melting the steel and then subjecting it to ingot rolling.
- the slab is hot rolled.
- the slab may be cooled to room temperature and then re-heated for hot rolling, or the slab may be charged in a heating furnace without being cooled to room temperature. Can also be done. Alternatively, an energy saving process in which hot rolling is performed immediately after performing a slight heat retention can also be applied.
- heating the slab it is preferable to heat to 1100 ° C. or higher in order to dissolve carbides and prevent an increase in rolling load. In order to prevent an increase in scale loss, the heating temperature of the slab is preferably 1300 ° C. or lower.
- the rough bar after rough rolling may be heated from the viewpoint of preventing troubles during rolling while lowering the heating temperature of the slab. Moreover, what is called a continuous rolling process which joins rough bars and performs finish rolling continuously can be applied.
- Finish rolling may increase anisotropy and reduce workability after cold rolling and annealing. Therefore, it is preferable to perform the finish rolling at Ar 3 transformation point or more of the finishing temperature. Further, in order to reduce the rolling load and make the shape and material uniform, it is preferable to perform lubrication rolling with a friction coefficient of 0.10 to 0.25 in all passes or a part of the finishing rolling.
- cooling is preferably performed so that the total residence time at 600 to 700 ° C. is 10 seconds or less after finishing rolling, and winding is performed at a temperature of 400 to less than 600 ° C. after cooling.
- the reason why each condition is preferable is as follows.
- the residence time at 600 to 700 ° C. exceeds 10 seconds, a B-containing compound such as B carbide is generated, the solid solution B in the steel is lowered, and the effect of B during annealing is reduced.
- the structure of the present invention cannot be obtained. Therefore, the total residence time at 600 to 700 ° C. is 10 seconds or less, preferably 8 seconds or less.
- the coiling temperature is 600 ° C. or higher, a compound containing B such as B carbide is generated, the solid solution B in the steel is lowered, the effect of B during annealing is reduced, and the structure of the present invention cannot be obtained.
- the coiling temperature is less than 400 ° C., the shape of the steel sheet deteriorates. Therefore, the coiling temperature is 400 to 600 ° C.
- the hot-rolled sheet after winding is used in the following cold rolling process after the scale is removed by pickling or the like.
- the cold rolling step is a step of cold rolling the hot rolled sheet after the hot rolling step at a rolling reduction exceeding 20%.
- the rolling reduction is 20% or less, a difference in the strain between the surface side and the inner side of the steel sheet is likely to occur during annealing, and the crystal grain size is not uniform, so that the structure of the present invention cannot be obtained. Therefore, the rolling reduction of cold rolling exceeds 20%, preferably 30% or more.
- the upper limit is not particularly specified, but is preferably about 90% or less from the viewpoint of the stability of the shape.
- Annealing process is a process in which a cold-rolled sheet is heated at an average heating rate of 5 ° C./s or higher to an arbitrary temperature in the range of 680 ° C. or higher, and then 720 to 820 ° C. This is a step of heating up to an annealing temperature which is an arbitrary temperature in the range of 500 seconds or less and holding at that temperature for 10 to 1000 seconds.
- the preferable reason for each condition is as follows.
- the average heating rate up to the heating attainment temperature which is an arbitrary temperature in the range of 680 ° C. or higher, is less than 5 ° C./s, the ferrite grains become coarse and the microstructure of the present invention cannot be obtained. Therefore, the average heating rate is 5 ° C./s or more.
- the upper limit is not particularly defined, but is preferably 500 ° C./s or less from the viewpoint of production stability.
- the heating ultimate temperature when heating at an average heating rate of 5 ° C./s or higher is an arbitrary temperature in the range of 680 ° C. or higher, preferably an arbitrary temperature in the range of 700 ° C. or higher.
- the upper limit of the heating attainment temperature is substantially lower than the annealing temperature from the viewpoint of productivity because temperature control becomes difficult when the annealing temperature is higher than the annealing temperature.
- An arbitrary temperature in the range of 720 to 820 ° C. is set as the annealing temperature, and further heating is performed from the heating attainment temperature to the annealing temperature.
- the heating to the annealing temperature is performed within 500 seconds (the heating time from the above-mentioned heating reaching temperature to the annealing temperature).
- the heating time to the annealing temperature is 500 seconds or less, preferably 300 seconds or less.
- the annealing temperature is an arbitrary temperature in the range of 720 to 820 ° C., preferably an arbitrary temperature in the range of 740 to 810 ° C.
- the holding time at the annealing temperature is 10 to 1000 seconds, preferably 30 to 500 seconds.
- Cooling step is to cool the cold-rolled sheet after the annealing step to a cooling stop temperature that is an arbitrary temperature in the range of 450 to 550 ° C. at an average cooling rate of 3 ° C./s or more, and 1000 seconds at that temperature. It is the process of holding below.
- the preferable reason for each condition is as follows.
- the average cooling rate is 3 ° C./s or more, preferably 5 ° C./s or more.
- the upper limit of the average cooling rate is not particularly limited, but is preferably 100 ° C./s or less from the viewpoint of reducing production hindrance factors such as meandering.
- the cooling stop temperature is less than 450 ° C.
- bainite is excessively generated and the microstructure of the present invention cannot be obtained.
- ferrite is excessively generated and the microstructure of the present invention cannot be obtained. Therefore, the cooling stop temperature is an arbitrary temperature in the range of 450 to 550 ° C.
- the holding time is 1000 seconds or less, preferably 500 seconds or less.
- the lower limit of the holding time is not particularly specified, but is preferably 10 seconds or more from the viewpoint of temperature control for the subsequent immersion in the plating bath.
- a galvanization process is a process of giving a galvanization process to the cold-rolled sheet after a cooling process.
- the galvanizing treatment is preferably performed by immersing the steel plate obtained as described above in a galvanizing bath at 440 ° C. or higher and 500 ° C. or lower, and then adjusting the plating adhesion amount by gas wiping or the like.
- a galvanizing bath having an Al content of 0.08 to 0.18%.
- the high-strength hot-dip galvanized steel sheet of the present invention may be alloyed hot-dip galvanized.
- the high-strength hot-dip galvanized steel sheet of the present invention is manufactured by a method having a hot rolling process, a cold rolling process, an annealing process, a cooling process, a galvanizing process, and an alloying process.
- the hot rolling process, the cold rolling process, the annealing process, the cooling process, and the galvanizing process are as described above, and a description thereof is omitted.
- the high-strength hot-dip galvanized steel sheet in the temperature range of 460 ° C. or higher and 580 ° C. or lower for 1 second to 40 seconds.
- the steel sheet after the cooling step, the galvanizing step, or the further alloying treatment can be subjected to temper rolling for the purpose of straightening the shape or adjusting the surface roughness. Further, after the cooling step, after the galvanizing step or after the alloying treatment, various coating treatments such as resin and oil coating can be performed.
- Annealing is performed under the conditions shown in Tables 2 and 3 in a laboratory, simulating a continuous annealing line and a continuous hot dip galvanizing line, cold rolled steel sheet, hot dip galvanized steel sheet, galvannealed steel sheet Steel plates that are hot dip galvanized) 1 to 45 were prepared.
- the hot dip galvanized steel sheet is cooled at a cooling rate of 10 ° C./second after the cold-rolled sheet after annealing is immersed in a plating bath at 460 ° C. to form a coating with an adhesion amount of 35 to 45 g / m 2 on the surface. It was produced by.
- the alloyed hot-dip galvanized steel sheet was prepared by performing an alloying treatment at 530 ° C. after forming the plating, and cooling at a cooling rate of 10 ° C./second. The obtained steel sheet was subjected to skin pass rolling with a rolling reduction of 0.3%.
- the microstructure of steel plates 1 to 45 was confirmed.
- the area ratio of each phase after polishing a cross section perpendicular to the steel plate surface, it was corroded with 3% nital, and the position of the plate thickness 1/4 was photographed with 3 fields of view at a magnification of 1500 times with a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the area ratio of each phase was determined from the obtained image data using Image-Pro manufactured by Media Cybernetics, and the average area ratio of the three fields of view was defined as the area ratio of each phase.
- the average crystal grain size of ferrite and martensite is obtained by dividing the total area of ferrite and martensite in the visual field by the number of ferrite and martensite in the above image data for which the area ratio was obtained. It was derived by the method of setting the / square to the average grain size. The results are shown in Tables 4 and 5.
- ⁇ Tensile test> A JIS No. 5 tensile test piece (JIS Z2201) was taken in a direction perpendicular to the rolling direction, and subjected to a tensile test in accordance with JIS Z 2241 with a strain rate of 10 ⁇ 3 / s. YS, TS and UEL ( Uniform elongation) was determined. YS was 0.2% proof stress.
- ⁇ Bending test> A strip-shaped test piece having a width of 35 mm and a length of 100 mm with the direction parallel to the rolling direction as the bending test axis direction was collected and subjected to a bending test.
- a 90 ° V bending test was performed with a stroke speed of 10 mm / s, an indentation load of 10 ton, a pressing holding time of 5 seconds, a bending radius R of 1.5 mm, and the ridge line portion of the bending apex was observed with a 10 ⁇ magnifier.
- the case where the above crack was recognized was determined to be poor, and the case where the crack was less than 1 mm was determined to be excellent.
- ⁇ Spot welding test> The test conditions were as follows: electrode: DR 6 mm-40R, pressure: 4802N (490 kgf), initial pressurization time: 30 cycles / 60 Hz, energization time: 17 cycles / 60 Hz, holding time: 1 cycle / 60 Hz.
- the test current was changed from 4.6 to 10.0 kA at a 0.2 kA pitch for the same number of steel plates, and was changed at a 0.5 kA pitch from 10.0 kA to welding.
- Each test piece was subjected to a cross tensile test and a measurement of the nugget diameter of the weld.
- the cross tension test of the resistance spot welded joint was performed in accordance with JIS Z 3137.
- the nugget diameter was implemented as follows based on the description of JIS Z 3139. With respect to the cross section perpendicular to the plate surface, the cross section passing through the approximate center of the welding point of the symmetrical circular plug after resistance spot welding was semi-cut by an appropriate method. After the cut surface was polished and corroded, the nugget diameter was measured by cross-sectional structure observation by optical microscope observation. Here, the maximum diameter of the melting region excluding the corona bond was defined as the nugget diameter.
- YS is 780 MPa or more
- TS is 1180 MPa or more
- TS ⁇ UEL is 6000 MPa ⁇ % or more
- bending workability is good, and excellent spot weldability.
- a high-strength steel plate excellent in spot weldability, ductility and bending workability can be obtained, which contributes to the weight reduction of automobiles and has the excellent effect of greatly contributing to higher performance of automobile bodies. Play.
- a high-strength steel sheet having YS of 780 MPa or more, TS of 1180 MPa or more, TS ⁇ UEL of 6000 MPa ⁇ % or more, good bending workability, and excellent spot weldability can be obtained.
- the high-strength steel sheet of the present invention when used for automotive parts, it contributes to reducing the weight of an automobile and greatly contributes to improving the performance of an automobile body.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
K=-0.4×[Si]+1.0×[Mn]+1.3×[Cr]+200×[B] 式(I)
式(I)において、[Si]はSiの含有量[質量%]、[Mn]はMnの含有量[質量%]、[Cr]はCrの含有量[質量%]、[B]はBの含有量[質量%]である。
Cは、マルテンサイトを生成させてTSを上昇させるために必要な元素である。C量が0.05%未満では、マルテンサイトの強度が低く、TSが1180MPa以上にならない。一方、C量が0.15%を超えると曲げ加工性やスポット溶接性が劣化する。したがって、C量は0.05~0.15%、好ましくは0.06~0.12%とする。
Siは、鋼を固溶強化してTSを上昇させるのに有効な元素である。こうした効果を得るにはSi量を0.01%以上とする必要がある。一方、Si量が1.00%を超えると、めっき性やスポット溶接性の劣化を招く。したがって、Si量は0.01~1.00%、好ましくは0.01~0.80%、より好ましくは0.01~0.60%とする。
Mnは、鋼を固溶強化してTSを上昇させたり、フェライト変態やベイナイト変態を抑制してマルテンサイトを生成させてYSやTSを上昇させたりする元素である。こうした効果を得るには、Mn量を1.5%以上にする必要がある。一方、Mn量が4.0%を超えると、介在物の増加が顕著になり、鋼の清浄度や曲げ加工性低下の原因となる。したがって、Mn量は1.5~4.0%、好ましくは1.8~3.5%、より好ましくは2.0~3.0%とする。
Pは、粒界偏析により曲げ加工性を低下させ、スポット溶接性を劣化させる。このため、P量は極力低減することが望ましい。製造コストの面などからP量は0.100%以下であればよい。下限は特に規定しないが、P量を0.001%未満にしようとすると生産能率の低下を招くため、P量は0.001%以上が好ましい。
Sは、MnSなどの介在物として存在して、スポット溶接性を劣化させる。このため、S量は極力低減することが好ましい。製造コストの面からS量は0.02%以下であればよい。下限は特に規定しないが、S量を0.0005%未満にしようとすると生産能率の低下を招くため、S量は0.0005%以上が好ましい。
Alは、脱酸剤として作用し、脱酸工程で添加することが好ましい。こうした効果を得るには、Al量を0.01%以上にする必要がある。一方、Al量が0.50%を超えると、連続鋳造時のスラブ割れの危険性が高まる。したがって、Al量は0.01~0.50%とする。
Crは、フェライト変態やベイナイト変態を抑制してマルテンサイトを生成させ、YSやTSを上昇させる元素である。こうした効果を得るには、Cr量を0.010%以上にする必要がある。一方、Cr量が2.000%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストが上昇する。したがって、Cr量は0.010~2.000%、好ましくは0.010~1.500%、より好ましくは0.010~1.000%とする。
Nbは、焼鈍時にフェライトの再結晶を抑制し、結晶粒を微細化するのに有効な元素である。こうした効果を得るには、Nb量を0.005%以上にする必要がある。一方、Nb量が0.100%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストを上昇させる。したがって、Nb量は0.005~0.100%、好ましくは0.010~0.080%、より好ましくは0.010~0.060%とする。
Tiは、焼鈍時にフェライトの再結晶を抑制し、結晶粒を微細化させるのに有効な元素である。こうした効果を得るには、Ti量を0.005%以上にする必要がある。一方、Ti量が0.100%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストを上昇させる。したがって、Ti量は0.005~0.100%、好ましくは0.010~0.080%、より好ましくは0.010~0.060%とする。
Bは、粒界からのフェライトおよびベイナイトの核生成を抑制し、マルテンサイトを得るのに有効な元素である。こうした効果を十分に得るには、B量を0.0005%以上にする必要がある。一方、B量が0.0050%を超えると、その効果がさらに高まることなく飽和するとともに、製造コストを上昇させる。したがって、B量は0.0005~0.0050%、好ましくは0.0015~0.0050%、より好ましくは0.0020~0.0050%とする。
Kは、K=-0.4×[Si]+1.0×[Mn]+1.3×[Cr]+200×[B]で表される。Kは、組織がマルテンサイトの連結を保ち、フェライトのみに隣接するマルテンサイトの全組織に占める割合を15%以下とするための指標として経験的に得た式である。Kが3.0未満では、フェライトのみに隣接するマルテンサイトが増大して曲げ加工性が劣化する。したがって、Kは3.0以上、好ましくは3.2以上とする。なお、式(I)において、[Si]はSiの含有量[質量%]、[Mn]はMnの含有量[質量%]、[Cr]はCrの含有量[質量%]、[B]はBの含有量[質量%]である。
残部はFeおよび不可避的不純物である。以上が高強度鋼板の必須成分である。本発明においては、鋼板が以下の任意成分を含んでもよい。
Mo、V、Ni、Cuはマルテンサイト等の低温変態相を生成させ高強度化に寄与する元素である。こうした効果を得るには、Mo、V、Ni、Cuから選ばれる少なくとも1種の元素の含有量を0.005%以上にする必要がある。一方、Mo、V、Ni、Cuのいずれかの含有量が2.000%を超えると、その効果が高まることなく飽和するとともに、製造コストを上昇させる。したがって、Mo、V、Ni、Cuの含有量はそれぞれ0.005~2.000%とする。
Ca、REMは、いずれも硫化物の形態制御により加工性を改善させるのに有効な元素である。こうした効果を得るには、Ca、REMから選ばれる少なくとも1種の元素の含有量を0.001%以上とする必要がある。一方、Ca、REMのいずれかの含有量が0.005%を超えると、鋼の清浄度に悪影響を及ぼし特性が低下するおそれがある。したがって、Ca、REMの含有量は0.001%~0.005%とする。
フェライトの面積率が8%未満では延性が低下し、曲げ加工性も低下する。一方、フェライトの面積率が45%を超えると、YSを780MPa以上にするとともに、TSを1180MPa以上にすることが困難になる。したがって、フェライトの面積率は8~45%、好ましくは15~40%、より好ましくは20~40%とする。
マルテンサイトの面積率が55%未満では、YSを780MPa以上にするとともに、TSを1180MPa以上にすることが困難となる。一方、マルテンサイトの面積率が85%を超えると、延性が低下し、曲げ加工性も低下する。したがって、マルテンサイトの面積率は55~85%、好ましくは60~80%、より好ましくは60~75%とする。
マルテンサイトを主体とする組織において、フェライトのみに隣接する孤立したマルテンサイトは曲げ加工性の劣化をまねく。このメカニズムは明らかではないが応力分配の不均一によりマルテンサイトとフェライトの界面でマイクロクラックが発生しやすくなることなどが推測される。フェライトのみに隣接するマルテンサイトの割合が15%を超えると十分な曲げ加工性が得られない。したがって、フェライトのみに隣接するマルテンサイトの割合は15%以下、好ましくは10%以下、より好ましくは5%以下とする。
本発明においては、フェライトおよびマルテンサイトがともに微細であることは重要である。これらがともに微細であることにより延性および曲げ加工性が向上する。フェライト、マルテンサイトのいずれかの平均結晶粒径が10μmを超えると延性および曲げ加工性が低下する。したがって、フェライトおよびマルテンサイトの平均結晶粒径は10μm以下、好ましくは8μm以下、より好ましくは5μm以下、さらに好ましくは3μm以下とする。
鋼板表面から20μmの深さ~鋼板表面から100μm深さの範囲(以下、「表層部」という場合がある)に存在するフェライトのうち結晶粒径が10μm以上のフェライトの面積率が5%以上では曲げ加工性が劣化する。このメカニズムは明らかではないが、本発明のように均一微細粒から構成される組織では、粗粒の混在は応力分配を不均一にするために曲げ加工性が劣化するものと考えられる。特に、亀裂の発生および伸展が起こる表層部においてこの影響が顕著である。このように、表層部において結晶粒径が10μm以上のフェライトが5%以上存在すると曲げ加工性の劣化をまねく。したがって、表層部に存在するフェライトのうち結晶粒径が10μm以上のフェライトの面積率は5%未満とする。なお、「鋼板表面から20μm」及び「鋼板表面から100μm」の「鋼板表面」とは、鋼板の表面そのものを意味し、高強度鋼板が高強度冷延鋼板の場合は冷延鋼板の表面を指し、高強度鋼板が高強度溶融亜鉛めっき鋼板の場合は溶融亜鉛めっき鋼板の表面を指す。高強度合金化溶融亜鉛めっき鋼板の場合も同様である。
溶融亜鉛めっき皮膜は、Znを主体として含む層である。合金化溶融亜鉛めっき皮膜とは、合金化反応によって亜鉛めっき中に鋼中のFeが拡散してできたFe-Zn合金を主体として含む層である。
以下、本発明の高強度鋼板の製造方法について、好ましい製造方法、好ましい製造条件を説明する。本発明の高強度鋼板の好ましい製造方法は、熱延工程、冷延工程、焼鈍工程、冷却工程を有し、必要に応じて、さらに、亜鉛めっき工程や合金化工程を有する。以下、これらの各工程について説明する。
熱延工程とは、スラブを仕上げ圧延し、仕上げ圧延終了後、600~700℃での滞留時間の総計が10秒以下となるように冷却し、冷却後、400~600℃未満の温度で巻き取る工程である。
冷延工程とは、熱延工程後の熱延板を、20%超えの圧下率で冷間圧延する工程である。圧下率が20%以下では、焼鈍の際に鋼板の表面側と内部側のひずみに差が生じやすく、結晶粒径の不均一をまねくため本発明の組織が得られない。したがって、冷間圧延の圧下率は20%超え、好ましくは30%以上とする。なお、上限は特に規定しないが、形状の安定性等の観点から90%以下程度が好ましい。
焼鈍工程とは、冷延工程後に冷延板を、5℃/s以上の平均加熱速度で、680℃以上の範囲の任意の温度である加熱到達温度まで加熱し、次いで720~820℃の範囲の任意の温度である焼鈍温度までを500秒以下で加熱し、その温度で10~1000秒保持する工程である。各条件の好ましい理由は以下の通りである。
冷却工程とは、焼鈍工程後の冷延板を、3℃/s以上の平均冷却速度で450~550℃の範囲の任意の温度である冷却停止温度まで冷却し、その温度で1000秒以下保持する工程である。各条件の好ましい理由は以下の通りである。
亜鉛めっき工程とは、冷却工程後の冷延板に亜鉛めっき処理を施す工程である。亜鉛めっき処理は、上記により得られた鋼板を440℃以上500℃以下の亜鉛めっき浴中に浸漬し、その後、ガスワイピングなどによってめっき付着量を調整して行うことが好ましい。なお、亜鉛めっき処理においては、Al量が0.08~0.18%である亜鉛めっき浴を用いることが好ましい。
本発明の高強度溶融亜鉛めっき鋼板のめっきは合金化溶融亜鉛めっきでもよい。この場合、本発明の高強度溶融亜鉛めっき鋼板は、熱延工程、冷延工程、焼鈍工程、冷却工程、亜鉛めっき工程、合金化工程を有する方法で製造される。熱延工程、冷延工程、焼鈍工程、冷却工程、亜鉛めっき工程については上記の通りであり、説明を省略する。
冷却工程、亜鉛めっき工程、あるいは、さらに合金化処理を施した後の鋼板には、形状矯正や表面粗度の調整などを目的に調質圧延を行うことができる。また、冷却工程後、亜鉛めっき工程後や合金化処理後に、樹脂や油脂コーティングなどの各種塗装処理を施すこともできる。
圧延方向に対して直角方向にJIS5号引張試験片(JIS Z2201)を採取し、歪速度を10-3/sとするJIS Z 2241の規定に準拠した引張試験を行い、YS、TSおよびUEL(均一伸び)を求めた。YSは0.2%耐力とした。
圧延方向に対して平行方向を曲げ試験軸方向とする、幅が35mm、長さが100mmの短冊形の試験片を採取し、曲げ試験を行った。ストローク速度が10mm/s、押込み荷重が10ton、押付け保持時間5秒、曲げ半径Rが1.5mmで90°V曲げ試験を行い、曲げ頂点の稜線部を10倍の拡大鏡で観察し、1mm以上の亀裂が認められたものを劣、亀裂が1mm未満のものを優として判定した。
試験条件は、電極:DR6mm-40R、加圧力:4802N(490kgf)、初期加圧時間:30cycles/60Hz、通電時間:17cycles/60Hz、保持時間:1cycle/60Hzとした。試験電流は同一番号の鋼板に対し、4.6~10.0kAまで0.2kAピッチで変化させ、また10.0kAから溶着までは0.5kAピッチで変化させた。各試験片は、十字引張り試験、溶接部のナゲット径の測定に供した。抵抗スポット溶接継手の十字引張り試験はJIS Z 3137の規定に準拠して行った。ナゲット径はJIS Z 3139の記載に準拠して以下のように実施した。抵抗スポット溶接後の対称円状のプラグを、板表面に垂直な断面について、溶接点のほぼ中心を通る断面を適当な方法で半切断した。切断面を研磨、腐食させた後、光学顕微鏡観察による断面組織観察によりナゲット径を測定した。ここで、コロナボンドを除いた溶融領域の最大直径をナゲット径とした。ナゲット径が4t1/2(mm)(t:鋼板の板厚)以上の溶接材において十字引張り試験を行った際、母材で破断した場合を優、ナゲット破断した場合を劣として判定した。以上の結果を表4、5に示す。
Claims (9)
- 質量%で、C:0.05~0.15%、Si:0.01~1.00%、Mn:1.5~4.0%、P:0.100%以下、S:0.02%以下、Al:0.01~0.50%、Cr:0.010~2.000%、Nb:0.005~0.100%、Ti:0.005~0.100%、B:0.0005~0.0050%を含み、残部がFeおよび不可避的不純物からなり、下記式(I)であらわされるKが3.0以上である成分組成を有し、鋼板表面に垂直な断面の板厚4分の1位置の組織観察において、面積率でフェライト:8~45%、マルテンサイト:55~85%で、かつフェライトのみに隣接するマルテンサイトの全組織に占める割合が15%以下であり、フェライトおよびマルテンサイトの平均結晶粒径が10μm以下で、かつ鋼板表面から20μmの深さ~鋼板表面から100μm深さの範囲に存在するフェライトのうち結晶粒径が10μm以上のフェライトの面積率が5%未満である組織を有する高強度鋼板。
K=-0.4×[Si]+1.0×[Mn]+1.3×[Cr]+200×[B] 式(I)
式(I)において、[Si]はSiの含有量[質量%]、[Mn]はMnの含有量[質量%]、[Cr]はCrの含有量[質量%]、[B]はBの含有量[質量%]である。 - さらに、質量%で、Mo:0.005~2.000%、V:0.005~2.000%、Ni:0.005~2.000%及びCu:0.005~2.000%から選ばれる少なくとも一種の元素を含有する請求項1に記載の高強度鋼板。
- さらに、質量%で、Ca:0.001~0.005%及びREM:0.001~0.005%から選ばれる少なくとも一種の元素を含有する請求項1又は2に記載の高強度鋼板。
- 前記高強度鋼板は、高強度冷延鋼板である請求項1~3のいずれかに記載の高強度鋼板。
- さらに、鋼板の表面に溶融亜鉛めっき皮膜を有する請求項1~4のいずれかに記載の高強度鋼板。
- 前記溶融亜鉛めっき皮膜は、合金化溶融亜鉛めっき皮膜である請求項5に記載の高強度鋼板。
- 請求項1から3のいずれかに記載の成分を有するスラブを熱間圧延する際に、仕上げ圧延終了後、600~700℃での滞留時間の総計が10秒以下となるように冷却し、冷却後、400~600℃未満の温度で巻き取る熱延工程と、前記熱延工程後に熱延板を、20%超えの圧下率で冷間圧延する冷延工程と、前記冷延工程後に冷延板を、5℃/s以上の平均加熱速度で680℃以上の範囲の任意の温度である加熱到達温度まで加熱し、次いで720~820℃の範囲の任意の温度である焼鈍温度までを500秒以下で加熱し、その温度で10~1000秒保持する焼鈍工程と、前記焼鈍工程後の冷延板を、3℃/s以上の平均冷却速度で、450~550℃の範囲の任意の温度である冷却停止温度まで冷却し、その温度で1000秒以下保持する冷却工程と、を有することを特徴とする高強度鋼板の製造方法。
- 前記冷却工程後に、さらに溶融亜鉛めっき処理を施す亜鉛めっき工程と、を有することを特徴とする請求項7に記載の高強度鋼板の製造方法。
- 前記亜鉛めっき工程の後に、さらに合金化処理を施す合金化工程を有する請求項8に記載の高強度鋼板の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2016007953A MX2016007953A (es) | 2013-12-18 | 2014-11-27 | Lamina de acero de alta resistencia y metodo para la produccion de la misma. |
KR1020167018811A KR101812556B1 (ko) | 2013-12-18 | 2014-11-27 | 고강도 강판 및 그의 제조 방법 |
US15/104,609 US10526676B2 (en) | 2013-12-18 | 2014-11-27 | High-strength steel sheet and method for producing the same |
CN201480069326.8A CN105829564B (zh) | 2013-12-18 | 2014-11-27 | 高强度钢板及其制造方法 |
EP14873009.6A EP3050989B1 (en) | 2013-12-18 | 2014-11-27 | High-strength steel sheet and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-260987 | 2013-12-18 | ||
JP2013260987A JP5858032B2 (ja) | 2013-12-18 | 2013-12-18 | 高強度鋼板およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015092982A1 true WO2015092982A1 (ja) | 2015-06-25 |
Family
ID=53402362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/005941 WO2015092982A1 (ja) | 2013-12-18 | 2014-11-27 | 高強度鋼板およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10526676B2 (ja) |
EP (1) | EP3050989B1 (ja) |
JP (1) | JP5858032B2 (ja) |
KR (1) | KR101812556B1 (ja) |
CN (1) | CN105829564B (ja) |
MX (1) | MX2016007953A (ja) |
WO (1) | WO2015092982A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180095710A (ko) * | 2016-02-10 | 2018-08-27 | 제이에프이 스틸 가부시키가이샤 | 고강도 아연 도금 강판 및 그의 제조 방법 |
JP6443594B1 (ja) * | 2017-10-20 | 2018-12-26 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
EP3418419A4 (en) * | 2016-03-31 | 2019-01-23 | JFE Steel Corporation | THIN STEEL PLATE, PLATED STEEL PLATE, METHOD FOR PRODUCING HOT-ROLLED STEEL PLATE, METHOD FOR PRODUCING COLD-ROLLED SOLID STEEL PLATE, METHOD FOR PRODUCING THIN STEEL PLATE AND METHOD FOR PRODUCING PLATED STEEL PLATE |
WO2019077777A1 (ja) * | 2017-10-20 | 2019-04-25 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2019154819A1 (en) | 2018-02-07 | 2019-08-15 | Tata Steel Nederland Technology B.V. | High strength hot rolled or cold rolled and annealed steel and method of producing it |
US11136643B2 (en) | 2016-08-10 | 2021-10-05 | Jfe Steel Corporation | High-strength steel sheet and method for producing same |
WO2021200579A1 (ja) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
WO2021200577A1 (ja) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
WO2021200580A1 (ja) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
WO2021200578A1 (ja) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
US11208709B2 (en) * | 2017-02-28 | 2021-12-28 | Jfe Steel Corporation | High-strength steel sheet and manufacturing method therefor |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5858032B2 (ja) * | 2013-12-18 | 2016-02-10 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2016198906A1 (fr) * | 2015-06-10 | 2016-12-15 | Arcelormittal | Acier a haute résistance et procédé de fabrication |
US20180237881A1 (en) * | 2015-08-21 | 2018-08-23 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet |
MX2018002073A (es) * | 2015-08-31 | 2018-06-18 | Nippon Steel & Sumitomo Metal Corp | Lamina de acero. |
CN105925894B (zh) * | 2016-06-23 | 2017-08-22 | 江阴兴澄特种钢铁有限公司 | 一种超厚高强抗层状撕裂q500d‑z35水电机组钢板及其制造方法 |
EP3508599B1 (en) | 2016-08-30 | 2020-12-02 | JFE Steel Corporation | High-strength steel sheet and method for manufacturing same |
KR101899670B1 (ko) * | 2016-12-13 | 2018-09-17 | 주식회사 포스코 | 저온역 버링성이 우수한 고강도 복합조직강 및 그 제조방법 |
CN110268083B (zh) | 2017-02-10 | 2021-05-28 | 杰富意钢铁株式会社 | 高强度镀锌钢板及其制造方法 |
KR102336669B1 (ko) * | 2017-04-21 | 2021-12-07 | 닛폰세이테츠 가부시키가이샤 | 고강도 용융 아연 도금 강판 및 그 제조 방법 |
CN109207841B (zh) | 2017-06-30 | 2021-06-15 | 宝山钢铁股份有限公司 | 一种低成本高成型性1180MPa级冷轧退火双相钢板及其制造方法 |
CN111094612B (zh) * | 2017-11-24 | 2021-09-03 | 日本制铁株式会社 | 热轧钢板及其制造方法 |
EP3715493A4 (en) * | 2017-12-27 | 2020-11-25 | JFE Steel Corporation | HIGH STRENGTH STEEL SHEET AND METHOD OF MANUFACTURING ITEM |
CN109972058B (zh) * | 2019-03-28 | 2020-08-11 | 北京科技大学 | 一种汽车用冷轧低合金高强度空冷强化钢及制备方法 |
EP4118246A1 (en) * | 2020-03-13 | 2023-01-18 | Tata Steel Nederland Technology B.V. | Method of manufacturing a steel article and article |
JPWO2022210396A1 (ja) | 2021-03-31 | 2022-10-06 | ||
CN113265512B (zh) * | 2021-05-17 | 2022-08-12 | 山西太钢不锈钢股份有限公司 | 一种消除电渣马氏体锻圆机加工表面色差的方法 |
US20240327965A1 (en) | 2021-07-28 | 2024-10-03 | Nippon Steel Corporation | Steel sheet and method for producing same |
WO2023162891A1 (ja) | 2022-02-25 | 2023-08-31 | 日本製鉄株式会社 | 鋼板、および鋼板の製造方法 |
CN118715333A (zh) | 2022-02-25 | 2024-09-27 | 日本制铁株式会社 | 钢板及钢板的制造方法 |
DE102022132188A1 (de) | 2022-12-05 | 2024-06-06 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines hochfesten Stahlflachproduktes mit einem Mehrphasengefüge und entsprechendes hochfestes Stahlflachprodukt |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009209384A (ja) * | 2008-02-29 | 2009-09-17 | Jfe Steel Corp | 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2010255094A (ja) * | 2008-11-28 | 2010-11-11 | Jfe Steel Corp | 成形性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板およびそれらの製造方法 |
JP2011132602A (ja) | 2009-11-30 | 2011-07-07 | Nippon Steel Corp | 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板 |
JP2012012703A (ja) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2012237042A (ja) | 2011-05-12 | 2012-12-06 | Jfe Steel Corp | 加工性に優れる高強度冷延鋼板ならびにその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101399741B1 (ko) | 2007-10-25 | 2014-05-27 | 제이에프이 스틸 가부시키가이샤 | 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 |
JP5412746B2 (ja) * | 2008-04-22 | 2014-02-12 | 新日鐵住金株式会社 | 溶接性と伸びフランジ性の良好な高強度鋼板 |
JP5504643B2 (ja) | 2008-08-19 | 2014-05-28 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5516057B2 (ja) | 2010-05-17 | 2014-06-11 | 新日鐵住金株式会社 | 高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5136609B2 (ja) | 2010-07-29 | 2013-02-06 | Jfeスチール株式会社 | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5821260B2 (ja) | 2011-04-26 | 2015-11-24 | Jfeスチール株式会社 | 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法 |
JP5790443B2 (ja) | 2011-11-24 | 2015-10-07 | 新日鐵住金株式会社 | 溶融亜鉛めっき鋼板およびその製造方法 |
JP5862651B2 (ja) * | 2013-12-18 | 2016-02-16 | Jfeスチール株式会社 | 耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5858032B2 (ja) * | 2013-12-18 | 2016-02-10 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
-
2013
- 2013-12-18 JP JP2013260987A patent/JP5858032B2/ja active Active
-
2014
- 2014-11-27 MX MX2016007953A patent/MX2016007953A/es unknown
- 2014-11-27 KR KR1020167018811A patent/KR101812556B1/ko active IP Right Grant
- 2014-11-27 US US15/104,609 patent/US10526676B2/en active Active
- 2014-11-27 EP EP14873009.6A patent/EP3050989B1/en active Active
- 2014-11-27 WO PCT/JP2014/005941 patent/WO2015092982A1/ja active Application Filing
- 2014-11-27 CN CN201480069326.8A patent/CN105829564B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009209384A (ja) * | 2008-02-29 | 2009-09-17 | Jfe Steel Corp | 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2010255094A (ja) * | 2008-11-28 | 2010-11-11 | Jfe Steel Corp | 成形性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板およびそれらの製造方法 |
JP2011132602A (ja) | 2009-11-30 | 2011-07-07 | Nippon Steel Corp | 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板 |
JP2012012703A (ja) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP2012237042A (ja) | 2011-05-12 | 2012-12-06 | Jfe Steel Corp | 加工性に優れる高強度冷延鋼板ならびにその製造方法 |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3415653A4 (en) * | 2016-02-10 | 2019-01-16 | JFE Steel Corporation | HIGHLESS GALVANIZED STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF |
KR102098215B1 (ko) | 2016-02-10 | 2020-04-07 | 제이에프이 스틸 가부시키가이샤 | 고강도 아연 도금 강판 및 그의 제조 방법 |
KR20180095710A (ko) * | 2016-02-10 | 2018-08-27 | 제이에프이 스틸 가부시키가이샤 | 고강도 아연 도금 강판 및 그의 제조 방법 |
EP3418419A4 (en) * | 2016-03-31 | 2019-01-23 | JFE Steel Corporation | THIN STEEL PLATE, PLATED STEEL PLATE, METHOD FOR PRODUCING HOT-ROLLED STEEL PLATE, METHOD FOR PRODUCING COLD-ROLLED SOLID STEEL PLATE, METHOD FOR PRODUCING THIN STEEL PLATE AND METHOD FOR PRODUCING PLATED STEEL PLATE |
US11453926B2 (en) | 2016-03-31 | 2022-09-27 | Jfe Steel Corporation | Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet |
US11136643B2 (en) | 2016-08-10 | 2021-10-05 | Jfe Steel Corporation | High-strength steel sheet and method for producing same |
US11208709B2 (en) * | 2017-02-28 | 2021-12-28 | Jfe Steel Corporation | High-strength steel sheet and manufacturing method therefor |
JP6443594B1 (ja) * | 2017-10-20 | 2018-12-26 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2019077777A1 (ja) * | 2017-10-20 | 2019-04-25 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
US11345973B2 (en) | 2017-10-20 | 2022-05-31 | Jfe Steel Corporation | High-strength steel sheet and method for manufacturing the same |
WO2019154819A1 (en) | 2018-02-07 | 2019-08-15 | Tata Steel Nederland Technology B.V. | High strength hot rolled or cold rolled and annealed steel and method of producing it |
US11884990B2 (en) | 2018-02-07 | 2024-01-30 | Tata Steel Nederland Technology B.V. | High strength hot rolled or cold rolled and annealed steel and method of producing it |
JP7001202B1 (ja) * | 2020-03-31 | 2022-02-03 | Jfeスチール株式会社 | 鋼板及び部材 |
WO2021200580A1 (ja) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
JP2022020866A (ja) * | 2020-03-31 | 2022-02-01 | Jfeスチール株式会社 | 鋼板の製造方法及び部材の製造方法 |
JP7001204B1 (ja) * | 2020-03-31 | 2022-02-03 | Jfeスチール株式会社 | 鋼板及び部材 |
JP7001203B1 (ja) * | 2020-03-31 | 2022-02-03 | Jfeスチール株式会社 | 鋼板及び部材 |
JP7001205B1 (ja) * | 2020-03-31 | 2022-02-03 | Jfeスチール株式会社 | 鋼板及び部材 |
WO2021200578A1 (ja) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
JP2022024144A (ja) * | 2020-03-31 | 2022-02-08 | Jfeスチール株式会社 | 鋼板の製造方法及び部材の製造方法 |
JP2022024145A (ja) * | 2020-03-31 | 2022-02-08 | Jfeスチール株式会社 | 鋼板の製造方法及び部材の製造方法 |
JP7044196B2 (ja) | 2020-03-31 | 2022-03-30 | Jfeスチール株式会社 | 鋼板の製造方法及び部材の製造方法 |
JP7044195B2 (ja) | 2020-03-31 | 2022-03-30 | Jfeスチール株式会社 | 鋼板の製造方法及び部材の製造方法 |
JP7044198B2 (ja) | 2020-03-31 | 2022-03-30 | Jfeスチール株式会社 | 鋼板の製造方法及び部材の製造方法 |
JP7044197B2 (ja) | 2020-03-31 | 2022-03-30 | Jfeスチール株式会社 | 鋼板の製造方法及び部材の製造方法 |
JP2022020867A (ja) * | 2020-03-31 | 2022-02-01 | Jfeスチール株式会社 | 鋼板の製造方法及び部材の製造方法 |
WO2021200577A1 (ja) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
CN115349028A (zh) * | 2020-03-31 | 2022-11-15 | 杰富意钢铁株式会社 | 钢板、部件及其制造方法 |
CN115362277A (zh) * | 2020-03-31 | 2022-11-18 | 杰富意钢铁株式会社 | 钢板、部件及其制造方法 |
CN115362275A (zh) * | 2020-03-31 | 2022-11-18 | 杰富意钢铁株式会社 | 钢板、部件及其制造方法 |
CN115362279A (zh) * | 2020-03-31 | 2022-11-18 | 杰富意钢铁株式会社 | 钢板、部件及其制造方法 |
WO2021200579A1 (ja) * | 2020-03-31 | 2021-10-07 | Jfeスチール株式会社 | 鋼板、部材及びそれらの製造方法 |
CN115362275B (zh) * | 2020-03-31 | 2024-03-01 | 杰富意钢铁株式会社 | 钢板、部件及其制造方法 |
CN115362279B (zh) * | 2020-03-31 | 2024-03-01 | 杰富意钢铁株式会社 | 钢板、部件及其制造方法 |
CN115362277B (zh) * | 2020-03-31 | 2024-03-12 | 杰富意钢铁株式会社 | 钢板、部件及其制造方法 |
CN115349028B (zh) * | 2020-03-31 | 2024-03-26 | 杰富意钢铁株式会社 | 钢板、部件及其制造方法 |
US12098439B2 (en) | 2020-03-31 | 2024-09-24 | Jfe Steel Corporation | Steel sheet, member, and method for producing them |
Also Published As
Publication number | Publication date |
---|---|
US20160312329A1 (en) | 2016-10-27 |
CN105829564B (zh) | 2019-01-22 |
CN105829564A (zh) | 2016-08-03 |
EP3050989B1 (en) | 2018-06-27 |
MX2016007953A (es) | 2016-09-09 |
US10526676B2 (en) | 2020-01-07 |
KR20160098381A (ko) | 2016-08-18 |
JP2015117404A (ja) | 2015-06-25 |
KR101812556B1 (ko) | 2017-12-27 |
JP5858032B2 (ja) | 2016-02-10 |
EP3050989A1 (en) | 2016-08-03 |
EP3050989A4 (en) | 2016-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5858032B2 (ja) | 高強度鋼板およびその製造方法 | |
JP5858199B2 (ja) | 高強度溶融亜鉛めっき鋼板及びその製造方法 | |
JP6777173B2 (ja) | スポット溶接用高強度亜鉛めっき鋼板 | |
JP6525114B1 (ja) | 高強度亜鉛めっき鋼板およびその製造方法 | |
JP6052472B2 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
CN107075627B (zh) | 高强度钢板及其制造方法、以及高强度镀锌钢板的制造方法 | |
KR102173601B1 (ko) | 고강도 박강판 및 그 제조 방법 | |
KR102363483B1 (ko) | 열간 프레스 부재 및 그 제조 방법 그리고 열간 프레스용 냉연 강판 및 그 제조 방법 | |
JP6274360B2 (ja) | 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法 | |
CN103764864B (zh) | 冷轧钢板用热轧钢板、热镀锌钢板用热轧钢板及其制造方法 | |
WO2010146796A1 (ja) | 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP6950826B2 (ja) | 高強度鋼板、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および高強度鋼板の製造方法 | |
WO2017169939A1 (ja) | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 | |
WO2013005670A1 (ja) | 溶融めっき冷延鋼板およびその製造方法 | |
JP5206350B2 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
CN109937265B (zh) | 高强度钢板及其制造方法 | |
JP5609793B2 (ja) | 溶融めっき冷延鋼板の製造方法 | |
JP5206352B2 (ja) | 鋼板およびその製造方法 | |
CN114585759B (zh) | 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法 | |
JP5708320B2 (ja) | 冷延鋼板 | |
WO2022249919A1 (ja) | 高強度合金化溶融亜鉛めっき鋼板およびその製造方法 | |
JP2013127098A (ja) | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
KR20150004430A (ko) | 신장과 신장 플랜지성이 우수한 저항복비 고강도 냉연 강판 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14873009 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014873009 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014873009 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15104609 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/007953 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167018811 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201604576 Country of ref document: ID |