[go: up one dir, main page]

WO2015025518A1 - 給電路切替回路、分岐装置、海底ケーブルシステム、及び給電路切り替え方法 - Google Patents

給電路切替回路、分岐装置、海底ケーブルシステム、及び給電路切り替え方法 Download PDF

Info

Publication number
WO2015025518A1
WO2015025518A1 PCT/JP2014/004245 JP2014004245W WO2015025518A1 WO 2015025518 A1 WO2015025518 A1 WO 2015025518A1 JP 2014004245 W JP2014004245 W JP 2014004245W WO 2015025518 A1 WO2015025518 A1 WO 2015025518A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
switching
circuit
switch
state
Prior art date
Application number
PCT/JP2014/004245
Other languages
English (en)
French (fr)
Inventor
間 竜二
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015532709A priority Critical patent/JP6083473B2/ja
Priority to CN201480046653.1A priority patent/CN105474552B/zh
Priority to US14/913,465 priority patent/US10153850B2/en
Priority to EP14837590.0A priority patent/EP3038267B1/en
Publication of WO2015025518A1 publication Critical patent/WO2015025518A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/808Electrical power feeding of an optical transmission system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/44Arrangements for feeding power to a repeater along the transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power

Definitions

  • the present invention relates to a feed path switching circuit, a branching device, a submarine cable system, and a feed path switching method used in a submarine cable system.
  • relay devices 74 to 76 are arranged between a branch device 70 and terminal stations 71 to 73, as shown in FIG. Further, the branching device 70 and the terminal station devices 71 to 73 are connected to each other by paths 77 to 79 constituting a power feeding path and optical fibers 80 to 82. In a state where no failure has occurred in the paths 77 to 79, the power supply path contact circuit (not shown) in the branching device 70 connects the path 77 and the path 78, and connects the path 79 and the sea earth.
  • a control signal for switching the feeding path is superimposed on a signal transmitted from any of the terminal stations 71 to 73 via the optical fibers 80 to 82, and transmitted to the branching device 70.
  • the control part (not shown) in the branching device 70 controls the feeding path contact circuit according to the superimposed control signal, and switches the feeding path.
  • the path 77 and the path 79 are connected, and the path 78 and the sea earth are connected.
  • a DC constant current flows from the terminal station 71 (+) to the terminal station 73 ( ⁇ ) via the paths 77 and 79, and power is supplied to the relay devices 74 and 76.
  • a branching device is provided with monitoring means for monitoring the potential of a switch for switching a power feeding path at a branching point, and monitor signal output means for transmitting the potential monitored by the monitoring means to a terminal station through an optical fiber.
  • the terminal station connected to the power supply path is configured to switch the power supply path at the branch point by a control signal while monitoring the potential of the switch that switches the power supply path at the branch point received through the optical fiber.
  • the technique described in Patent Document 1 it is possible to switch the feeding path at the branch point by remote control while monitoring the potential of the switch that switches the feeding path at the branch point.
  • the technique described in Patent Document 1 is a technique for reducing electrical stress applied to a switch for switching a power feeding path, and is not a technique for confirming whether a switch for switching a power feeding path has been operated. Therefore, there is a problem that it cannot be confirmed from a remote place whether or not the switch for switching the power feeding path has been operated.
  • an object of the present invention is to provide a power feeding path switching circuit that solves the problem that it is impossible to confirm from a remote location whether or not a switch for switching power feeding paths has been operated.
  • a power supply path switching circuit is: A power supply path switching circuit for switching a connection state between a plurality of power supply lines, A plurality of switch circuits for switching a connection state between the plurality of feeder lines; And a variable resistance portion that is disposed on a connection path between the power supply lines before and after switching and has a resistance value that changes in conjunction with the operation of the plurality of switch circuits.
  • the power supply path switching method is: A power supply path switching method executed by a power supply path switching circuit having a plurality of switch circuits for switching a connection state between a plurality of power supply lines and a variable resistance unit disposed on a connection path between power supply lines before and after switching. There, The resistance value of the variable resistance unit is changed in conjunction with the operation of the plurality of switch circuits.
  • a branching apparatus is: A branching device connected to a plurality of optical fibers connected to a plurality of terminal stations and connected to a plurality of feeder lines, A power supply path switching circuit for switching a connection state between the plurality of power supply lines;
  • the feeding path switching circuit is A plurality of switch circuits for switching a connection state between the plurality of feeder lines; And a variable resistance portion that is disposed on a connection path between the power supply lines before and after switching and has a resistance value that changes in conjunction with the operation of the plurality of switch circuits.
  • the submarine cable system is: Multiple terminal stations, A branch device connected to a plurality of optical fibers connected to the plurality of terminal stations and connected to a plurality of feeder lines;
  • the branch device has a power supply path switching circuit that switches a connection state between the plurality of power supply lines,
  • the power supply path switching circuit is arranged on a connection path between a plurality of switch circuits for switching a connection state between the plurality of power supply lines and a power supply line before and after the switching, and interlocks with an operation of the plurality of switch circuits.
  • At least one of the plurality of terminal stations is A power supply unit that supplies a constant current to the power supply line to and from the branch device; A control signal transmitter for transmitting a control signal for switching the plurality of switch circuits to the branch device; A potential detection unit configured to detect a potential of the power supply line to and from the branch device.
  • FIG. 3 is a block diagram illustrating a configuration example of a power feeding path switching unit 11.
  • FIG. 3 is a block diagram illustrating a configuration example of a variable resistance unit 12.
  • FIG. 3 is a block diagram illustrating a configuration example of a control unit 13.
  • FIG. 3 is a block diagram illustrating a configuration example of a terminal station 21.
  • FIG. It is a block diagram which shows the structural example of the variable resistance part 12a. It is a block diagram for demonstrating background art.
  • the submarine cable system according to the first embodiment of the present invention includes a branch device 1 and terminal stations 21 to 23.
  • the terminal station 21 and the branching device 1 are connected by an optical fiber 51 constituting a signal transmission path and a path 41 constituting a power feeding path.
  • the terminal station 22 and the branching device 1 are connected by an optical fiber 52 constituting a signal transmission path and a path 42 constituting a power feeding path.
  • the terminal station 23 and the branching device 1 are connected by an optical fiber 52 constituting a signal transmission path and a path 43 constituting a feeding path.
  • the paths 41 to 43 are also called power supply lines.
  • relay apparatuses 31 to 33 for amplifying optical signals transmitted and received between the terminal stations 21 to 23 via the optical fibers 51 to 53 are arranged. Power is supplied to the branch device 1 and the relay devices 31 to 33 via paths 41 to 43 that form a power feeding path.
  • the branching device 1 includes a power supply path switching unit 11, a variable resistance unit 12, a control unit 13, and optical couplers 14 to 16. Although the branching device 1 has a function of branching the optical fibers 51 to 53, the illustration is omitted.
  • the feeding path switching unit 11 switches the feeding path according to the control of the control unit 13. That is, the feeding path switching unit 11 is connected to a total of four paths including a path 41 connected to the terminal station 21, a path 22 connected to the terminal station 22, a path 43 connected to the terminal station 23, and a path connected to the ground. Switch the connection state between these paths.
  • the variable resistance unit 12 is inserted in series in a path portion (common path portion) that is commonly used before and after switching of the power feeding path among the paths constituting the power feeding path, and switches the resistance value according to the control of the control section 13.
  • the optical couplers 14 to 16 are connected to the optical fibers 51 to 53, extract signals transmitted through the optical fibers 51 to 53, and output them to the control unit 13.
  • the control unit 13 switches the power supply path by controlling the power supply path switching unit 11 according to the control signals sent from the terminal stations 21 to 23 via the optical fibers 51 to 53 and the optical couplers 14 to 16, and the above control By controlling the variable resistance unit 12 according to the signal, the resistance value is switched.
  • the feeding path switching unit 11 includes a feeding path contact circuit 111 and a diode bridge circuit 112.
  • the feed path contact circuit 111 and the diode bridge circuit 112 constitute a part of the feed path.
  • the feeding path contact circuit 111 is a circuit for switching the feeding path, and includes four relay contacts RL1 to RL4 controlled by the control unit 13.
  • Relay contacts RL1 to RL4 are also called switch circuits.
  • the relay contacts RL1 and RL2 are set to the a side
  • the relay contacts RL3 and RL4 are set to the b side.
  • identifiers ID1 to ID4 are assigned to the relay contacts RL1 to RL4.
  • the diode bridge circuit 112 is a circuit for supplying a constant current in a fixed direction to the variable resistance unit 12 and the control unit 13 regardless of the polarities of the terminal stations 21 to 23.
  • the first diode pair in which the diodes D1 and D2 are connected in series in the same direction, the second diode pair in which the diodes D3 and D4 are connected in series in the same direction, and the diodes D5 and D6 are the same.
  • the third diode pair connected in series in the direction and the fourth diode pair connected in series in the same direction with the diodes D7 and D8 are connected in parallel.
  • relay contacts RL1 to RL4 are connected to the connection portions of the two diodes in the first to fourth diode pairs, respectively.
  • a series circuit including the variable resistance unit 12 and the control unit 13 is connected in parallel to each diode pair of the diode bridge circuit 112.
  • the relay contact RL1 constitutes a switch circuit that connects the path 41 to either one of the connection points of the two diodes D1 and D2 and the path connected to the ground.
  • the relay contact RL2 constitutes a switch circuit that connects the path 42 to one of the connection point of the two diodes D3 and D4 and the path connected to the ground.
  • the relay contact RL3 constitutes a switch circuit that connects the path 43 to one of the connection point of the two diodes D5 and D6 and the path connected to the ground.
  • the relay contact RL4 constitutes a switch circuit that connects a path connected to the ground to a connection point between the two diodes D7 and D8.
  • variable resistor section 12 includes a plurality of resistors R1 to R4 connected in series and relay contacts RL101 to RL104 connected in parallel with the resistors R1 to R4.
  • Relay contacts RL101 to RL104 are also called switch circuits.
  • the relay contacts RL101 to RL104 can take two states, a short circuit state (a side) and an open state (b side).
  • the resistance values r1 to r4 of the resistors R1 to R4 are different. However, the resistance values of the resistors R1 to R4 may all be the same.
  • the relay contacts RL101 to RL104 correspond to the relay contacts RL1 to RL4 in the feed path contact circuit 111, respectively. When the relay contacts RL1 to RL4 are switched to the a side, the relay contacts RL101 to RL104 are set to the a side. When the relay contacts RL1 to RL4 are switched to the b side, the relay contacts RL101 to RL104 are switched to the b side. Thus, the relay contacts RL101 to RL104 are interlocked with the operation of the relay contacts RL1 to RL4. As a result, the resistance value of the variable resistance unit 12 changes in conjunction with the operation of the relay contacts RL1 to RL4.
  • control unit 13 includes three photodiodes PD1 to PD3, a power supply path switching control unit 131, a variable resistance control unit 132, and a control circuit 133.
  • connection paths between the control unit 13, the variable resistance unit 12, and the power supply path switching unit 11 are not shown.
  • the photodiodes PD1 to PD3 are sent from the terminal stations 21 to 23 through the optical fibers 51 to 53, and photoelectrically convert the control signals detected by the optical couplers 14 to 16.
  • the control circuit 133 supplies the control signals converted into electric signals by the photodiodes PD1 to PD3 to the power supply path switching control unit 131 and the variable resistance control unit 132.
  • the feeding path switching control unit 131 switches the states of the relay contacts RL1 to RL4 in the feeding path contact circuit 111 according to the control signal supplied from the control circuit 133. More specifically, the control signal includes an identifier of the relay contact to be switched and state information indicating the state (a side or b side) of the relay contact after switching, and the power supply path switching control unit 131 switches the state of the relay contact indicated by the identifier in the control information to the state indicated by the state information in the control information.
  • the variable resistance control unit 132 switches the states of the relay contacts RL101 to RL104 in the variable resistance unit 12 according to the control signal supplied from the control circuit 133. More specifically, the state of the relay contact in the variable resistance unit 12 corresponding to the relay contact in the feed path contact circuit 111 indicated by the identifier in the control signal is switched to the state indicated by the state information in the control signal. For example, when the identifier in the control signal is ID3 indicating the relay contact RL3, the state of the relay contact RL103 is switched to the state indicated by the state information in the control signal.
  • the power supply path switching control unit 131 and the variable resistance control unit 132 can be realized by a CPU (Central Processing Unit), in which case, for example, as follows.
  • a disk, a semiconductor memory, and other recording media recording a program for causing the CPU to function as the power supply path switching control unit 131 and the variable resistance control unit 132 are prepared, and the CPU reads the program.
  • the CPU realizes the power feeding path switching control unit 131 and the variable resistance control unit 132 on the CPU by controlling its own operation according to the read program.
  • the terminal station 21 includes a power feeding unit 211, a control signal transmission unit 212, a potential detection unit 213, an input unit 214 such as a keyboard, and a display unit 215 such as an LCD.
  • the other terminal stations 22 and 23 have the same configuration.
  • the power supply unit 211 supplies a constant DC current to the branching device 1 through the path 41 constituting the power supply path.
  • the control signal transmission unit 212 creates a control signal for switching the states of the relay contacts RL1 to RL4 in the feed path contact circuit 111 in accordance with an instruction input from the input unit 214 by the administrator. Transmit to the branch device 1.
  • the control signal includes an identifier of the relay contact to be switched and state information indicating the state of the relay contact after switching, but is not limited thereto.
  • the potential detection unit 213 detects the potential (ground potential) of the path 41 and displays the detection result on the display unit 215.
  • the states of the relay contacts RL1 to RL4 in the power supply path contact circuit 111 and the states of the relay contacts RL101 to RL104 in the variable resistance unit 12 are shown in FIGS. It is assumed that the polarities related to the power feeding of 22 and 23 are (+), ( ⁇ ), and ( ⁇ ), respectively. In this state, power is supplied through the following two paths.
  • the first route is terminal 21 (+) ⁇ path 41 ⁇ relay contact RL1 ⁇ diode D1 ⁇ variable resistor 12 ⁇ control unit 13 ⁇ diode D4 ⁇ relay contact RL2 ⁇ path 42 ⁇ terminal 42 ( ⁇ ). is there.
  • the second route is sea earth 24 ⁇ relay contact RL3 ⁇ path 43 ⁇ terminal station 23 ( ⁇ ).
  • the administrator of the terminal station 21 inputs a control signal transmission instruction including the identifier ID4 of the relay contact RL4 to be switched and state information (a side) indicating the state after switching from the input unit 214.
  • the control signal transmission unit 212 creates a control signal including the identifier ID4 and the state information (a side), and transmits the control signal to the branch device 1 via the optical fiber 51.
  • the control signal is input to the control unit 13 via the photocoupler 14, subjected to photoelectric conversion by the photodiode PD 1, and then input to the feed path switching control unit 131 and the variable resistance control unit 132.
  • the feed path switching control unit 131 switches the relay contact RL4 of the feed path contact circuit 111 to the a side.
  • the variable resistance control unit 132 switches the relay contact RL104 to the a side.
  • the administrator of the terminal station 21 inputs a control signal transmission instruction including the identifier ID3 of the relay contact RL3 in the power supply path contact circuit 11 and the state information (a side) from the input unit 214.
  • the control signal transmission unit 212 transmits a control signal including the identifier ID3 and the state information (a side) to the branch device 1.
  • the feed path switching control unit 131 in the branching device 1 switches the relay contact RL3 in the feed path contact circuit 111 to the a side, and the variable resistance control unit 132 sets the relay contact RL103 in the variable resistance unit 12 to the a side.
  • a power supply path 43 ( ⁇ ) is formed.
  • the resistance value of the variable resistance unit 12 changes from “r3” to “0”.
  • the administrator can confirm that the switching of the relay contact RL3 has been completed.
  • the administrator of the terminal station 21 inputs from the input unit 214 a control signal transmission instruction including the identifier ID2 of the relay contact RL2 in the feed line contact circuit 111 and the state information (b side).
  • the control signal transmission unit 212 transmits a control signal including the identifier ID2 and the state information (side b) to the branch device 1.
  • the feed path switching control unit 131 in the branching device 1 switches the relay contact RL2 in the feed path contact circuit 111 to the b side, and the variable resistance control unit 132 sets the relay contact RL102 in the variable resistance unit 12 to the b side.
  • the resistance value of the variable resistance unit 12 changes from “0” to “r2”.
  • the manager of the terminal station 21 inputs a control signal transmission instruction including the identifier ID4 of the relay contact RL4 and the state information (b side) from the input unit 214.
  • the control signal transmission unit 212 transmits a control signal including the identifier ID4 and the state information (b side) to the branch device 1.
  • the power supply path switching control unit 131 in the branching device 1 switches the relay contact RL4 in the power supply path contact circuit 111 to the b side, and the variable resistance control unit 132 is connected to the relay contact RL104 in the variable resistance unit 12 by b. Switch to the side.
  • the resistance value of the variable resistance unit 12 changes from “r2” to “r2 + r4”.
  • the administrator recognizes that the switching of the relay contact RL4 has been completed.
  • control signal is transmitted from the terminal station 21 to the branch device 1, but the control signal may be transmitted from the terminal station 22 or the terminal station 23 to the branch device 1.
  • variable resistor 12a shown in FIG. 6 is used instead of the variable resistor 12 shown in FIG.
  • the variable resistor portion 12a is composed of one resistor Rcom and a relay contact RLcom connected in parallel to the resistor Rcom.
  • the relay contact RLcom can take two states, a short circuit state (a side) and an open state (b side).
  • variable resistance control unit 132 is caused to perform the following processing instead of the processing described above.
  • the variable resistance control unit 132 includes a state storage unit (not shown) that records the state (a side or b side) of the relay contact RLcom therein.
  • a control signal for switching the state of the relay contacts RL1 to RL4 in the feed path contact circuit 111 is sent from the terminal stations 21 to 23, the state of the relay contact RLcom is changed to the state recorded in the state storage unit. After switching to the opposite state, the contents of the state storage unit are changed to the state of the relay contact RLcom after switching.
  • the variable resistance control unit 132 alternately switches the two states of the relay contact RLcom between the short-circuited state (a side) and the open state (b side) every time the relay contacts RL1 to RL4 operate.
  • Branch device In a branching device having a power supply path contact circuit having a plurality of contacts, and switching the power supply path by changing the state of the plurality of contacts, A variable resistance portion whose resistance value changes each time the state of each contact changes is inserted in a common path portion that is commonly used before and after switching of the power supply path among the paths constituting the power supply path. Branch device.
  • a branching apparatus comprising: a control unit that changes a contact state of the power supply path contact circuit and changes a resistance value of the variable resistance unit in accordance with a control signal sent from a terminal station.
  • variable resistance portion is A resistor inserted in the common path portion;
  • branching device comprising a relay contact connected in parallel to the resistor and capable of taking two states of a short circuit state and an open state.
  • variable resistance portion is A plurality of resistors connected in series, inserted in the common path portion;
  • a branching device comprising a relay contact for each resistor, the relay contact being connected in parallel to the corresponding resistor and capable of taking two states of a short circuit state and an open state.
  • the control unit changes the state of the relay contact to a state different from the current state between a short circuit state and an open state every time a control signal is sent from the terminal station.
  • Branch device In the branching device according to attachment 3, The control unit changes the state of the relay contact to a state different from the current state between a short circuit state and an open state every time a control signal is sent from the terminal station. Branch device.
  • control unit 6 In the branching device according to appendix 4, Each time the control signal is sent from the terminal station, the control unit changes the relay contact state of the plurality of relay contacts according to the content of the control signal between a short circuit state and an open state. The branching device is in a state corresponding to the content of the control signal.
  • Each of the plurality of terminal stations is A power feeding unit that supplies a constant current to the path connecting the local station and the branch device;
  • a control signal transmitter for transmitting a control signal to the branch device via the optical fiber connecting the local station and the branch device;
  • a potential detection unit for detecting the potential of the path connecting the terminal station and the branch device;
  • the branching device is: A power supply path contact circuit that has a plurality of contacts and switches the power supply path by changing the state of the plurality of contacts;
  • a submarine cable system comprising: a control unit that changes a state of the plurality of contacts according to the control signal and changes a resistance value of the variable resistance unit.
  • variable resistance portion is A resistor inserted in the common path portion;
  • a submarine cable system comprising a relay contact connected in parallel to the resistor and capable of taking two states of a short circuit state and an open state.
  • variable resistance portion is A plurality of resistors connected in series, inserted in the common path portion;
  • a submarine cable system comprising a relay contact for each resistor, the relay contact being connected in parallel to the corresponding resistor and capable of taking two states of a short circuit state and an open state. .
  • the control unit changes the state of the relay contact to a state different from the current state between a short circuit state and an open state every time a control signal is sent from the terminal station.
  • Submarine cable system In the submarine cable system according to appendix 9, The control unit changes the state of the relay contact to a state different from the current state between a short circuit state and an open state every time a control signal is sent from the terminal station.
  • control unit 12 In the submarine cable system according to appendix 10, Each time the control signal is sent from the terminal station, the control unit changes the relay contact state of the plurality of relay contacts according to the content of the control signal between a short circuit state and an open state.
  • the submarine cable system is configured to be in a state corresponding to the content of the control signal.
  • the terminal station transmits a control signal to the branch device via the optical fiber, According to the control signal sent from the terminal station, the branching device switches the feeding path by changing the state of the plurality of contacts provided in the feeding path contact circuit, and among the paths constituting the feeding path Change the resistance value of the variable resistance part inserted in the common path part used in common before and after switching the power supply path, The power supply path switching method, wherein the terminal station detects a potential of the power supply path.
  • variable resistance portion is A resistor inserted in the common path portion;
  • a power supply path switching method comprising: a relay contact connected in parallel to the resistor and capable of taking two states of a short circuit state and an open state.
  • variable resistance portion is A plurality of resistors connected in series, inserted in the common path portion; A relay contact for each resistor, the relay contact being connected in parallel to the corresponding resistor and having a relay contact that can take two states of a short circuit state and an open state Method.
  • the control unit changes the state of the relay contact to a state different from the current state between a short circuit state and an open state every time a control signal is sent from the terminal station. Feeding path switching method.
  • control unit 17 In the power feeding path switching method according to attachment 15, Each time the control signal is sent from the terminal station, the control unit changes the relay contact state of the plurality of relay contacts according to the content of the control signal between a short circuit state and an open state. A method of switching the power supply path, wherein the state is set according to the content of the control signal.
  • a power supply path contact circuit that has a plurality of contacts and the power supply path is switched by changing the state of the plurality of contacts, and a common path that is commonly used before and after switching the power supply path among the paths that configure the power supply path
  • a computer having a variable resistance part inserted in the part, A program for changing a state of the plurality of contact points according to a control signal sent from a terminal station and functioning as a control unit for changing a resistance value of the variable resistance unit.
  • variable resistance portion is A resistor inserted in the common path portion;
  • a program comprising: a relay contact connected in parallel to the resistor and capable of taking two states of a short circuit state and an open state.
  • variable resistance portion is A plurality of resistors connected in series, inserted in the common path portion;
  • a program comprising: a relay contact for each resistor, the relay contact being connected in parallel to a corresponding resistor and capable of taking two states of a short circuit state and an open state.
  • the control unit changes the state of the relay contact to a state different from the current state between a short circuit state and an open state every time a control signal is sent from the terminal station. program.
  • control unit 22 In the program of Appendix 20, Each time the control signal is sent from the terminal station, the control unit changes the relay contact state of the plurality of relay contacts according to the content of the control signal between a short circuit state and an open state. A program according to the contents of the control signal.
  • the present invention can be used for a submarine cable system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 複数の給電線間の接続状態を切り替える給電路切替回路は、複数のスイッチ回路と可変抵抗部とを有する。複数のスイッチ回路は、複数の給電線間の接続状態を切り替える。可変抵抗部は、切替前後の給電線間の接続経路上に配置され、複数のスイッチ回路の動作に連動して抵抗値が変化する。

Description

給電路切替回路、分岐装置、海底ケーブルシステム、及び給電路切り替え方法
 本発明は、海底ケーブルシステムで利用される給電路切替回路、分岐装置、海底ケーブルシステム、および給電路切り替え方法に関する。
 海底ケーブルシステムにおいては、中継装置や分岐装置へ直流定電流を供給する給電路に障害が発生した場合、その影響が及ぶ範囲を少なくするため、給電路を切り替える(再構成する)ようにしたものが知られている(例えば、特許文献1参照)。
 特許文献1に記載されている海底ケーブルシステムは、図7に示すように、分岐装置70と端局71~73との間に、中継装置74~76が配置されている。また、分岐装置70と端局装置71~73は、給電路を構成するパス77~79と、光ファイバ80~82とによって接続されている。パス77~79に障害が発生していない状態では、分岐装置70内の給電路接点回路(図示せず)によって、パス77とパス78とを接続すると共に、パス79とシーアースとを接続する。そして、端局71(+)からパス77,78を介して端局72(-)へ直流定電流を流すことにより中継装置74,75に電力を供給し、シーアース(+)からパス79を介して端局73(-)へ直流定電流を流すことにより中継装置76に電力を供給する。
 次に、給電路に障害が発生した場合の動作を説明する。今、例えば、分岐装置70と端局72との間のパス78に障害が発生したとする。
 パス78に障害が発生すると、端局71~73の何れかが光ファイバ80~82を介して送信している信号に、給電路を切り替えるための制御信号を重畳して分岐装置70へ送信する。これにより、分岐装置70内の制御部(図示せず)が、上記重畳されている制御信号に従って給電路接点回路を制御し、給電路を切り替える。具体的には、パス77とパス79とを接続し、パス78とシーアースとを接続する。これにより、端局71(+)からパス77,79を介して端局73(-)に直流定電流が流れ、中継装置74,76に電力が供給される。
 また特許文献1では、分岐点における給電路を切り替えるスイッチの電位をモニタするモニタ手段と、このモニタ手段がモニタした電位を光ファイバを通じて端局へ送信するモニタ信号出力手段とを分岐装置に備えている。そして、給電路と接続した端局は、光ファイバを通じて受信した上記分岐点における給電路を切り替えるスイッチの電位をモニタしながら、制御信号により分岐点における給電路の切替えを行う構成を備えている。これにより、給電路を切り替えるスイッチにかかる電気的ストレスを低減している。
特開2002-57607号公報
 特許文献1に記載されている技術によれば、分岐点における給電路を切り替えるスイッチの電位をモニタしながら、遠隔制御により分岐点における給電路を切り替えることができる。しかし、特許文献1に記載されている技術は、給電路を切り替えるスイッチにかかる電気的ストレスを低減するための技術であり、給電路を切り替えるスイッチが動作したか否かを確認する技術ではない。そのため、給電路を切り替えるスイッチが動作したか否かを遠隔の地から確認することができないという課題がある。
[発明の目的]
 そこで、本発明の目的は、給電路を切り替えるスイッチが動作したか否かを遠隔の地から確認することができないという課題を解決した給電路切替回路を提供することにある。
 本発明の第1の観点に係る給電路切替回路は、
 複数の給電線間の接続状態を切り替える給電路切替回路であって、
 前記複数の給電線間の接続状態を切り替えるための複数のスイッチ回路と、
 切替前後の給電線間の接続経路上に配置され、前記複数のスイッチ回路の動作に連動して抵抗値が変化する可変抵抗部と
を有する。
 本発明の第2に観点に係る給電路切替方法は、
 複数の給電線間の接続状態を切り替えるための複数のスイッチ回路と、切替前後の給電線間の接続経路上に配置された可変抵抗部とを有する給電路切替回路が実行する給電路切替方法であって、
 前記複数のスイッチ回路の動作に連動して前記可変抵抗部の抵抗値を変化させる。
 本発明の第3の観点に係る分岐装置は、
 複数の端局に接続される複数の光ファイバに接続されると共に複数の給電線に接続される分岐装置であって、
 前記複数の給電線間の接続状態を切り替える給電路切替回路を有し、
 前記給電路切替回路は、
 前記複数の給電線間の接続状態を切り替えるための複数のスイッチ回路と、
 切替前後の給電線間の接続経路上に配置され、前記複数のスイッチ回路の動作に連動して抵抗値が変化する可変抵抗部と
を有する。
 本発明の第4の観点に係る海底ケーブルシステムは、
 複数の端局と、
 前記複数の端局に接続される複数の光ファイバに接続されると共に複数の給電線に接続される分岐装置と
を有し、
 前記分岐装置は、前記複数の給電線間の接続状態を切り替える給電路切替回路を有し、
 前記給電路切替回路は、前記複数の給電線間の接続状態を切り替えるための複数のスイッチ回路と、切替前後の給電線間の接続経路上に配置され、前記複数のスイッチ回路の動作に連動して抵抗値が変化する可変抵抗部とを有し、
 前記複数の端局のうちの少なくとも1つの端局は、
 前記分岐装置との間の前記給電線に定電流を供給する給電部と、
 前記分岐装置に対して前記複数のスイッチ回路を切り替える制御信号を送信する制御信号送信部と、
 前記分岐装置との間の前記給電線の電位を検出する電位検出部とを有する。
 本発明によれば、給電路を切り替えるスイッチが動作したか否かを遠隔の地から確認することができるという効果を得ることができる。
本発明の第1の実施の形態に係る海底ケーブルシステムの構成例を示すブロック図である。 給電路切替部11の構成例を示すブロック図である。 可変抵抗部12の構成例を示すブロック図である。 制御部13の構成例を示すブロック図である。 端局21の構成例を示すブロック図である。 可変抵抗部12aの構成例を示すブロック図である。 背景技術を説明するためのブロック図である。
 次に、図面を参照して本発明の実施の形態について詳細に説明する。
[本発明の第1の実施の形態]
 図1を参照すると、本発明の第1の実施の形態に係る海底ケーブルシステムは、分岐装置1と、端局21~23とを備えている。端局21と分岐装置1とは、信号伝送路を構成する光ファイバ51と給電路を構成するパス41とで接続されている。また端局22と分岐装置1とは、信号伝送路を構成する光ファイバ52と給電路を構成するパス42とで接続されている。また端局23と分岐装置1とは、信号伝送路を構成する光ファイバ52と給電路を構成するパス43とで接続されている。パス41~43は給電線とも呼ばれる。分岐装置1と端局21~23との間には、光ファイバ51~53を介して端局21~23間で送受信される光信号を増幅する中継装置31~33が配置されている。分岐装置1及び中継装置31~33には、給電路を構成するパス41~43を介して電力が供給される。
 分岐装置1は、給電路切替部11と、可変抵抗部12と、制御部13と、光カプラ14~16とを備えている。分岐装置1は、光ファイバ51~53の分岐機能を有しているが、図示は省略している。
 給電路切替部11は、制御部13の制御に従って給電路を切り替える。即ち、給電路切替部11には、端局21に繋がるパス41と端局22に繋がるパス22と端局23に繋がるパス43とアースに繋がるパスとの合計4つのパスに接続されており、これらのパス間の接続状態を切り替える。可変抵抗部12は、給電路を構成するパスの内、給電路の切り替え前後で共通に使用するパスの部分(共通パス部分)に直列に挿入され、制御部13の制御に従って抵抗値を切り替える。光カプラ14~16は、光ファイバ51~53に接続されており、光ファイバ51~53を伝送する信号を抽出して制御部13へ出力する。制御部13は、光ファイバ51~53及び光カプラ14~16を介して端局21~23から送られてくる制御信号に従って給電路切替部11を制御することにより給電路を切り替えると共に、上記制御信号に従って可変抵抗部12を制御することにより、その抵抗値を切り替える。
 図2を参照すると、給電路切替部11は、給電路接点回路111と、ダイオードブリッジ回路112とを備えている。給電路接点回路111及びダイオードブリッジ回路112は、給電路の一部を構成する。
 給電路接点回路111は、給電路を切り替えるための回路であり、制御部13によって制御される4個のリレー接点RL1~RL4を備えている。リレー接点RL1~RL4はスイッチ回路とも呼ばれる。全てのパス41~43が正常な場合は、例えば、図2に示すように、リレー接点RL1,RL2がa側にされ、リレー接点RL3,RL4がb側にされる。なお、リレー接点RL1~RL4には、識別子ID1~ID4が付与されている。
 ダイオードブリッジ回路112は、端局21~23の極性にかかわらず、一定方向の定電流を可変抵抗部12および制御部13に供給するための回路である。ダイオードブリッジ回路112は、ダイオードD1,D2を同じ向きで直列に接続した第1のダイオード対と、ダイオードD3,D4を同じ向きで直列に接続した第2のダイオード対と、ダイオードD5,D6を同じ向きで直列に接続した第3のダイオード対と、ダイオードD7,D8を同じ向きで直列に接続した第4のダイオード対とを並列に接続した構成を有している。また、第1~第4のダイオード対における2つのダイオードの接続部には、それぞれリレー接点RL1~RL4が接続されている。また、ダイオードブリッジ回路112の各ダイオード対に対して並列に、可変抵抗部12と制御部13とを含む直列回路が接続されている。
 このように、リレー接点RL1は、パス41を、2つのダイオードD1、D2の接続点およびアースに繋がるパスの何れか一方に接続するスイッチ回路を構成する。またリレー接点RL2は、パス42を、2つのダイオードD3、D4の接続点およびアースに繋がるパスの何れか一方に接続するスイッチ回路を構成する。またリレー接点RL3は、パス43を、2つのダイオードD5、D6の接続点およびアースに繋がるパスの何れか一方に接続するスイッチ回路を構成する。またリレー接点RL4は、アースに繋がるパスを、2つのダイオードD7、D8の接続点に接続するスイッチ回路を構成する。
 図3を参照すると、可変抵抗部12は、直列に接続された複数の抵抗R1~R4と、抵抗R1~R4と並列に接続されたリレー接点RL101~RL104とから構成されている。リレー接点RL101~RL104はスイッチ回路とも呼ばれる。リレー接点RL101~RL104は、短絡状態(a側)と開放状態(b側)との2つの状態をとることができる。
 本実施の形態では、抵抗R1~R4の抵抗値r1~r4は異なっている。但し、抵抗R1~R4の抵抗値は全て同一であっても構わない。リレー接点RL101~RL104は、それぞれ給電路接点回路111内のリレー接点RL1~RL4と対応しており、リレー接点RL1~RL4がa側に切り替えられた場合には、リレー接点RL101~RL104がa側に切り替えられ、リレー接点RL1~RL4がb側に切り替えられた場合は、リレー接点RL101~RL104がb側に切り替えられる。このようにリレー接点RL101~RL104は、リレー接点RL1~RL4の動作に連動する。この結果、可変抵抗部12の抵抗値は、リレー接点RL1~RL4の動作に連動して変化する。
 図4を参照すると、制御部13は、3個のフォトダイオードPD1~PD3と、給電路切替制御部131と、可変抵抗制御部132と、制御回路133とを備えている。図4では、制御部13と可変抵抗部12および給電路切替部11との間の接続経路は図示を省略している。
 フォトダイオードPD1~PD3は、端局21~23から光ファイバ51~53を介して送られ、光カプラ14~16で検出された制御信号を光電変換する。制御回路133は、フォトダイオードPD1~PD3によって電気信号に変換された制御信号を給電路切替制御部131および可変抵抗制御部132に供給する。
 給電路切替制御部131は、制御回路133から供給された制御信号に従って、給電路接点回路111内のリレー接点RL1~RL4の状態を切り替える。より具体的には、上記制御信号は、切り替え対象にするリレー接点の識別子と、切り替え後のリレー接点の状態(a側あるいはb側)を示す状態情報とを含んでおり、給電路切替制御部131は、制御情報中の識別子によって示されるリレー接点の状態を、制御情報中の状態情報によって示される状態に切り替える。
 可変抵抗制御部132は、制御回路133から供給された制御信号に従って、可変抵抗部12内のリレー接点RL101~RL104の状態を切り替える。より具体的には、制御信号中の識別子によって示される給電路接点回路111内のリレー接点と対応する可変抵抗部12内のリレー接点の状態を、制御信号中の状態情報が示す状態に切り替える。例えば、制御信号中の識別子がリレー接点RL3を示すID3であった場合は、リレー接点RL103の状態を、制御信号中の状態情報によって示される状態に切り替える。
 なお、給電路切替制御部131および可変抵抗制御部132は、CPU(中央処理装置)によって実現可能であり、その場合は例えば次のようにする。CPUを給電路切替制御部131および可変抵抗制御部132として機能させるためのプログラムを記録したディスク、半導体メモリ、その他の記録媒体を用意し、CPUに上記プログラムを読み取らせる。CPUは、読み取ったプログラムに従って自身の動作を制御することにより、自CPU上に給電路切替制御部131および可変抵抗制御部132を実現する。
 図5を参照すると、端局21は、給電部211と、制御信号送信部212と、電位検出部213と、キーボード等の入力部214と、LCD等の表示部215とを備えている。なお、他の端局22,23も同様の構成を有している。
 給電部211は、給電路を構成するパス41を介して分岐装置1へ直流定電流を供給する。
 制御信号送信部212は、管理者によって入力部214から入力される指示に従って、給電路接点回路111内のリレー接点RL1~RL4の状態を切り替えるための制御信号を作成し、光ファイバ51を介して分岐装置1へ送信する。本実施の形態では、制御信号は、切り替え対象にするリレー接点の識別子と、切り替え後のリレー接点の状態を示す状態情報とを含むものとするが、これに限られるものではない。
 電位検出部213は、パス41の電位(対地電位)を検出し、検出結果を表示部215に表示する。
 次に、本実施の形態の動作について詳細に説明する。
 今、例えば、給電路接点回路111内のリレー接点RL1~RL4の状態および可変抵抗部12内のリレー接点RL101~RL104の状態が、それぞれ図2および図3に示すものであり、端局21,22,23の給電に係る極性がそれぞれ(+),(-),(-)であるとする。この状態では、次の2つの経路で給電が行われる。第1番目の経路は、端局21(+)→パス41→リレー接点RL1→ダイオードD1→可変抵抗部12→制御部13→ダイオードD4→リレー接点RL2→パス42→端局42(-)である。第2番目の経路は、シーアース24→リレー接点RL3→パス43→端局23(-)である。
 上記した2つの経路で給電しているときに、例えば、パス42に障害が発生すると、次のような処理が行われる。
 先ず、端局21の管理者が、切り替え対象にするリレー接点RL4の識別子ID4と、切り替え後の状態を示す状態情報(a側)とを含んだ制御信号送信指示を入力部214から入力する。これにより、制御信号送信部212が、識別子ID4と状態情報(a側)とを含んだ制御信号を作成し、光ファイバ51を介して分岐装置1へ送信する。
 上記制御信号は、フォトカプラ14を介して制御部13に入力され、フォトダイオードPD1によって光電変換された後、給電路切替制御部131および可変抵抗制御部132に入力される。
 これにより、給電路切替制御部131は、給電路接点回路111のリレー接点RL4をa側に切り替える。また、可変抵抗制御部132は、リレー接点RL104をa側に切り替える。
 リレー接点RL4がa側に切り替えられることにより、端局21(+)→パス41→リレー接点RL1→ダイオードD1→可変抵抗部12→制御部13→ダイオードD8→リレー接点RL4→リレー接点RL3→パス43→端局43(-)という給電の経路が形成される。また、リレー接点RL4,RL104がa側に切り替えられることにより、可変抵抗部12の抵抗値が「r3+r4」から「r3」に変化する。その結果、端局21の電位検出部213で検出されるパス41の電位が変化するので、管理者は、リレー接点RL4の切り替えが完了したことを確認することができる。
 その後、端局21の管理者は、給電路接点回路11内のリレー接点RL3の識別子ID3と、状態情報(a側)とを含んだ制御信号送信指示を入力部214から入力する。この制御信号送信指示に従って、制御信号送信部212は、識別子ID3と、状態情報(a側)とを含んだ制御信号を分岐装置1へ送信する。
 これにより、分岐装置1内の給電路切替制御部131は給電路接点回路111内のリレー接点RL3をa側に切り替え、可変抵抗制御部132は可変抵抗部12内のリレー接点RL103をa側に切り替える。リレー接点RL3がa側に切り替えられることにより、端局21(+)→パス41→リレー接点RL1→ダイオードD1→可変抵抗部12→制御部13→ダイオードD6→リレー接点RL3→パス43→端局43(-)という給電の経路が形成される。また、リレー接点RL103がa側に切り替えられることにより、可変抵抗部12の抵抗値が「r3」から「0」に変化する。その結果、端局21の電位検出部213で検出されるパス41の電位が変化するので、管理者は、リレー接点RL3の切り替えが完了したことを確認することができる。
 その後、端局21の管理者は、給電路接点回路111内のリレー接点RL2の識別子ID2と、状態情報(b側)とを含んだ制御信号送信指示を入力部214から入力する。この制御信号送信指示に従って、制御信号送信部212は、識別子ID2と、状態情報(b側)とを含んだ制御信号を分岐装置1へ送信する。
 これにより、分岐装置1内の給電路切替制御部131は給電路接点回路111内のリレー接点RL2をb側に切り替え、可変抵抗制御部132は可変抵抗部12内のリレー接点RL102をb側に切り替える。リレー接点RL102がb側に切り替えられることにより、可変抵抗部12の抵抗値が「0」から「r2」に変化する。その結果、端局21の電位検出部213で検出されるパス41の電位が変化するので、管理者は、リレー接点RL2の切り替えが完了したことを認識することができる。なお、リレー接点RL2がb側に切り替えられた後も、端局21(+)→パス41→リレー接点RL1→ダイオードD1→可変抵抗部12→制御部13→ダイオードD6→リレー接点RL3→パス43→端局43(-)という給電の経路が形成されている。
 その後、端局21の管理者は、リレー接点RL4の識別子ID4と、状態情報(b側)とを含んだ制御信号送信指示を入力部214から入力する。この制御信号送信指示に従って、制御信号送信部212は、識別子ID4と、状態情報(b側)とを含んだ制御信号を分岐装置1へ送信する。
 これにより、分岐装置1内の給電路切替制御部131は、給電路接点回路111内のリレー接点RL4をb側に切り替え、可変抵抗制御部132は、可変抵抗部12内のリレー接点RL104がb側に切り替える。リレー接点RL104がb側に切り替えられることにより、可変抵抗部12の抵抗値が「r2」から「r2+r4」に変化する。その結果、端局21の電位検出部213で検出されるパス41の電位が変化するので、管理者は、リレー接点RL4の切り替えが完了したことを認識する。なお、リレー接点RL4がb側に切り替えられた後も、端局21(+)→パス41→リレー接点RL1→ダイオードD1→可変抵抗部12→制御部13→ダイオードD6→リレー接点RL3→パス43→端局43(-)という給電の経路が形成されている。以上で、給電路の切り替えは、完了する。
 なお、上述した実施の形態では、端局21から分岐装置1へ制御信号を送信するようにしたが、端局22または端局23から分岐装置1へ制御信号を送信するようにしても良い。
[第1の実施の形態の効果]
 本実施の形態によれば、給電路接点回路内のリレー接点が正常に動作したか否かを確認することができるという効果を得ることができる。その理由は、給電路接点回路内のリレー接点の状態が変化する毎に抵抗値が変化する可変抵抗部を、給電路を構成するパスの内の、給電路の切り替え前後で共通して使用するパスに挿入するようにしたからである。
[本発明の第2の実施の形態]
 次に、本発明の第2の実施の形態について説明する。本実施の形態は、第1の実施の形態に比較して構成を簡単なものにしたことを特徴とする。
 本実施の形態では、図3に示した可変抵抗部12の代わりに図6に示した可変抵抗部12aを使用する。同図を参照すると、可変抵抗部12aは1個の抵抗Rcomと、抵抗Rcomに並列に接続されたリレー接点RLcomとから構成されている。リレー接点RLcomは、短絡状態(a側)と開放状態(b側)との2つの状態をとることができる。
 また、本実施の形態では、可変抵抗制御部132に前述した処理の代わりに、以下の処理を行わせる。可変抵抗制御部132は、その内部にリレー接点RLcomの状態(a側あるいはb側)を記録する状態記憶部(図示せず)を備えている。そして、端局21~23から給電路接点回路111内のリレー接点RL1~RL4の状態を切り替える制御信号が送られてくると、リレー接点RLcomの状態を、状態記憶部に記録されている状態と反対の状態に切り替え、その後、状態記憶部の内容を切り替え後のリレー接点RLcomの状態に変更する。このように可変抵抗制御部132は、リレー接点RL1~RL4が動作する毎に、リレー接点RLcomの短絡状態(a側)と開放状態(b側)との2つの状態を交互に切り替える。
[第2の実施の形態の効果]
 本実施の形態によれば、第1の実施の形態で得られる効果に加えて、分岐装置1の構成を経済的なものにすることができるという効果を得ることができる。
<付記>
 上記実施形態の一部又は全部は、以下の付記のように記載され得るが、以下には限られない。
(付記1)
 複数の接点を有する給電路接点回路を有し、前記複数の接点の状態を変更することにより給電路を切り替える分岐装置において、
 各々の前記接点の状態が変化する毎に抵抗値が変化する可変抵抗部を、給電路を構成するパスのうち給電路の切り替え前後で共通に使用する共通パス部分に挿入したことを特徴とする分岐装置。
(付記2)
 付記1記載の分岐装置において、
 端局から送られてくる制御信号に従って、前記給電路接点回路の接点の状態を変更すると共に前記可変抵抗部の抵抗値を変化させる制御部を備えることを特徴とする分岐装置。
(付記3)
 付記1または2記載の分岐装置において、
 前記可変抵抗部は、
 前記共通パス部分に挿入された抵抗と、
 該抵抗に対して並列に接続され、短絡状態と開放状態との2つの状態をとることができるリレー接点とを備えることを特徴とする分岐装置。
(付記4)
 付記1または2記載の分岐装置において、
 前記可変抵抗部は、
 前記共通パス部分に挿入された、直列に接続された複数の抵抗と、
 前記抵抗毎のリレー接点であって、対応する抵抗に対して並列に接続され、短絡状態と開放状態との2つの状態をとることができるリレー接点とを備えたことを特徴とする分岐装置。
(付記5)
 付記3記載の分岐装置において、
 前記制御部は、前記端局から制御信号が送られてくる毎に、前記リレー接点の状態を、短絡状態と開放状態との内の、現在の状態と異なる状態に変更することを特徴とする分岐装置。
(付記6)
 付記4記載の分岐装置において、
 前記制御部は、前記端局から制御信号が送られてくる毎に、前記複数のリレー接点の内の前記制御信号の内容に応じたリレー接点の状態を、短絡状態と開放状態との内の、前記制御信号の内容に応じた状態にすることを特徴とする分岐装置。
(付記7)
 付記1乃至6の何れか1項に記載の分岐装置において、
 前記接点毎のダイオード対を並列に接続すると共に、各ダイオード対における接続部に対応する接点を接続したダイオードブリッジ回路を備え、且つ、
 前記可変抵抗部は、前記ダイオードブリッジ回路に並列に接続されることを特徴とする分岐装置。
(付記8)
 分岐装置と複数の端局とを含み、
 前記分岐装置と前記複数の端局とは、それぞれ光ファイバと給電路の一部を構成するパスとにより接続され、
 前記複数の端局は、それぞれ、
 自端局と前記分岐装置とを接続する前記パスに定電流を供給する給電部と、
 自端局と前記分岐装置とを接続する前記光ファイバを介して前記分岐装置へ制御信号を送信する制御信号送信部と、
 自端局と前記分岐装置とを接続する前記パスの電位を検出する電位検出部とを備え、
 前記分岐装置は、
 複数の接点を有し、該複数の接点の状態が変更されることにより給電路を切り替える給電路接点回路と、
 給電路を構成するパスのうち給電路の切り替え前後で共通に使用する共通パス部分に挿入された可変抵抗部と、
 前記制御信号に従って前記複数の接点の状態を変更すると共に、前記可変抵抗部の抵抗値を変化させる制御部とを備えたことを特徴とする海底ケーブルシステム。
(付記9)
 付記8記載の海底ケーブルシステムにおいて、
 前記可変抵抗部は、
 前記共通パス部分に挿入された抵抗と、
 該抵抗に対して並列に接続され、短絡状態と開放状態との2つの状態をとることができるリレー接点とを備えることを特徴とする海底ケーブルシステム。
(付記10)
 付記8記載の海底ケーブルシステムにおいて、
 前記可変抵抗部は、
 前記共通パス部分に挿入された、直列に接続された複数の抵抗と、
 前記抵抗毎のリレー接点であって、対応する抵抗に対して並列に接続され、短絡状態と開放状態との2つの状態をとることができるリレー接点とを備えたことを特徴とする海底ケーブルシステム。
(付記11)
 付記9記載の海底ケーブルシステムにおいて、
 前記制御部は、前記端局から制御信号が送られてくる毎に、前記リレー接点の状態を、短絡状態と開放状態との内の、現在の状態と異なる状態に変更することを特徴とする海底ケーブルシステム。
(付記12)
 付記10記載の海底ケーブルシステムにおいて、
 前記制御部は、前記端局から制御信号が送られてくる毎に、前記複数のリレー接点の内の前記制御信号の内容に応じたリレー接点の状態を、短絡状態と開放状態との内の、前記制御信号の内容に応じた状態にすることを特徴とする海底ケーブルシステム。
(付記13)
 端局が、光ファイバを介して分岐装置へ制御信号を送信し、
 前記分岐装置が、前記端局から送られてくる前記制御信号に従って、給電路接点回路が備えている複数の接点の状態を変更することにより給電路を切り替えると共に、給電路を構成するパスのうち給電路の切り替え前後で共通に使用する共通パス部分に挿入された可変抵抗部の抵抗値を変化させ、
 前記端局が、前記給電路の電位を検出することを特徴とする給電路切り替え方法。
(付記14)
 付記13記載の給電路切り替え方法において、
 前記可変抵抗部は、
 前記共通パス部分に挿入された抵抗と、
 該抵抗に対して並列に接続され、短絡状態と開放状態との2つの状態をとることができるリレー接点とを備えることを特徴とする給電路切り替え方法。
(付記15)
 付記13記載の給電路切り替え方法において、
 前記可変抵抗部は、
 前記共通パス部分に挿入された、直列に接続された複数の抵抗と、
 前記抵抗毎のリレー接点であって、対応する抵抗に対して並列に接続され、短絡状態と開放状態との2つの状態をとることができるリレー接点とを備えたことを特徴とする給電路切り替え方法。
(付記16)
 付記14記載の給電路切り替え方法において、
 前記制御部は、前記端局から制御信号が送られてくる毎に、前記リレー接点の状態を、短絡状態と開放状態との内の、現在の状態と異なる状態に変更することを特徴とする給電路切り替え方法。
(付記17)
 付記15記載の給電路切り替え方法において、
 前記制御部は、前記端局から制御信号が送られてくる毎に、前記複数のリレー接点の内の前記制御信号の内容に応じたリレー接点の状態を、短絡状態と開放状態との内の、前記制御信号の内容に応じた状態にすることを特徴とする給電路切り替え方法。
(付記18)
 複数の接点を有し、該複数の接点の状態が変更されることにより、給電路を切り替える給電路接点回路と、給電路を構成するパスのうち給電路の切り替え前後で共通に使用する共通パス部分に挿入された可変抵抗部とを備えたコンピュータを、
 端局から送られてきた制御信号に従って、前記複数の接点の状態を変更すると共に、前記可変抵抗部の抵抗値を変化させる制御部として機能させるためのプログラム。
(付記19)
 付記18記載のプログラムにおいて、
 請求項1または2記載の分岐装置において、
 前記可変抵抗部は、
 前記共通パス部分に挿入された抵抗と、
 該抵抗に対して並列に接続され、短絡状態と開放状態との2つの状態をとることができるリレー接点とを備えることを特徴とするプログラム。
(付記20)
 付記18のプログラムにおいて、
 前記可変抵抗部は、
 前記共通パス部分に挿入された、直列に接続された複数の抵抗と、
 前記抵抗毎のリレー接点であって、対応する抵抗に対して並列に接続され、短絡状態と開放状態との2つの状態をとることができるリレー接点とを備えたことを特徴とするプログラム。
(付記21)
 付記19記載のプログラムにおいて、
 前記制御部は、前記端局から制御信号が送られてくる毎に、前記リレー接点の状態を、短絡状態と開放状態との内の、現在の状態と異なる状態に変更することを特徴とするプログラム。
(付記22)
 付記20のプログラムにおいて、
 前記制御部は、前記端局から制御信号が送られてくる毎に、前記複数のリレー接点の内の前記制御信号の内容に応じたリレー接点の状態を、短絡状態と開放状態との内の、前記制御信号の内容に応じた状態にすることを特徴とするプログラム。
 なお、本発明は、日本国にて2013年8月23日に特許出願された特願2013-173376の特許出願に基づく優先権主張の利益を享受するものであり、当該特許出願に記載された内容は、全て本明細書に含まれるものとする。
 本発明は、海底ケーブルシステムに利用可能である。
1・・・分岐装置
11・・・給電路切替部
111・・・給電路接点回路
112・・・ダイオードブリッジ回路
RL1~RL4・・・リレー接点
D1~D8・・・ダイオード
12,12a・・・可変抵抗部
R1~R4・・・抵抗
RL101~RL104・・・リレー接点
13・・・制御部
131・・・給電路切替制御部
132・・・可変抵抗制御部
133・・・制御回路
PD1~PD4・・・フォトダイオード
14~16・・・光カプラ
21~23・・・端局
211・・・給電部
212・・・制御信号送信部
213・・・電位検出部
214・・・入力部
215・・・表示部
31~33・・・中継装置
41~43・・・パス
51~53・・・光ファイバ

Claims (8)

  1.  複数の給電線間の接続状態を切り替える給電路切替回路であって、
     前記複数の給電線間の接続状態を切り替えるための複数のスイッチ回路と、
     切替前後の給電線間の接続経路上に配置され、前記複数のスイッチ回路の動作に連動して抵抗値が変化する可変抵抗部と
    を有する給電路切替回路。
  2.  請求項1に記載の給電路切替回路において、
     2つのダイオードを同じ向きに直列に接続した第1乃至第4のダイオード対を並列接続したダイオードブリッジ回路を有し、
     前記複数の給電線は、第1の端局に接続される第1の給電線と第2の端局に接続される第2の給電線と第3の端局に接続される第3の給電線とアースに接続される第4の給電線とを有し、
     前記複数のスイッチ回路は、前記第1の給電線を前記第1のダイオード対の前記2つのダイオードの接続点および前記第4の給電線の何れか一方に接続する第1のスイッチ回路と、前記第2の給電線を前記第2のダイオード対の前記2つのダイオードの接続点および前記第4の給電線の何れか一方に接続する第1のスイッチ回路と、前記第3の給電線を前記第3のダイオード対の前記2つのダイオードの接続点および前記第4の給電線の何れか一方に接続する第1のスイッチ回路と、前記第4の給電線を前記第4のダイオード対の前記2つのダイオードの接続点に接続する第4のスイッチ回路とを有し、
     前記可変抵抗部は、前記第1乃至第4のダイオード対に並列に接続され、前記第1乃至第4のスイッチ回路の動作に連動して抵抗値が変化する
    給電路切替回路。
  3.  請求項2に記載の給電路切替回路において、
     前記第1乃至第3の端局から送られてくる制御信号に従って、前記第1乃至第4のスイッチ回路の状態を変更すると共に前記可変抵抗部の抵抗値を変化させる制御部
    を備える給電路切替回路。
  4.  請求項2または3に記載の給電路切替回路において、
     前記可変抵抗部は、
     抵抗と、
     前記抵抗に並列に接続され、前記第1乃至第4のスイッチ回路が動作する毎に短絡状態と開放状態との2つの状態を交互に切り替える第5のスイッチ回路とを備える
    給電路切替回路。
  5.  請求項2または3に記載の給電路切替回路において、
     前記可変抵抗部は、
     直列に接続された第1乃至第4の抵抗と、
     前記第1の抵抗に並列に接続され、前記第1のスイッチ回路の動作に連動してスイッチ状態を切り替える第5のスイッチ回路と、
     前記第2の抵抗に並列に接続され、前記第2のスイッチ回路の動作に連動してスイッチ状態を切り替える第6のスイッチ回路と、
     前記第3の抵抗に並列に接続され、前記第3のスイッチ回路の動作に連動してスイッチ状態を切り替える第7のスイッチ回路と、
     前記第4の抵抗に並列に接続され、前記第4のスイッチ回路の動作に連動してスイッチ状態を切り替える第8のスイッチ回路とを備える
    給電路切替回路。
  6.  複数の給電線間の接続状態を切り替えるための複数のスイッチ回路と、切替前後の給電線間の接続経路上に配置された可変抵抗部とを有する給電路切替回路が実行する給電路切替方法であって、
     前記複数のスイッチ回路の動作に連動して前記可変抵抗部の抵抗値を変化させる
    給電路切替方法。
  7.  複数の端局に接続される複数の光ファイバに接続されると共に複数の給電線に接続される分岐装置であって、
     前記複数の給電線間の接続状態を切り替える給電路切替回路を有し、
     前記給電路切替回路は、
     前記複数の給電線間の接続状態を切り替えるための複数のスイッチ回路と、
     切替前後の給電線間の接続経路上に配置され、前記複数のスイッチ回路の動作に連動して抵抗値が変化する可変抵抗部と
    を有する分岐装置。
  8.  複数の端局と、
     前記複数の端局に接続される複数の光ファイバに接続されると共に複数の給電線に接続される分岐装置と
    を有し、
     前記分岐装置は、前記複数の給電線間の接続状態を切り替える給電路切替回路を有し、
     前記給電路切替回路は、前記複数の給電線間の接続状態を切り替えるための複数のスイッチ回路と、切替前後の給電線間の接続経路上に配置され、前記複数のスイッチ回路の動作に連動して抵抗値が変化する可変抵抗部とを有し、
     前記複数の端局のうちの少なくとも1つの端局は、
     前記分岐装置との間の前記給電線に定電流を供給する給電部と、
     前記分岐装置に対して前記複数のスイッチ回路を切り替える制御信号を送信する制御信号送信部と、
     前記分岐装置との間の前記給電線の電位を検出する電位検出部とを有する
    海底ケーブルシステム。
PCT/JP2014/004245 2013-08-23 2014-08-20 給電路切替回路、分岐装置、海底ケーブルシステム、及び給電路切り替え方法 WO2015025518A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015532709A JP6083473B2 (ja) 2013-08-23 2014-08-20 給電路切替回路、分岐装置、海底ケーブルシステム、及び給電路切り替え方法
CN201480046653.1A CN105474552B (zh) 2013-08-23 2014-08-20 馈电线路切换电路、分支设备、海底电缆系统和馈电线路切换方法
US14/913,465 US10153850B2 (en) 2013-08-23 2014-08-20 Power feed line switching circuit, branching device, submarine cable system, and power feed line switching method
EP14837590.0A EP3038267B1 (en) 2013-08-23 2014-08-20 Power feed line switching circuit, branching device, submarine cable system, and power feed line switching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-173376 2013-08-23
JP2013173376 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015025518A1 true WO2015025518A1 (ja) 2015-02-26

Family

ID=52483313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004245 WO2015025518A1 (ja) 2013-08-23 2014-08-20 給電路切替回路、分岐装置、海底ケーブルシステム、及び給電路切り替え方法

Country Status (5)

Country Link
US (1) US10153850B2 (ja)
EP (1) EP3038267B1 (ja)
JP (1) JP6083473B2 (ja)
CN (1) CN105474552B (ja)
WO (1) WO2015025518A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181642A1 (ja) * 2015-05-12 2016-11-17 日本電気株式会社 給電路切替装置、給電路切替システムおよび給電路切替方法
WO2019163716A1 (ja) 2018-02-20 2019-08-29 日本電気株式会社 海底ケーブルシステム、分岐装置及びその状態応答方法
WO2020022303A1 (ja) 2018-07-24 2020-01-30 日本電気株式会社 通信システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755734B1 (en) * 2016-06-09 2017-09-05 Google Inc. Subsea optical communication network
CN107769843B (zh) * 2016-08-23 2020-05-01 中兴通讯股份有限公司 一种线路重配置方法及装置
CN106597905A (zh) * 2016-12-28 2017-04-26 浙江大学 一种基于电流数字信号的水下分支器控制方法
CN110383717B (zh) * 2017-03-17 2022-10-25 日本电气株式会社 光海底线缆系统和光海底中继设备
TWI626642B (zh) * 2017-06-20 2018-06-11 友達光電股份有限公司 顯示裝置及其伽瑪曲線補償電路與驅動方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206271A (ja) * 1994-10-05 1996-08-13 Chuo Denshi Syst Kk 有効打判定装置
JPH11186959A (ja) * 1997-12-19 1999-07-09 Kdd 給電線接続回路及び光伝送システム
JP2001339413A (ja) * 2000-05-29 2001-12-07 Mitsubishi Electric Corp ネットワークシステム
JP2002057607A (ja) 2000-08-11 2002-02-22 Mitsubishi Electric Corp 給電路切替方法および給電路分岐装置と給電路切替システム
JP2014031115A (ja) * 2012-08-03 2014-02-20 Denso Corp ステアリングスイッチ入力検出回路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3759704B2 (ja) * 2001-07-18 2006-03-29 三菱電機株式会社 給電路切替回路および海中分岐装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206271A (ja) * 1994-10-05 1996-08-13 Chuo Denshi Syst Kk 有効打判定装置
JPH11186959A (ja) * 1997-12-19 1999-07-09 Kdd 給電線接続回路及び光伝送システム
JP2001339413A (ja) * 2000-05-29 2001-12-07 Mitsubishi Electric Corp ネットワークシステム
JP2002057607A (ja) 2000-08-11 2002-02-22 Mitsubishi Electric Corp 給電路切替方法および給電路分岐装置と給電路切替システム
JP2014031115A (ja) * 2012-08-03 2014-02-20 Denso Corp ステアリングスイッチ入力検出回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3038267A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181642A1 (ja) * 2015-05-12 2016-11-17 日本電気株式会社 給電路切替装置、給電路切替システムおよび給電路切替方法
JPWO2016181642A1 (ja) * 2015-05-12 2018-02-08 日本電気株式会社 給電路切替装置、給電路切替システムおよび給電路切替方法
US10348440B2 (en) 2015-05-12 2019-07-09 Nec Corporation Power supply path-switching device, power supply path-switching system, and power supply path-switching method
WO2019163716A1 (ja) 2018-02-20 2019-08-29 日本電気株式会社 海底ケーブルシステム、分岐装置及びその状態応答方法
JPWO2019163716A1 (ja) * 2018-02-20 2021-02-04 日本電気株式会社 海底ケーブルシステム、分岐装置及びその状態応答方法
US11270859B2 (en) 2018-02-20 2022-03-08 Nec Corporation Submarine cable system, branching device, and state response method therefor
WO2020022303A1 (ja) 2018-07-24 2020-01-30 日本電気株式会社 通信システム
US11929791B2 (en) 2018-07-24 2024-03-12 Nec Corporation Communication system

Also Published As

Publication number Publication date
JPWO2015025518A1 (ja) 2017-03-02
US10153850B2 (en) 2018-12-11
EP3038267A4 (en) 2017-03-29
CN105474552A (zh) 2016-04-06
JP6083473B2 (ja) 2017-02-22
EP3038267B1 (en) 2018-02-21
US20160203930A1 (en) 2016-07-14
CN105474552B (zh) 2018-03-16
EP3038267A1 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP6083473B2 (ja) 給電路切替回路、分岐装置、海底ケーブルシステム、及び給電路切り替え方法
US9143845B2 (en) Branching units and power line monitoring methods
JP2010161750A (ja) 信号送信装置、信号受信装置及び信号伝送システム
US20110254366A1 (en) Data transmission device
US8786127B2 (en) Connecting apparatus for connection of field devices
CN102970335B (zh) 通信系统
JP6973495B2 (ja) 海底分岐装置及び海底分岐方法
EP2079194B1 (en) Dual ring dedicated drive control system for medium voltage variable frequency drives
JP2009206540A (ja) 回線終端装置、冗長化通信システム、冗長化通信方法及び冗長化通信プログラム
KR100955427B1 (ko) 링형 원격 감시 시스템 및 그의 구동 방법
JP2015154272A (ja) 光パス切替装置および通信方法
JP2017120960A (ja) 通信経路異常監視装置
KR100888945B1 (ko) 링형 광전송망시스템
WO2014010151A1 (ja) 波長分割多重通信装置及び光ネットワークシステム
JP6734752B2 (ja) エンコーダ自動判定装置
JP2017175477A (ja) 集合住宅用インターホンシステム
EP4431430A1 (en) Safety control system, safety control method, safety switch and escalator system
JP2012114648A (ja) 光伝送装置、光伝送システム、及び、光モジュール
JP4892665B2 (ja) 加入者線検査システム及び加入者線検査方法並びに加入者線検査プログラム
JP6492489B2 (ja) 光通信システム及び光通信方法
JP2015139098A (ja) 光伝送システム及び光切替装置
JP4155375B2 (ja) 情報伝送装置
JPH08163030A (ja) 光通信システム
US8762593B2 (en) Data transmission system and data communication device
CN101371206A (zh) 无线现场总线管理

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046653.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532709

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14913465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014837590

Country of ref document: EP