WO2014029263A1 - 一种宽带腔体滤波器 - Google Patents
一种宽带腔体滤波器 Download PDFInfo
- Publication number
- WO2014029263A1 WO2014029263A1 PCT/CN2013/080494 CN2013080494W WO2014029263A1 WO 2014029263 A1 WO2014029263 A1 WO 2014029263A1 CN 2013080494 W CN2013080494 W CN 2013080494W WO 2014029263 A1 WO2014029263 A1 WO 2014029263A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cavity
- cavity filter
- bandwidth
- resonant
- filter
- Prior art date
Links
- 238000010168 coupling process Methods 0.000 claims abstract description 58
- 230000008878 coupling Effects 0.000 claims abstract description 55
- 238000005859 coupling reaction Methods 0.000 claims abstract description 55
- 239000011810 insulating material Substances 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 238000004891 communication Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract 1
- 230000009977 dual effect Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/201—Filters for transverse electromagnetic waves
- H01P1/205—Comb or interdigital filters; Cascaded coaxial cavities
- H01P1/2053—Comb or interdigital filters; Cascaded coaxial cavities the coaxial cavity resonators being disposed parall to each other
Definitions
- the present invention relates to the field of filters, and more particularly to a wideband cavity filter. Background of the invention
- the conventional cavity filter dual cavity coupling includes a cavity 101a, 101b, a cover plate (not shown), and two resonances 4a 102a, 102b located in the cavity 101, two resonances 4 102a, 102b are respectively fixed to the bottom of the cavity 101 by screws at the bottom thereof, and the resonance screws 103a, 103b are screwed from the cover plate into the two resonance rods 102a, 102b to adjust the resonance frequency, the two resonance rods 102a, 1
- a coupling screw 104 is disposed between 02b, and a coupling screw 104 is screwed from the cover plate into a space between the two resonant rods 102a, 102b to adjust the coupling strength.
- the cavity between the adjacent two cavities 101a and 101b is a cavity.
- the window 105 of the filter is a cavity.
- the coupling coefficient k reflects the bandwidth of the filter.
- the coupling coefficient k can be varied, resulting in a change in bandwidth.
- the coupling coefficient k is still small when the window 105 is opened to the maximum and the coupling screw 104 is screwed in the most, that is, the bandwidth is narrow.
- the traditional coupling method is particularly limited to the bandwidth. For example, in the 300M band, the absolute bandwidth Can only reach about 1 ,, can not meet the demand.
- the conventional cavity filter cannot meet the requirement of a large bandwidth requirement because the cross-sectional area of the coupling screw is too small and the size of the window is limited.
- the present application provides a broadband cavity filter that achieves the purpose of increasing the coupling strength by adding a cross beam within the cavity filter, thereby greatly expanding the bandwidth.
- the present application provides a broadband cavity filter including a plurality of cavities and a cover plate enclosing the tops of the plurality of cavities,
- Each cavity includes a resonant rod, each cavity being in communication with an adjacent cavity; the two resonant rods in the two communicating cavities further include a beam between the two resonant rods Electrical contact.
- the beam is made of a metallic material.
- the beam is fixed between the two resonant rods.
- the beam has two perforations through which the resonant rod passes, the resonant rod being in close electrical contact with the perforated bore wall.
- the beam is not in contact with the coupling screw.
- the beam further has a relief hole
- the coupling screw is disposed through the escape hole and is not in contact with the hole wall of the escape hole.
- the beam is adjustably height-fixed between the two resonant rods, and the cavity filter is a bandwidth-adjustable cavity filter.
- the coupling screw and the hole wall of the escape hole are connected by an insulating material.
- the cover plate is spaced from the top of the resonant rod.
- the wide-band cavity filter of the present application achieves the purpose of increasing the coupling strength by adding a beam in the cavity filter, thereby greatly expanding the bandwidth.
- the wideband filter of the invention can be realized as two kinds of filters with fixed bandwidth or adjustable bandwidth, and has the structure of a single tube, which is convenient for processing, installation and debugging, not only widening the bandwidth, realizing the adjustment of the bandwidth, but also not greatly increasing the cost. , suitable for mass production.
- FIG. 1 is a schematic structural view of a conventional cavity filter
- Figure 2a is a top plan view of a broadband cavity filter of the present invention.
- Figure 2b is a side view of the broadband cavity filter of the present invention.
- FIG. 3 is a schematic structural view of an embodiment of a dual cavity coupling of a broadband cavity filter of the present invention
- FIG. 4 is a cross-sectional view of one embodiment of a dual cavity coupling of a broadband cavity filter of the present invention
- FIG. 5 is a waveform diagram of filter insertion loss and return loss of one embodiment of the broadband cavity filter of the present invention.
- the broadband cavity filter of the present invention includes a plurality of cavities 200 and a cover (not shown) that encloses the tops of the plurality of cavities 200.
- Each cavity 200 includes a resonant rod 203, each of which is in communication with a cavity adjacent thereto. Further included in the two interconnected cavities 200 is a beam 204 that is in close electrical contact with the adjacent two resonant rods 203.
- the bandwidth of the cavity filter is closely related to the coupling between the resonant rods, and the height of the adjusting beam has a significant influence on the coupling strength, the beam in close electrical contact with the two resonant rods can enhance the two resonances.
- the coupling between the rods enables a substantial widening of the bandwidth without changing the cavity, the resonant rod, and the size of the window.
- the cavity filter of the present invention connects the two resonant rods with beams and maintains good electrical contact, and since it expands the bandwidth by enhancing the coupling strength between the two resonant rods, the beam is There is no limitation on the shape of the resonant rod, and it is suitable for the modification processing based on the conventional cavity filter.
- Figure 3 is a schematic illustration of one embodiment of a dual cavity coupling of a broadband cavity filter of the present invention.
- 4 is a cross-sectional view of one embodiment of a dual cavity coupling of a broadband cavity filter of the present invention.
- the cavity filter includes two cavities 201a and 201b, and the two cavities 201a and 201b communicate with each other, and the tops of the two cavities 201a and 201b are encapsulated by the cap plate 202.
- the cavity 201a includes a resonant rod 203a
- the cavity 201b includes a resonant rod 203b.
- the chambers 201a and 201b further include a beam 204 that is in close electrical contact with both of the resonant rods 203a and 203b.
- the beam 204 is made of a metallic material to maintain good electrical contact with the resonant rod and affect the coupling strength between the two resonant rods.
- the height of the beam 204 determines the strength of the coupling. The higher the beam position, i.e., the closer it is to the cover plate 202, the stronger the coupling of the two resonant rods and the wider the pass band. The height of the beam 204 can be accurately positioned using a clamp.
- each cavity filter unit further includes a coupling screw 205 screwed into the cavity from the cover plate 202, the coupling screw 205 being located between the two resonant rods 203a and 203b, parallel to the extending direction of the two resonant rods, And the beam 204 is not in contact with the coupling screw 205.
- Fine adjustment of the coupling coefficient k is achieved by adjusting the height of the coupling screw 205 screwed into the cavity, which can correct production errors and installation errors, thereby solving the problem of mass production.
- the beam 204 further has a relief hole 206 through which the coupling screw 205 is passed and does not contact the wall of the hole 206.
- the cover plate 202 is spaced from the tops of the two resonant rods 203a and 203b.
- the present invention is also applicable to a bandwidth tunable filter.
- the beam 204 is height-adjustably fixed in the two cavities 201a and 201b, and the coupling screw 205 and the escape hole 206 are connected by an insulating material, and the coupling screw 205 is adjusted.
- the length of the cavity can drive the beam 204 up and down to achieve the purpose of adjusting the bandwidth.
- the wide-band cavity filter of the present invention connects two resonant rods with beams and maintains good electrical contact, and the double-cavity coupling generated by the magnetic coupling method is much stronger than the conventional method, thereby being able to Significantly broaden bandwidth.
- the broadband cavity filter of the invention can be realized as two kinds of filters with fixed bandwidth or adjustable bandwidth, and has the advantages of simple structure, convenient processing, installation and debugging, and has no limitation on the shape of the beam and the resonant rod. Suitable for retrofitting machining on the basis of traditional cavity filters.
- the broadband cavity filter of the present invention realizes the fine adjustment of the coupling coefficient k by adjusting the height of the coupling screw screwed into the cavity, so that the production error and the installation error can be corrected. Thereby solving the problem of mass production.
- the cross beam 204 is sleeved with the two resonance bars 203a and 203b, and the fixed height of the beam 204 is controlled by a jig.
- the beam 204 is welded to the gap in contact with the two resonance bars 203a and 203b to maintain good electrical contact; then, the center positions of the two resonance bars 203a and 203b are fixed to the bottoms of the cavities 201a and 201b.
- the cover plate 202 is fixed to the top of the cavities 201a and 201b, and the cover plate 202 has a certain gap with the tops of the two resonance bars 203a and 203b.
- the tuning screws 207a and 207b, and the coupling screws 205 are screwed into the cavities 201a and 201b from the cover plate 202, and the heights of the respective screws are adjusted to achieve the corresponding operating frequency and bandwidth.
- a cavity filter having a passband of 300M-420M is designed. It uses six resonant cavities, and the coupling coefficient k between the adjacent two cavities is 0.28.
- a two-cavity model as shown in Fig. 3 is established in the electromagnetic field simulation software, and the first and second resonant frequencies fl, f2 of the double cavity are calculated by the formula (1) + ⁇ (1)
- the k value can be calculated. Adjust the height of the beam, k has a significant change. The higher the beam, the larger the k value and the wider the bandwidth. Finally, the k value can reach 0.28 or more, that is, the bandwidth can reach 120M, and the relative bandwidth is 33.3%.
- the coupling screw passes through the middle of the beam Let the hole, fine-tune the k value.
- the size of the escape hole is only larger than the diameter of the screw and does not make electrical contact with the screw.
- the length of the coupling screw is adjusted separately, and the k value is calculated by simulation. The result shows that the k value can be kept constant, and the influence of the assembly tolerance can be corrected, thereby having the characteristics of mass production.
- the overall filter insertion loss and return loss waveform are shown in Figure 5.
- This filter has an ldB bandwidth of 120M and a relative bandwidth of 33.3 %.
- the coupling coefficient k can only reach 0.038, that is, the bandwidth is 10M and the relative bandwidth is 3.3%. It can be seen from the above technical solution that the wide-band cavity filter of the present application achieves the purpose of increasing the coupling strength by adding a beam in the cavity filter, thereby greatly expanding the bandwidth.
- the broadband filter structure of the invention has the advantages of simple processing, installation and debugging, not only widening the bandwidth, realizing the adjustment of the bandwidth, but also not greatly increasing the cost, and is suitable for mass production.
- the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalents, improvements, etc., which are made within the spirit and principles of the present invention, should be included in the present invention. Within the scope of protection.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本申请公开了一种宽带腔体滤波器,其包括多个腔体和封装所述多个腔体顶部的盖板,每个腔体内包括一个谐振杆,每个腔体和与其相邻的腔体连通;相连通的两个腔体内的两个谐振杆之间进一步包括一个横梁,该横梁与所述两个谐振杆紧密电接触。本申请的宽带腔体滤波器通过在谐振杆之间增加横梁来实现增加耦合强度的目的,从而能够极大地拓宽带宽。本发明的宽带滤波器可实现为固定带宽或是带宽可调的两种滤波器,具有结构简单,加工、安装、调试方便,不仅拓宽了带宽,实现了带宽的调整,而且未大幅提高成本,适于大批量生产。
Description
一种宽带腔体滤波器
技术领域
本发明涉及滤波器领域, 特别涉及一种宽带腔体滤波器。 发明背景
腔体滤波器普遍应用在各种通信系统中, 它具有差损小、 抑制高、 功率容量大等优点, 但它的带宽较窄。 如图 1所示, 传统的腔体滤波器 双腔耦合包括腔体 101a、 101b , 盖板(未示出)以及位于腔体 101内的 两个谐振 4干 102a , 102b , 两个谐振 4干 102a , 102 b分别通过其底部的螺 釘固定于腔体 101 的底部, 谐振螺釘 103a、 103b从盖板旋入两个谐振 杆 1 02a、 102b内, 以调节谐振频率, 两个谐振杆 102a、 1 02b之间设置 耦合螺釘 1 04 , 耦合螺釘 104从盖板旋入两个谐振杆 102a , 1 02b之间的 空间, 以调节耦合强度, 相邻的两个腔体 101a和 101b之间为腔体滤波 器的窗口 105。
其中, g为切比雪夫低通原型滤波器元件归一化值。所以耦合系数 k 反映了滤波器的带宽的大小。 调节窗口的大小和耦合螺釘旋入的长度, 可使耦合系数 k变化, 从而导致带宽发生变化。
如果需要较宽的通带, 当窗口 105开到最大、 且耦合螺釘 1 04旋入 最多时, 耦合系数 k仍然较小, 即带宽较窄。 当工作频段较低时, 传统 的耦合方式对带宽的限制尤为明显。 例如在 300M频段左右, 绝对带宽
只能达到 1幌左右, 不能满足需求。
因此, 传统的腔体滤波器由于耦合螺釘的截面积太小以及窗口的大 小所限, 而不能满足带宽要求较大的需求。 发明内容
本申请提供了一种宽带腔体滤波器, 其通过在腔体滤波器内增加横 梁来实现增加耦合强度的目的, 从而能够极大地拓宽带宽。
本申请提供了一种宽带腔体滤波器, 其包括多个腔体和封装所述多 个腔体顶部的盖板,
每个腔体内包括一个谐振杆, 每个腔体和与其相邻腔体连通; 相连通的两个腔体内的两个谐振杆之间进一步包括一个横梁, 该横 梁与所述两个谐振杆紧密电接触。
优选地, 所述横梁由金属材料制成。
优选地, 所述横梁固定于所述两个谐振杆之间。
优选地, 所述横梁具有供所述谐振杆穿过的两个穿孔, 所述谐振杆 与所述穿孔的孔壁紧密电接触。
优选地, 相连通的两个腔体的两个谐振杆之间进一步包括自所述盖 板旋入腔体内的耦合螺釘,
所述横梁不与所述耦合螺釘接触。
优选地, 所述横梁进一步具有一个避让孔,
所述耦合螺釘穿设于所述避让孔, 且不与所述避让孔的孔壁接触。 优选地, 所述横梁可调节高度地固定于所述两个谐振杆之间, 所述 腔体滤波器为带宽可调腔体滤波器。
优选地, 所述耦合螺釘与所述避让孔的孔壁之间通过绝缘材料连 接。
优选地, 所述盖板与所述谐振杆的顶部具有间隔。
由上述技术方案可见, 本申请的宽带腔体滤波器通过在腔体滤波器 内增加横梁来实现增加耦合强度的目的, 从而能够极大地拓宽带宽。 本 发明的宽带滤波器可实现为固定带宽或是带宽可调的两种滤波器, 具有 结构筒单, 加工、 安装、 调试方便, 不仅拓宽了带宽, 实现了带宽的调 整, 而且未大幅提高成本, 适于大批量生产。 附图简要说明
图 1是传统的腔体滤波器的结构示意图;
图 2a是本发明的宽带腔体滤波器的俯视图;
图 2b是本发明的宽带腔体滤波器的侧视图;
图 3是本发明的宽带腔体滤波器双腔耦合的一个实施例的结构示意 图;
图 4是本发明的宽带腔体滤波器双腔耦合的一个实施例的剖视图; 图 5是本发明的宽带腔体滤波器的一个实施例的滤波器插损及回损 波形图。 实施本发明的方式
为了使本申请的目的、 技术方案及优点更加清楚明白, 以下参照附 图并举实施例, 对本申请进一步详细说明。
图 2a是本发明的宽带腔体滤波器的俯视图, 图 2b是本发明的宽带 腔体滤波器的侧视图。 如图 2a和图 2b所示, 本发明的宽带腔体滤波器 包括多个腔体 200和将多个腔体 200的顶部封装的盖板(未示出)。 每 个腔体 200内包括一个谐振杆 203 , 每个腔体 200和与其相邻的腔体连 通。
在相连通的两个腔体 200内进一步包括一个横梁 204, 横梁 204与 相邻两个谐振杆 203均紧密电接触。
由于腔体滤波器的带宽与谐振杆之间的耦合有密切的关系, 而调节 横梁的高度对耦合强度的大小有显著的影响, 因此与两个谐振杆紧密电 接触的横梁能够增强两个谐振杆之间的耦合, 从而在不改变腔体、 谐振 杆、 以及窗口尺寸的情况下实现大幅度拓宽带宽的目的。
本发明的这种腔体滤波器将两个谐振杆用横梁相连, 并保持良好的 电接触, 且由于其是通过增强两个谐振杆之间的耦合强度来实现拓宽带 宽的目的, 因此对横梁和谐振杆的形状没有任何限制, 适于在传统的腔 体滤波器的基础上改造加工。
图 3是本发明的宽带腔体滤波器双腔耦合的一个实施例的结构示意 图。 图 4是本发明的宽带腔体滤波器双腔耦合的一个实施例的剖视图。 如图 3和图 4所示, 腔体滤波器包括两个腔体 201a和 201b, 两个腔体 201a和 201b相互连通, 两个腔体 201a和 201b的顶部由盖板 202封装。 腔体 201a内包括一个谐振杆 203a, 腔体 201b内包括一个谐振杆 203b。 腔体 201a和 201b内进一步包括横梁 204, 横梁 204与两个谐振杆 203a 和 203b均紧密电接触。
优选地, 横梁 204由金属材料制成, 以保持与谐振杆良好的电接触 并影响两个谐振杆之间的耦合强度。
横梁 204的高度决定了耦合的强度, 当横梁位置越高、 即其越接近 盖板 202时, 两个谐振杆的耦合越强, 通带越宽。 横梁 204的高度可以 使用夹具精确的定位。
优选地, 如图 3和图 4所示, 横梁 204具有供谐振杆穿过的两个穿 孔, 谐振 4干 203a和 203b与穿孔的孔壁紧密电接触。
入的误差都会影响腔体滤波器的耦合系数, 因此, 本发明的宽带腔体滤 波器应当具有微调耦合系数的功能。 优选地, 每个腔体滤波器单元进一 步包括自盖板 202旋入腔体内的耦合螺釘 205 , 该耦合螺釘 205位于两 个谐振杆 203a和 203b之间,与两个谐振杆的延伸方向平行,且横梁 204 不与耦合螺釘 205接触。 通过调节耦合螺釘 205旋入腔体内的高度来实 现对耦合系数 k的微调, 这样可以纠正生产误差及安装误差, 从而解决 批量生产的问题。
为了实现横梁 204与耦合螺釘 205的不接触, 优选地, 横梁 204进 一步具有一个避让孔 206, 耦合螺釘 205穿设于避让孔 206, 且不与避 让孔 206的孔壁接触。
优选地, 如图 3所示, 盖板 202与两个谐振杆 203a和 203b的顶部 具有间隔。
本发明也可用于带宽可调滤波器, 优选地, 横梁 204可调节高度地 固定于两个腔体 201a和 201b内, 耦合螺釘 205与避让孔 206之间通过 绝缘材料连接, 调节耦合螺釘 205旋入腔体的长度即可带动横梁 204上 下移动, 从而达到调节带宽的目的。
由上述技术方案可见, 本发明的这种宽带腔体滤波器将两个谐振杆 用横梁相连, 并保持良好的电接触, 这种磁耦合方式产生的双腔耦合比 传统方式要强很多, 从而能够大幅拓宽带宽。
本发明的宽带腔体滤波器可实现为固定带宽或是带宽可调的两种 滤波器, 具有结构筒单, 加工、 安装、 调试方便的优点, 且由于对横梁 和谐振杆的形状没有任何限制, 适于在传统的腔体滤波器的基础上改造 加工。
进一步地, 本发明的宽带腔体滤波器通过调节耦合螺釘旋入腔体内 的高度来实现对耦合系数 k的微调,这样可以纠正生产误差及安装误差,
从而解决批量生产的问题。
在本发明的宽带腔体滤波器进行安装时, 如图 3所示, 首先, 将横 梁 204与两个谐振杆 203a和 203b套接在一起, 横梁 204的固定高度使 用夹具控制。横梁 204与两个谐振杆 203a和 203b接触的缝隙进行焊接, 以保持良好的电接触; 然后, 将两个谐振杆 203a和 203b的中心位置固 定于腔体 201a和 201b的底部。 进一步地, 将盖板 202固定在腔体 201a 和 201b的顶部,盖板 202与两个谐振杆 203a和 203b顶部具有一定的缝 隙。 最后, 将调谐螺釘 207a和 207b、 以及耦合螺釘 205从盖板 202旋 入腔体 201a和 201b内, 调整各个螺釘的高度, 以达到相应的工作频率 及带宽。
对于带宽可调的宽带腔体滤波器, 横梁 204与两个谐振杆 203a和 203b之间虽然保持良好的电接触, 但位置不固定, 且耦合螺釘 205与横 梁 204的避让孔之间通过绝缘材料固定连接, 则通过调节耦合螺釘进入 腔体的高度从而带动横梁 204上下移动, 继而实现调节带宽的目的。 根据本发明的一个实施例, 设计一款通带为 300M-420M的腔体滤 波器。其采用 6个谐振腔,其中相邻两腔之间的耦合系数 k最大的为 0.28。 在电磁场仿真软件中建立如图 3所示的双腔模型, 计算双腔的第 1及第 2个谐振频率 fl,f2, 通过公式( 1 ) + Λ ( 1 )
可计算出 k值。 调整横梁的高度, k有显著变化。 横梁越高, k值 越大, 带宽越宽。 最终, k值可达到 0.28 以上, 即带宽可达到 120M, 相对带宽 33.3 %。
为消除公差对 k的影响, 在装配完后, 耦合螺釘穿过横梁中间的避
让孔, 对 k值进行微调。 避让孔的大小只要大于螺釘直径, 不与螺釘电 接触即可。 当横梁高度引入正负公差时, 分别调整耦合螺釘的长度, 仿 真计算 k值,结果显示可以使 k值保持不变,即可纠正装配公差的影响, 从而具备批量生产的特点。
将此结论应用于电路仿真中, 整体的滤波器插损及回损波形如图 5 所示。 此滤波器的 ldB带宽为 120M, 相对带宽 33.3 %。 但是如果按照 传统的耦合方式, 当窗口开到最大及螺釘旋入最长时, 耦合系数 k也只 能达到 0.038, 即带宽 10M, 相对带宽 3.3 %。 由上述技术方案可见, 本申请的宽带腔体滤波器通过在腔体滤波器 内增加横梁来实现增加耦合强度的目的, 从而能够极大地拓宽带宽。 本 发明的宽带滤波器结构筒单, 加工、 安装、 调试方便, 不仅拓宽了带宽, 实现了带宽的调整, 而且未大幅提高成本, 适于大批量生产。 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均 应包含在本发明保护的范围之内。
Claims
1、 一种宽带腔体滤波器, 其特征在于, 其包括多个腔体和封装所 述多个腔体顶部的盖板,
每个腔体内包括一个谐振杆, 每个腔体和与其相邻的腔体连通; 相连通的两个腔体内的两个谐振杆之间进一步包括一个横梁, 该横 梁与所述两个谐振杆紧密电接触。
2、 根据权利要求 1 所述的宽带腔体滤波器, 其特征在于, 所述横 梁由金属材料制成。
3、 根据权利要求 2所述的宽带腔体滤波器, 其特征在于, 所述横 梁固定于所述两个谐振杆之间。
4、 根据权利要求 3 所述的宽带腔体滤波器, 其特征在于, 所述横 梁具有供所述谐振杆穿过的两个穿孔, 所述谐振杆与所述穿孔的孔壁紧 密电接触。
5、 根据权利要求 2至 4中任一权利要求所述的宽带腔体滤波器, 其特征在于, 相连通的两个腔体的两个谐振杆之间进一步包括自所述盖 板旋入腔体内的耦合螺釘,
所述横梁不与所述耦合螺釘接触。
6、 根据权利要求 5 所述的宽带腔体滤波器, 其特征在于, 所述横 梁进一步具有一个避让孔,
所述耦合螺釘穿设于所述避让孔, 且不与所述避让孔的孔壁接触。
7、 根据权利要求 2所述的宽带腔体滤波器, 其特征在于, 所述横 梁可调节高度地固定于所述两个谐振杆之间,
所述腔体滤波器为带宽可调腔体滤波器。
8、 根据权利要求 7 所述的宽带腔体滤波器, 其特征在于, 所述耦
合螺釘与所述避让孔的孔壁之间通过绝缘材料连接。
9、 根据权利要求 3或 7所述的宽带腔体滤波器, 其特征在于, 所 述盖板与所述谐振杆的顶部具有间隔。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210305626.4A CN103633401A (zh) | 2012-08-24 | 2012-08-24 | 一种宽带腔体滤波器 |
CN201210305626.4 | 2012-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014029263A1 true WO2014029263A1 (zh) | 2014-02-27 |
Family
ID=50149410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/080494 WO2014029263A1 (zh) | 2012-08-24 | 2013-07-31 | 一种宽带腔体滤波器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103633401A (zh) |
WO (1) | WO2014029263A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021110724A1 (en) * | 2019-12-04 | 2021-06-10 | Commscope Italy S.R.L. | Radio frequency filters having a circuit board with multiple resonator heads, and resonator heads having multiple arms |
IT202000021256A1 (it) * | 2020-09-08 | 2022-03-08 | Commscope Italy Srl | Filtri a radiofrequenza con scheda a circuito con teste risonatori multiple e teste risonatori con bracci multipli |
JP2023515086A (ja) * | 2020-02-20 | 2023-04-12 | ケーエムダブリュ・インコーポレーテッド | キャビティフィルタおよびその製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105024131A (zh) * | 2015-08-05 | 2015-11-04 | 中国电子科技集团公司第五十四研究所 | 一种微波腔体带通滤波器的设计方法 |
WO2017113139A1 (zh) * | 2015-12-30 | 2017-07-06 | 深圳市大富科技股份有限公司 | 谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备 |
CN106848502A (zh) * | 2017-03-06 | 2017-06-13 | 广东通宇通讯股份有限公司 | 滤波器及其滤波器耦合结构和耦合螺钉 |
TWI622221B (zh) * | 2017-03-23 | 2018-04-21 | 鴻海精密工業股份有限公司 | 空腔濾波器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201134486Y (zh) * | 2007-12-27 | 2008-10-15 | 奥雷通光通讯设备(上海)有限公司 | 含长方体式谐振柱的梳状线腔体滤波器 |
CN201838698U (zh) * | 2010-11-04 | 2011-05-18 | 宁波泰立电子科技有限公司 | 具有加强耦合结构的滤波器 |
CN202259623U (zh) * | 2011-09-29 | 2012-05-30 | 东莞市星火通讯科技有限公司 | 三频合路器 |
CN202695684U (zh) * | 2012-07-16 | 2013-01-23 | 苏州市大富通信技术有限公司 | 一种腔体滤波器 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6031436A (en) * | 1998-04-02 | 2000-02-29 | Space Systems/Loral, Inc. | Single and dual mode helix loaded cavity filters |
CN202259618U (zh) * | 2011-10-17 | 2012-05-30 | 武汉凡谷电子技术股份有限公司 | 一种可调容性交叉耦合装置 |
-
2012
- 2012-08-24 CN CN201210305626.4A patent/CN103633401A/zh active Pending
-
2013
- 2013-07-31 WO PCT/CN2013/080494 patent/WO2014029263A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201134486Y (zh) * | 2007-12-27 | 2008-10-15 | 奥雷通光通讯设备(上海)有限公司 | 含长方体式谐振柱的梳状线腔体滤波器 |
CN201838698U (zh) * | 2010-11-04 | 2011-05-18 | 宁波泰立电子科技有限公司 | 具有加强耦合结构的滤波器 |
CN202259623U (zh) * | 2011-09-29 | 2012-05-30 | 东莞市星火通讯科技有限公司 | 三频合路器 |
CN202695684U (zh) * | 2012-07-16 | 2013-01-23 | 苏州市大富通信技术有限公司 | 一种腔体滤波器 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021110724A1 (en) * | 2019-12-04 | 2021-06-10 | Commscope Italy S.R.L. | Radio frequency filters having a circuit board with multiple resonator heads, and resonator heads having multiple arms |
JP2023515086A (ja) * | 2020-02-20 | 2023-04-12 | ケーエムダブリュ・インコーポレーテッド | キャビティフィルタおよびその製造方法 |
JP7470197B2 (ja) | 2020-02-20 | 2024-04-17 | ケーエムダブリュ・インコーポレーテッド | キャビティフィルタおよびその製造方法 |
IT202000021256A1 (it) * | 2020-09-08 | 2022-03-08 | Commscope Italy Srl | Filtri a radiofrequenza con scheda a circuito con teste risonatori multiple e teste risonatori con bracci multipli |
Also Published As
Publication number | Publication date |
---|---|
CN103633401A (zh) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014029263A1 (zh) | 一种宽带腔体滤波器 | |
US5764115A (en) | Dielectric resonator apparatus with magnetic field coupling loop | |
US10964998B2 (en) | Multi-mode resonator | |
CN110504512A (zh) | 一种电容耦合结构及应用该结构的介质滤波器 | |
CN106960994A (zh) | 一种便于调节频率与耦合带宽的介质滤波器 | |
CN206864583U (zh) | 一种便于调节频率与耦合带宽的介质滤波器 | |
KR101191751B1 (ko) | 입출력 포트를 이용하여 너치를 구현하는 rf캐비티 필터 | |
KR102368161B1 (ko) | 무선 주파수 필터의 공진기 | |
CN109411852A (zh) | 一种空腔高q三模介质谐振结构及含有该谐振结构的滤波器 | |
US9812751B2 (en) | Plurality of resonator cavities coupled by inductive apertures which are adjusted by capacitive parts | |
CN209929461U (zh) | 谐振器装置和滤波器装置 | |
JP2006203907A (ja) | 誘電共振器回路 | |
US20100265009A1 (en) | Stacked lc resonator and bandpass filter of using the same | |
KR100761801B1 (ko) | 무선 통신 여파기 및 이의 조정 방법 | |
WO2022000590A1 (zh) | 容性、感性交叉耦合结构及介质波导滤波器 | |
TWI844219B (zh) | 空腔濾波器 | |
KR200404256Y1 (ko) | 노치 조정이 가능한 고주파 여파기 | |
US10727556B2 (en) | Multimode microwave filter | |
WO2002054527A2 (en) | A filter including coaxial cavity resonators | |
CN116435734A (zh) | 一种滤波装置和一种用于腔体滤波器的耦合结构 | |
WO2020227919A1 (zh) | 一种交叉耦合滤波器 | |
US20240213641A1 (en) | Multi-mode cavity filter and cavity filtering device | |
KR102643178B1 (ko) | 전달영점을 가지는 저손실 5g 기판 집적형 필터 | |
KR102669189B1 (ko) | 이중 모드 가변 저역 통과 필터 | |
CN206274537U (zh) | 一种无介质带阻滤波器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13830625 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13830625 Country of ref document: EP Kind code of ref document: A1 |