WO2014075724A1 - Unit and method for optical non-contact oil detection - Google Patents
Unit and method for optical non-contact oil detection Download PDFInfo
- Publication number
- WO2014075724A1 WO2014075724A1 PCT/EP2012/072665 EP2012072665W WO2014075724A1 WO 2014075724 A1 WO2014075724 A1 WO 2014075724A1 EP 2012072665 W EP2012072665 W EP 2012072665W WO 2014075724 A1 WO2014075724 A1 WO 2014075724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- led
- photodetector
- optical filter
- dichroic mirror
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 66
- 238000001514 detection method Methods 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000000523 sample Substances 0.000 claims abstract description 25
- 238000004891 communication Methods 0.000 claims abstract description 12
- 238000004458 analytical method Methods 0.000 claims abstract description 8
- 239000003921 oil Substances 0.000 claims description 58
- 230000003595 spectral effect Effects 0.000 claims description 47
- 230000004907 flux Effects 0.000 claims description 31
- 239000000295 fuel oil Substances 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000009825 accumulation Methods 0.000 description 7
- 230000005284 excitation Effects 0.000 description 7
- 230000005855 radiation Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000002547 anomalous effect Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000007405 data analysis Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 238000013208 measuring procedure Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000003305 oil spill Substances 0.000 description 2
- 125000005575 polycyclic aromatic hydrocarbon group Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/94—Investigating contamination, e.g. dust
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6421—Measuring at two or more wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/94—Investigating contamination, e.g. dust
- G01N2021/945—Liquid or solid deposits of macroscopic size on surfaces, e.g. drops, films, or clustered contaminants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/02—Mechanical
- G01N2201/021—Special mounting in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
- G01N2201/0625—Modulated LED
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/069—Supply of sources
- G01N2201/0696—Pulsed
Definitions
- the present invention relates to a unit and method for detection of presence of oil on the water surface or in the water column.
- the Light Induced Fluorescence is well known high sensitive method used for detection of oil in water. It is referred to as an active method due to the use of controlled light source.
- the selectivity of oil detection with this method is provided due to the fact that at properly selected spectrum of the inducing light the poly-aromatic hydrocarbons (PAH) of oil products produce fluorescence with specific spectral profile. This profile differs from spectral response of other materials to the same inducing light and due to that can be used for oil detection and quantification.
- Another feature of the LIF method is that it can be applied remotely without sampling or contacting the water body. This feature in combination with high selectivity, sensitivity and instantaneous detection allows building the sensor based on LIF method operating continuously in non-contact and real-time mode.
- LIF method is effectively realized for oil detection by airborne and shipboard LIDAR (Light Detection and Ranging) monitoring systems. These systems provide high sensitivity and spatial resolution down to meter scale and are capable to detect oil on the water surface, submerged oil, and dissolved and emulsified fractions. Being very effective as mobile units, such systems are often too complex and expensive for continuous local on-site monitoring.
- LIDAR Light Detection and Ranging
- the remote (non-contact) mode of oil detection with LIF method is realized by fluorescence LIDARs (Light Detection and Ranging).
- the invention according to patent document US5096293 “Differential fluorescence LIDAR and associated detection method” to Cecchi Giovanna, Pantani Luca, 1992 discloses the use of fluorescence LIDAR for real-time remote sensing, and in particular for remote sensing of water.
- the detection method is based on the inducing the emission of fluorescence radiation from a remote target and collecting such emission with following separation into plurality of predetermined spectral channels.
- Collected spectral signals are processed in a way of calculating the ratio of each channel signal to each other signal thus providing a form of ratios which is compared further with predetermined stored signals corresponding to defined targets or categories of targets.
- the method is realized by the system comprised the pulsed laser with optical means to direct the laser beam to the object and to collect back scattered radiation; optical channel separator means for separating a backscattered fluorescence signal into predefined number of channels, and signal processing means for forming a plurality of ratio signals and comparing the value of each ratio signal to values stored in a memory.
- the above method is based on the assumption that it is possible to define two wavelengths of fluorescence emission of oil with distinct ratio of intensities compared with that of pure water. Such an assumption does not work in case of oil products having the fluorescence in too distinguishing spectral ranges. For example, at the excitation wavelength 308 nm light oil (gasoline) has a max fluorescence at the emission wavelength 380 nm, and heavy oil (ship fuel) has a max fluorescence at the wavelength 520 nm. There is no any pair of wavelengths providing ratio of intensity distinguishing from clean water and equally usable for detection of both mentioned type of oils.
- the invention in US7688428 claims the oil detection method based on the anomalous signal return when oil is present compared with the signal when oil is absent.
- the invention does not specify any means for taking into account ambient light and minimizing its influence, one can assume that the variation of ambient light due to glint reflection of sun light from the water surface could produce anomalous increase of the signal in the spectral range 320-400 nm and therefore the method will produce false alarm.
- the method does not specify the data analysis, one can assume registering the anomalous signals caused by other than oil light reflecting materials on water surface, also possibly producing false alarms.
- the sensor of US7688428 is based on the pulsed light source to produce a beam of light having the apex angle 13-15 degrees and spectrally limited to wavelengths between 225 and 300 nm, which is directed to the water; sensor means for detecting fluorescent light filtered in the spectral range between 320 to 400 nm, means for analyzing data and reporting and/or producing a signal or alarm when analyzed data indicates the presence of any significant amount of oil pollutant.
- high power strobed Xe lamp serves as a light source. The sensor is operated vertically above the water at the distance of 3 to 5 m from the surface and at the angle not more than 7 degrees from vertical.
- the invention also claims the method of oil detection predicated upon differential measurement, i.e. based on the anomalous signal return that will occur when oil is present, as opposed to when there are no hydrocarbons present.
- the sensor described in patent US7688428 has the following limitations. 1) Using powerful Xe-lamp as a light source makes the sensor bulky and power consuming, causing principal limitations of the detection distance due to significant beam divergence (light beam has a shape of cone with apex angle 13-15 degrees), increase of the distance will require unreasonable increase of the power consumption. 2) Inclination of the incidence beam of about 7 degree of vertical to detect sufficient amount of fluorescent flux at the detector indicates that the optical axes of the sensing light beam and detection means do not coincide. The signal detection with optical scheme having misaligned optical axes of the light beam and optical axis of receiving means (bi-static optical layout) is exposed to the distance variation.
- the present invention provides a unit for optical non-contact continuous detection of presence of light, medium and heavy oil products on water.
- a unit according to present invention includes a sensor, which is connected to electronic compartment followed by microprocessor controller with embedded software for carrying out necessary analyses of returned signals received by the sensor unit.
- the microprocessor controller is connected to the communication means for transmitting an alarm signal through external communication line in case of oil pollution, whereby all the above elements are supplied by external power supply and accommodated into a waterproof housing.
- the sensor comprises the probe light source formed by a pulsed UV LED, collimating optics and narrow band optical filter.
- the sensor unit also comprises at least one dichroic mirror, a projection-receiving lens, at least one optical filter, at least one photodetector, and a reference photodetector.
- the probe light beam generated by UV LED (10) is guided by collimating optics through the narrow band optical filter onto the dichroic mirror, wherein minor part of said probe light beam is passed through said dichroic mirror into the reference photo detector.
- the reference photo detector registers the intensity signal of probe light beam generated by UV LED.
- Said dichroic mirror deflects the major part of probe light beam through projection-receiving lens onto the water surface such that said deflected probe light beam is coaxial with the axis of said projection-receiving lens.
- the cut off wavelength of the dichroic mirror is selected such that dichroic mirror reflects UV LED light pulses having wavelength in UV spectral region shorter than cut off wavelength of the dichroic mirror. It passes through the return light in the spectral region of longer wavelengths than the cut off wavelength of the dichroic mirror.
- Optical filter is a multi band optical filter passing through induced fluorescent flux of light, medium and heavy oil products and suppressing all other spectral components in the return light flux.
- the sensor comprises at least one photodetector to register said filtered return light flux.
- the sensor may comprise at least two separate photodetectors, whereby each photodetector having its own long pass optical filter. Return light is divided for each of said photodetectors by at least one beam splitter.
- the differential signal of two detectors is due to the returned light flux in the spectral range limited by two cut-off wavelengths of long pass optical filters. This range can be adjusted by selecting proper cut off wavelengths to register induced fluorescence of specified light, medium or heavy oil products.
- the sensor may also comprise three separate photodetectors, each photodetector is coupled with the narrow band optical filter.
- the passing spectral ranges of narrow band optical filters are selected such that first narrow band optical filter coupled with first photodetector passes through induced fluorescence flux in the spectral range for the light oil products.
- the second narrow band optical filter coupled with second photodetector passes through induced flux in the spectral range for the medium oil products.
- the third optical filter coupled with third photodetector passes through induced fluorescence flux in the spectral range for the heavy oil products.
- the photodetector may consist from an assembly of photodetectors like an array or a matrix, every detector element of N photodetectors is aligned with the optical filter, providing multichannel spectral detection of the fluorescence.
- the sensor according to the invention is scannable up to 45 degrees from a vertical position.
- the unit according to the invention has a waterproof and hermetic housing filled with neutral gas at overpressure, providing additional safety of exploitation and protecting optical and electronic components from condensed humidity.
- the present invention also provides a method for optical non-contact continuous detection of presence of oil products in the water.
- the light beam pulses are generated continuously with the UV LED and guided by the collimating optics through the optical filter onto the dichroic mirror. From the dichroic mirror the light beam pulses are guided through the optics onto the water. Induced light is guided through the optics into the sensor means for registering signals returned from monitored water surface. Part of each said probe light beam pulse generated by the UV LED is passed though said dichroic mirror into the reference photo detector for registering a signal of the intensity of the probe light beam generated by UV LED pulse.
- each probe light beam pulse generated by the UV LED is deflected coaxially with the axis of the projection-receiving lens by said dichroic mirror through said projection-receiving lens onto the water surface.
- a return light signal is collected and passed by the same projection-receiving lens through said dichroic mirror onto the means for registering return light signal.
- a return light informative signal is obtained by normalizing return light signal using a signal of the intensity of the probe light beam generated by the UV LED pulse. Between consecutive probe light beam pulses generated by the UV LED a background light signal due the ambient light is registered with the help of the sensor means. Said background light signal is subtracted from the return light informative signal in order to obtain a differential signal. The obtained differential signal levels as an accumulated signal per multiple pulses N of UV LED are compared with the predetermined threshold signal level. An alarm signal is generated when predetermined threshold signal level and duration of time interval limit for consecutive warnings is exceeded.
- Fig 1 shows an electro-mechanical block-scheme of the unit according to the present invention
- Fig 2 shows a first version of an optical layout of the sensor indicated by reference number 2 in Fig 1
- Fig 3 shows the fluorescence spectra of light, medium and heavy oil respectively and transparency curves of dichroic and long pass filters
- Fig 4 shows second version of the optical layout of the sensor according to the invention
- Fig 5 shows third version of the optical layout of the sensor according to the invention
- Fig 6 are shown operational positions of the unit inclined from vertical in scanning mode
- Fig 7 shows a flow chart of the method according to the present invention.
- the present invention provides the unit and the method for reliable detection of oil products which may appear in the controlled area and they will be described hereinafter in a more detail.
- Fig 1 electro-mechanical block-scheme of the unit.
- the unit includes opto-electronic unit 2 (hereinafter - “sensor”) that is provided with a protective snoot 1 and connected to electronic compartment 3 (Fig 1).
- Sensor is followed by microprocessor controller 4 with embedded software for carrying out necessary analyses of reflected signals received by sensor.
- the controller 4 is connected to communication means 5 for transmitting an alarm signal through external communication line 6 in case of oil pollution.
- Communication means may be any contact or wireless communication line supported by microcontroller, namely LAN, RS485, Radio Link, Wi-Fi, GSM, Bluetooth, or any other custom solution.
- the waterproof and hermetic housing can be also filled with neutral gas at overpressure, providing additional safety of exploitation and protecting optical and electronic components from condensed humidity.
- Microprocessor controller provides instant analysis of collected signals and communication means deliver the observation result, and more specifically – an alarm, when oil pollution is detected. All the above elements of the unit may be supplied from an external power supply 7 and are accommodated into a waterproof housing 8.
- Fig 2 shows a first version of an optical layout of the sensor according to the invention.
- the sensor according to the invention includes pulsed UV LED 10; collimating optics 10’, narrow band optical filter 20; dichroic mirror 30; projection-receiving lens 40; optical filter 50; photodetector 60 and reference photodetector 70.
- the sensor according to the invention operates as follows. At first the LED 1 (Fig. 2) is switched ON and it emits a pulse of light in UV spectral range with duration ⁇ o, and this pulse is collimated with corresponding optical system 10’, 20 and directed to the water surface through dichroic mirror 30 and the lens 40.
- the long-pass dichroic mirror 30 serves to reflect the LED emission at the wavelength ⁇ LED and to pass the light with the wavelengths longer than ⁇ cut through the filter (at the condition that ⁇ LED ⁇ ⁇ cut ).
- the mirror 30 is used also to align the LED beam to be coaxial with the optical axis of receiving lens 40. Then the UV LED pulse hits the water and induces the fluorescence of constituents in it.
- the light flux returned from the water contains scattered light at the wavelength ⁇ LED and induced fluorescence in the spectral range ⁇ fl > ⁇ cut .
- the lens 40 serves to shape the fluorescence flux within preset divergence to provide optimal cut–off performance of the filter set 50.
- the fluorescence is collected by the receiving lens 40 and spectrally filtered by the dichroic mirror 30.
- the cut off wavelength ⁇ cut is selected such that the fluorescence of oil products passes through the mirror 30.
- the long pass filter 5 is used to select the fluorescence flux caused by oil products in specific spectral ranges and to suppress all other spectral components in the return light flux.
- the filter when the incident fluorescence flux has a divergence lower than 3 degrees, the filter will pass less than 1% of light below cut-off wavelength and 90% with longer wavelengths. At higher divergence the filter will pass 10% of light below cut-off wavelength thus mixing the fluorescence flux with excitation light at the detector 6.
- the filtered fluorescence flux is registered by the photo-detector 60 by integrating the return signal in a time interval ⁇ 1 synchronously with the LED pulse (at the condition that ⁇ 1 ⁇ ⁇ 0 ).
- the LED is switched off and the photo-detector 60 registers the background signal due to the ambient light by integrating such light collected by the lens 40 and passed through the mirror 30 and long pass filter 50 during the same time interval ⁇ 1 . Further subtraction of the background signal from the signal of induced fluorescence eliminates the influence of ambient light to the sensor operation for oil detection.
- This two-step measuring procedure is repeated N times (N ⁇ 1) to produce resulting fluorescence value with subtracted background due to ambient light as an accumulated signal per N pulses of LED.
- the procedure of signal accumulation serves to increase the SNR at the photodetector 60.
- the reference detector 70 is used to register the energy of LED pulse and to normalize the return signal by its value to eliminate any variations of detected fluorescence flux caused by fluctuations of LED intensity in time due to environmental factors, work resource, etc.
- the alarm of oil detection is done by the microprocessor controller 4 (Fig 1) which compares the intensity of the accumulated signal with the pre-defined threshold value based on the signal of clean water registered according to the two-step procedure described above.
- the alarm is reported through the external communication line 6 (Fig 1).
- the filter 50 could be of multi band design to pass the fluorescence flux to the detector 60 in several specific spectral ranges.
- one spectral band can be selected to pass the fluorescence flux of light oil products, the next one – for medium oils, and another one – for heavy oil products.
- Fig 3 a fluorescence spectra of light (1), medium (2) and heavy (3) oil in water at the excitation wavelength 350 nm are shown.
- Transparency curve of dichroic filter is indicated by reference number 4 and transparency curve of dual long pass filter is indicated by reference number 5, respectively.
- FIG 4 there is shown more complex optical layout of the sensor, whereby reference number 10 designates pulsed UV LED, 10’ – collimating optics, 20 – narrow band optical filter, 30 - dichroic mirror, 40 – projection-receiving lens, 50 – long pass optical filter, 60 – photodetector, 70 – reference photodetector, 80 - beam splitter for the second detection channel, 80’ – optical beam splitter for one more detection channels, 90, 90’ – different optical filters, and 100, 100’ – photodetectors, respectively.
- the fluorescence flux collected by the lens 40 is split into several beams (channels) by the beam splitter 80, 80’ positioned along the optical axis of the lens 40, everyone of which is followed by detector assembly consisting of photo-detector 60 coupled with narrow band filter 50.
- detector assembly consisting of photo-detector 60 coupled with narrow band filter 50.
- FIG 5 there is shown yet another optical layout of the sensor, whereby reference number 10 designates pulsed UV LED, 10’ - collimating optics, 20 - optical filter, 30 - dichroic mirror, 4 - receiving lens, 5 - assembly of optical filters, 6 - assembly of photodetectors and 7 - reference photodetector, respectively.
- reference number 10 designates pulsed UV LED, 10’ - collimating optics, 20 - optical filter, 30 - dichroic mirror, 4 - receiving lens, 5 - assembly of optical filters, 6 - assembly of photodetectors and 7 - reference photodetector, respectively.
- the detector can also consist of the assembly of photo-detectors 60 like an array or a matrix of narrow band spectral filters 50 in front of every detector element of N photodetectors aligned with the set of optical filters 50.
- Such an assembly is aligned with the optical lens 40 and, when exposed to the fluorescence flux, will provide multichannel spectral detection of the fluorescence.
- This scheme even more detail spectral information for differentiation of oil signal from other materials can be obtained. This kind of selective spectral information of the fluorescence signal minimizes the false alarm rate.
- pulsed UV LED as a sensing light source delivers a number of benefits. Due to its small size (almost a point light source) it is possible to design a compact optical scheme with minimal losses of the energy at signal detection. Besides that the sensing beam has low divergence providing longer sensing distance at lower power consumption comparing with other light sources. As described above, the pulsed mode of light source operation synchronized with the detector is important in eliminating the influence of the ambient light to the detector. Due to high pulse repetition rate (PRR) of LED (up to 1 kHz) it is possible to realize data sampling and background subtraction accumulated per number of LED pulses (accumulation mode) to improve SNR at the detector.
- PRR pulse repetition rate
- the filter 2 serves to make the excitation monochromatic in order to provide better separation of excitation light and fluorescence flux.
- dichroic mirror By using dichroic mirror it is possible to realize compact coaxial design of the sensor. Due to aligned optical axes of the sensing beam and the optical lens 4 the sensor operation does not depend on the inclination angle from vertical position. It is particularly important for on-shore and on buoy installations to monitor adjacent water surfaces. This feature is of principal importance for providing sensing of water with scanning the light beam as indicated in Fig 6. The unit is scannable up to 45 degrees from the vertical position.
- the LED with several emission wavelengths can be used in the layouts shown in Fig 5 and 6.
- the emission wavelength is controlled, separate detection channels serve to register the fluorescence at different excitation wavelengths, thus providing even better differentiation of oil fluorescence from any other signals.
- Synchronous with LED high frequency data sampling by the detector gives the possibility to differentiate the short-term and long-term variations of the signal at the detector, providing additional information for decision making and increasing the reliability of alarm generation.
- Using a solid state detector in combination with LED allows low voltage sensor operation, and it reduces the risk in its application in highly explosive fire-hazardous environments (e.g. oil terminals, pipelines, off-shore platforms).
- the method of oil detection according to present invention is based on the registration of the integral intensity of fluorescence emission in the spectral ranges defined by detector configuration and recorded as an accumulated difference of the intensity I 1 of the return light flux during the LED pulse and without it (i.e. I 2 ).
- the microcontroller produces the alarm signal.
- the threshold may be defined as an averaged intensity of the sensor signal over M pulses of LED recorded from the clean water after sensor installation on-site.
- the flow chart of the method of oil detection is shown in Fig. 7.
- the process starts with measuring the ambient light flux in the preselected spectral range(s) ⁇ defined by the configuration of filter sets 5, 9 and 9’ in Fig. 2, 4 and 5.
- the background signal I 1 on the detector is integrated during time interval ⁇ 1 .
- the latter is defined by the duration of the LED light pulse by the condition ⁇ 1 > ⁇ 0 .
- the LED pulse is generated.
- the detector records the return light signal I’ 2 synchronously with the LED light pulse in the same preselected spectral range(s) ⁇ during the same time interval ⁇ 1 .
- the reference detector records the signal I r proportional to light flux of LED.
- the threshold signal I 0 is defined by described measuring procedure when the water surface is supposed to be in normal conditions (clean), e.g. after on-site installation of the sensor. The time of continuous warning status is counted by the system, and when its duration exceeds the threshold T 0 , the system reports an alarm.
- the time T 0 is defined by application requirements. By taking into account the sizes of oil patches and the flow velocity in the controlled area, it is possible to set-up the reasonable “alarm generation time”. For example, if the oil patch of 1 m size is considered as noticeable, and the flow velocity in the area is 0.5 m per second, then such patch will remain in the field of view of the sensor during 2 seconds. In this time frame the sensor operating at the sampling rate 10Hz will provide 20 continuous warning signals providing statistical confirmation for reporting alarm. Such analysis of detected signals with optimized PRR, accumulation time and alarm generation time according to on-site conditions lowers the risk of false alarms by filtering off single instantaneous variations exceeding the threshold for warning.
- the accumulation of signal per N pulses of LED usually provides SNR increase by root of number N.
- signal accumulation per 100 LED pulses at the pulse frequency 100 Hz will increase SNR by order of magnitude in 1 sec time interval. From one hand such time is reasonably short and allows detection of small oil patches even in water with strong current. From the other hand, analysis of 100 signals recorded inside accumulation time allows excluding the short time spikes of the signal caused by other reasons or objects. Such analysis of detected signals with optimized PRR and accumulation time according to on-site conditions lowers the risk of false alarm by filtering off single instantaneous variations exceeding the threshold.
- the flow chart according to Fig 7 is equally performed for every single detection channel synchronously with the LED pulse.
- the threshold signal I0 is defined individually for every detection channel, and exceeding such threshold provides selective information of the spectral range generating the alarm, thus better differentiating the signals due to oil from other materials.
- the method of data analysis compares the difference in signals in defined spectral channels influenced by oil products with the corresponding values of the signal in other detection channels influenced by other organic materials in water to distinguish oil product appearance in the waters with variable organic content (i.e. run-off, waste or other industrial waters). This increases the reliability of oil detection.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
The invention relates to a unit and method for detection of presence of oil on the water surface or in the water column. Unit comprises a sensor (2), whereby the sensor is connected to electronic compartment followed by microprocessor controller (4) with embedded software for carrying out necessary analyses of reflected signals received by the sensor (2). The microprocessor controller (4) is connected to communication means (5) for transmitting an alarm signal through external communication line (6) in case of oil pollution. All elements mentioned above are supplied by external power supply (7) and are accommodated into a waterproof housing (8). The sensor comprises the probe light source formed by a pulsed UV LED (10), collimating optics (10') and narrow band optical filter (20), at least one dichroic mirror (30), a projection-receiving lens (40), at least one optical filter (50), at least one photodetector (60) and a reference photodetector (70).
Description
The present invention relates to a unit and method for detection of presence of oil on the water surface or in the water column.
In-time detection of water pollution by oil remains a relevant task to prevent environmental damage due to the spill and pollution spreading and loss of the product caused by the leak incidents. Among the variety of the techniques used for the task, the most demanded are the ones capable of operating in real-time, unattended, and with minimal maintenance.
The Light Induced Fluorescence (LIF) is well known high sensitive method used for detection of oil in water. It is referred to as an active method due to the use of controlled light source. The selectivity of oil detection with this method is provided due to the fact that at properly selected spectrum of the inducing light the poly-aromatic hydrocarbons (PAH) of oil products produce fluorescence with specific spectral profile. This profile differs from spectral response of other materials to the same inducing light and due to that can be used for oil detection and quantification.
Another feature of the LIF method is that it can be applied remotely without sampling or contacting the water body. This feature in combination with high selectivity, sensitivity and instantaneous detection allows building the sensor based on LIF method operating continuously in non-contact and real-time mode.
LIF method is effectively realized for oil detection by airborne and shipboard LIDAR (Light Detection and Ranging) monitoring systems. These systems provide high sensitivity and spatial resolution down to meter scale and are capable to detect oil on the water surface, submerged oil, and dissolved and emulsified fractions. Being very effective as mobile units, such systems are often too complex and expensive for continuous local on-site monitoring.
The remote (non-contact) mode of oil detection with LIF method is realized by fluorescence LIDARs (Light Detection and Ranging). The invention according to patent document US5096293 “Differential fluorescence LIDAR and associated detection method” to Cecchi Giovanna, Pantani Luca, 1992 discloses the use of fluorescence LIDAR for real-time remote sensing, and in particular for remote sensing of water. The detection method is based on the inducing the emission of fluorescence radiation from a remote target and collecting such emission with following separation into plurality of predetermined spectral channels. Collected spectral signals are processed in a way of calculating the ratio of each channel signal to each other signal thus providing a form of ratios which is compared further with predetermined stored signals corresponding to defined targets or categories of targets. The method is realized by the system comprised the pulsed laser with optical means to direct the laser beam to the object and to collect back scattered radiation; optical channel separator means for separating a backscattered fluorescence signal into predefined number of channels, and signal processing means for forming a plurality of ratio signals and comparing the value of each ratio signal to values stored in a memory.
In the patent document WO2012015332 “Method for remote detection of oil pollution on the surface of water”, to Belov, Mikhail Leonidovich et al, 2012 there is described a method for oil detection by irradiating the surface of the water in the ultraviolet range at the excitation wavelength and recording the intensity of the fluorescent radiation in two narrow spectral ranges with centers at wavelengths λ1, λ2. The wavelengths are selected from the condition for the maximum difference between the value of the radiation intensity ratio (for petroleum products) and the value of the radiation intensity ratio (for water). The measured value for the radiation intensity ratio is compared with threshold values.
The above method is based on the assumption that it is possible to define two wavelengths of fluorescence emission of oil with distinct ratio of intensities compared with that of pure water. Such an assumption does not work in case of oil products having the fluorescence in too distinguishing spectral ranges. For example, at the excitation wavelength 308 nm light oil (gasoline) has a max fluorescence at the emission wavelength 380 nm, and heavy oil (ship fuel) has a max fluorescence at the wavelength 520 nm. There is no any pair of wavelengths providing ratio of intensity distinguishing from clean water and equally usable for detection of both mentioned type of oils.
There is an invention defined in patent US7688428 “Non-contact oil spill detection apparatus and method” to Pearlman; Michael D, 2010 describing a non-contact sensor for oil spill detection based on LIF method.
The invention in US7688428 claims the oil detection method based on the anomalous signal return when oil is present compared with the signal when oil is absent. As the invention does not specify any means for taking into account ambient light and minimizing its influence, one can assume that the variation of ambient light due to glint reflection of sun light from the water surface could produce anomalous increase of the signal in the spectral range 320-400 nm and therefore the method will produce false alarm. As the method does not specify the data analysis, one can assume registering the anomalous signals caused by other than oil light reflecting materials on water surface, also possibly producing false alarms.
The sensor of US7688428 is based on the pulsed light source to produce a beam of light having the apex angle 13-15 degrees and spectrally limited to wavelengths between 225 and 300 nm, which is directed to the water; sensor means for detecting fluorescent light filtered in the spectral range between 320 to 400 nm, means for analyzing data and reporting and/or producing a signal or alarm when analyzed data indicates the presence of any significant amount of oil pollutant. The invention in patent US7688428 claims that high power strobed Xe lamp serves as a light source. The sensor is operated vertically above the water at the distance of 3 to 5 m from the surface and at the angle not more than 7 degrees from vertical. The invention also claims the method of oil detection predicated upon differential measurement, i.e. based on the anomalous signal return that will occur when oil is present, as opposed to when there are no hydrocarbons present.
The sensor described in patent US7688428 has the following limitations.
1) Using powerful Xe-lamp as a light source makes the sensor bulky and power consuming, causing principal limitations of the detection distance due to significant beam divergence (light beam has a shape of cone with apex angle 13-15 degrees), increase of the distance will require unreasonable increase of the power consumption.
2) Inclination of the incidence beam of about 7 degree of vertical to detect sufficient amount of fluorescent flux at the detector indicates that the optical axes of the sensing light beam and detection means do not coincide. The signal detection with optical scheme having misaligned optical axes of the light beam and optical axis of receiving means (bi-static optical layout) is exposed to the distance variation. Therefore even if the sensor is adjusted for the distance to water (for example 3-5 m), the change of the distance due to tides, waves or other processes will cause the fluctuations of fluorescence signal thus influencing the reliability of detection.
3) Due to above described reason the sensor cannot operate at the inclination angle more than 10 degrees from vertical. It limits its installation requirements and hampers operation in scanning mode when the inclination angle is varied.
4) The detection limited to the spectral range 320-400 nm does not allow detection of oil products fluorescing at longer wavelengths (Fig. 2).
1) Using powerful Xe-lamp as a light source makes the sensor bulky and power consuming, causing principal limitations of the detection distance due to significant beam divergence (light beam has a shape of cone with apex angle 13-15 degrees), increase of the distance will require unreasonable increase of the power consumption.
2) Inclination of the incidence beam of about 7 degree of vertical to detect sufficient amount of fluorescent flux at the detector indicates that the optical axes of the sensing light beam and detection means do not coincide. The signal detection with optical scheme having misaligned optical axes of the light beam and optical axis of receiving means (bi-static optical layout) is exposed to the distance variation. Therefore even if the sensor is adjusted for the distance to water (for example 3-5 m), the change of the distance due to tides, waves or other processes will cause the fluctuations of fluorescence signal thus influencing the reliability of detection.
3) Due to above described reason the sensor cannot operate at the inclination angle more than 10 degrees from vertical. It limits its installation requirements and hampers operation in scanning mode when the inclination angle is varied.
4) The detection limited to the spectral range 320-400 nm does not allow detection of oil products fluorescing at longer wavelengths (Fig. 2).
The present invention provides a unit for optical non-contact continuous detection of presence of light, medium and heavy oil products on water.
A unit according to present invention includes a sensor, which is connected to electronic compartment followed by microprocessor controller with embedded software for carrying out necessary analyses of returned signals received by the sensor unit. The microprocessor controller is connected to the communication means for transmitting an alarm signal through external communication line in case of oil pollution, whereby all the above elements are supplied by external power supply and accommodated into a waterproof housing.
The sensor comprises the probe light source formed by a pulsed UV LED, collimating optics and narrow band optical filter. The sensor unit also comprises at least one dichroic mirror, a projection-receiving lens, at least one optical filter, at least one photodetector, and a reference photodetector.
The probe light beam generated by UV LED (10) is guided by collimating optics through the narrow band optical filter onto the dichroic mirror, wherein minor part of said probe light beam is passed through said dichroic mirror into the reference photo detector. The reference photo detector registers the intensity signal of probe light beam generated by UV LED. Said dichroic mirror deflects the major part of probe light beam through projection-receiving lens onto the water surface such that said deflected probe light beam is coaxial with the axis of said projection-receiving lens.
The cut off wavelength of the dichroic mirror is selected such that dichroic mirror reflects UV LED light pulses having wavelength in UV spectral region shorter than cut off wavelength of the dichroic mirror. It passes through the return light in the spectral region of longer wavelengths than the cut off wavelength of the dichroic mirror.
Optical filter is a multi band optical filter passing through induced fluorescent flux of light, medium and heavy oil products and suppressing all other spectral components in the return light flux.
The sensor comprises at least one photodetector to register said filtered return light flux.
The sensor may comprise at least two separate photodetectors, whereby each photodetector having its own long pass optical filter. Return light is divided for each of said photodetectors by at least one beam splitter. In such schematics the differential signal of two detectors is due to the returned light flux in the spectral range limited by two cut-off wavelengths of long pass optical filters. This range can be adjusted by selecting proper cut off wavelengths to register induced fluorescence of specified light, medium or heavy oil products.
The sensor may also comprise three separate photodetectors, each photodetector is coupled with the narrow band optical filter. The passing spectral ranges of narrow band optical filters are selected such that first narrow band optical filter coupled with first photodetector passes through induced fluorescence flux in the spectral range for the light oil products. The second narrow band optical filter coupled with second photodetector passes through induced flux in the spectral range for the medium oil products. The third optical filter coupled with third photodetector passes through induced fluorescence flux in the spectral range for the heavy oil products.
The photodetector may consist from an assembly of photodetectors like an array or a matrix, every detector element of N photodetectors is aligned with the optical filter, providing multichannel spectral detection of the fluorescence.
The sensor according to the invention is scannable up to 45 degrees from a vertical position.
The unit according to the invention has a waterproof and hermetic housing filled with neutral gas at overpressure, providing additional safety of exploitation and protecting optical and electronic components from condensed humidity.
The present invention also provides a method for optical non-contact continuous detection of presence of oil products in the water. According to the method of present invention the light beam pulses are generated continuously with the UV LED and guided by the collimating optics through the optical filter onto the dichroic mirror. From the dichroic mirror the light beam pulses are guided through the optics onto the water. Induced light is guided through the optics into the sensor means for registering signals returned from monitored water surface. Part of each said probe light beam pulse generated by the UV LED is passed though said dichroic mirror into the reference photo detector for registering a signal of the intensity of the probe light beam generated by UV LED pulse. Part of each probe light beam pulse generated by the UV LED is deflected coaxially with the axis of the projection-receiving lens by said dichroic mirror through said projection-receiving lens onto the water surface. Synchronously with each probe light beam pulse a return light signal is collected and passed by the same projection-receiving lens through said dichroic mirror onto the means for registering return light signal.
A return light informative signal is obtained by normalizing return light signal using a signal of the intensity of the probe light beam generated by the UV LED pulse. Between consecutive probe light beam pulses generated by the UV LED a background light signal due the ambient light is registered with the help of the sensor means. Said background light signal is subtracted from the return light informative signal in order to obtain a differential signal. The obtained differential signal levels as an accumulated signal per multiple pulses N of UV LED are compared with the predetermined threshold signal level. An alarm signal is generated when predetermined threshold signal level and duration of time interval limit for consecutive warnings is exceeded.
The invention is explained in detail below with reference to the drawings, in which:
Fig 1 shows an electro-mechanical block-scheme of the unit according to the present invention;
Fig 2 shows a first version of an optical layout of the sensor indicated byreference number 2 in Fig 1;
Fig 3 shows the fluorescence spectra of light, medium and heavy oil respectively and transparency curves of dichroic and long pass filters;
Fig 4 shows second version of the optical layout of the sensor according to the invention;
Fig 5 shows third version of the optical layout of the sensor according to the invention;
Fig 6 are shown operational positions of the unit inclined from vertical in scanning mode;
Fig 7 shows a flow chart of the method according to the present invention.
Fig 1 shows an electro-mechanical block-scheme of the unit according to the present invention;
Fig 2 shows a first version of an optical layout of the sensor indicated by
Fig 3 shows the fluorescence spectra of light, medium and heavy oil respectively and transparency curves of dichroic and long pass filters;
Fig 4 shows second version of the optical layout of the sensor according to the invention;
Fig 5 shows third version of the optical layout of the sensor according to the invention;
Fig 6 are shown operational positions of the unit inclined from vertical in scanning mode;
Fig 7 shows a flow chart of the method according to the present invention.
The present invention provides the unit and the method for reliable detection of oil products which may appear in the controlled area and they will be described hereinafter in a more detail.
In Fig 1 is shown electro-mechanical block-scheme of the unit. The unit includes opto-electronic unit 2 (hereinafter - “sensor”) that is provided with a protective snoot 1 and connected to electronic compartment 3 (Fig 1). Sensor is followed by microprocessor controller 4 with embedded software for carrying out necessary analyses of reflected signals received by sensor. The controller 4 is connected to communication means 5 for transmitting an alarm signal through external communication line 6 in case of oil pollution. Considered communication means may be any contact or wireless communication line supported by microcontroller, namely LAN, RS485, Radio Link, Wi-Fi, GSM, Bluetooth, or any other custom solution. The waterproof and hermetic housing can be also filled with neutral gas at overpressure, providing additional safety of exploitation and protecting optical and electronic components from condensed humidity.
Microprocessor controller provides instant analysis of collected signals and communication means deliver the observation result, and more specifically – an alarm, when oil pollution is detected. All the above elements of the unit may be supplied from an external power supply 7 and are accommodated into a waterproof housing 8.
Fig 2 shows a first version of an optical layout of the sensor according to the invention. When describing different versions of the sensor the same elements in figures are designated with the same reference numbers.
The sensor according to the invention includes pulsed UV LED 10; collimating optics 10’, narrow band optical filter 20; dichroic mirror 30; projection-receiving lens 40; optical filter 50; photodetector 60 and reference photodetector 70.
The sensor according to the invention operates as follows. At first the LED 1 (Fig. 2) is switched ON and it emits a pulse of light in UV spectral range with duration τo, and this pulse is collimated with corresponding optical system 10’, 20 and directed to the water surface through dichroic mirror 30 and the lens 40. The long-pass dichroic mirror 30 serves to reflect the LED emission at the wavelength λLED and to pass the light with the wavelengths longer than λcut through the filter (at the condition that λLED < λcut). The mirror 30 is used also to align the LED beam to be coaxial with the optical axis of receiving lens 40. Then the UV LED pulse hits the water and induces the fluorescence of constituents in it.
The light flux returned from the water contains scattered light at the wavelength λLED and induced fluorescence in the spectral range λfl > λcut. The lens 40 serves to shape the fluorescence flux within preset divergence to provide optimal cut–off performance of the filter set 50. The fluorescence is collected by the receiving lens 40 and spectrally filtered by the dichroic mirror 30. The cut off wavelength λcut is selected such that the fluorescence of oil products passes through the mirror 30. The long pass filter 5 is used to select the fluorescence flux caused by oil products in specific spectral ranges and to suppress all other spectral components in the return light flux.
For example, when the incident fluorescence flux has a divergence lower than 3 degrees, the filter will pass less than 1% of light below cut-off wavelength and 90% with longer wavelengths. At higher divergence the filter will pass 10% of light below cut-off wavelength thus mixing the fluorescence flux with excitation light at the detector 6.
The filtered fluorescence flux is registered by the photo-detector 60 by integrating the return signal in a time interval τ1 synchronously with the LED pulse (at the condition that τ1 ≥ τ0).
Next the LED is switched off and the photo-detector 60 registers the background signal due to the ambient light by integrating such light collected by the lens 40 and passed through the mirror 30 and long pass filter 50 during the same time interval τ1. Further subtraction of the background signal from the signal of induced fluorescence eliminates the influence of ambient light to the sensor operation for oil detection.
This two-step measuring procedure is repeated N times (N ≥ 1) to produce resulting fluorescence value with subtracted background due to ambient light as an accumulated signal per N pulses of LED. The procedure of signal accumulation serves to increase the SNR at the photodetector 60.
The reference detector 70 is used to register the energy of LED pulse and to normalize the return signal by its value to eliminate any variations of detected fluorescence flux caused by fluctuations of LED intensity in time due to environmental factors, work resource, etc.
The alarm of oil detection is done by the microprocessor controller 4 (Fig 1) which compares the intensity of the accumulated signal with the pre-defined threshold value based on the signal of clean water registered according to the two-step procedure described above. The alarm is reported through the external communication line 6 (Fig 1).
There are several possible configurations of the detection part of the sensor. In the first option the filter 50 could be of multi band design to pass the fluorescence flux to the detector 60 in several specific spectral ranges. For example in such layout one spectral band can be selected to pass the fluorescence flux of light oil products, the next one – for medium oils, and another one – for heavy oil products.
In Fig 3 a fluorescence spectra of light (1), medium (2) and heavy (3) oil in water at the excitation wavelength 350 nm are shown. Transparency curve of dichroic filter is indicated by reference number 4 and transparency curve of dual long pass filter is indicated by reference number 5, respectively.
In this case any type of oil product will give the signal to the detector non-selective towards different oil types. The fluorescence outside of the spectral ranges will be not taken into account, thus minimizing the false alarm rate.
In Fig 4 there is shown more complex optical layout of the sensor, whereby reference number 10 designates pulsed UV LED, 10’ – collimating optics, 20 – narrow band optical filter, 30 - dichroic mirror, 40 – projection-receiving lens, 50 – long pass optical filter, 60 – photodetector, 70 – reference photodetector, 80 - beam splitter for the second detection channel, 80’ – optical beam splitter for one more detection channels, 90, 90’ – different optical filters, and 100, 100’ – photodetectors, respectively.
In this layout of the detection part of the sensor unit the fluorescence flux collected by the lens 40 is split into several beams (channels) by the beam splitter 80, 80’ positioned along the optical axis of the lens 40, everyone of which is followed by detector assembly consisting of photo-detector 60 coupled with narrow band filter 50. Such detection scheme allows detection of spectral signals in different spectral ranges by a separate detector, thus providing selective information of the spectral range generating the alarm, thus providing better differentiation of the signals due to oil from other materials.
In Fig 5 there is shown yet another optical layout of the sensor, whereby reference number 10 designates pulsed UV LED, 10’ - collimating optics, 20 - optical filter, 30 - dichroic mirror, 4 - receiving lens, 5 - assembly of optical filters, 6 - assembly of photodetectors and 7 - reference photodetector, respectively.
The detector can also consist of the assembly of photo-detectors 60 like an array or a matrix of narrow band spectral filters 50 in front of every detector element of N photodetectors aligned with the set of optical filters 50. Such an assembly is aligned with the optical lens 40 and, when exposed to the fluorescence flux, will provide multichannel spectral detection of the fluorescence. In this scheme even more detail spectral information for differentiation of oil signal from other materials can be obtained. This kind of selective spectral information of the fluorescence signal minimizes the false alarm rate.
The use of pulsed UV LED as a sensing light source delivers a number of benefits. Due to its small size (almost a point light source) it is possible to design a compact optical scheme with minimal losses of the energy at signal detection. Besides that the sensing beam has low divergence providing longer sensing distance at lower power consumption comparing with other light sources. As described above, the pulsed mode of light source operation synchronized with the detector is important in eliminating the influence of the ambient light to the detector. Due to high pulse repetition rate (PRR) of LED (up to 1 kHz) it is possible to realize data sampling and background subtraction accumulated per number of LED pulses (accumulation mode) to improve SNR at the detector.
While the LED light has narrow spectral width, the filter 2 (Fig 5) serves to make the excitation monochromatic in order to provide better separation of excitation light and fluorescence flux.
By using dichroic mirror it is possible to realize compact coaxial design of the sensor. Due to aligned optical axes of the sensing beam and the optical lens 4 the sensor operation does not depend on the inclination angle from vertical position. It is particularly important for on-shore and on buoy installations to monitor adjacent water surfaces. This feature is of principal importance for providing sensing of water with scanning the light beam as indicated in Fig 6. The unit is scannable up to 45 degrees from the vertical position.
The LED with several emission wavelengths can be used in the layouts shown in Fig 5 and 6. When the emission wavelength is controlled, separate detection channels serve to register the fluorescence at different excitation wavelengths, thus providing even better differentiation of oil fluorescence from any other signals.
Synchronous with LED high frequency data sampling by the detector gives the possibility to differentiate the short-term and long-term variations of the signal at the detector, providing additional information for decision making and increasing the reliability of alarm generation. Using a solid state detector in combination with LED allows low voltage sensor operation, and it reduces the risk in its application in highly explosive fire-hazardous environments (e.g. oil terminals, pipelines, off-shore platforms).
Low power consumption makes possible long-time sensor operation with storage or solar batteries. This feature is of great importance for sensors installed for autonomous operations without power lines available.
The method of oil detection according to present invention is based on the registration of the integral intensity of fluorescence emission in the spectral ranges defined by detector configuration and recorded as an accumulated difference of the intensity I
1 of the return light flux during the LED pulse and without it (i.e. I
2 ).
In this way the background signal due to ambient light is not taken into account. When the accumulated signal exceeds the pre-defined threshold I
0 (i.e. (<I
2
- I
1
>) > <I
0
>), the microcontroller produces the alarm signal. The threshold may be defined as an averaged intensity of the sensor signal over M pulses of LED recorded from the clean water after sensor installation on-site.
The flow chart of the method of oil detection is shown in Fig. 7. The process starts with measuring the ambient light flux in the preselected spectral range(s) Δλ defined by the configuration of filter sets 5, 9 and 9’ in Fig. 2, 4 and 5. The background signal I
1 on the detector is integrated during time interval τ1. The latter is defined by the duration of the LED light pulse by the condition τ1 > τ0. Then the LED pulse is generated. The detector records the return light signal I’
2 synchronously with the LED light pulse in the same preselected spectral range(s) Δλ during the same time interval τ1. Simultaneously the reference detector records the signal I
r proportional to light flux of LED. Then the signal I’
2 is normalized by I
r and the informative signal I
2 is produced. After that the background signal I
1 is subtracted from informative signal I
2 resulting in the differential signal I
d
=I
2
-I
1 . The differential signal is accumulated during the cycle of preset number of LED pulses N: I = Σ I
d
/N. If accumulated signal I exceeds the threshold I
0 the system sets the warning status. The threshold signal I
0 is defined by described measuring procedure when the water surface is supposed to be in normal conditions (clean), e.g. after on-site installation of the sensor. The time of continuous warning status is counted by the system, and when its duration exceeds the threshold T0, the system reports an alarm.
The time T0 is defined by application requirements. By taking into account the sizes of oil patches and the flow velocity in the controlled area, it is possible to set-up the reasonable “alarm generation time”. For example, if the oil patch of 1 m size is considered as noticeable, and the flow velocity in the area is 0.5 m per second, then such patch will remain in the field of view of the sensor during 2 seconds. In this time frame the sensor operating at the sampling rate 10Hz will provide 20 continuous warning signals providing statistical confirmation for reporting alarm. Such analysis of detected signals with optimized PRR, accumulation time and alarm generation time according to on-site conditions lowers the risk of false alarms by filtering off single instantaneous variations exceeding the threshold for warning.
The accumulation of signal per N pulses of LED usually provides SNR increase by root of number N. For example signal accumulation per 100 LED pulses at the pulse frequency 100 Hz will increase SNR by order of magnitude in 1 sec time interval. From one hand such time is reasonably short and allows detection of small oil patches even in water with strong current. From the other hand, analysis of 100 signals recorded inside accumulation time allows excluding the short time spikes of the signal caused by other reasons or objects. Such analysis of detected signals with optimized PRR and accumulation time according to on-site conditions lowers the risk of false alarm by filtering off single instantaneous variations exceeding the threshold.
In case of multichannel detection specified in Fig 4 and 5 the flow chart according to Fig 7 is equally performed for every single detection channel synchronously with the LED pulse. As a result, the threshold signal I0 is defined individually for every detection channel, and exceeding such threshold provides selective information of the spectral range generating the alarm, thus better differentiating the signals due to oil from other materials.
When the detection configuration with several channels is used, the method of data analysis compares the difference in signals in defined spectral channels influenced by oil products with the corresponding values of the signal in other detection channels influenced by other organic materials in water to distinguish oil product appearance in the waters with variable organic content (i.e. run-off, waste or other industrial waters). This increases the reliability of oil detection.
The invention is not limited to the embodiments described above and there may be made various changes and modifications not deviating from the scope of appended claims.
Claims (13)
- Unit for optical non-contact continuous detection of presence of light, medium and heavy oil products on water, according to present invention includes a sensor (2), whereby the sensor is connected to electronic compartment followed by microprocessor controller (4) with embedded software for carrying out necessary analyses of reflected signals received by the sensor (2), the microprocessor controller (4) is connected to communication means (5) for transmitting an alarm signal through external communication line (6) in case of oil pollution, whereby all the above elements are supplied by external power supply (7) and accommodated into a waterproof housing (8), characterized in that said sensor comprises the probe light source formed by a pulsed UV LED (10), collimating optics (10’) and narrow band optical filter (20), at least one dichroic mirror (30), a projection-receiving lens (40), at least one optical filter (50), at least one photodetector (60), and a reference photodetector (70).
- Unit according to claim 1, characterized in that the probe light beam generated by UV LED (10) pulse is guided by collimating optics (10’) through the narrow band optical filter (20) onto the dichroic mirror (30), wherein one part of said probe light beam is passed through said dichroic mirror (30) into the reference photo detector (70) for registering the intensity signal (I r ) of probe light beam generated by UV LED (10), said dichroic mirror (30) deflects the major part of probe light beam through projection-receiving lens (40) onto the water surface such that said deflected probe light beam is coaxial with the axis of said projection-receiving lens (40).
- Unit according to claim 1, characterized in that the cut off wavelength (λCUT) of the dichroic mirror (30) is selected such that dichroic mirror (30) reflects UV LED light pulses having wavelength (λLED) in UV spectral region shorter that cut off wavelength (λCUT) of the dichroic mirror and passes through the return light in the spectral region of longer wavelengths than the cut off wavelength (λCUT) of the dichroic mirror.
- Unit according to claim 1, characterized in that the optical filter (50) is a multi band long pass optical filter passing through induced fluorescent flux of light, medium and heavy oil products and suppressing all other spectral components in the return light flux.
- Unit according to claim 1, characterized in that the sensor comprises at least two separate photodetectors (60), each photodetector (60) having its own long pass optical filter (50), wherein return light is divided for each of said corresponding photodetectors by at least one beam splitter (80).
- Unit according to claim 1, characterized in that sensor unit comprises three separate photodetectors (60), each photodetector is coupled with the narrow band optical filter (50), the passing spectral ranges of narrow band optical filters are selected such that one narrow band optical filter coupled with first photodetector passes through induced fluorescence flux in the spectral range for the light oil products, the second narrow band optical filter coupled with second photodetector passes through induced flux in the spectral range for the medium oil products and third optical filter coupled with third photodetector passes through induced fluorescence flux in the spectral range for the heavy oil products.
- Unit according to claim 1, characterized in that the photodetector (60) consists from an assembly of (N) photodetector elements like an array or a matrix, every photodetector element is aligned with the optical filter (50), providing multichannel spectral detection of the fluorescence.
- Unit according to claim 1, characterized in that the unit (8) is scannable up to 45 degrees from the vertical position.
- Unit according to claim 1, characterized in that the waterproof housing (8) of the unit is filled with gas at overpressure, providing additional safety of exploitation.
- Unit according to claim 1, characterized in that the UV LED (10) of the unit emits light at single wavelength or at multiple wavelengths in controlled mode.
- Method for optical non-contact continuous detection of presence of oil products on the water, according to which method probe light beam pulses are generated and guided through the optics onto the water and the reflected from the water surface return light is guided through the optics into the sensor unit for registering signals, characterized by the following steps:the ambient light flux in the preselected spectral range(s) Δλ is integrated by photodetector (60) during time interval τ1 and the background signal I 1 is obtained, whereby interval τ1 is defined by the duration UV LED light pulse τ0 by the condition τ1 > τ0;a preset number (N) of probe light beam pulses with duration τ0 are generated continuously with the UV LED (10) and guided by the collimating optics (10’) through the optical filter (20) onto the dichroic mirror (30);part of each of said probe light beam pulse generated by the UV LED (10) is passed through said dichroic mirror (30) into the reference photo detector (70) for registering a signal (I r ) proportional to the intensity of the probe light flux generated by UV LED (10) pulse;major part of each probe light beam pulse generated by the UV LED (10) is deflected coaxially with the axis of the projection-receiving lens (40) by said dichroic mirror (30) through said projection-receiving lens (40) onto the water surface;synchronously with each probe light beam pulse a return light signal (I’ 2 ) is collected and passed by the same projection-receiving lens (40) through said dichroic mirror (30) onto the detector means (50, 60) for registering the return light signal (I’ 2 );a return light informative signal (I 2 ) is produced by normalizing return light signal (I’ 2 ) using a reference signal (I r ) of reference photodetector, background light signal (I 1 ) is subtracted from the return light informative signal (I 2 ) in order to obtain differential signal (I d ).
- Method according to claim 11, characterized in that the obtained and accumulated during (N) cycles differential signal (I d ) levels are accumulated as a signal (I) and compared with the predetermined threshold signal (I 0 ) level, and when signal (I) exceeds threshold signal (I 0 ) level, a warning is set.
- Method according to claim 12, characterized in that when the counted time interval (T) of consequent warnings exceeds the preset time interval T0 set for consequent warning status, the alarm signal is generated.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12794670.5A EP2920576B1 (en) | 2012-11-15 | 2012-11-15 | Unit and method for optical non-contact oil detection |
US14/441,264 US9863887B2 (en) | 2012-11-15 | 2012-11-15 | Unit and method for optical non-contact oil detection |
PCT/EP2012/072665 WO2014075724A1 (en) | 2012-11-15 | 2012-11-15 | Unit and method for optical non-contact oil detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2012/072665 WO2014075724A1 (en) | 2012-11-15 | 2012-11-15 | Unit and method for optical non-contact oil detection |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014075724A1 true WO2014075724A1 (en) | 2014-05-22 |
Family
ID=47278263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/072665 WO2014075724A1 (en) | 2012-11-15 | 2012-11-15 | Unit and method for optical non-contact oil detection |
Country Status (3)
Country | Link |
---|---|
US (1) | US9863887B2 (en) |
EP (1) | EP2920576B1 (en) |
WO (1) | WO2014075724A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105158218A (en) * | 2015-07-28 | 2015-12-16 | 青岛市光电工程技术研究院 | Non-contact monitoring device and method for floating oil on water surface |
CN105203519A (en) * | 2015-10-19 | 2015-12-30 | 青岛市光电工程技术研究院 | Marine oil-spill fixed-point monitoring equipment and method |
EP2963414A1 (en) * | 2014-06-30 | 2016-01-06 | Leopold Siegrist GmbH | Fluid probe |
CN105223177A (en) * | 2015-10-19 | 2016-01-06 | 青岛市光电工程技术研究院 | A kind of distance self-adaptation marine oil spill monitoring equipment and method |
CN106053418A (en) * | 2016-07-26 | 2016-10-26 | 陕西正大环保科技有限公司 | Noncontact type oil-in-water sensor |
CN108956465A (en) * | 2018-07-27 | 2018-12-07 | 天津大学 | A kind of plug in construction for oil field reinjection water on-line monitoring |
GB2568307A (en) * | 2017-11-14 | 2019-05-15 | Stratec Biomedical Ag | Spectral excitation device |
WO2020106036A1 (en) | 2018-11-19 | 2020-05-28 | Samsung Electronics Co., Ltd. | Multimodal dust sensor |
EP3850333A4 (en) * | 2018-11-19 | 2021-11-17 | Samsung Electronics Co., Ltd. | MULTIMODAL DUST SENSOR |
CN116148623A (en) * | 2023-03-23 | 2023-05-23 | 深圳市西渥智控科技有限公司 | LED intelligent testing device and testing method thereof |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6473367B2 (en) * | 2015-03-31 | 2019-02-20 | 三菱重工業株式会社 | Gas analysis system |
US11168004B2 (en) | 2015-08-26 | 2021-11-09 | Thermaco, Inc. | Control of grease removal equipment via cell phone app |
CN105241818A (en) * | 2015-10-30 | 2016-01-13 | 青岛市光电工程技术研究院 | Photoelectric probe for oil monitoring on water surface |
CN106053404A (en) * | 2016-05-09 | 2016-10-26 | 崔京南 | A portable multi-waveband fluorescence detection trace compound analyzer |
CN106645063A (en) * | 2016-12-02 | 2017-05-10 | 青岛市光电工程技术研究院 | Remote marine oil spill real-time monitor |
EP3652115B1 (en) | 2017-07-10 | 2023-09-06 | Thermaco, Inc. | Sensor for detecting immersion in f.o.g. or water |
WO2019039329A1 (en) * | 2017-08-22 | 2019-02-28 | 株式会社イシダ | Optical inspection apparatus and abnormality detection method |
EP3584567A1 (en) * | 2018-06-20 | 2019-12-25 | Ficosa Adas, S.L.U. | Speckle detection systems, image capturing devices and methods |
CN110487760A (en) * | 2019-08-23 | 2019-11-22 | 山东省科学院海洋仪器仪表研究所 | Optical module that is a kind of while measuring light oil and mink cell focus in water |
US11119215B2 (en) * | 2020-01-06 | 2021-09-14 | Outsight SA | Multi-spectral LIDAR object tracking |
US11885743B2 (en) * | 2020-07-22 | 2024-01-30 | Agar Corporation, Inc. | Fluorescence and scatter and absorption spectroscopic apparatus with a sapphire tube and method for analyzing inline low level hydrocarbon in a flow medium |
CN111781143B (en) * | 2020-07-23 | 2024-09-24 | 西安佰奥莱博生物科技有限公司 | Dual-channel fluorescence detection device and detection method thereof |
CN112858864B (en) * | 2021-01-18 | 2022-02-18 | 厦门大学 | Device and method for carrying out non-contact photoelectric detection on LED chip |
CN113008856A (en) * | 2021-03-22 | 2021-06-22 | 中国地质大学(武汉) | Oil composition detection device based on tunable fluorescence method |
CN113109312A (en) * | 2021-05-08 | 2021-07-13 | 广东工业大学 | Oil spill detection system and method based on unmanned surface vessel |
CN113836475B (en) * | 2021-11-26 | 2022-02-22 | 深圳奥雅设计股份有限公司 | Intelligent sewage treatment method and system based on ecological environment restoration |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4394573A (en) * | 1980-12-15 | 1983-07-19 | Conoco Inc. | Method and apparatus for underwater detection of hydrocarbons |
GB2129125A (en) * | 1982-10-28 | 1984-05-10 | Hugh Robert Asquith Fish | Method and apparatus for detecting pollutants |
US5096293A (en) | 1989-09-20 | 1992-03-17 | Consiglio Nazionale Delle Ricerche, State Body | Differential fluorescence lidar and associated detection method |
WO1993025891A1 (en) * | 1992-06-09 | 1993-12-23 | Gram, Joan, F. | Oil spill detection system |
JP2005030839A (en) * | 2003-07-09 | 2005-02-03 | Dkk Toa Corp | Water quality measuring method and apparatus |
CN101398380A (en) * | 2008-11-07 | 2009-04-01 | 天津大学 | Instrument for rapidly measuring mineral oil in water |
US7688428B2 (en) | 2006-03-10 | 2010-03-30 | Interocean Systems, Inc. | Non-contact oil spill detection apparatus and method |
WO2012015332A1 (en) | 2010-07-27 | 2012-02-02 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э.Баумана" (Мгту Им. Н.Э.Баумана) | Method for remote detection of oil pollution on the surface of water |
FR2972260A1 (en) * | 2011-03-04 | 2012-09-07 | Centre Nat Rech Scient | SUBMERSIBLE FLUORIMETER |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5406082A (en) * | 1992-04-24 | 1995-04-11 | Thiokol Corporation | Surface inspection and characterization system and process |
US5604582A (en) * | 1994-05-12 | 1997-02-18 | Science Application International Corporation | Methods and apparatus for taking spectroscopic measurements of sediment layers beneath a body of water |
US5639668A (en) * | 1995-09-14 | 1997-06-17 | Boehringer Mannheim Corporation | Optical apparatus for performing an immunoassay |
US6592238B2 (en) * | 2001-01-31 | 2003-07-15 | Light Technologies, Inc. | Illumination device for simulation of neon lighting |
US7705982B2 (en) * | 2006-08-14 | 2010-04-27 | Schlumberger Technology Corporation | Methods and apparatus for analyzing fluid properties of emulsions using fluorescence spectroscopy |
US7728291B2 (en) * | 2008-01-29 | 2010-06-01 | Eic Laboratories, Inc. | Detection of heavy oil using fluorescence polarization |
CN201464661U (en) * | 2009-07-29 | 2010-05-12 | 大连海事大学 | An Airborne Laser Fluorescence Offshore Oil Pollution Detection Device |
JP5508808B2 (en) * | 2009-10-15 | 2014-06-04 | オリンパス株式会社 | Image analysis method and image analysis apparatus |
-
2012
- 2012-11-15 WO PCT/EP2012/072665 patent/WO2014075724A1/en active Application Filing
- 2012-11-15 US US14/441,264 patent/US9863887B2/en active Active
- 2012-11-15 EP EP12794670.5A patent/EP2920576B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4394573A (en) * | 1980-12-15 | 1983-07-19 | Conoco Inc. | Method and apparatus for underwater detection of hydrocarbons |
GB2129125A (en) * | 1982-10-28 | 1984-05-10 | Hugh Robert Asquith Fish | Method and apparatus for detecting pollutants |
US5096293A (en) | 1989-09-20 | 1992-03-17 | Consiglio Nazionale Delle Ricerche, State Body | Differential fluorescence lidar and associated detection method |
WO1993025891A1 (en) * | 1992-06-09 | 1993-12-23 | Gram, Joan, F. | Oil spill detection system |
JP2005030839A (en) * | 2003-07-09 | 2005-02-03 | Dkk Toa Corp | Water quality measuring method and apparatus |
US7688428B2 (en) | 2006-03-10 | 2010-03-30 | Interocean Systems, Inc. | Non-contact oil spill detection apparatus and method |
CN101398380A (en) * | 2008-11-07 | 2009-04-01 | 天津大学 | Instrument for rapidly measuring mineral oil in water |
WO2012015332A1 (en) | 2010-07-27 | 2012-02-02 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Московский Государственный Технический Университет Имени Н.Э.Баумана" (Мгту Им. Н.Э.Баумана) | Method for remote detection of oil pollution on the surface of water |
FR2972260A1 (en) * | 2011-03-04 | 2012-09-07 | Centre Nat Rech Scient | SUBMERSIBLE FLUORIMETER |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2963414A1 (en) * | 2014-06-30 | 2016-01-06 | Leopold Siegrist GmbH | Fluid probe |
CN105158218A (en) * | 2015-07-28 | 2015-12-16 | 青岛市光电工程技术研究院 | Non-contact monitoring device and method for floating oil on water surface |
CN105203519A (en) * | 2015-10-19 | 2015-12-30 | 青岛市光电工程技术研究院 | Marine oil-spill fixed-point monitoring equipment and method |
CN105223177A (en) * | 2015-10-19 | 2016-01-06 | 青岛市光电工程技术研究院 | A kind of distance self-adaptation marine oil spill monitoring equipment and method |
CN106053418B (en) * | 2016-07-26 | 2019-02-12 | 陕西正大环保科技有限公司 | Oil sensor in contactless water |
CN106053418A (en) * | 2016-07-26 | 2016-10-26 | 陕西正大环保科技有限公司 | Noncontact type oil-in-water sensor |
GB2568307A (en) * | 2017-11-14 | 2019-05-15 | Stratec Biomedical Ag | Spectral excitation device |
CN108956465A (en) * | 2018-07-27 | 2018-12-07 | 天津大学 | A kind of plug in construction for oil field reinjection water on-line monitoring |
WO2020106036A1 (en) | 2018-11-19 | 2020-05-28 | Samsung Electronics Co., Ltd. | Multimodal dust sensor |
EP3850333A4 (en) * | 2018-11-19 | 2021-11-17 | Samsung Electronics Co., Ltd. | MULTIMODAL DUST SENSOR |
US11841311B2 (en) | 2018-11-19 | 2023-12-12 | Samsung Electronics Co., Ltd. | Multimodal dust sensor |
CN116148623A (en) * | 2023-03-23 | 2023-05-23 | 深圳市西渥智控科技有限公司 | LED intelligent testing device and testing method thereof |
CN116148623B (en) * | 2023-03-23 | 2023-07-04 | 深圳市西渥智控科技有限公司 | LED intelligent testing device and testing method thereof |
Also Published As
Publication number | Publication date |
---|---|
US9863887B2 (en) | 2018-01-09 |
EP2920576C0 (en) | 2024-06-19 |
EP2920576A1 (en) | 2015-09-23 |
US20150293032A1 (en) | 2015-10-15 |
EP2920576B1 (en) | 2024-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9863887B2 (en) | Unit and method for optical non-contact oil detection | |
US7227139B2 (en) | System and method for optical detection of petroleum and other products in an environment | |
US7154599B2 (en) | Spectrometer incorporating signal matched filtering | |
EP3347883B1 (en) | Flame detectors and testing methods | |
US5461236A (en) | Oil spill detection system | |
Zeng et al. | Development of in situ sensors for chlorophyll concentration measurement | |
CN106769882B (en) | Oil spilling monitor and monitoring method thereof | |
CN104641221A (en) | Spectroscope | |
CN101281125A (en) | Method and apparatus for monitoring intelligent infrared multi-component harmful gas | |
CN102589593A (en) | Phase sensitive type optical time domain reflection sensing system and method | |
US10203283B2 (en) | Fluorescent substance detection system | |
SE539843C2 (en) | Method and apparatus for determining a concentration of a substance in a liquid medium | |
CN103091266A (en) | Gas telemetering method with alarm function | |
CN105223177A (en) | A kind of distance self-adaptation marine oil spill monitoring equipment and method | |
JP2003254856A (en) | Optical gas leak detector and gas leak detection vehicle | |
CN206248213U (en) | A kind of flame detecting device based on spectrum | |
CN105158218A (en) | Non-contact monitoring device and method for floating oil on water surface | |
CN110887814A (en) | Underwater turbidity detection method based on spectral analysis | |
WO2012130209A3 (en) | Device and method for detecting and analysing laser radiation | |
US10371641B2 (en) | Method and apparatus for measuring inelastic scattering | |
CN113092436A (en) | Oil spill detection method and system based on ultraviolet light excited fluorescence | |
US6903817B2 (en) | Method for optically detecting chemical species contained in condensed media | |
CN1232177A (en) | Optic method and apparatus for detection of gas | |
KR19980053195A (en) | Cold rolled steel pinhole inspection device | |
CA2460071A1 (en) | A spectrometer incorporating signal matched filtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12794670 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14441264 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012794670 Country of ref document: EP |