[go: up one dir, main page]

WO2014185120A1 - Illuminator and display device - Google Patents

Illuminator and display device Download PDF

Info

Publication number
WO2014185120A1
WO2014185120A1 PCT/JP2014/054827 JP2014054827W WO2014185120A1 WO 2014185120 A1 WO2014185120 A1 WO 2014185120A1 JP 2014054827 W JP2014054827 W JP 2014054827W WO 2014185120 A1 WO2014185120 A1 WO 2014185120A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light
light source
light guide
led
Prior art date
Application number
PCT/JP2014/054827
Other languages
French (fr)
Japanese (ja)
Inventor
角田 行広
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014185120A1 publication Critical patent/WO2014185120A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0091Positioning aspects of the light source relative to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0083Details of electrical connections of light sources to drivers, circuit boards, or the like

Definitions

  • the present invention relates to a lighting device and a display device.
  • Display devices including a display panel such as a liquid crystal panel are used for portable information terminal devices such as mobile phones, smartphones, and tablet laptop computers, and electronic devices such as computers. Since the liquid crystal panel used for the display device does not emit light, the display device requires a backlight device as a separate illumination device. Backlight devices are roughly classified into direct type and edge light type according to the mechanism, and it is preferable to use an edge light type backlight device in order to realize further thinning of the liquid crystal display device. ing.
  • a light guide plate that guides light emitted from a light source such as an LED (Light Emitting Diode) to a light emitting surface provided on one of the plate surfaces is accommodated in the housing.
  • the light guide plate is provided with a light incident surface on at least one end surface side thereof, and a light source is arranged to face the light incident surface.
  • a light source is arranged to face the light incident surface.
  • Patent Document 1 discloses a liquid crystal display device including a backlight in which the incidence efficiency is improved.
  • the LED light source block on which the LED light source is mounted is fixed to a panel frame that forms a part of the housing and is arranged apart from the light guide plate. Has been. For this reason, when manufacturing a backlight or when receiving an impact from the outside, the LED light source may be displaced with respect to the light incident surface in the thickness direction of the light guide plate. When the LED light source is displaced with respect to the light incident surface, the incident efficiency of the light from the light source on the light incident surface may be reduced. In particular, in a backlight device in which the light guide plate is thinned, the amount of reduction in incident efficiency due to a positional shift with respect to the light incident surface of the LED light source is significant.
  • the technology disclosed in this specification has been created in view of the above problems.
  • it aims at providing the technique which can improve the positioning accuracy of the LED light source with respect to a light-guide plate, maintaining favorable incident efficiency.
  • the technology disclosed in the present specification is a plate-shaped glass light guide plate, on at least one end surface side, a step bottom surface provided along the plate surface of the light guide plate, and the light guide plate
  • a light guide plate having a stepped side surface provided along the end surface, the stepped side surface being a light incident surface, and the entire light emitting surface of the stepped bottom surface facing the stepped side surface.
  • a side-emitting LED light source arranged in a shape.
  • the LED light source is arranged directly on the step portion provided on the light guide plate. Therefore, even when the light guide plate is thinned, the LED light source is not attached to the light guide plate. Positioning can be performed with high accuracy. Further, since the LED light source is arranged in such a manner that the entire light emitting surface faces the light incident surface, it is possible to maintain good incident efficiency with respect to the light incident surface of the light guide plate. Furthermore, since the light guide plate is made of glass, the coefficient of expansion due to heat or the like is smaller than when the light guide plate is made of resin or the like, and even when heat or the like is generated from the LED light source, the LED light source is It is difficult to shift. As described above, in the illumination device described above, the positioning accuracy of the LED light source with respect to the light guide plate can be improved while maintaining good incident efficiency.
  • a wiring pattern for supplying power to the LED light source may be formed on the step bottom surface. According to this configuration, the space for arranging the wiring for the LED light source can be saved, and thus the light guide plate can be thinned.
  • the LED light source may include an LED element and a sealing resin that seals the LED element. According to this configuration, the wiring pattern can be simplified as compared with the case where the LED element is exposed and disposed on the bottom surface of the step.
  • the LED light source may be configured such that the entire surface directed to the step side surface faces the step side surface. According to this structure, the incident efficiency with respect to the light-incidence surface of a light-guide plate can be improved compared with the case where a part of sealing resin of a LED light source is not facing the level
  • a first diffusion pattern that imparts an optical action to the light emitted from the LED light source may be formed on the light incident surface. According to this configuration, the distribution of light incident on the light incident surface can be relaxed by the first diffusion pattern, and the incident efficiency with respect to the light incident surface of the light guide plate can be increased.
  • a second diffusion pattern that imparts an optical action to the light emitted from the LED light source may be formed on one plate surface of the light guide plate. According to this configuration, the point-shaped light can be converted into planar light by the second diffusion pattern, and uneven brightness of the light emitted from the light guide plate can be prevented or suppressed.
  • a plate surface on which the second diffusion pattern of the light guide plate is formed may be a rough surface, and the second diffusion pattern may be increased as the distance from the LED light source is increased. According to this configuration, an effective pattern shape for making the light amount distribution of the light emitted from the light guide plate uniform can be formed on the plate surface of the light guide plate for the second wiring pattern.
  • the LED light source may be arranged such that the height of the center position of the light emitting surface is equal to the height of the center position of the step side surface in the thickness direction of the light guide plate. According to this configuration, since the light emitted from the LED light source is efficiently incident on the light incident surface, the incident efficiency with respect to the light incident surface of the light guide plate can be further increased.
  • the light guide plate may have a wedge shape whose thickness decreases from an end surface side where the step portion is provided to an end surface side opposite thereto. According to this structure, illumination efficiency can be improved compared with the case where the light-guide plate is made flat.
  • the step portion may be formed by a processing process for cutting a part of the light guide plate that is plate-shaped. According to this structure, the specific manufacturing method for forming a level
  • the technology disclosed in this specification can also be expressed as a display device including the above-described illumination device and a display panel that performs display using light from the illumination device.
  • a display device in which the display panel is a liquid crystal panel in which liquid crystal is sealed between a pair of substrates is also novel and useful.
  • the positioning accuracy of the LED light source with respect to the light guide plate can be improved while maintaining good incident efficiency.
  • FIG. 1 is an exploded perspective view of a liquid crystal display device according to Embodiment 1.
  • FIG. Cross section of liquid crystal display An enlarged cross-sectional view of a light guide plate on which an LED light source is mounted Plan view of light guide plate and LED light source Side view of the light guide plate in the process of manufacturing the light guide plate on which the LED light source is mounted and preparing the light guide plate Side view of the light guide plate in the manufacturing process of the light guide plate on which the LED light source is mounted and forming the stepped portion Side view of the light guide plate after the step portion is formed in the manufacturing process of the light guide plate on which the LED light source is mounted The side view of the said light-guide plate of the manufacturing process of the light-guide plate in which an LED light source is mounted, and the process of forming a 2nd diffused pattern in the light-projection surface of a light-guide plate is shown.
  • Plan view of the second mask The top view of the said light-guide plate after it is a manufacturing process of the light-guide plate in which an LED light source is mounted, and forms the 2nd diffusion pattern Side view of the light guide plate in the manufacturing process of the light guide plate on which the LED light source is mounted, wherein the metal film is formed on the step bottom surface of the light guide plate.
  • An enlarged plan view of the vicinity of the bottom of the step where the LED light source is mounted The expanded sectional view which expanded the light-guide plate in which the LED light source was mounted in Embodiment 4. Table showing the relationship between the thickness of the light guide plate and the incident efficiency with respect to the positional deviation of the LED light source
  • Embodiment 1 will be described with reference to the drawings.
  • the liquid crystal display device 10 including the cover panel 12 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • FIGS. 1 and 2 are used as a reference, and the upper side of the figure is the front side and the lower side of the figure is the back side.
  • the liquid crystal display device 10 has a vertically long rectangular shape as a whole, and a liquid crystal panel (an example of a display panel) 14 whose front side plate surface is a display surface for displaying an image, and a liquid crystal A cover panel 12 arranged to face the display surface of the panel 14 and an external light source arranged on the opposite side of the cover panel 12 with the liquid crystal panel 14 interposed therebetween and supplying light to the liquid crystal panel 14 And a backlight device (an example of a lighting device) 30.
  • the liquid crystal display device 10 further includes a casing 36 that houses the cover panel 12, the liquid crystal panel 14, and the backlight device 30. Of the components of the liquid crystal display device 10, the cover panel 12 and the casing 36 constitute the appearance of the liquid crystal display device 10.
  • the liquid crystal display device 10 includes a portable information terminal (such as a mobile phone, a smartphone, and a tablet notebook computer), an in-vehicle information terminal (such as a stationary car navigation system and a portable car navigation system), and a portable game. It is used for various electronic devices such as a machine. For this reason, the screen sizes of the liquid crystal panel 14 and the cover panel 12 constituting the liquid crystal display device 10 are about several inches to several tens of inches, and are generally classified into small or medium-sized.
  • the liquid crystal panel 14 has a vertically long rectangular shape as a whole, and is formed between a pair of transparent (translucent) glass substrates 14a and 14b and both the substrates 14a and 14b. And a liquid crystal layer (not shown) including liquid crystal molecules which are interposed and whose optical characteristics change with application of an electric field. Both the substrates 14a and 14b are bonded together by a sealing agent (not shown) while maintaining a gap corresponding to the thickness of the liquid crystal layer.
  • the back side back side
  • the front side front side
  • the CF substrate 14a is the CF substrate 14a.
  • the array substrate 11b is provided with a switching element (for example, TFT) connected to the source wiring and the gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like.
  • a switching element for example, TFT
  • a pixel electrode connected to the switching element
  • an alignment film and the like.
  • a color filter in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement
  • a counter electrode and an alignment film.
  • the CF substrate 14a has a short side dimension substantially the same as the array substrate 14b, but has a long side dimension smaller than that of the array substrate 11b. Then, they are bonded together with one end in the long side direction aligned.
  • the other end of the array substrate 14b in the long side direction is in a state where both the front and back plate surfaces are exposed to the outside, and a driver 15 for driving the liquid crystal panel 14 and a panel side flexible
  • a mounting area for a substrate (not shown) is secured.
  • image data and various control signals necessary for displaying an image from a drive circuit board (not shown) are supplied to the source wiring, the gate wiring, the counter electrode, and the like.
  • a polarizing plate (not shown) is disposed outside both substrates.
  • the cover panel 12 is arranged so as to cover the entire area of the liquid crystal panel 14 from the front side, whereby the liquid crystal panel 14 can be protected.
  • a liquid crystal panel 14 is attached to the center side portion of the cover panel 12 via an adhesive (not shown) on the plate surface on the back side.
  • the cover panel 12 has a vertically long rectangular shape, similar to the liquid crystal panel 14, and the size of the cover panel 12 as viewed in a plane is slightly larger than the substrates 14 a and 14 b forming the liquid crystal panel 14. Almost the same level. Therefore, the outer peripheral side portion of the cover panel 12 protrudes outward in a bowl shape from the outer peripheral end of the liquid crystal panel 14.
  • the cover panel 12 is formed with a light shielding portion 12a that shields light around it.
  • the light shielding portion 12a is provided by printing means such as screen printing or ink jet printing.
  • the light shielding portion 12a is also formed on the outer peripheral side portion that protrudes outward from the outer peripheral end of the liquid crystal panel 14, thereby forming a vertically long substantially frame shape (substantially frame shape), and thereby the backlight device 30. Can be shielded by the light shielding portion 12a before entering the plate surface on the back side of the cover panel 12 around the liquid crystal panel.
  • the casing 36 is made of a synthetic resin material or a metal material, and has a substantially bowl shape opened toward the front side, as shown in FIG.
  • the cover panel 12, the liquid crystal panel 14, and the backlight device 30 are accommodated in an accommodation space held inside the casing 36. Therefore, the casing 36 covers the backlight device 30 from the back side, and covers the backlight device 30 and the cover panel 12 from the side over the entire circumference, thereby configuring the appearance of the back side and the side surface side of the liquid crystal display device 10.
  • the casing 36 has a substantially stepped outer peripheral portion, and has the lowest first step portion 36a and the second lowest second step portion 36b.
  • a casing adhesive tape 35 that adheres to both is interposed. It is arranged in a form.
  • the casing adhesive tape 35 has a flexible tape-like base material, and an adhesive is applied to both the front and back surfaces of the base material.
  • the casing 36 and the frame 22 are kept in an attached state by the casing adhesive tape 35.
  • the casing adhesive tape 35 is formed in a substantially vertically long frame shape as a whole in accordance with the shape of the frame 32 to be adhered, the casing 36 and the frame 32 are fixed substantially over the entire circumference.
  • a part of the casing adhesive tape 35 is also affixed to an outer peripheral end of a reflection sheet 34 to be described later.
  • driving power is supplied to a control board for controlling the driving of the liquid crystal panel 14 and an LED light source 26 described later.
  • a substrate (not shown) such as an LED drive substrate to be supplied is accommodated.
  • the backlight device 30 includes an LED light source 26 mounted thereon, a light guide plate 20 that guides light from the LED light source 26, an optical member 18 that is stacked on the light guide plate 20, and a stack below the light guide plate 20.
  • the reflection sheet 34 to be disposed, and a frame-like frame 32 that surrounds the light guide plate 20 and the optical member 18 and supports the liquid crystal panel 14 from the back side (the side opposite to the cover panel 12 side).
  • the backlight device 30 is a so-called edge light type (side light type) in which the LED light source 26 is unevenly distributed at the outer peripheral end of the liquid crystal panel 14.
  • edge light type side light type
  • the optical member 18 has a horizontally long rectangular shape as viewed in a plane, like the liquid crystal panel 14.
  • the optical member 18 is slightly smaller than the plate surface of the light guide plate 20 described later, and the entire optical member 18 is placed on the front side (light emission side) of the light guide plate 20 and between the liquid crystal panel 14 and the light guide plate 20. Accordingly, the light emitted from the light guide plate 20 is transmitted and emitted toward the liquid crystal panel 14 while applying a predetermined optical action to the transmitted light.
  • the optical member 18 is composed of a plurality of sheet-like members stacked on each other.
  • the optical member 18 includes, in order from the light guide plate 20 side, a diffusion sheet 18a that diffuses light emitted from the light guide plate 20, a first lens sheet 18b that collects light transmitted through the diffusion sheet 18a, and The second lens sheet 18c is used.
  • the reflection sheet 34 has a rectangular sheet shape, is made of synthetic resin, and has a white surface with excellent light reflectivity. Most of the reflection sheet 34 is in surface contact with the opposite plate surface 20c of the light guide plate 20 to be described later, and its edge is also in contact with the back side of the frame 22 to be described later. As described above, the casing adhesive tape 35 is used. The outer periphery of the casing 36 is supported by the second step portion 36 b of the casing 36. In the reflection sheet 34, both end portions in the long side direction (Y-axis direction) extend outward from both end surfaces forming the short side of the light guide plate 20.
  • the frame 32 is made of a synthetic resin, and as shown in FIG. 1, the frame 32 has a vertically long substantially frame shape whose outer shape is substantially the same as that of the cover panel 12, and the liquid crystal panel 14, the light guide plate 20, and the optical member are disposed inside the frame 32. 18 is accommodated.
  • the frame 32 includes a pair of short side portions that extend along the X-axis direction and a pair of long side portions that extend along the Y-axis direction.
  • the frame 32 is opposed to the outer peripheral end portion of the cover panel 12 where the light shielding portion 12a is formed and the plate surface on the back side of the liquid crystal panel 14 and can support the plate surface from the back side over the entire circumference. . As shown in FIGS.
  • the frame 32 has a substantially stepped shape with a three-dimensional cross section, and the second lowest step supports the outer peripheral end of the liquid crystal panel 14 from the back side, and is the highest.
  • the step portion supports the outer peripheral end of the cover panel 12 from the back side.
  • a substantially frame-shaped panel adhesive tape 16 that adheres to the frame 32 and the liquid crystal panel 14 is disposed between the frame 32 and the liquid crystal panel 14, and the liquid crystal panel 14 and the frame 32 are disposed by the panel adhesive tape 16. It is designed to be kept in a state where the space between is attached.
  • a slightly recessed step is provided on the back side of the frame 32, so that a slight gap is formed between the casing 36 and the frame 32. As shown in FIG. 2, the outer peripheral end of the reflection sheet 35 is accommodated in this gap.
  • the light guide plate 20 is a plate-shaped member having a rectangular shape and a thickness greater than that of the optical member 18, and is made of glass having a refractive index higher than that of air and being transparent (excellent in translucency).
  • the glass material forming the light guide plate 20 is, for example, aluminosilicate glass.
  • the short side direction on the plate surface coincides with the X-axis direction
  • the long side direction coincides with the Y-axis direction
  • the plate thickness direction orthogonal to the plate surface coincides with the Z-axis direction.
  • the light guide plate 20 is disposed immediately below the liquid crystal panel 14 and the optical member 18 in a state surrounded by a frame 32 described later.
  • the surface facing the front side transmits the internal light to the optical member 18 and the liquid crystal panel 14 as shown in FIGS. 1 and 2. It becomes the light-projection surface 20b radiate
  • the plate surface (back surface) opposite to the light emitting surface 20b is an opposite plate surface 20c.
  • a step portion 22 described below is provided on one end face 20a side (the left side shown in FIGS. 1 and 2) of both end faces provided along the X-axis direction in the light guide plate 20.
  • the other end face among the both end faces provided along the X-axis direction in the light guide plate 20 is an opposite end face 20d.
  • the stepped portion 22 provided on one end surface 20 a side of the light guide plate 20 is provided in a shape that forms a step with respect to the light emitting surface 20 b, and is formed on the plate surface of the light guide plate 20.
  • a step bottom surface 22 a provided along the step and a step side surface 22 b provided along the end surface of the light guide plate 20 are provided.
  • a wiring pattern 28 is provided on most of the step bottom surface 22 a in the step portion 22.
  • a plurality of LED light sources 26 to be described later are mounted on the wiring pattern 28 such that the light emitting surface 24a faces the step side surface 22b.
  • the step side surface 22 b is opposed to the light emitting surface 24 a of the LED light source 26, thereby forming a light incident surface 22 b on which light emitted from each LED light source 28 is incident. Therefore, hereinafter, the step side surface 22b is also referred to as a light incident surface 22b, and the light incident surface 22b is also referred to as a step side surface 22b.
  • the light guide plate 20 introduces the light emitted from each LED 28 from the light incident surface 20a and rises toward the optical member 18 side (front side, light emission side) while propagating the light inside, thereby emitting the light. It has the function to emit from 20b. As shown in FIG.
  • a diffusion sheet (an example of a first diffusion pattern) 51 is bonded to the light incident surface 22b of the light guide plate 20, thereby distributing the light incident on the light incident surface 22b.
  • the incident efficiency with respect to the light incident surface 22b of the light guide plate 20 can be increased.
  • a diffusion pattern (an example of a second diffusion pattern) 21 is formed on the light emitting surface 20 b of the light guide plate 20.
  • the diffusion pattern 21 is composed of a plurality of circular patterns 21a, 21b, and 21c whose diameter, that is, the area is increased stepwise as the distance from the step portion 22 (LED light source 26) increases.
  • the light amount distribution in the surface of the light emitted from the light emitting surface 20a is controlled to be uniform.
  • the plurality of LED light sources 26 are mounted in parallel on the wiring pattern 28 formed on the step bottom surface 22 a along the short side direction (X-axis direction) of the light guide plate 20.
  • the LED element 24 is sealed with a sealing resin 25.
  • Each LED light source 26 is mounted on the wiring pattern 28 so that driving power is supplied via the wiring pattern 28.
  • the LED element 24 has a single main emission wavelength, and specifically, one that emits blue in a single color is used.
  • the resin material that seals the LED element 24 is dispersed and blended with phosphors that are excited by the blue light emitted from the LED element 24 and emit a predetermined color, and generally emit white light. It is supposed to be emitted.
  • a yellow phosphor that emits yellow light, a green phosphor that emits green light, and a red phosphor that emits red light are used in appropriate combination, or any one of them is used. It can be used alone.
  • These LED light sources 26 are of a so-called side light emitting type in which one side surface is a light emitting surface 24a when the surface mounted on the wiring pattern 28 is the front surface (or the back surface).
  • Each LED light source 26 has a light emitting surface 24a on the step bottom surface 22a that forms the step portion 22 as described above, and the light emitting plate 24 is close to the light incident surface 20a that forms the step portion 22 of the light guide plate 20.
  • a plurality are arranged in a row (linearly) in parallel along a short side direction (X-axis direction) of 20 with a predetermined interval.
  • each LED light source 26 has a shape in which the entire surface (including the light emitting surface 24a) including the sealing resin 25 among the surfaces directed toward the light incident surface 22b faces the light incident surface 22b. It is arranged with. Specifically, the thickness (Z-axis direction dimension) T1 of the light incident surface 22b of the light guide plate 20 is substantially equal to the height (Z-axis direction dimension) of the LED light source 26. Further, each LED light source 26 is configured such that, in the thickness direction (Z-axis direction) of the light guide plate 20, the height of the central position of the light emitting surface 24a is equal to the height of the central position of the step side surface (light incident surface) 22b. It is arranged.
  • the positional deviation distance of the LED light source 26 with respect to the light incident surface 22b of the light guide plate 20 is ⁇ 0 in the thickness direction (Z-axis direction) of the light guide plate 20. For this reason, most of the light emitted from each LED light source 26 is incident on the light incident surface 22b, and the incident efficiency is extremely high.
  • a method for manufacturing the light guide plate 20 on which the LED light source 26 according to this embodiment is mounted will be described with reference to FIGS.
  • a glass substrate 50 having a rectangular plate shape is used as a light emitting surface 20 b (hereinafter referred to as a front side plate surface) 50 b with the light emitting surface 20 b
  • a plate surface (hereinafter referred to as a back side plate surface) 50c to be prepared is prepared with the back side facing.
  • the first mask 40 is placed on a portion of the front side plate surface 50 b of the substrate 50 excluding the end surface 50 a side on which the light incident surface 22 b is formed.
  • the first mask 40 is a mask in which a pattern such as an opening is not formed.
  • a portion of the front side plate surface 50b where the first mask 40 is not placed is excavated to a predetermined depth along the thickness direction (Z-axis direction) of the light guide plate 20 by sandblasting.
  • a stepped portion 22 forming a step is formed in a portion of the front side plate surface 50b that is not covered with the first mask 40.
  • the portion of the front side plate surface 50b covered with the first mask 40 is the light emitting surface 20b, and the stepped side surface 22b that forms the stepped portion 22 is the light incident surface 22b.
  • the second mask 41 is placed on the light emitting surface 20b.
  • the second mask 41 is formed with an opening pattern 41 composed of a plurality of circular opening groups 41a, 41b, 41c.
  • the plurality of aperture groups 41 a, 41 b, 41 c have shapes and arrangements corresponding to the second diffusion pattern 21 formed on the light emitting surface 20 b of the light guide plate 20.
  • the opening diameters of the opening groups 41a, 41b, and 41c increase in three stages from one end side of the second mask 41 toward the opposite side.
  • the diffusion pattern 21 corresponding to the opening pattern 41 of the second mask 41 is formed on the light emitting surface 20b by sandblasting.
  • a diffusion pattern 21 composed of a plurality of circular patterns 21 a, 21 b, 21 c whose diameter gradually increases as the distance from the stepped portion 22 increases is formed on the light emitting surface 20 b. It is formed.
  • a third mask 42 is placed on the light emitting surface 20b.
  • the third mask 42 is a mask in which a pattern such as an opening is not formed as in the first mask 40.
  • a metal film 29 is formed on the step bottom surface 22a of the step portion 22 by the sputtering method, that is, the portion on which the front side third mask 42 is not placed.
  • a fourth mask having a pattern corresponding to the wiring pattern 28 formed on the step bottom surface 22a is placed on the metal film 29 on the step bottom surface 22a.
  • the wiring pattern 28 is formed from the metal film 29 formed on the step bottom surface 22a by photolithography.
  • FIG. 14 shows a plan view of the wiring pattern 28 formed on the step bottom surface 22a as viewed from the front side.
  • the wiring pattern 28 includes an anode terminal 28a and a cathode terminal 28b formed on one end side in the short side direction (X-axis direction) of the light guide plate 20 on the step bottom surface 22a, and an LED light source.
  • 26 comprises a pair of electrode groups 28c formed at locations corresponding to the locations where 26 is mounted, and connection wirings 28d connecting them.
  • the diffusion sheet 31 is disposed on the surface of the step side surface 22b and fixed by adhesion or the like.
  • solder paste is applied to portions corresponding to the pair of electrode groups 28 c on the wiring pattern 28, and the LED light source 26 is mounted.
  • the light guide plate 20 on which the LED light source 26 is mounted can be manufactured.
  • one end side of the wiring is electrically connected to the anode terminal 28a and the cathode terminal 28b formed on the wiring pattern 28, and the above-described LED driving board and the like are electrically connected to the other end side of the wiring. .
  • power is supplied from the LED drive board to each LED light source 26 via the wiring pattern 28, and the drive of each LED light source 26 is controlled.
  • each LED light source 26 is directly mounted on the step portion 22 formed in a part of the light guide plate 20 manufactured as described above, the backlight device 30 is impacted from the manufacturing process or from the outside.
  • each LED light source 26 is not easily displaced with respect to the light incident surface 22b formed in the stepped portion 22.
  • the LED light source 26 is mounted on a flexible flexible substrate and the flexible substrate is incorporated in the backlight device 30, the flexible substrate is deformed by bending or the like. Therefore, there is a concern that the LED light source is displaced in the thickness direction of the light guide plate 20 with respect to the light guide plate 20.
  • the light guide plate 20 is made of glass that is higher in rigidity (rigid) than a flexible substrate and the like, and a step portion 22 on which the LED light source 26 is mounted is formed in a part thereof.
  • the LED light source 26 mounted on the stepped portion 22 is extremely unlikely to be displaced in the thickness direction of the light guide plate 20 with respect to the light incident surface 22b.
  • FIG. 20 shows the position of the LED light source with respect to the light incident surface when the thickness of the light incident surface formed on the light guide plate (the dimension along the thickness direction of the light guide plate) is t (mm).
  • each LED light source 26 is arranged such that the entire surface directed toward the light incident surface 22b is opposed to the light incident surface 22b.
  • the positional shift distance along the thickness direction (Z-axis direction) of the light guide plate 20 with respect to the light incident surface 22b is ⁇ 0 mm, and an incident efficiency close to 100% can be obtained. Therefore, in the backlight device 30 of the present embodiment, a configuration in which the LED light source 26 is not easily displaced with respect to the light incident surface 22b while maintaining an incident efficiency close to 100% is realized.
  • the LED light source 26 is directly disposed on the step portion 22 provided in the light guide plate 20, so that the light guide plate 20 is thinned. Even if it exists, the LED light source 26 can be accurately positioned with respect to the light guide plate 20. In addition, since the LED light source 26 is disposed so that the entire light emitting surface 24 a faces the light incident surface 20, it is possible to maintain good incident efficiency with respect to the light incident surface 22 b of the light guide plate 20.
  • the light guide plate 20 is made of glass, the coefficient of expansion due to heat or the like is small compared to the case where the light guide plate 20 is made of resin or the like, and the LED light source 26 emits light even when heat or the like is generated from the LED light source 26. It is difficult to be displaced with respect to the incident surface 22b. As described above, in the backlight device 30 of the present embodiment, the positioning accuracy of the LED light source 26 with respect to the light guide plate 20 can be improved while maintaining good incident efficiency.
  • the wiring pattern 28 for supplying power to the LED light source 26 is formed on the step bottom surface 22 a of the step portion 22. With such a configuration, it is possible to save the space for arranging the wiring for the LED light source 26, thereby reducing the thickness of the light guide plate 20.
  • each LED light source 26 includes an LED element 24 and a sealing resin 25 that seals the LED element 24. Furthermore, each LED light source 26 is configured such that the entire surface directed toward the step side surface 22b faces the step side surface 22b. With such a configuration, the wiring pattern 28 can be simplified as compared with the case where the LED element 24 is exposed and disposed on the step bottom surface 22a. Moreover, the incident efficiency with respect to the light-incidence surface 22b of the light-guide plate 20 can be improved compared with the case where some sealing resin 25 of the LED light source 26 is not facing the level
  • a diffusion sheet that gives an optical action to the light emitted from the LED light source 26 is bonded to the light incident surface 20. Furthermore, a diffusion pattern that imparts an optical action to the light emitted from the LED light source 26 is formed on the light emitting surface 20 b of the light guide plate 20. With such a configuration, the distribution of light incident on the light incident surface 22b can be relaxed by the diffusion sheet, and the incident efficiency with respect to the light incident surface 22b of the light guide plate 20 can be increased. Further, the diffused pattern can convert the spot light into the planar light, and the luminance unevenness of the light emitted from the light guide plate 20 can be prevented or suppressed.
  • each LED light source 26 has a height at the center position of the light emitting surface 24a in the thickness direction (Z-axis direction) of the light guide plate 20 and a height at the center position of the step side surface (light incident surface) 22b. It is arranged to be equal. With such a configuration, the light emitted from each LED light source 26 is efficiently incident on the light incident surface 22b, so that the incident efficiency with respect to the light incident surface 22b of the light guide plate 20 is further increased. be able to.
  • the incident efficiency with respect to the light incident surface 22b also affects the distance between the light incident surface 22b and the LED light source 26.
  • the mounting accuracy of the flexible substrate on the chassis or the like affects the distance between the light incident surface and the LED light source.
  • the LED light source 26 is directly disposed on the light guide plate 20, so that the mounting accuracy of such a flexible substrate does not become a problem with respect to the incident efficiency. For this reason, incident efficiency can be improved compared with the conventional structure by which the LED light source was distribute
  • the light guide plate 120 has a wedge shape, as shown in FIG. Specifically, the light guide plate 120 has a shape in which the thickness decreases from the end surface 120a side where the stepped portion 122 is provided toward the opposite end surface 120d side by making the opposite plate surface 120c an inclined surface. It has become. Since the light guide plate 20 has such a shape, the uniformity of the light amount distribution of the light emitted from the light guide plate 20 can be improved, and illumination is performed as compared with the case where the light guide plate 20 has a flat plate shape. Efficiency can be increased.
  • Embodiment 3 will be described with reference to the drawings.
  • the third embodiment is different from the first embodiment in the configuration of the LED light source 226 and the mounting mode on the step bottom surface 222a. Since the other configuration is the same as that of the first embodiment, the description of the structure, operation, and effect is omitted.
  • FIGS. 17 and 18, the portions obtained by adding the numeral 200 to the reference numerals in FIGS. 3 and 14 are the same as the portions described in the first embodiment.
  • each LED light source 226 is composed of only the LED element 224 exposed.
  • each LED light source 226 includes three LED elements 224R, 224G, and 224B arranged adjacent to each other. That is, each LED light source 226 is configured to obtain white light as one light source using three LED elements 224R, 224G, and 224B including a red LED element 224R, a green LED element 224G, and a blue LED element 224B.
  • the three LED elements 224R, 224G, and 224B that constitute each LED light source 226 have different required voltages. Therefore, as shown in FIG.
  • connection wirings 228d corresponding to the red LED element 224R, the green LED element 224G, and the blue LED element 224B are required.
  • the LED elements 224R, 224G, and 224B are mounted on the step bottom surface 222a so that the distances from the light incident surface 222b are shifted from each other.
  • each LED element 224R, 224G, 224B constituting each LED light source 226 is provided with lens members 246R, 246G, 246B so as to cover the light emitting surface.
  • the thickness of the lens members 246R, 246G, and 246B is set to the respective LED elements.
  • each LED light source 226 is configured to include three LED elements 224R, 224G, and 224B, the incident efficiencies of light emitted from the LED elements 224R, 224G, and 224B are made equal. As a result, the LED light source 226 as a whole can obtain good incident efficiency.
  • Embodiment 4 will be described with reference to the drawings.
  • the thickness of the portion of the light guide plate 320 where the step 322 is formed is different from that of the first embodiment. Since the other configuration is the same as that of the first embodiment, the description of the structure, operation, and effect is omitted.
  • FIG. 19 the part obtained by adding the numeral 300 to the reference numeral in FIG. 3 is the same as the part described in the first embodiment.
  • the portion where the step portion 322 is formed has a deeper depth than that of the first embodiment. It has been excavated. Thereby, as shown in FIG. 19, the thickness of the site
  • FIG. With such a configuration the upper surface 326a of the LED light source 326 is located at a position closer to the lower side than the upper end of the light incident surface 322b, in other words, lower than the light emitting surface 320b. For this reason, the incident efficiency with respect to the light incident surface 322b of the LED light source 326 can be further enhanced while realizing a configuration in which the LED light source 326 is not easily displaced with respect to the light incident surface 322b.
  • step portion is formed on the light guide plate by the sand blast method.
  • the step portion may be formed on the light guide plate by other methods such as etching or glass polishing.
  • the diffusion pattern is formed on the light emission surface by the sandblast method.
  • the diffusion pattern may be formed on the light emission surface by other methods such as printing.
  • each LED light source has exemplified the configuration in which the entire surface directed toward the light incident surface side is mounted on the bottom surface of the step so as to face the light incident surface.
  • the light source may be mounted on the bottom surface of the step so that at least the entire light emitting surface faces the light incident surface.
  • the optical sheet is configured to include two prism sheets and one diffusion sheet.
  • the number and types of optical sheets used can be changed as appropriate.
  • a reflective polarizing sheet or the like can be added.
  • the backlight device constituting the liquid crystal display device including the liquid crystal panel having a size classified as small or medium-sized is exemplified.
  • the liquid crystal panel having a size classified as a large size is used.
  • the present invention is also applicable to a backlight device constituting a liquid crystal display device provided.
  • a substrate used for manufacturing the light guide plate a 4.3-inch size substrate, specifically, a vertical direction (long side direction) dimension of 96.5 mm, a horizontal direction (short side direction) dimension of 54.4 mm, A 0.7 mm thick glass substrate (AN100 manufactured by Asahi Glass Co., Ltd.) was used.
  • the thickness of the portion where the stepped portion is formed is 0.3 mm, that is, the depth of excavation is 0.4 mm, and the width (the light incident surface from the end surface on the stepped portion side of the light guide plate).
  • the step portion was formed so that the dimension of the step was 3.0 mm. Thereby, a light incident surface having a thickness of 0.4 mm was formed.
  • the pattern formation region has a vertical dimension of 90.5 mm and a horizontal dimension of 54 mm.
  • the diameter of the circular pattern on the side where the step portion is formed is about 0.0022 mm, and the diameter of the circular pattern on the side opposite to the side where the step portion is formed is about 0.02 mm. Formed as follows.
  • Thin-BEF films manufactured by 3M were used for the two lens sheets constituting the optical member, and HBS-706 manufactured by Eiwa Co., Ltd. was used for the diffusion sheet.
  • the mounting accuracy of the LED light source on the wiring pattern was set within a range of ⁇ 0.05 mm in the direction in which the step side surface and the LED light source are arranged (Y-axis direction). Thereby, the distance between the step side surface (light incident surface) and the LED light source is made highly uniform for each LED light source.
  • the LED light source is directly mounted on the stepped portion formed on the light guide plate as compared with the backlight device having a configuration in which the LED light source is mounted on the flexible substrate separated from the light guide plate. Even when the light source plate is less likely to be displaced and the light guide plate is made thinner, a backlight device capable of obtaining a highly uniform luminance can be manufactured without lowering the incident efficiency.
  • SYMBOLS 10 Liquid crystal display device, 14 ... Liquid crystal panel, 18 ... Optical member, 20, 120, 220, 320 ... Light guide plate, 22, 122, 222, 322 ... Step part, 22a, 122a, 222a, 322a ... Step bottom surface, 22b , 122b, 222b, 322b ... step side surface (light incident surface), 26, 126, 226, 326 ... LED light source, 28, 128, 228, 328 ... wiring pattern, 30 ... backlight device, 32 ... frame, 36 ... casing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

A backlight device (30) is provided with: a light-guide plate (20) formed from a plate of glass, the light-guide plate (20) having, towards one end face, a step section (22) comprising a step bottom surface (22a) provided following the plate surface of the light-guide plate (20) and a step side surface (22b) provided following the end face of the light-guide plate (20), the step side surface (22b) serving as a light entry side; and, on the step bottom surface (22a), side-emitting LED light sources (26) arranged in a form wherein the entirety of the light-emitting surface of each faces the step side surface (22b). Since the LED light sources (26) are arranged on a portion of the light-guide plate (20), the LED light sources (26) can be positioned precisely relative to the light-guide plate (20). In addition, since the LED light sources (26) are arranged in a form wherein the entirety of the light-emitting surface of each faces the light entry surface, satisfactory entry efficiency can be maintained.

Description

照明装置、及び表示装置Lighting device and display device
 本発明は、照明装置、及び表示装置に関する。 The present invention relates to a lighting device and a display device.
 携帯電話、スマートフォン、タブレット型ノートパソコンなどの携帯型の情報端末装置やコンピュータなどの電子機器には、液晶パネルなどの表示パネルを備えた表示装置が用いられている。表示装置は、これに用いる液晶パネルが自発光しないため、別途に照明装置としてバックライト装置を必要としている。バックライト装置はその機構によって直下型とエッジライト型とに大別されており、液晶表示装置の一層の薄型化を実現するには、エッジライト型のバックライト装置を用いるのが好ましいものとされている。 2. Description of the Related Art Display devices including a display panel such as a liquid crystal panel are used for portable information terminal devices such as mobile phones, smartphones, and tablet laptop computers, and electronic devices such as computers. Since the liquid crystal panel used for the display device does not emit light, the display device requires a backlight device as a separate illumination device. Backlight devices are roughly classified into direct type and edge light type according to the mechanism, and it is preferable to use an edge light type backlight device in order to realize further thinning of the liquid crystal display device. ing.
 エッジライト型のバックライト装置では、LED(Light Emitting Diode)等の光源から出射された光を、その一方の板面に設けられた光出射面側へ導光する導光板が筐体内に収容される。導光板には、その少なくとも一つの端面側に光入射面が設けられ、光源が当該光入射面と対向状に配される。この種のバックライト装置では、表示面における輝度や輝度の均一性を高めるべく、光源から出射された光の導光板の光入射面に対する入射効率を向上させることが要求される。このような入射効率の向上が図られたバックライトを備える液晶表示装置が、例えば特許文献1に開示されている。 In an edge light type backlight device, a light guide plate that guides light emitted from a light source such as an LED (Light Emitting Diode) to a light emitting surface provided on one of the plate surfaces is accommodated in the housing. The The light guide plate is provided with a light incident surface on at least one end surface side thereof, and a light source is arranged to face the light incident surface. In this type of backlight device, it is required to improve the incident efficiency of the light emitted from the light source with respect to the light incident surface of the light guide plate in order to increase the luminance and the uniformity of the luminance on the display surface. For example, Patent Document 1 discloses a liquid crystal display device including a backlight in which the incidence efficiency is improved.
特開2010-72262号公報JP 2010-72262 A
(発明が解決しようとする課題)
 しかしながら、特許文献1に記載された液晶表示装置では、LED光源が実装されたLED光源ブロックが、筐体の一部をなすパネルフレームに固定されるとともに導光板から離間して配された構成とされている。このため、バックライトを製造する際や外部から衝撃を受けた際等に、導光板の厚み方向において、LED光源が当該光入射面に対して位置ずれしてしまうことがあった。LED光源が光入射面に対して位置ずれすると、光源からの光の光入射面に対する入射効率が低減することがあった。特に導光板が薄型化されたバックライト装置においては、LED光源の光入射面に対する位置ずれによる入射効率の低減量が顕著であった。
(Problems to be solved by the invention)
However, in the liquid crystal display device described in Patent Document 1, the LED light source block on which the LED light source is mounted is fixed to a panel frame that forms a part of the housing and is arranged apart from the light guide plate. Has been. For this reason, when manufacturing a backlight or when receiving an impact from the outside, the LED light source may be displaced with respect to the light incident surface in the thickness direction of the light guide plate. When the LED light source is displaced with respect to the light incident surface, the incident efficiency of the light from the light source on the light incident surface may be reduced. In particular, in a backlight device in which the light guide plate is thinned, the amount of reduction in incident efficiency due to a positional shift with respect to the light incident surface of the LED light source is significant.
 本明細書で開示される技術は、上記の課題に鑑みて創作されたものである。本明細書では、良好な入射効率を保ちながら、導光板に対するLED光源の位置決め精度を向上させることが可能な技術を提供することを目的とする。 The technology disclosed in this specification has been created in view of the above problems. In this specification, it aims at providing the technique which can improve the positioning accuracy of the LED light source with respect to a light-guide plate, maintaining favorable incident efficiency.
(課題を解決するための手段)
 本明細書で開示される技術は、板状をなすガラス製の導光板であって、少なくとも一つの端面側に、当該導光板の板面に沿って設けられた段差底面と、当該導光板の端面に沿って設けられた段差側面と、からなる段差部が設けられ、前記段差側面が光入射面とされた導光板と、前記段差底面上にその発光面の全面が前記段差側面と対向する形で配された側面発光型のLED光源と、を備える照明装置に関する。
(Means for solving the problem)
The technology disclosed in the present specification is a plate-shaped glass light guide plate, on at least one end surface side, a step bottom surface provided along the plate surface of the light guide plate, and the light guide plate A light guide plate having a stepped side surface provided along the end surface, the stepped side surface being a light incident surface, and the entire light emitting surface of the stepped bottom surface facing the stepped side surface. And a side-emitting LED light source arranged in a shape.
 上記の照明装置によると、導光板に設けられた段差部に直接LED光源が配されることとなるので、導光板の薄型化を図った場合であっても、導光板に対してLED光源を精度良く位置決めすることができる。また、LED光源は、その発光面の全面が光入射面と対向する形で配されるため、導光板の光入射面に対して良好な入射効率を保つことができる。さらに、導光板がガラス製であるので、導光板が樹脂製等である場合と比べて熱等による膨張率が小さく、LED光源から熱等が発生した場合でも当該LED光源が光入射面に対して位置ずれし難い。以上のように、上記の照明装置では、良好な入射効率を保ちながら、導光板に対するLED光源の位置決め精度を向上させることができる。 According to the illuminating device described above, the LED light source is arranged directly on the step portion provided on the light guide plate. Therefore, even when the light guide plate is thinned, the LED light source is not attached to the light guide plate. Positioning can be performed with high accuracy. Further, since the LED light source is arranged in such a manner that the entire light emitting surface faces the light incident surface, it is possible to maintain good incident efficiency with respect to the light incident surface of the light guide plate. Furthermore, since the light guide plate is made of glass, the coefficient of expansion due to heat or the like is smaller than when the light guide plate is made of resin or the like, and even when heat or the like is generated from the LED light source, the LED light source is It is difficult to shift. As described above, in the illumination device described above, the positioning accuracy of the LED light source with respect to the light guide plate can be improved while maintaining good incident efficiency.
 前記段差底面に前記LED光源に電力を供給する配線パターンが形成されていてもよい。
 この構成によると、LED光源用の配線を配するためのスペースについて省スペース化を図ることができ、これにより、導光板の薄型化を図ることができる。
A wiring pattern for supplying power to the LED light source may be formed on the step bottom surface.
According to this configuration, the space for arranging the wiring for the LED light source can be saved, and thus the light guide plate can be thinned.
 前記LED光源は、LED素子と、該LED素子を封止する封止樹脂と、からなるものとされてもよい。
 この構成によると、LED素子を露出させた状態で段差底面上に配する場合と比べて、配線パターンを簡単にすることができる。
The LED light source may include an LED element and a sealing resin that seals the LED element.
According to this configuration, the wiring pattern can be simplified as compared with the case where the LED element is exposed and disposed on the bottom surface of the step.
 前記LED光源は、前記段差側面側に向けられた面の全面が該段差側面と対向するものとされていてもよい。
 この構成によると、LED光源の封止樹脂の一部が段差側面と対向していない場合と比べて、導光板の光入射面に対する入射効率を高めることができる。
The LED light source may be configured such that the entire surface directed to the step side surface faces the step side surface.
According to this structure, the incident efficiency with respect to the light-incidence surface of a light-guide plate can be improved compared with the case where a part of sealing resin of a LED light source is not facing the level | step difference side surface.
 前記光入射面に前記LED光源から出射された光に光学作用を付与する第1の拡散パターンが形成されていてもよい。
 この構成によると、第1の拡散パターンによって光入射面において入射した光の分布を緩和させることができ、導光板の光入射面に対する入射効率を高めることができる。
A first diffusion pattern that imparts an optical action to the light emitted from the LED light source may be formed on the light incident surface.
According to this configuration, the distribution of light incident on the light incident surface can be relaxed by the first diffusion pattern, and the incident efficiency with respect to the light incident surface of the light guide plate can be increased.
 前記導光板の一方の板面に前記LED光源から出射された光に光学作用を付与する第2の拡散パターンが形成されていてもよい。
 この構成によると、第2の拡散パターンによって点状の光を面状の光へと変換させることができ、導光板から出射される光の輝度ムラを防止ないし抑制することができる。
A second diffusion pattern that imparts an optical action to the light emitted from the LED light source may be formed on one plate surface of the light guide plate.
According to this configuration, the point-shaped light can be converted into planar light by the second diffusion pattern, and uneven brightness of the light emitted from the light guide plate can be prevented or suppressed.
 前記導光板の前記第2の拡散パターンが形成された板面が粗面とされ、前記第2の拡散パターンは前記LED光源から遠ざかるにつれて大きくなるものとされていてもよい。
 この構成によると、第2の配線パターンについて、導光板から出射される光の光量分布を均一にするための効果的なパターン形状を導光板の板面上に形成することができる。
A plate surface on which the second diffusion pattern of the light guide plate is formed may be a rough surface, and the second diffusion pattern may be increased as the distance from the LED light source is increased.
According to this configuration, an effective pattern shape for making the light amount distribution of the light emitted from the light guide plate uniform can be formed on the plate surface of the light guide plate for the second wiring pattern.
 前記LED光源は、前記導光板の厚み方向において、前記発光面の中央位置の高さが前記段差側面の中央位置の高さと等しくなるように配されていてもよい。
 この構成によると、LED光源から出射された光が効率良く光入射面に入射されることとなるため、導光板の光入射面に対する入射効率を一層高めることができる。
The LED light source may be arranged such that the height of the center position of the light emitting surface is equal to the height of the center position of the step side surface in the thickness direction of the light guide plate.
According to this configuration, since the light emitted from the LED light source is efficiently incident on the light incident surface, the incident efficiency with respect to the light incident surface of the light guide plate can be further increased.
 前記導光板は、前記段差部が設けられた端面側からその反対側の端面側に向かって厚みが小さくなる楔形状とされていてもよい。
 この構成によると、導光板が平板状とされている場合と比べて照明効率を高めることができる。
The light guide plate may have a wedge shape whose thickness decreases from an end surface side where the step portion is provided to an end surface side opposite thereto.
According to this structure, illumination efficiency can be improved compared with the case where the light-guide plate is made flat.
 前記段差部は板状とされた前記導光板の一部を削る加工処理によって形成されていてもよい。
 この構成によると、導光板に段差を形成するための具体的な製造方法を提供することができる。
The step portion may be formed by a processing process for cutting a part of the light guide plate that is plate-shaped.
According to this structure, the specific manufacturing method for forming a level | step difference in a light-guide plate can be provided.
 本明細書で開示される技術は、上記照明装置と、上記照明装置からの光を利用して表示を行う表示パネルと、を備える表示装置として表現することもできる。また、当該表示パネルが、一対の基板間に液晶を封入してなる液晶パネルとされた表示装置も、新規で有用である。 The technology disclosed in this specification can also be expressed as a display device including the above-described illumination device and a display panel that performs display using light from the illumination device. A display device in which the display panel is a liquid crystal panel in which liquid crystal is sealed between a pair of substrates is also novel and useful.
(発明の効果)
 本明細書で開示される技術によれば、良好な入射効率を保ちながら、導光板に対するLED光源の位置決め精度を向上させることができる。
(The invention's effect)
According to the technique disclosed in this specification, the positioning accuracy of the LED light source with respect to the light guide plate can be improved while maintaining good incident efficiency.
実施形態1に係る液晶表示装置の分解斜視図1 is an exploded perspective view of a liquid crystal display device according to Embodiment 1. FIG. 液晶表示装置の断面図Cross section of liquid crystal display LED光源が実装された導光板を拡大した拡大断面図An enlarged cross-sectional view of a light guide plate on which an LED light source is mounted 導光板とLED光源の平面図Plan view of light guide plate and LED light source LED光源が実装される導光板の製造工程であって、導光板を準備する工程の当該導光板の側面図Side view of the light guide plate in the process of manufacturing the light guide plate on which the LED light source is mounted and preparing the light guide plate LED光源が実装される導光板の製造工程であって、段差部を形成する工程の当該導光板の側面図Side view of the light guide plate in the manufacturing process of the light guide plate on which the LED light source is mounted and forming the stepped portion LED光源が実装される導光板の製造工程であって、段差部を形成した後の当該導光板の側面図Side view of the light guide plate after the step portion is formed in the manufacturing process of the light guide plate on which the LED light source is mounted LED光源が実装される導光板の製造工程であって、導光板の光出射面に第2の拡散パターンを形成する工程の当該導光板の側面図を示す。The side view of the said light-guide plate of the manufacturing process of the light-guide plate in which an LED light source is mounted, and the process of forming a 2nd diffused pattern in the light-projection surface of a light-guide plate is shown. 第2マスクの平面図Plan view of the second mask LED光源が実装される導光板の製造工程であって、第2の拡散パターンを形成した後の当該導光板の平面図The top view of the said light-guide plate after it is a manufacturing process of the light-guide plate in which an LED light source is mounted, and forms the 2nd diffusion pattern LED光源が実装される導光板の製造工程であって、導光板の段差底面に金属膜を形成する工程の当該導光板の側面図Side view of the light guide plate in the manufacturing process of the light guide plate on which the LED light source is mounted, wherein the metal film is formed on the step bottom surface of the light guide plate. LED光源が実装される導光板の製造工程であって、導光板の段差底面に金属膜を形成した後の当該導光板の側面図Side view of the light guide plate after a metal film is formed on the step bottom surface of the light guide plate in the manufacturing process of the light guide plate on which the LED light source is mounted LED光源が実装される導光板の製造工程であって、導光板の段差底面に配線パターンを形成する工程の当該導光板の側面図Side view of the light guide plate in the manufacturing process of the light guide plate on which the LED light source is mounted, wherein the wiring pattern is formed on the step bottom surface of the light guide plate LED光源が実装される導光板の製造工程であって、導光板の段差底面に配線パターンを形成した後の段差底面近傍を拡大した平面図The top view which was the manufacturing process of the light-guide plate in which a LED light source is mounted, and expanded the step bottom vicinity after forming a wiring pattern in the step bottom of a light-guide plate LED光源が実装される導光板の製造工程であって、配線パターン上にLED光源を実装した後の段差底面近傍を拡大した平面図A plan view of a manufacturing process of a light guide plate on which an LED light source is mounted, in which the vicinity of a step bottom surface after the LED light source is mounted on a wiring pattern is enlarged. 実施形態2においてLED光源が実装された導光板を拡大した拡大断面図The expanded sectional view which expanded the light-guide plate in which the LED light source was mounted in Embodiment 2. 実施形態3においてLED光源が実装された導光板を拡大した拡大断面図The expanded sectional view which expanded the light-guide plate in which the LED light source was mounted in Embodiment 3. LED光源が実装された段差底面近傍を拡大した平面図An enlarged plan view of the vicinity of the bottom of the step where the LED light source is mounted 実施形態4においてLED光源が実装された導光板を拡大した拡大断面図The expanded sectional view which expanded the light-guide plate in which the LED light source was mounted in Embodiment 4. 導光板の厚みとLED光源の位置ずれに対する入射効率の関係を示す表Table showing the relationship between the thickness of the light guide plate and the incident efficiency with respect to the positional deviation of the LED light source
 <実施形態1>
 図面を参照して実施形態1を説明する。本実施形態では、カバーパネル12を備える液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、上下方向については、図1及び図2などを基準とし、且つ同図上側を表側とするとともに同図下側を裏側とする。
<Embodiment 1>
Embodiment 1 will be described with reference to the drawings. In this embodiment, the liquid crystal display device 10 including the cover panel 12 is illustrated. In addition, a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing. Further, with respect to the vertical direction, FIGS. 1 and 2 are used as a reference, and the upper side of the figure is the front side and the lower side of the figure is the back side.
 液晶表示装置10は、図1に示すように、全体として縦長の長方形状をなしており、表側の板面が画像を表示する表示面とされる液晶パネル(表示パネルの一例)14と、液晶パネル14に対してその表示面と対向する形で配されるカバーパネル12と、液晶パネル14を挟んでカバーパネル12側とは反対側に配されるとともに液晶パネル14に光を供給する外部光源であるバックライト装置(照明装置の一例)30とを備えている。さらに、液晶表示装置10は、カバーパネル12、液晶パネル14及びバックライト装置30を収容するケーシング36を備えている。液晶表示装置10の構成部品のうち、カバーパネル12及びケーシング36が液晶表示装置10の外観を構成している。本実施形態に係る液晶表示装置10は、携帯型情報端末(携帯電話、スマートフォン、タブレット型ノートパソコンなど)、車載型情報端末(据え置き型カーナビゲーションシステム、携帯型カーナビゲーションシステムなど)、携帯型ゲーム機などの各種電子機器に用いられるものである。このため、液晶表示装置10を構成する液晶パネル14及びカバーパネル12の画面サイズは、数インチ~10数インチ程度とされ、一般的には小型または中小型に分類される大きさとされている。 As shown in FIG. 1, the liquid crystal display device 10 has a vertically long rectangular shape as a whole, and a liquid crystal panel (an example of a display panel) 14 whose front side plate surface is a display surface for displaying an image, and a liquid crystal A cover panel 12 arranged to face the display surface of the panel 14 and an external light source arranged on the opposite side of the cover panel 12 with the liquid crystal panel 14 interposed therebetween and supplying light to the liquid crystal panel 14 And a backlight device (an example of a lighting device) 30. The liquid crystal display device 10 further includes a casing 36 that houses the cover panel 12, the liquid crystal panel 14, and the backlight device 30. Of the components of the liquid crystal display device 10, the cover panel 12 and the casing 36 constitute the appearance of the liquid crystal display device 10. The liquid crystal display device 10 according to the present embodiment includes a portable information terminal (such as a mobile phone, a smartphone, and a tablet notebook computer), an in-vehicle information terminal (such as a stationary car navigation system and a portable car navigation system), and a portable game. It is used for various electronic devices such as a machine. For this reason, the screen sizes of the liquid crystal panel 14 and the cover panel 12 constituting the liquid crystal display device 10 are about several inches to several tens of inches, and are generally classified into small or medium-sized.
 まず、液晶パネル14について説明する。液晶パネル14は、図1に示すように、全体として縦長の長方形状をなしており、透明な(透光性を有する)一対のガラス製の基板14a,14bと、両基板14a,14b間に介在し、電界印加に伴って光学特性が変化する物質である液晶分子を含む液晶層(図示せず)とを備えている。両基板14a,14bは、液晶層の厚さ分のギャップを維持した状態で図示しないシール剤によって貼り合わせられている。両基板14a,14bのうち裏側(背面側)はアレイ基板14bとされ、表側(正面側)はCF基板14aとされる。アレイ基板11bには、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、CF基板14aには、R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、さらには配向膜等が設けられている。このうち、CF基板14aは、図1に示すように、短辺寸法がアレイ基板14bと概ね同等であるものの、長辺寸法がアレイ基板11bよりも小さなものとされるとともに、アレイ基板14bに対して長辺方向についての一方の端部を揃えた状態で貼り合わせられている。従って、アレイ基板14bのうち長辺方向についての他方の端部は、表裏両板面が外部に露出した状態とされており、ここに当該液晶パネル14を駆動するためのドライバ15やパネル側フレキシブル基板(図示せず)の実装領域が確保されている。これにより、ソース配線、ゲート配線および対向電極などに、図示しない駆動回路基板から画像を表示するのに必要な画像データや各種制御信号が供給されるようになっている。なお、両基板の外側には偏光板(図示せず)が配されている。 First, the liquid crystal panel 14 will be described. As shown in FIG. 1, the liquid crystal panel 14 has a vertically long rectangular shape as a whole, and is formed between a pair of transparent (translucent) glass substrates 14a and 14b and both the substrates 14a and 14b. And a liquid crystal layer (not shown) including liquid crystal molecules which are interposed and whose optical characteristics change with application of an electric field. Both the substrates 14a and 14b are bonded together by a sealing agent (not shown) while maintaining a gap corresponding to the thickness of the liquid crystal layer. Of the two substrates 14a and 14b, the back side (back side) is the array substrate 14b, and the front side (front side) is the CF substrate 14a. The array substrate 11b is provided with a switching element (for example, TFT) connected to the source wiring and the gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like. Are provided with a color filter in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, a counter electrode, and an alignment film. Among these, as shown in FIG. 1, the CF substrate 14a has a short side dimension substantially the same as the array substrate 14b, but has a long side dimension smaller than that of the array substrate 11b. Then, they are bonded together with one end in the long side direction aligned. Accordingly, the other end of the array substrate 14b in the long side direction is in a state where both the front and back plate surfaces are exposed to the outside, and a driver 15 for driving the liquid crystal panel 14 and a panel side flexible A mounting area for a substrate (not shown) is secured. As a result, image data and various control signals necessary for displaying an image from a drive circuit board (not shown) are supplied to the source wiring, the gate wiring, the counter electrode, and the like. A polarizing plate (not shown) is disposed outside both substrates.
 カバーパネル12は、液晶パネル14を表側から全域にわたって覆う形で配されており、それにより液晶パネル14の保護を図ることができる。カバーパネル12における中央側部分には、その裏側の板面に対して図示しない接着剤を介して液晶パネル14が貼り付けられている。カバーパネル12は、液晶パネル14と同様に縦長の長方形状をなしており、その平面に視た大きさは液晶パネル14をなす基板14a,14bよりも一回り大きく、後述するフレーム32の外形とほぼ同じ程度とされる。従って、カバーパネル12の外周側部分は、液晶パネル14における外周端から庇状に外側に張り出している。カバーパネル12には、その周囲に光を遮る遮光部12aが形成されている。この遮光部12aは、例えばスクリーン印刷、インクジェット印刷などの印刷手段によって設けられている。遮光部12aは、液晶パネル14の外周端よりも外側に張り出した外周側部分にも形成されることで、縦長の略枠状(略額縁状)に形成されており、それによりバックライト装置30からの光を液晶パネル14の周囲においてカバーパネル12の裏側の板面に入射する前の段階で遮光部12aにより遮光することができる。 The cover panel 12 is arranged so as to cover the entire area of the liquid crystal panel 14 from the front side, whereby the liquid crystal panel 14 can be protected. A liquid crystal panel 14 is attached to the center side portion of the cover panel 12 via an adhesive (not shown) on the plate surface on the back side. The cover panel 12 has a vertically long rectangular shape, similar to the liquid crystal panel 14, and the size of the cover panel 12 as viewed in a plane is slightly larger than the substrates 14 a and 14 b forming the liquid crystal panel 14. Almost the same level. Therefore, the outer peripheral side portion of the cover panel 12 protrudes outward in a bowl shape from the outer peripheral end of the liquid crystal panel 14. The cover panel 12 is formed with a light shielding portion 12a that shields light around it. The light shielding portion 12a is provided by printing means such as screen printing or ink jet printing. The light shielding portion 12a is also formed on the outer peripheral side portion that protrudes outward from the outer peripheral end of the liquid crystal panel 14, thereby forming a vertically long substantially frame shape (substantially frame shape), and thereby the backlight device 30. Can be shielded by the light shielding portion 12a before entering the plate surface on the back side of the cover panel 12 around the liquid crystal panel.
 ケーシング36は、合成樹脂材料または金属材料からなるものであって、図1に示すように、表側に向けて開口した略椀型をなしている。ケーシング36の内側に保有される収容空間内には、カバーパネル12、液晶パネル14及びバックライト装置30が収容されるようになっている。従って、ケーシング36は、バックライト装置30を裏側から覆うとともに、バックライト装置30及びカバーパネル12を全周にわたって側方から覆うことで、液晶表示装置10における背面側及び側面側の外観を構成している。また、ケーシング36は、外周部が2段階の略階段状をなしており、最も低い第1段部36aと、2番目に低い第2段部36bと、を有している。ケーシング36のうち、バックライト装置30を構成するフレーム32に対して対向する第2段部34bと当該フレーム32の裏側の面との間には、両者に粘着するケーシング用粘着テープ35が介在する形で配されている。 The casing 36 is made of a synthetic resin material or a metal material, and has a substantially bowl shape opened toward the front side, as shown in FIG. The cover panel 12, the liquid crystal panel 14, and the backlight device 30 are accommodated in an accommodation space held inside the casing 36. Therefore, the casing 36 covers the backlight device 30 from the back side, and covers the backlight device 30 and the cover panel 12 from the side over the entire circumference, thereby configuring the appearance of the back side and the side surface side of the liquid crystal display device 10. ing. In addition, the casing 36 has a substantially stepped outer peripheral portion, and has the lowest first step portion 36a and the second lowest second step portion 36b. Of the casing 36, between the second step portion 34 b facing the frame 32 constituting the backlight device 30 and the back surface of the frame 32, a casing adhesive tape 35 that adheres to both is interposed. It is arranged in a form.
 ケーシング用粘着テープ35は、可撓性を有するテープ状の基材を有し、その基材における表裏両面に粘着剤が塗布されてなるものである。このケーシング用粘着テープ35によってケーシング36とフレーム22とが取付状態に保たれるようになっている。また、ケーシング用粘着テープ35は、粘着対象であるフレーム32の形状に合わせて全体として縦長の略枠状に形成されているので、ケーシング36及びフレーム32をほぼ全周にわたって固着している。ケーシング用粘着テープ35は、その一部が後述する反射シート34の外周端部にも貼り付けられている。また、ケーシング36の第1段部36aとバックライト装置30の裏側との間に残された空間には、液晶パネル14の駆動を制御するためのコントロール基板や後述するLED光源26に駆動電力を供給するLED駆動基板などの図示しない基板類などが収容されている。 The casing adhesive tape 35 has a flexible tape-like base material, and an adhesive is applied to both the front and back surfaces of the base material. The casing 36 and the frame 22 are kept in an attached state by the casing adhesive tape 35. Moreover, since the casing adhesive tape 35 is formed in a substantially vertically long frame shape as a whole in accordance with the shape of the frame 32 to be adhered, the casing 36 and the frame 32 are fixed substantially over the entire circumference. A part of the casing adhesive tape 35 is also affixed to an outer peripheral end of a reflection sheet 34 to be described later. Further, in the space left between the first step portion 36 a of the casing 36 and the back side of the backlight device 30, driving power is supplied to a control board for controlling the driving of the liquid crystal panel 14 and an LED light source 26 described later. A substrate (not shown) such as an LED drive substrate to be supplied is accommodated.
 続いてバックライト装置30について説明する。バックライト装置30は、LED光源26が実装されるとともに当該LED光源26からの光を導光する導光板20と、導光板20上に積層配置される光学部材18と、導光板20下に積層配置される反射シート34と、導光板20及び光学部材18を取り囲むとともに液晶パネル14を裏側(カバーパネル12側とは反対側)から支持する枠状のフレーム32と、を備える。このバックライト装置30は、液晶パネル14における外周側の端部にLED光源26が偏在する形で配された、いわゆるエッジライト型(サイドライト型)とされる。以下、バックライト装置30の各構成部品について説明する。 Next, the backlight device 30 will be described. The backlight device 30 includes an LED light source 26 mounted thereon, a light guide plate 20 that guides light from the LED light source 26, an optical member 18 that is stacked on the light guide plate 20, and a stack below the light guide plate 20. The reflection sheet 34 to be disposed, and a frame-like frame 32 that surrounds the light guide plate 20 and the optical member 18 and supports the liquid crystal panel 14 from the back side (the side opposite to the cover panel 12 side). The backlight device 30 is a so-called edge light type (side light type) in which the LED light source 26 is unevenly distributed at the outer peripheral end of the liquid crystal panel 14. Hereinafter, each component of the backlight device 30 will be described.
 光学部材18は、図2に示すように、液晶パネル14と同様に平面に視て横長の方形状をなしている。光学部材18は、後述する導光板20の板面よりも一回り小さいものとされ、その全体が導光板20の表側(光出射側)に載せられていて液晶パネル14と導光板20との間に介在して配されることで、導光板20から出射された光を透過するとともにその透過光に所定の光学作用を付与しつつ液晶パネル14に向けて出射させる。光学部材18は、互いに積層される複数枚のシート状の部材からなるものとされる。具体的には、光学部材18は、導光板20側から順に、導光板20から出射された光を拡散する拡散シート18a、当該拡散シート18aを透過した光を集光する第1レンズシート18b及び第2レンズシート18c、からなるものとされる。 As shown in FIG. 2, the optical member 18 has a horizontally long rectangular shape as viewed in a plane, like the liquid crystal panel 14. The optical member 18 is slightly smaller than the plate surface of the light guide plate 20 described later, and the entire optical member 18 is placed on the front side (light emission side) of the light guide plate 20 and between the liquid crystal panel 14 and the light guide plate 20. Accordingly, the light emitted from the light guide plate 20 is transmitted and emitted toward the liquid crystal panel 14 while applying a predetermined optical action to the transmitted light. The optical member 18 is composed of a plurality of sheet-like members stacked on each other. Specifically, the optical member 18 includes, in order from the light guide plate 20 side, a diffusion sheet 18a that diffuses light emitted from the light guide plate 20, a first lens sheet 18b that collects light transmitted through the diffusion sheet 18a, and The second lens sheet 18c is used.
 反射シート34は、長方形状のシート状をなし、合成樹脂製とされるとともにその表面が光反射性に優れた白色とされている。反射シート34は、その大部分が後述する導光板20の反対板面20cと面接触するとともに、その端縁が後述するフレーム22の裏側とも接触しており、上述したようにケーシング用粘着テープ35に固着された状態でその外周がケーシング36の第2段部36bによって支持されている。この反射シート34のうち、長辺方向(Y軸方向)の両端部は、それぞれ導光板20の短辺側をなす両端面よりも外側に向けて延出している。 The reflection sheet 34 has a rectangular sheet shape, is made of synthetic resin, and has a white surface with excellent light reflectivity. Most of the reflection sheet 34 is in surface contact with the opposite plate surface 20c of the light guide plate 20 to be described later, and its edge is also in contact with the back side of the frame 22 to be described later. As described above, the casing adhesive tape 35 is used. The outer periphery of the casing 36 is supported by the second step portion 36 b of the casing 36. In the reflection sheet 34, both end portions in the long side direction (Y-axis direction) extend outward from both end surfaces forming the short side of the light guide plate 20.
 フレーム32は、合成樹脂製とされており、図1に示すように、外形がカバーパネル12とほぼ同じとなる縦長の略枠状をなすとともにその内側に液晶パネル14、導光板20及び光学部材18が収容されるようになっている。フレーム32は、X軸方向に沿って延在する一対の短辺部分と、Y軸方向に沿って延在する一対の長辺部分とを連ねてなっている。フレーム32は、カバーパネル12のうち遮光部12aが形成された外周端部及び液晶パネル14の裏側の板面と対向するとともに同板面を裏側から全周にわたって支持することができるものとされる。フレーム32は、図1及び図2に示すように、断面形状が3段階の略階段状をなしており、2番目に低い段部が液晶パネル14の外周端部を裏側から支持し、最も高い段部がカバーパネル12の外周端部を裏側から支持している。なお、フレーム32と液晶パネル14との間には、両者に粘着する略枠状のパネル用粘着テープ16が介在する形で配されており、このパネル用粘着テープ16によって液晶パネル14とフレーム32との間が貼り付けされた状態に保たれるようになっている。一方、フレーム32の裏側には、わずかに凹んだ段差が設けられており、これによりケーシング36とフレーム32の間にわずかな隙間が形成されるようになっている。この隙間には、図2に示すように、反射シート35の外周端部が収容される。 The frame 32 is made of a synthetic resin, and as shown in FIG. 1, the frame 32 has a vertically long substantially frame shape whose outer shape is substantially the same as that of the cover panel 12, and the liquid crystal panel 14, the light guide plate 20, and the optical member are disposed inside the frame 32. 18 is accommodated. The frame 32 includes a pair of short side portions that extend along the X-axis direction and a pair of long side portions that extend along the Y-axis direction. The frame 32 is opposed to the outer peripheral end portion of the cover panel 12 where the light shielding portion 12a is formed and the plate surface on the back side of the liquid crystal panel 14 and can support the plate surface from the back side over the entire circumference. . As shown in FIGS. 1 and 2, the frame 32 has a substantially stepped shape with a three-dimensional cross section, and the second lowest step supports the outer peripheral end of the liquid crystal panel 14 from the back side, and is the highest. The step portion supports the outer peripheral end of the cover panel 12 from the back side. A substantially frame-shaped panel adhesive tape 16 that adheres to the frame 32 and the liquid crystal panel 14 is disposed between the frame 32 and the liquid crystal panel 14, and the liquid crystal panel 14 and the frame 32 are disposed by the panel adhesive tape 16. It is designed to be kept in a state where the space between is attached. On the other hand, a slightly recessed step is provided on the back side of the frame 32, so that a slight gap is formed between the casing 36 and the frame 32. As shown in FIG. 2, the outer peripheral end of the reflection sheet 35 is accommodated in this gap.
 導光板20は、長方形状をなすとともに光学部材18より厚みが大きな板状部材であり、屈折率が空気よりも高く且つ透明な(透光性に優れた)ガラス製とされている。導光板20をなすガラス材料は、例えばアルミノ珪酸塩ガラスとされる。導光板20は、その板面における短辺方向がX軸方向と、長辺方向がY軸方向とそれぞれ一致し、且つ板面と直交する板厚方向がZ軸方向と一致している。導光板20は、図1及び図2に示すように、後述するフレーム32に囲まれた状態で液晶パネル14及び光学部材18の直下位置に配されている。導光板20の板面のうち、表側を向いた面(液晶パネル14及び光学部材18との対向面)は、図1及び図2に示すように、内部の光を光学部材18及び液晶パネル14側に向けて出射させる光出射面20bとなっている。一方、光出射面20bとは反対側の板面(裏面)は反対板面20cとなっている。導光板20におけるX軸方向に沿って設けられた両端面のうち一方(図1及び図2に示す左側)の端面20a側には、次述する段差部22が設けられている。導光板20におけるX軸方向に沿って設けられた両端面のうち他方の端面は、反対端面20dとなっている。 The light guide plate 20 is a plate-shaped member having a rectangular shape and a thickness greater than that of the optical member 18, and is made of glass having a refractive index higher than that of air and being transparent (excellent in translucency). The glass material forming the light guide plate 20 is, for example, aluminosilicate glass. In the light guide plate 20, the short side direction on the plate surface coincides with the X-axis direction, the long side direction coincides with the Y-axis direction, and the plate thickness direction orthogonal to the plate surface coincides with the Z-axis direction. As shown in FIGS. 1 and 2, the light guide plate 20 is disposed immediately below the liquid crystal panel 14 and the optical member 18 in a state surrounded by a frame 32 described later. Of the plate surfaces of the light guide plate 20, the surface facing the front side (the surface facing the liquid crystal panel 14 and the optical member 18) transmits the internal light to the optical member 18 and the liquid crystal panel 14 as shown in FIGS. 1 and 2. It becomes the light-projection surface 20b radiate | emitted toward the side. On the other hand, the plate surface (back surface) opposite to the light emitting surface 20b is an opposite plate surface 20c. A step portion 22 described below is provided on one end face 20a side (the left side shown in FIGS. 1 and 2) of both end faces provided along the X-axis direction in the light guide plate 20. The other end face among the both end faces provided along the X-axis direction in the light guide plate 20 is an opposite end face 20d.
 図2に示すように、導光板20の一つの端面20a側に設けられた段差部22は、光出射面20bに対して段差をなす形で設けられており、当該導光板20の板面に沿って設けられた段差底面22aと、当該導光板20の端面に沿って設けられた段差側面22bと、からなるものとされる。段差部22における段差底面22aの大部分には、配線パターン28が設けられている。この配線パターン28上には、その発光面24aが段差側面22b側に向けられた形で後述する複数のLED光源26が実装されている。段差側面22bは、LED光源26の発光面24aと対向することで、各LED光源28から発せられた光が入射される光入射面22bとなっている。従って、以下では段差側面22bを光入射面22bとも称し、光入射面22bを段差側面22bとも称するものとする。導光板20は、各LED28から発せられた光を光入射面20aから導入するとともに、その光を内部で伝播させつつ光学部材18側(表側、光出射側)へ向くよう立ち上げて光出射面20bから出射させる機能を有する。なお、導光板20の光入射面22bには、図3に示すように、拡散シート(第1の拡散パターンの一例)51が接着されており、これにより光入射面22bに入射した光の分布を緩和させることができ、導光板20の光入射面22bに対する入射効率を高めることができるようになっている。また、導光板20の光出射面20bには、拡散パターン(第2の拡散パターンの一例)21(図10参照、図4では不図示)が形成されている。拡散パターン21は、段差部22(LED光源26)から離れるにつれて段階的に径、つまり面積が大きくなるものとされた複数の円形状のパターン21a、21b、21cからなるものとされており、これにより光出射面20aから出射される光の面内における光量分布が均一となるよう制御されている。 As shown in FIG. 2, the stepped portion 22 provided on one end surface 20 a side of the light guide plate 20 is provided in a shape that forms a step with respect to the light emitting surface 20 b, and is formed on the plate surface of the light guide plate 20. A step bottom surface 22 a provided along the step and a step side surface 22 b provided along the end surface of the light guide plate 20 are provided. A wiring pattern 28 is provided on most of the step bottom surface 22 a in the step portion 22. A plurality of LED light sources 26 to be described later are mounted on the wiring pattern 28 such that the light emitting surface 24a faces the step side surface 22b. The step side surface 22 b is opposed to the light emitting surface 24 a of the LED light source 26, thereby forming a light incident surface 22 b on which light emitted from each LED light source 28 is incident. Therefore, hereinafter, the step side surface 22b is also referred to as a light incident surface 22b, and the light incident surface 22b is also referred to as a step side surface 22b. The light guide plate 20 introduces the light emitted from each LED 28 from the light incident surface 20a and rises toward the optical member 18 side (front side, light emission side) while propagating the light inside, thereby emitting the light. It has the function to emit from 20b. As shown in FIG. 3, a diffusion sheet (an example of a first diffusion pattern) 51 is bonded to the light incident surface 22b of the light guide plate 20, thereby distributing the light incident on the light incident surface 22b. The incident efficiency with respect to the light incident surface 22b of the light guide plate 20 can be increased. Further, a diffusion pattern (an example of a second diffusion pattern) 21 (see FIG. 10, not shown in FIG. 4) is formed on the light emitting surface 20 b of the light guide plate 20. The diffusion pattern 21 is composed of a plurality of circular patterns 21a, 21b, and 21c whose diameter, that is, the area is increased stepwise as the distance from the step portion 22 (LED light source 26) increases. Thus, the light amount distribution in the surface of the light emitted from the light emitting surface 20a is controlled to be uniform.
 複数のLED光源26は、図3及び図4に示すように、段差底面22aに形成された配線パターン28上に導光板20の短辺方向(X軸方向)に沿って並列した形で実装されており、LED素子24を封止樹脂25により封止した構成とされる。各LED光源26は、配線パターン28上に実装されることで、配線パターン28を介して駆動電力が供給されるようになっている。LED素子24は、主発光波長が1種類とされ、具体的には、青色を単色発光するものが用いられている。その一方、LED素子24を封止する樹脂材には、LED素子24から発せられた青色の光により励起されて所定の色を発光する蛍光体が分散配合されており、全体として概ね白色光を発するものとされる。なお、蛍光体としては、例えば黄色光を発光する黄色蛍光体、緑色光を発光する緑色蛍光体、及び赤色光を発光する赤色蛍光体の中から適宜組み合わせて用いたり、またはいずれか1つを単独で用いたりすることができる。これらのLED光源26は、配線パターン28上に実装された面を正面(又は背面)としたときの一方の側面が発光面24aとされる、いわゆる側面発光型とされている。各LED光源26は、上記のように段差部22を構成する段差底面22a上において、その発光面24aが導光板20の段差部22を構成する光入射面20aと近接した形で、当該導光板20の短辺方向(X軸方向)に沿って複数が所定の間隔を空けつつ一列に(直線的に)並列配置されている。 As shown in FIGS. 3 and 4, the plurality of LED light sources 26 are mounted in parallel on the wiring pattern 28 formed on the step bottom surface 22 a along the short side direction (X-axis direction) of the light guide plate 20. The LED element 24 is sealed with a sealing resin 25. Each LED light source 26 is mounted on the wiring pattern 28 so that driving power is supplied via the wiring pattern 28. The LED element 24 has a single main emission wavelength, and specifically, one that emits blue in a single color is used. On the other hand, the resin material that seals the LED element 24 is dispersed and blended with phosphors that are excited by the blue light emitted from the LED element 24 and emit a predetermined color, and generally emit white light. It is supposed to be emitted. In addition, as the phosphor, for example, a yellow phosphor that emits yellow light, a green phosphor that emits green light, and a red phosphor that emits red light are used in appropriate combination, or any one of them is used. It can be used alone. These LED light sources 26 are of a so-called side light emitting type in which one side surface is a light emitting surface 24a when the surface mounted on the wiring pattern 28 is the front surface (or the back surface). Each LED light source 26 has a light emitting surface 24a on the step bottom surface 22a that forms the step portion 22 as described above, and the light emitting plate 24 is close to the light incident surface 20a that forms the step portion 22 of the light guide plate 20. A plurality are arranged in a row (linearly) in parallel along a short side direction (X-axis direction) of 20 with a predetermined interval.
 各LED光源26は、図3に示すように、その光入射面22b側に向けられた面のうち封止樹脂25も含めた全面(発光面24aを含む)が光入射面22bと対向する形で配されている。具体的には、導光板20の光入射面22bの厚み(Z軸方向寸法)T1は、LED光源26の高さ(Z軸方向寸法)とほぼ同等とされている。さらに、各LED光源26は、導光板20の厚み方向(Z軸方向)において、その発光面24aの中央位置の高さが段差側面(光入射面)22bの中央位置の高さと等しくなるように配されている。従って、本実施形態では、導光板20の厚み方向(Z軸方向)において、導光板20の光入射面22bに対するLED光源26の位置ずれ距離が±0となっている。このため、各LED光源26から出射された光は、そのほとんどが光入射面22bに入射され、入射効率が極めて高いものとされている。 As shown in FIG. 3, each LED light source 26 has a shape in which the entire surface (including the light emitting surface 24a) including the sealing resin 25 among the surfaces directed toward the light incident surface 22b faces the light incident surface 22b. It is arranged with. Specifically, the thickness (Z-axis direction dimension) T1 of the light incident surface 22b of the light guide plate 20 is substantially equal to the height (Z-axis direction dimension) of the LED light source 26. Further, each LED light source 26 is configured such that, in the thickness direction (Z-axis direction) of the light guide plate 20, the height of the central position of the light emitting surface 24a is equal to the height of the central position of the step side surface (light incident surface) 22b. It is arranged. Therefore, in this embodiment, the positional deviation distance of the LED light source 26 with respect to the light incident surface 22b of the light guide plate 20 is ± 0 in the thickness direction (Z-axis direction) of the light guide plate 20. For this reason, most of the light emitted from each LED light source 26 is incident on the light incident surface 22b, and the incident efficiency is extremely high.
 続いて、図5から図15を参照して、本実施形態におけるLED光源26が実装される導光板20の製造方法について説明する。まず、図5に示すように、長方形状の板状をなすガラス製の基板50を、光出射面20bとする板面(以下、表側板面と称する)50bを表側に、光出射面20bとする板面(以下、裏側板面と称する)50cを裏側に向けた状態で準備する。次に、図6に示すように、基板50の表側板面50bのうち光入射面22bを形成する側の端面50a側を除いた部分に第1のマスク40を載置する。この第1のマスク40は開口等のパターンが形成されていないマスクである。次に、サンドブラスト法によって、表側板面50bのうち第1のマスク40が載置されていない部分を導光板20の厚み方向(Z軸方向)に沿って所定の深さまで掘削する。これにより、図7に示すように、表側板面50bのうち第1のマスク40で覆われていない部分に段差をなす段差部22が形成される。段差部22が形成されることで、表側板面50bのうち第1のマスク40が覆われた部分は光出射面20bとされ、段差部22を構成する段差側面22bは光入射面22bとされる。 Subsequently, a method for manufacturing the light guide plate 20 on which the LED light source 26 according to this embodiment is mounted will be described with reference to FIGS. First, as shown in FIG. 5, a glass substrate 50 having a rectangular plate shape is used as a light emitting surface 20 b (hereinafter referred to as a front side plate surface) 50 b with the light emitting surface 20 b A plate surface (hereinafter referred to as a back side plate surface) 50c to be prepared is prepared with the back side facing. Next, as shown in FIG. 6, the first mask 40 is placed on a portion of the front side plate surface 50 b of the substrate 50 excluding the end surface 50 a side on which the light incident surface 22 b is formed. The first mask 40 is a mask in which a pattern such as an opening is not formed. Next, a portion of the front side plate surface 50b where the first mask 40 is not placed is excavated to a predetermined depth along the thickness direction (Z-axis direction) of the light guide plate 20 by sandblasting. As a result, as shown in FIG. 7, a stepped portion 22 forming a step is formed in a portion of the front side plate surface 50b that is not covered with the first mask 40. By forming the stepped portion 22, the portion of the front side plate surface 50b covered with the first mask 40 is the light emitting surface 20b, and the stepped side surface 22b that forms the stepped portion 22 is the light incident surface 22b. The
 次に、図8に示すように、光出射面20b上に第2のマスク41を載置する。この第2のマスク41には、図9に示すように、円形状の複数の開口群41a、41b、41cからなる開口パターン41が形成されている。複数の開口群41a、41b、41cは、導光板20の光出射面20bに形成される第2の拡散パターン21と対応する形状及び配置とされている。具体的には、この開口群41a、41b、41cは、第2のマスク41の一端側からその反対側に向かうに連れて3段階で開口径が大きくなるものとされている。そして、第2のマスク41を光出射面20b上に載置する際には、複数の開口群41a、41b、41cのうち開口径が小さい側を段差部22が形成された側に向けた状態で載置する。次に、サンドブラスト法によって、光出射面20b上に第2のマスク41の開口パターン41と対応する拡散パターン21を形成する。これにより、図10に示すように、段差部22から離れるにつれて段階的に径が大きくなるものとされた複数の円形状のパターン21a、21b、21cからなる拡散パターン21が光出射面20b上に形成される。 Next, as shown in FIG. 8, the second mask 41 is placed on the light emitting surface 20b. As shown in FIG. 9, the second mask 41 is formed with an opening pattern 41 composed of a plurality of circular opening groups 41a, 41b, 41c. The plurality of aperture groups 41 a, 41 b, 41 c have shapes and arrangements corresponding to the second diffusion pattern 21 formed on the light emitting surface 20 b of the light guide plate 20. Specifically, the opening diameters of the opening groups 41a, 41b, and 41c increase in three stages from one end side of the second mask 41 toward the opposite side. And when mounting the 2nd mask 41 on the light-projection surface 20b, the state which orient | assigned the side with a small opening diameter to the side in which the level | step-difference part 22 was formed among several opening groups 41a, 41b, and 41c. Place in. Next, the diffusion pattern 21 corresponding to the opening pattern 41 of the second mask 41 is formed on the light emitting surface 20b by sandblasting. As a result, as shown in FIG. 10, a diffusion pattern 21 composed of a plurality of circular patterns 21 a, 21 b, 21 c whose diameter gradually increases as the distance from the stepped portion 22 increases is formed on the light emitting surface 20 b. It is formed.
 次に、図11に示すように、光出射面20b上に第3のマスク42を載置する。この第3のマスク42は、第1のマスク40と同様に開口等のパターンが形成されていないマスクである。次に、図12に示すように、スパッタリング法によって、表側の第3のマスク42が載置されていない部分、即ち、段差部22における段差底面22a上に金属膜29を形成する。次に、図13に示すように、段差底面22a上に金属膜29上に、段差底面22a上に形成される配線パターン28と対応するパターンを有する第4のマスクを載置する。次に、フォトリソグラフィー法によって、段差底面22a上に形成された金属膜29から配線パターン28を形成する。 Next, as shown in FIG. 11, a third mask 42 is placed on the light emitting surface 20b. The third mask 42 is a mask in which a pattern such as an opening is not formed as in the first mask 40. Next, as shown in FIG. 12, a metal film 29 is formed on the step bottom surface 22a of the step portion 22 by the sputtering method, that is, the portion on which the front side third mask 42 is not placed. Next, as shown in FIG. 13, a fourth mask having a pattern corresponding to the wiring pattern 28 formed on the step bottom surface 22a is placed on the metal film 29 on the step bottom surface 22a. Next, the wiring pattern 28 is formed from the metal film 29 formed on the step bottom surface 22a by photolithography.
 ここで、図14に、段差底面22a上に形成された配線パターン28を表側から視た平面図を示す。図14に示すように、この配線パターン28は、段差底面22a上のうち導光板20の短辺方向(X軸方向)における一端側にそれぞれ形成されたアノード端子28a及びカソード端子28bと、LED光源26が実装される箇所と対応する箇所に形成された一対の電極群28cと、それらを接続する接続配線28dと、からなっている。このような配線パターン28を形成した後、段差側面22bの表面に拡散シート31を配置し、接着等により固定する。 Here, FIG. 14 shows a plan view of the wiring pattern 28 formed on the step bottom surface 22a as viewed from the front side. As shown in FIG. 14, the wiring pattern 28 includes an anode terminal 28a and a cathode terminal 28b formed on one end side in the short side direction (X-axis direction) of the light guide plate 20 on the step bottom surface 22a, and an LED light source. 26 comprises a pair of electrode groups 28c formed at locations corresponding to the locations where 26 is mounted, and connection wirings 28d connecting them. After the wiring pattern 28 is formed, the diffusion sheet 31 is disposed on the surface of the step side surface 22b and fixed by adhesion or the like.
 次に、図15に示すように、配線パターン28上の一対の電極群28cと対応する箇所に半田ペーストをそれぞれ塗布し、LED光源26を実装する。以上の工程によって、LED光源26が実装された導光板20を製造することができる。なお、配線パターン28上に形成されたアノード端子28a及びカソード端子28bには配線の一端側が電気的に接続され、この配線の他端側には上述したLED駆動基板等が電気的に接続される。これにより、LED駆動基板から配線パターン28を介して各LED光源26に電力が供給されるとともに各LED光源26の駆動が制御されるようになっている。 Next, as shown in FIG. 15, solder paste is applied to portions corresponding to the pair of electrode groups 28 c on the wiring pattern 28, and the LED light source 26 is mounted. Through the above steps, the light guide plate 20 on which the LED light source 26 is mounted can be manufactured. In addition, one end side of the wiring is electrically connected to the anode terminal 28a and the cathode terminal 28b formed on the wiring pattern 28, and the above-described LED driving board and the like are electrically connected to the other end side of the wiring. . As a result, power is supplied from the LED drive board to each LED light source 26 via the wiring pattern 28, and the drive of each LED light source 26 is controlled.
 さて、上記のようにして製造された導光板20は、その一部に形成された段差部22に各LED光源26が直接実装されているため、バックライト装置30を製造過程や外部から衝撃を受けたとき等に、段差部22に形成された光入射面22bに対して各LED光源26が位置ずれし難いものとなっている。具体的には、仮にLED光源26を、可撓性を有するフレキシブル基板上に実装し、そのフレキシブル基板をバックライト装置30に組み込むようにした場合には、フレキシブル基板が撓むなどして変形し易いため、LED光源が導光板20に対して導光板20の厚み方向に位置ずれすることが懸念される。これに対し、本実施形態に係る導光板20は、フレキシブル基板などに比べると剛性の高い(剛直な)ガラス製とされるとともに、その一部にLED光源26が実装される段差部22が形成された構成であるから、段差部22に実装されたLED光源26が光入射面22bに対して導光板20の厚み方向について位置ずれが極めて生じ難いものとなっている。 Now, since each LED light source 26 is directly mounted on the step portion 22 formed in a part of the light guide plate 20 manufactured as described above, the backlight device 30 is impacted from the manufacturing process or from the outside. When received, each LED light source 26 is not easily displaced with respect to the light incident surface 22b formed in the stepped portion 22. Specifically, if the LED light source 26 is mounted on a flexible flexible substrate and the flexible substrate is incorporated in the backlight device 30, the flexible substrate is deformed by bending or the like. Therefore, there is a concern that the LED light source is displaced in the thickness direction of the light guide plate 20 with respect to the light guide plate 20. On the other hand, the light guide plate 20 according to the present embodiment is made of glass that is higher in rigidity (rigid) than a flexible substrate and the like, and a step portion 22 on which the LED light source 26 is mounted is formed in a part thereof. Thus, the LED light source 26 mounted on the stepped portion 22 is extremely unlikely to be displaced in the thickness direction of the light guide plate 20 with respect to the light incident surface 22b.
 ここで、図20に、導光板に形成された光入射面の厚み(導光板の厚み方向に沿った寸法)をt(mm)としたときに、光入射面に対するLED光源の位置について、導光板の厚み方向に沿った位置ずれ距離(mm)の違いによる入射効率の違いを百分率で表した表を示す。図20の表に示すように、入射効率は、導光板の厚みが薄くなるほど、LED光源の位置ずれによる影響を受け易いものとなっている。この点、本実施形態のバックライト装置30では、各LED光源26は、その光入射面22b側に向けられた面の全面が当該光入射面22bと対向する形でそれぞれ配されているので、光入射面22bに対する導光板20の厚み方向(Z軸方向)に沿った位置ずれ距離が±0mmとなっており、100%に近い入射効率を得ることができる。従って、本実施形態のバックライト装置30では、100%に近い入射効率を保ちながら、光入射面22bに対してLED光源26が位置ずれし難い構成が実現されている。 Here, FIG. 20 shows the position of the LED light source with respect to the light incident surface when the thickness of the light incident surface formed on the light guide plate (the dimension along the thickness direction of the light guide plate) is t (mm). The table | surface which represented the difference in the incident efficiency by the difference in the position shift distance (mm) along the thickness direction of an optical plate in percentage. As shown in the table of FIG. 20, the incident efficiency is more easily affected by the positional deviation of the LED light source as the light guide plate is thinner. In this regard, in the backlight device 30 of the present embodiment, each LED light source 26 is arranged such that the entire surface directed toward the light incident surface 22b is opposed to the light incident surface 22b. The positional shift distance along the thickness direction (Z-axis direction) of the light guide plate 20 with respect to the light incident surface 22b is ± 0 mm, and an incident efficiency close to 100% can be obtained. Therefore, in the backlight device 30 of the present embodiment, a configuration in which the LED light source 26 is not easily displaced with respect to the light incident surface 22b while maintaining an incident efficiency close to 100% is realized.
 以上のように本実施形態に係るバックライト装置30では、導光板20に設けられた段差部22に直接LED光源26が配されることとなるので、導光板20の薄型化を図った場合であっても、導光板20に対してLED光源26を精度良く位置決めすることができる。また、LED光源26は、その発光面24aの全面が光入射面20と対向する形で配されるため、導光板20の光入射面22bに対して良好な入射効率を保つことができる。さらに、導光板20がガラス製であるので、導光板20が樹脂製等である場合と比べて熱等による膨張率が小さく、LED光源26から熱等が発生した場合でも当該LED光源26が光入射面22bに対して位置ずれし難い。以上のように、本実施形態のバックライト装置30では、良好な入射効率を保ちながら、導光板20に対するLED光源26の位置決め精度を向上させることができる。 As described above, in the backlight device 30 according to the present embodiment, the LED light source 26 is directly disposed on the step portion 22 provided in the light guide plate 20, so that the light guide plate 20 is thinned. Even if it exists, the LED light source 26 can be accurately positioned with respect to the light guide plate 20. In addition, since the LED light source 26 is disposed so that the entire light emitting surface 24 a faces the light incident surface 20, it is possible to maintain good incident efficiency with respect to the light incident surface 22 b of the light guide plate 20. Furthermore, since the light guide plate 20 is made of glass, the coefficient of expansion due to heat or the like is small compared to the case where the light guide plate 20 is made of resin or the like, and the LED light source 26 emits light even when heat or the like is generated from the LED light source 26. It is difficult to be displaced with respect to the incident surface 22b. As described above, in the backlight device 30 of the present embodiment, the positioning accuracy of the LED light source 26 with respect to the light guide plate 20 can be improved while maintaining good incident efficiency.
 また本実施形態では、段差部22の段差底面22aにLED光源26に電力を供給する配線パターン28が形成されている。このような構成とされていることで、LED光源26用の配線を配するためのスペースについて省スペース化を図ることができ、これにより、導光板20の薄型化を図ることができる。 In the present embodiment, the wiring pattern 28 for supplying power to the LED light source 26 is formed on the step bottom surface 22 a of the step portion 22. With such a configuration, it is possible to save the space for arranging the wiring for the LED light source 26, thereby reducing the thickness of the light guide plate 20.
 また本実施形態では、各LED光源26は、LED素子24と、LED素子24を封止する封止樹脂25と、からなるものとされている。さらに、各LED光源26は、段差側面22b側に向けられた面の全面が段差側面22bと対向するものとされている。このような構成とされていることで、LED素子24を露出させた状態で段差底面22a上に配する場合と比べて、配線パターン28を簡単にすることができる。また、LED光源26の封止樹脂25の一部が段差側面22bと対向していない場合と比べて、導光板20の光入射面22bに対する入射効率を高めることができる。 In the present embodiment, each LED light source 26 includes an LED element 24 and a sealing resin 25 that seals the LED element 24. Furthermore, each LED light source 26 is configured such that the entire surface directed toward the step side surface 22b faces the step side surface 22b. With such a configuration, the wiring pattern 28 can be simplified as compared with the case where the LED element 24 is exposed and disposed on the step bottom surface 22a. Moreover, the incident efficiency with respect to the light-incidence surface 22b of the light-guide plate 20 can be improved compared with the case where some sealing resin 25 of the LED light source 26 is not facing the level | step difference side surface 22b.
 また本実施形態では、光入射面20にLED光源26から出射された光に光学作用を付与する拡散シートが接着されている。さらに、導光板20の光出射面20bにLED光源26から出射された光に光学作用を付与する拡散パターンが形成されている。このような構成とされていることで、上記拡散シートによって光入射面22bにおいて入射した光の分布を緩和させることができ、導光板20の光入射面22bに対する入射効率を高めることができる。また、上記拡散パターンによって点状の光を面状の光へと変換させることができ、導光板20から出射される光の輝度ムラを防止ないし抑制することができる。 In the present embodiment, a diffusion sheet that gives an optical action to the light emitted from the LED light source 26 is bonded to the light incident surface 20. Furthermore, a diffusion pattern that imparts an optical action to the light emitted from the LED light source 26 is formed on the light emitting surface 20 b of the light guide plate 20. With such a configuration, the distribution of light incident on the light incident surface 22b can be relaxed by the diffusion sheet, and the incident efficiency with respect to the light incident surface 22b of the light guide plate 20 can be increased. Further, the diffused pattern can convert the spot light into the planar light, and the luminance unevenness of the light emitted from the light guide plate 20 can be prevented or suppressed.
 また本実施形態では、各LED光源26は、導光板20の厚み方向(Z軸方向)において、その発光面24aの中央位置の高さが段差側面(光入射面)22bの中央位置の高さと等しくなるように配されている。このような構成とされていることで、各LED光源26から出射された光が効率良く光入射面22bに入射されることとなるため、導光板20の光入射面22bに対する入射効率を一層高めることができる。 In the present embodiment, each LED light source 26 has a height at the center position of the light emitting surface 24a in the thickness direction (Z-axis direction) of the light guide plate 20 and a height at the center position of the step side surface (light incident surface) 22b. It is arranged to be equal. With such a configuration, the light emitted from each LED light source 26 is efficiently incident on the light incident surface 22b, so that the incident efficiency with respect to the light incident surface 22b of the light guide plate 20 is further increased. be able to.
 なお、光入射面22bに対する入射効率は、光入射面22bとLED光源26との間の距離も影響する。ここで、従来のようにフレキシブル基板上にLED光源が配された構成では、光入射面とLED光源との間の距離について、当該フレキシブル基板のシャーシ等への実装精度が影響することとなる。この点、本実施形態では、導光板20に直接LED光源26が配されることとなるので、入射効率についてこのようなフレキシブル基板の実装精度が問題となることがない。このため、フレキシブル基板上にLED光源が配された従来の構成と比べて、入射効率を高めることができる。 In addition, the incident efficiency with respect to the light incident surface 22b also affects the distance between the light incident surface 22b and the LED light source 26. Here, in the conventional configuration in which the LED light source is arranged on the flexible substrate, the mounting accuracy of the flexible substrate on the chassis or the like affects the distance between the light incident surface and the LED light source. In this regard, in the present embodiment, the LED light source 26 is directly disposed on the light guide plate 20, so that the mounting accuracy of such a flexible substrate does not become a problem with respect to the incident efficiency. For this reason, incident efficiency can be improved compared with the conventional structure by which the LED light source was distribute | arranged on the flexible substrate.
 <実施形態1の変形例>
 続いて、実施形態1の変形例について説明する。この変形例は、LED光源26が実装された導光板20の製造工程の一部が実施形態1のものと異なっており、バックライト装置30の構成については実施形態1と同一である。本変形例では、LED光源26が実装された導光板20の製造工程において、光出射面20b上に拡散パターン21を形成するより前にフォトリソグラフィー法によって段差底面22a上にマスクを作成し、サンドブラスト法等によって光出射面22bを粗面化する。その後、粗面化された光出射面22b上に拡散パターン21を形成する。このようにして拡散パターン21を形成することで、当該拡散パターン21について、導光板20から出射される光の光量分布を均一にするための効果的なパターン形状を導光板20の光出射面20b上に形成することができる。
<Modification of Embodiment 1>
Subsequently, a modification of the first embodiment will be described. In this modification, a part of the manufacturing process of the light guide plate 20 on which the LED light source 26 is mounted is different from that of the first embodiment, and the configuration of the backlight device 30 is the same as that of the first embodiment. In this modification, in the manufacturing process of the light guide plate 20 on which the LED light source 26 is mounted, a mask is formed on the step bottom surface 22a by photolithography before the diffusion pattern 21 is formed on the light emitting surface 20b, and sandblasting is performed. The light emitting surface 22b is roughened by a method or the like. Thereafter, the diffusion pattern 21 is formed on the roughened light emitting surface 22b. By forming the diffusion pattern 21 in this way, an effective pattern shape for making the light quantity distribution of the light emitted from the light guide plate 20 uniform for the diffusion pattern 21 is the light emission surface 20b of the light guide plate 20. Can be formed on top.
 <実施形態2>
 図面を参照して実施形態2を説明する。実施形態2は、導光板120の形状が実施形態1のものと異なっている。その他の構成については実施形態1のものと同様であるため、構造、作用、及び効果の説明は省略する。なお、図16において、図3の参照符号に数字100を加えた部位は、実施形態1で説明した部位と同一である。
<Embodiment 2>
A second embodiment will be described with reference to the drawings. In the second embodiment, the shape of the light guide plate 120 is different from that of the first embodiment. Since the other configuration is the same as that of the first embodiment, the description of the structure, operation, and effect is omitted. In FIG. 16, the part obtained by adding the numeral 100 to the reference numeral in FIG. 3 is the same as the part described in the first embodiment.
 実施形態2に係るバックライト装置では、図16に示すように、導光板120が楔形状とされている。具体的には、導光板120は、その反対板面120cが傾斜面とされることで、段差部122が設けられた端面120a側からその反対側の端面120d側に向かって厚みが小さくなる形状となっている。導光板20がこのような形状とされていることで、導光板20から出射される光の光量分布の均一性を高めることができ、導光板20が平板状とされている場合と比べて照明効率を高めることができる。 In the backlight device according to Embodiment 2, the light guide plate 120 has a wedge shape, as shown in FIG. Specifically, the light guide plate 120 has a shape in which the thickness decreases from the end surface 120a side where the stepped portion 122 is provided toward the opposite end surface 120d side by making the opposite plate surface 120c an inclined surface. It has become. Since the light guide plate 20 has such a shape, the uniformity of the light amount distribution of the light emitted from the light guide plate 20 can be improved, and illumination is performed as compared with the case where the light guide plate 20 has a flat plate shape. Efficiency can be increased.
 <実施形態3>
 図面を参照して実施形態3を説明する。実施形態3は、LED光源226の構成及び段差底面222a上への実装態様が実施形態1のものと異なっている。その他の構成については実施形態1のものと同様であるため、構造、作用、及び効果の説明は省略する。なお、図17、図18において、図3、図14の参照符号にそれぞれ数字200を加えた部位は、実施形態1で説明した部位と同一である。
<Embodiment 3>
Embodiment 3 will be described with reference to the drawings. The third embodiment is different from the first embodiment in the configuration of the LED light source 226 and the mounting mode on the step bottom surface 222a. Since the other configuration is the same as that of the first embodiment, the description of the structure, operation, and effect is omitted. In FIGS. 17 and 18, the portions obtained by adding the numeral 200 to the reference numerals in FIGS. 3 and 14 are the same as the portions described in the first embodiment.
 実施形態3に係るバックライト装置では、図17及び図18に示すように、各LED光源226が露出したLED素子224のみからなるものとされている。具体的には、各LED光源226は、互いに隣接して配された3つのLED素子224R、224G、224Bから構成されている。即ち、各LED光源226は、赤色LED素子224R、緑色LED素子224G、青色LED素子224Bからなる3つのLED素子224R、224G、224Bを用いて1つの発光源として白色光を得る構成とされている。ここで、各LED光源226を構成する3つのLED素子224R、224G、224Bは、それぞれ要求される電圧が異なるため、図18に示すように、段差底面222a上に形成される配線パターン228について、赤色LED素子224R、緑色LED素子224G、青色LED素子224Bにそれぞれ対応した3系統の接続配線228dが必要となる。このため、各LED素子224R、224G、224Bは、光入射面222bからの距離が互いにずれた配置で段差底面222a上に実装される。 In the backlight device according to the third embodiment, as shown in FIGS. 17 and 18, each LED light source 226 is composed of only the LED element 224 exposed. Specifically, each LED light source 226 includes three LED elements 224R, 224G, and 224B arranged adjacent to each other. That is, each LED light source 226 is configured to obtain white light as one light source using three LED elements 224R, 224G, and 224B including a red LED element 224R, a green LED element 224G, and a blue LED element 224B. . Here, the three LED elements 224R, 224G, and 224B that constitute each LED light source 226 have different required voltages. Therefore, as shown in FIG. 18, with respect to the wiring pattern 228 formed on the step bottom surface 222a, Three systems of connection wirings 228d corresponding to the red LED element 224R, the green LED element 224G, and the blue LED element 224B are required. For this reason, the LED elements 224R, 224G, and 224B are mounted on the step bottom surface 222a so that the distances from the light incident surface 222b are shifted from each other.
 また、各LED光源226を構成する各LED素子224R、224G、224Bには、その発光面を覆う形でレンズ部材246R、246G、246Bが配されている。上記のように、各LED素子224R、224G、224Bは、光入射面222bからの距離が互いにずれているので、図18に示すように、各レンズ部材246R、246G、246Bの厚みを各LED素子224R、224G、224Bごとに調整することによって、各レンズ部材246R、246G、246Bについて光入射面222bからの距離が一定となるようにしている。このため、本実施形態では、各LED光源226が3つのLED素子224R、224G、224Bからなる構成とされていても、各LED素子224R、224G、224Bから出射される光の入射効率を等しくすることができ、LED光源226全体として良好な入射効率を得ることができるようになっている。 Further, each LED element 224R, 224G, 224B constituting each LED light source 226 is provided with lens members 246R, 246G, 246B so as to cover the light emitting surface. As described above, since the LED elements 224R, 224G, and 224B are displaced from each other from the light incident surface 222b, as shown in FIG. 18, the thickness of the lens members 246R, 246G, and 246B is set to the respective LED elements. By adjusting for each of 224R, 224G, and 224B, the distance from the light incident surface 222b is made constant for each of the lens members 246R, 246G, and 246B. For this reason, in this embodiment, even if each LED light source 226 is configured to include three LED elements 224R, 224G, and 224B, the incident efficiencies of light emitted from the LED elements 224R, 224G, and 224B are made equal. As a result, the LED light source 226 as a whole can obtain good incident efficiency.
 <実施形態4>
 図面を参照して実施形態4を説明する。実施形態4は、導光板320の段差部322が形成された部位の厚みが実施形態1のものと異なっている。その他の構成については実施形態1のものと同様であるため、構造、作用、及び効果の説明は省略する。なお、図19において、図3の参照符号に数字300を加えた部位は、実施形態1で説明した部位と同一である。
<Embodiment 4>
Embodiment 4 will be described with reference to the drawings. In the fourth embodiment, the thickness of the portion of the light guide plate 320 where the step 322 is formed is different from that of the first embodiment. Since the other configuration is the same as that of the first embodiment, the description of the structure, operation, and effect is omitted. In FIG. 19, the part obtained by adding the numeral 300 to the reference numeral in FIG. 3 is the same as the part described in the first embodiment.
 実施形態4に係るバックライト装置では、LED光源326が実装される導光板320の製造工程において段差部322を形成するときに、段差部322を形成する部分について実施形態1のものよりも深い深さまで掘削されている。これにより、図19に示すように、導光板320の段差部322が形成された部位の厚みが実施形態1のものよりも薄いものとなっている。このような構成とされていることで、LED光源326の上面326aが光入射面322bの上端よりも下方寄りの位置、換言すれば光出射面320bよりも下方に位置した状態となっている。このため、LED光源326が光入射面322bに対して位置ずれし難い構成を実現しながら、LED光源326の光入射面322bに対する入射効率を一層高めることができる。 In the backlight device according to the fourth embodiment, when the step portion 322 is formed in the manufacturing process of the light guide plate 320 on which the LED light source 326 is mounted, the portion where the step portion 322 is formed has a deeper depth than that of the first embodiment. It has been excavated. Thereby, as shown in FIG. 19, the thickness of the site | part in which the level | step-difference part 322 of the light-guide plate 320 was formed is a thing thinner than the thing of Embodiment 1. FIG. With such a configuration, the upper surface 326a of the LED light source 326 is located at a position closer to the lower side than the upper end of the light incident surface 322b, in other words, lower than the light emitting surface 320b. For this reason, the incident efficiency with respect to the light incident surface 322b of the LED light source 326 can be further enhanced while realizing a configuration in which the LED light source 326 is not easily displaced with respect to the light incident surface 322b.
 上記の各実施形態の変形例を以下に列挙する。
(1)上記の各実施形態では、段差部が導光板の一端側に形成された構成を例示したが、段差部が導光板の複数の端部側に形成された構成であってもよい。
The modifications of the above embodiments are listed below.
(1) In the above embodiments, the configuration in which the stepped portion is formed on one end side of the light guide plate is illustrated, but the configuration in which the stepped portion is formed on a plurality of end portions of the light guide plate may be employed.
(2)上記の各実施形態では、サンドブラスト法によって導光板に段差部を形成する例を示したが、エッチング法やガラス研磨等、他の方法によって導光板に段差部を形成してもよい。 (2) In each of the above embodiments, an example in which the step portion is formed on the light guide plate by the sand blast method has been shown. However, the step portion may be formed on the light guide plate by other methods such as etching or glass polishing.
(3)上記の各実施形態では、光入射面に拡散シートが接着された構成を例示したが、光入射面にプリズムシート等が接着された構成であってもよい。また、接着に限定されず、他の方法によって光入射面に拡散シートを固定してもよい。 (3) In each of the above-described embodiments, the configuration in which the diffusion sheet is bonded to the light incident surface is exemplified. However, a configuration in which a prism sheet or the like is bonded to the light incident surface may be used. Moreover, it is not limited to adhesion | attachment, You may fix a diffusion sheet to a light-incidence surface by another method.
(4)上記の各実施形態では、段差底面上に配線パターンを形成した後に段差側面に拡散シートを接着する例を示したが、段差部の形成後であれば、段差側面に拡散シートを接着する順序については限定されない。 (4) In each of the above embodiments, an example in which the diffusion sheet is bonded to the side surface of the step after forming the wiring pattern on the bottom surface of the step is shown. However, after the step portion is formed, the diffusion sheet is bonded to the side surface of the step. There is no limitation on the order to be performed.
(5)上記の各実施形態では、サンドブラスト法によって光出射面に拡散パターンを形成する例を示したが、印刷等、他の方法によって光出射面に拡散パターンを形成してもよい。 (5) In each of the above embodiments, an example in which the diffusion pattern is formed on the light emission surface by the sandblast method has been described. However, the diffusion pattern may be formed on the light emission surface by other methods such as printing.
(6)上記の各実施形態では、光出射面上に拡散パターンが形成された構成を例示したが、反対板面上に拡散パターンが形成された構成であってもよいし、光出射面上と反対板面上の両方に拡散パターンが形成された構成であってもよい。光出射面上と反対板面上の両方に拡散パターンが形成する場合、導光板の製造工程において、拡散パターンの密度を半分にし、それぞれについて光出射面上と反対板面上とに振り分けてもよい。 (6) In each of the above embodiments, the configuration in which the diffusion pattern is formed on the light emission surface is illustrated, but the configuration in which the diffusion pattern is formed on the opposite plate surface may be used, or on the light emission surface. And a configuration in which a diffusion pattern is formed on both of the opposite plate surfaces. When a diffusion pattern is formed on both the light output surface and the opposite plate surface, the density of the diffusion pattern is halved in the light guide plate manufacturing process, and each of the patterns is distributed between the light output surface and the opposite plate surface. Good.
(7)上記の実施形態では、各LED光源は、光入射面側に向けられた面の全面が当該光入射面と対向する形で段差底面上に実装された構成を例示したが、各LED光源は、少なくともその発光面の全面が当該光入射面と対向する形で段差底面上に実装されればよい。 (7) In the above embodiment, each LED light source has exemplified the configuration in which the entire surface directed toward the light incident surface side is mounted on the bottom surface of the step so as to face the light incident surface. The light source may be mounted on the bottom surface of the step so that at least the entire light emitting surface faces the light incident surface.
(8)上記した各実施形態では、光学シートが2枚のプリズムシートと1枚の拡散シートとからなる構成のものを示したが、光学シートの使用枚数及び種類を適宜に変更することが可能であり、例えば反射型偏光シートなどを追加することができる。 (8) In each of the above-described embodiments, the optical sheet is configured to include two prism sheets and one diffusion sheet. However, the number and types of optical sheets used can be changed as appropriate. For example, a reflective polarizing sheet or the like can be added.
(9)上記の各実施形態では、小型または中小型に分類される大きさの液晶パネルを備える液晶表示装置を構成するバックライト装置について例示したが、大型に分類される大きさの液晶パネルを備える液晶表示装置を構成するバックライト装置にも本発明は適用可能である。 (9) In each of the above embodiments, the backlight device constituting the liquid crystal display device including the liquid crystal panel having a size classified as small or medium-sized is exemplified. However, the liquid crystal panel having a size classified as a large size is used. The present invention is also applicable to a backlight device constituting a liquid crystal display device provided.
(10)上記の各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。 (10) In each of the above embodiments, a liquid crystal display device using a liquid crystal panel as the display panel has been illustrated, but the present invention can also be applied to a display device using another type of display panel.
 以上、本発明の各実施形態について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 As mentioned above, although each embodiment of this invention was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 次に、実施例によって本発明を具体的に説明する。まず、導光板の製造に用いる基板としては、サイズが4.3型の基板、具体的には、縦方向(長辺方向)寸法96.5mm、横方向(短辺方向)寸法54.4mm、厚み0.7mmのガラス製の基板(旭ガラス社製AN100)を用いた。 Next, the present invention will be specifically described with reference to examples. First, as a substrate used for manufacturing the light guide plate, a 4.3-inch size substrate, specifically, a vertical direction (long side direction) dimension of 96.5 mm, a horizontal direction (short side direction) dimension of 54.4 mm, A 0.7 mm thick glass substrate (AN100 manufactured by Asahi Glass Co., Ltd.) was used.
 段差部を形成する工程では、段差部を形成する部分の厚みが0.3mmとなるように、即ち掘削する深さを0.4mmとし、幅(導光板の段差部側の端面から光入射面までの寸法)が3.0mmとなるように段差部を形成した。これにより、厚さ0.4mmとなる光入射面を形成した。 In the step of forming the stepped portion, the thickness of the portion where the stepped portion is formed is 0.3 mm, that is, the depth of excavation is 0.4 mm, and the width (the light incident surface from the end surface on the stepped portion side of the light guide plate). The step portion was formed so that the dimension of the step was 3.0 mm. Thereby, a light incident surface having a thickness of 0.4 mm was formed.
 光出射面に形成する拡散パターンについて、パターンの形成領域は縦方向寸法90.5mm、横方向寸法54mmとした。また、拡散パターンは、段差部が形成された側の円形状パターンの径を約0.0022mmとし、段差部が形成された側とは反対側の円形状パターンの径を約0.02mmとするように形成した。 Regarding the diffusion pattern to be formed on the light emitting surface, the pattern formation region has a vertical dimension of 90.5 mm and a horizontal dimension of 54 mm. In the diffusion pattern, the diameter of the circular pattern on the side where the step portion is formed is about 0.0022 mm, and the diameter of the circular pattern on the side opposite to the side where the step portion is formed is about 0.02 mm. Formed as follows.
 段差部の段差底面上に実装するLED光源としては、日亜化学工業社製の白色LED(NSSE206)を用いた。また、光学部材を構成する2枚のレンズシートには、3M社製Thin-BEFフィルムをそれぞれ用い、拡散シートには、恵和社製HBS-706を用いた。 A white LED (NSSE206) manufactured by Nichia Corporation was used as the LED light source to be mounted on the step bottom surface of the step portion. In addition, Thin-BEF films manufactured by 3M were used for the two lens sheets constituting the optical member, and HBS-706 manufactured by Eiwa Co., Ltd. was used for the diffusion sheet.
 また、段差側面とLED光源との並び方向(Y軸方向)について、配線パターン上へのLED光源の実装精度を±0.05mmの範囲内とした。これにより、段差側面(光入射面)とLED光源との間の距離を、各LED光源について均一性の高いものとした。 Moreover, the mounting accuracy of the LED light source on the wiring pattern was set within a range of ± 0.05 mm in the direction in which the step side surface and the LED light source are arranged (Y-axis direction). Thereby, the distance between the step side surface (light incident surface) and the LED light source is made highly uniform for each LED light source.
 以上により、LED光源が導光板とは別体とされたフレキシブル基板上に実装された構成のバックライト装置と比べ、LED光源が導光板に形成された段差部に直接実装されることで、LED光源の位置ずれが発生し難く、導光板の薄型化が図られた場合でも、入射効率が低下することなく、均一性の高い輝度を得ることができるバックライト装置を製造することができた。 As described above, the LED light source is directly mounted on the stepped portion formed on the light guide plate as compared with the backlight device having a configuration in which the LED light source is mounted on the flexible substrate separated from the light guide plate. Even when the light source plate is less likely to be displaced and the light guide plate is made thinner, a backlight device capable of obtaining a highly uniform luminance can be manufactured without lowering the incident efficiency.
 10…液晶表示装置、14…液晶パネル、18…光学部材、20、120、220、320…導光板、22、122、222、322…段差部、22a、122a、222a、322a…段差底面、22b、122b、222b、322b…段差側面(光入射面)、26、126、226、326…LED光源、28、128、228、328…配線パターン、30…バックライト装置、32…フレーム、36…ケーシング DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device, 14 ... Liquid crystal panel, 18 ... Optical member, 20, 120, 220, 320 ... Light guide plate, 22, 122, 222, 322 ... Step part, 22a, 122a, 222a, 322a ... Step bottom surface, 22b , 122b, 222b, 322b ... step side surface (light incident surface), 26, 126, 226, 326 ... LED light source, 28, 128, 228, 328 ... wiring pattern, 30 ... backlight device, 32 ... frame, 36 ... casing

Claims (12)

  1.  板状をなすガラス製の導光板であって、少なくとも一つの端面側に、当該導光板の板面に沿って設けられた段差底面と、当該導光板の端面に沿って設けられた段差側面と、からなる段差部が設けられ、前記段差側面が光入射面とされた導光板と、
     前記段差底面上にその発光面の全面が前記段差側面と対向する形で配された側面発光型のLED光源と、
     を備える照明装置。
    A glass-made light guide plate having a plate shape, a step bottom surface provided along the plate surface of the light guide plate on at least one end surface side, and a step side surface provided along the end surface of the light guide plate A light guide plate provided with a stepped portion, wherein the step side surface is a light incident surface,
    A side-emitting LED light source disposed on the bottom surface of the step so that the entire light emitting surface faces the step side surface;
    A lighting device comprising:
  2.  前記段差底面に前記LED光源に電力を供給する配線パターンが形成されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein a wiring pattern for supplying power to the LED light source is formed on the bottom surface of the step.
  3.  前記LED光源は、LED素子と、該LED素子を封止する封止樹脂と、からなるものとされる、請求項2に記載の照明装置。 The lighting device according to claim 2, wherein the LED light source includes an LED element and a sealing resin that seals the LED element.
  4.  前記LED光源は、前記段差側面側に向けられた面の全面が該段差側面と対向するものとされている、請求項3に記載の照明装置。 The lighting device according to claim 3, wherein the entire surface of the LED light source facing the step side is opposed to the step side.
  5.  前記光入射面に前記LED光源から出射された光に光学作用を付与する第1の拡散パターンが形成されている、請求項1から請求項4のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 4, wherein a first diffusion pattern that imparts an optical action to light emitted from the LED light source is formed on the light incident surface.
  6.  前記導光板の一方の板面に前記LED光源から出射された光に光学作用を付与する第2の拡散パターンが形成されている、請求項1から請求項5のいずれか1項に記載の照明装置。 The illumination according to any one of claims 1 to 5, wherein a second diffusion pattern that imparts an optical action to the light emitted from the LED light source is formed on one plate surface of the light guide plate. apparatus.
  7.  前記導光板の前記第2の拡散パターンが形成された板面が粗面とされ、
     前記第2の拡散パターンは前記LED光源から遠ざかるにつれて大きくなるものとされている、請求項6に記載の照明装置。
    The plate surface on which the second diffusion pattern of the light guide plate is formed is a rough surface,
    The lighting device according to claim 6, wherein the second diffusion pattern is increased as the distance from the LED light source is increased.
  8.  前記LED光源は、前記導光板の厚み方向において、前記発光面の中央位置の高さが前記段差側面の中央位置の高さと等しくなるように配されている、請求項1から請求項7のいずれか1項に記載の照明装置。 The said LED light source is distribute | arranged so that the height of the center position of the said light emission surface may become equal to the height of the center position of the said level | step difference side surface in the thickness direction of the said light-guide plate. The lighting device according to claim 1.
  9.  前記導光板は、前記段差部が設けられた端面側からその反対側の端面側に向かって厚みが小さくなる楔形状とされている、請求項1から請求項8のいずれか1項に記載の照明装置。 9. The light guide plate according to claim 1, wherein the light guide plate has a wedge shape that decreases in thickness from an end surface side on which the stepped portion is provided to an opposite end surface side. Lighting device.
  10.  前記段差部は、板状とされた前記導光板の一部を削る加工処理によって形成されている、請求項1から請求項9のいずれか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 9, wherein the stepped portion is formed by a processing process for cutting a part of the plate-shaped light guide plate.
  11.  請求項1から請求項10のいずれか1項に記載の照明装置と、該照明装置からの光を利用して表示を行う表示パネルと、を備える表示装置。 A display device comprising: the illumination device according to any one of claims 1 to 10; and a display panel that performs display using light from the illumination device.
  12.  前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルとされる、請求項11に記載の表示装置。 The display device according to claim 11, wherein the display panel is a liquid crystal panel in which liquid crystal is sealed between a pair of substrates.
PCT/JP2014/054827 2013-05-14 2014-02-27 Illuminator and display device WO2014185120A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-102082 2013-05-14
JP2013102082 2013-05-14

Publications (1)

Publication Number Publication Date
WO2014185120A1 true WO2014185120A1 (en) 2014-11-20

Family

ID=51898106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054827 WO2014185120A1 (en) 2013-05-14 2014-02-27 Illuminator and display device

Country Status (1)

Country Link
WO (1) WO2014185120A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120683A (en) * 2017-01-24 2018-08-02 スタンレー電気株式会社 Vehicular lighting fixture
CN111384101A (en) * 2018-12-28 2020-07-07 乐金显示有限公司 Flexible display device and electronic device including flexible display device
CN113805266A (en) * 2020-06-12 2021-12-17 北京京东方茶谷电子有限公司 Light guide plate, backlight module and display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215507A (en) * 2000-02-04 2001-08-10 Sharp Corp Light guide plate, surface light source using the same, and backlight optical system and display using them
JP2007087608A (en) * 2005-09-20 2007-04-05 Sharp Corp Light source device and display device
JP2008016429A (en) * 2006-06-30 2008-01-24 Lg Philips Lcd Co Ltd Backlight assembly and liquid crystal display device
JP2012104312A (en) * 2010-11-09 2012-05-31 Alps Electric Co Ltd Illumination device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215507A (en) * 2000-02-04 2001-08-10 Sharp Corp Light guide plate, surface light source using the same, and backlight optical system and display using them
JP2007087608A (en) * 2005-09-20 2007-04-05 Sharp Corp Light source device and display device
JP2008016429A (en) * 2006-06-30 2008-01-24 Lg Philips Lcd Co Ltd Backlight assembly and liquid crystal display device
JP2012104312A (en) * 2010-11-09 2012-05-31 Alps Electric Co Ltd Illumination device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018120683A (en) * 2017-01-24 2018-08-02 スタンレー電気株式会社 Vehicular lighting fixture
CN111384101A (en) * 2018-12-28 2020-07-07 乐金显示有限公司 Flexible display device and electronic device including flexible display device
CN111384101B (en) * 2018-12-28 2023-12-19 乐金显示有限公司 Flexible display device and electronic apparatus including the same
CN113805266A (en) * 2020-06-12 2021-12-17 北京京东方茶谷电子有限公司 Light guide plate, backlight module and display panel

Similar Documents

Publication Publication Date Title
CN110908177B (en) Reflector, lighting device and display device
US9885824B2 (en) Illumination apparatus, liquid-crystal display apparatus, and electronic device
US20150362652A1 (en) Lighting device, display device, and television receiving device
CN109782492B (en) Light source module and display device
WO2014061572A1 (en) Illumination device and display device
CN110908180A (en) Illumination device, display device, and method for manufacturing illumination device
WO2014042063A1 (en) Illumination device, display device and television receiver
US11681174B2 (en) Display device and method for manufacturing the same
US20160062034A1 (en) Display device
US10656463B2 (en) Display device
JP2019125519A (en) Luminaire and display device
JP6353724B2 (en) Display device
CN108828814A (en) A kind of mobile terminal
KR101630342B1 (en) Liquid crystal display device and mathod for manufacturing the same
JP2020004702A (en) Luminaire and display unit
KR20120078234A (en) Light guide plate and liquid crystal display device having thereof
CN101285963B (en) Backlight module
WO2014185120A1 (en) Illuminator and display device
KR20120023921A (en) Backlight unit
KR102116442B1 (en) Backlight unit and liquid crystal display device including the same
US20160131821A1 (en) Illumination device, display device, and tv receiver
US20150103258A1 (en) Lighting device, display device and television device
CN110291454A (en) Lighting device and display device
KR101749750B1 (en) Backlight Unit And Liquid Crystal Diplay
KR20130071925A (en) Liquid crystal display module inculding backlight unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP