WO2012172616A1 - マイクログリッド制御システム - Google Patents
マイクログリッド制御システム Download PDFInfo
- Publication number
- WO2012172616A1 WO2012172616A1 PCT/JP2011/003461 JP2011003461W WO2012172616A1 WO 2012172616 A1 WO2012172616 A1 WO 2012172616A1 JP 2011003461 W JP2011003461 W JP 2011003461W WO 2012172616 A1 WO2012172616 A1 WO 2012172616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- load
- facility
- output
- power
- Prior art date
Links
- 238000009826 distribution Methods 0.000 claims abstract description 24
- 230000007613 environmental effect Effects 0.000 claims abstract description 10
- 239000000446 fuel Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 33
- 230000004043 responsiveness Effects 0.000 claims description 3
- 230000004913 activation Effects 0.000 abstract description 8
- 239000000725 suspension Substances 0.000 abstract description 2
- 238000010248 power generation Methods 0.000 description 56
- 230000006870 function Effects 0.000 description 24
- 230000007423 decrease Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 15
- 230000005855 radiation Effects 0.000 description 15
- 238000012545 processing Methods 0.000 description 14
- 238000003860 storage Methods 0.000 description 14
- 101150027068 DEGS1 gene Proteins 0.000 description 11
- 238000004088 simulation Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 5
- 239000000779 smoke Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 241001123248 Arma Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/003—Load forecast, e.g. methods or systems for forecasting future load demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/10—The dispersed energy generation being of fossil origin, e.g. diesel generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Definitions
- the present invention relates to a microgrid equipment control system, and more particularly to a microgrid control system that realizes control that achieves economic efficiency, environmental performance, and continuous operation by controlling equipment according to the characteristics of a plurality of equipment.
- the electric power equipment here is, for example, a production equipped with a generator such as a solar generator, a wind generator, a diesel generator, a gas turbine generator, a brackish water generator, or an electric motor that uses electric power as power.
- a generator such as a solar generator, a wind generator, a diesel generator, a gas turbine generator, a brackish water generator, or an electric motor that uses electric power as power.
- These include facilities (refrigerators and extruders), charging facilities for electric vehicles and electric vehicles, and storage batteries that charge and discharge electric power.
- the power supply facility refers to the generator and a secondary battery such as a storage battery.
- the load equipment refers to the above production equipment and charging equipment.
- Patent Document 1 performs control that relies on natural energy output and load prediction.
- a small-scale microgrid with a small number of power facilities connected to the grid does not hold the so-called large-scale law that makes predictions possible, and predicts instantaneous instantaneous total load and natural energy generation amount. Therefore, when the actual load is larger than expected, there is a problem that the power supply capacity is insufficient, and when the actual load is smaller than expected, too many generators are operating, There is a problem that economic efficiency is impaired.
- An object of the present invention is to provide a microgrid control system that satisfies economic efficiency even when natural energy power generation is introduced regardless of the number of power facilities connected to the grid.
- the supply amount of the power supply facility and the load amount of the load facility include instantaneous load fluctuations (fringe) based on the past actual values. I expect.
- a combination that makes the overall economic efficiency suitable is extracted from a plurality of power supply equipment, and output adjustment or activation is instructed to the extracted power supply equipment.
- Microgrid hardware configuration diagram Hardware configuration of system controller Hardware configuration of remote control device
- Functional block diagram of microgrid control system Flowchart diagram showing microgrid control processing Diagram showing equipment profile Hardware structure of DEG equipment Diagram showing load distribution by frequency droop Diagram showing software configuration and facility I / O
- the figure which showed the improvement of the fuel consumption at the time of performing the microgrid control of this embodiment It is a figure which shows the output distribution change of DEG.
- FIG. 1 is a diagram showing a hardware configuration of a microgrid control system according to the present embodiment. This is a configuration in which a plurality of factory systems, power supply facilities, load facilities, and shared power supply facilities are systemized by electrical connection and information communication connection. Factories 1 to 5 receive power supply from the microgrid system 6.
- the microgrid system 6 is connected to an external power system 7 (for example, a power company transmission line, the reference voltage is 30 kV).
- the shared power supply facilities 11 to 17 supply power.
- Circuit breakers 41 to 65 are installed on the power lines (the power lines constituting the microgrid system and the premises power lines).
- the parallel connection between the external system and the microgrid system can be controlled by opening and closing 61 to 64 by information communication.
- the shared power supply facilities 11 to 17 are connected to the external system. It is possible to control which of the microgrid systems is linked.
- Each of the factories 1 to 5 is provided with power supply facilities 21 to 30, load facilities 81 to 85, and 91 to 95, each connected by a power line with a reference voltage of 400 V to form a part of the microgrid system.
- Transformers 141 to 145 are installed between the power line (reference voltage 30 kV) interconnected between the factories and the in-house power line in the factory to transform the voltage to the reference voltage.
- the common power supply facilities 11 to 17 are provided with photovoltaic power generation panels 101 to 106 and a battery 107 to supply direct current power, and power conditioners (PCS) 111 to 117 use direct current power with a reference voltage of 400V. In addition to being converted to AC power, it performs electrical processing for emergency output suppression and frequency synchronization (phase control). Further, the voltage is transformed from the reference voltage 400V to the reference voltage 30 kV by the transformers 131 to 137, and is connected to the microgrid system via the disconnectors 121 to 127 (normally closed).
- These power supply facilities and load facilities are connected to the information communication network 8 and transmit information such as a start state, an operation state, an open / close state, a power generation state, or a power storage state to the system control device 9, and control information is controlled by the system. Receive from device 9.
- the system control device 9 receives information from the power equipment (load equipment and power supply equipment) via the information communication network 8, performs calculation processing related to power equipment operation, and transmits control information to the power equipment.
- Remote control devices 71 to 75 are used to transmit and receive various types of information (such as control information) between the power supply facility and load facility and the system control device.
- the remote control device there is a wireless LAN.
- the remote control device and the system control device 9 can share functions.
- a governor (not shown) is incorporated in the power supply facility, and mechanical drive is controlled based on the control information.
- FIG. 2 is a diagram showing a hardware configuration of the system control device 9.
- the system control device 9 includes a CPU 201, a main memory 202, an input / output interface 203, a network interface 204, and a storage device 205, which are connected by a bus or the like.
- the network interface 204 is connected to the information communication network 8 and has a function of transmitting / receiving information to / from the remote control devices 71 to 75.
- the storage device 205 is composed of an HDD or the like, and includes a power supply start / stop plan 206, economic load distribution 207, equipment characteristics.
- a program for realizing the functions of identification 208, operation simulation 209, and remote control information transmission / reception 210 is stored.
- the CPU 10 realizes each function by performing a process of reading the above-described program from the storage device 205 into the main memory 202 and executing it.
- the functions described above may be realized by hardware. Further, the program for realizing the above-described functions may be transferred from a storage medium such as a CD-ROM, or may be downloaded from another device via a network.
- FIG. 3 is a diagram showing a hardware configuration of the remote control devices 71 to 75. As shown in FIG. These have the same configuration, and 71 is shown as a representative.
- the remote control device 71 includes a CPU 301, a main memory 302, an input / output interface 303, a network interface 304, and a storage device 305, which are connected by a bus or the like.
- the input / output interface 303 has a function of transmitting / receiving control information to / from the power supply facility and transmitting / receiving information to / from the load facility.
- the network interface 304 is connected to the information communication network 8 and has a function of transmitting / receiving information to / from the system control device 9.
- the storage device 305 is configured by an HDD or the like, and stores programs for realizing the functions of system control information transmission / reception 306, power supply facility control information transmission / reception 307, and load facility information transmission / reception 308.
- the CPU 10 realizes each function by performing a process of reading the above-described program from the storage device 305 into the main memory 302 and executing it.
- the functions described above may be realized by hardware. Further, the program for realizing the above-described functions may be transferred from a storage medium such as a CD-ROM, or may be downloaded from another device via a network.
- FIG. 5 is a flowchart showing an outline of the process of the microgrid control system and the process associated therewith.
- processing of a power supply start / stop plan 206 is performed in which a number of DEGs necessary for supplying power to a load is selected and a DEG unit selection plan for starting by selecting a DEG unit having high power generation efficiency is prepared ( S501).
- processing of economic load distribution 207 for determining economical output distribution from the fuel efficiency characteristics is performed (S502).
- equipment characteristic identification processing for sequentially updating the data contents from the operation data of the microgrid is performed (S503), and thereafter various operation simulations are performed, and simulation processing for displaying the results on the input / output means is performed (S504).
- Each block has the functional configuration shown below.
- Each block corresponds to various programs stored in the storage device 205 described with reference to FIG.
- the block of the power supply start / stop plan 206 includes a demand / solar power output prediction unit 401, a demand by the load facility, and a prediction error prediction of demand / solar power output that predicts the occurrence of errors in the prediction of the output of the solar power generator.
- the predicted value of demand and photovoltaic power generation output and the predicted value of the prediction error From the unit 402, the predicted value of demand and photovoltaic power generation output and the predicted value of the prediction error, the starting amount of the DEG to be connected to the micro grid (parallel operation) (this DEG starting amount is the rating of the DEG group to be started) A target value of the sum of outputs) and a stochastic optimum power activation amount determination unit 403, a DEG unit selection unit 404, and a photovoltaic power generation interconnection distribution unit 405 that determine the amount of interconnection operation to the microgrid of the photovoltaic power generation facility. It consists of.
- the number of DEGs necessary for supplying power to the load is selected, and a plan for selecting DEG units is selected to start by selecting DEG units with good power generation efficiency.
- the DEG unit is selected after determining the total startup amount of the DEG power source from the reference value regarding demand and solar power output and the calculated fringe value thereof. Details will be described below.
- the demand / solar power generation output prediction unit 401 calculates the demand / solar power generation output reference value (long-period fluctuation component in the day), the daily assumed load reference value (the rated power amount of the load facility, the average load factor, etc.) Forecast based on past performance data for each day of the load equipment operation) and daily photovoltaic power generation output reference values (predicted based on theoretical incident amount data, weather forecast data, power generation efficiency data, etc.).
- time series data that is a reference value of the power demand in the planning period in the microgrid is predicted from the operation result information of the load facilities 81 to 85 and 91 to 95.
- schedule information from the load facility operation plan (equivalent to the so-called production plan execution system function), add the past actual power consumption average value of each load facility operation scheduled to start operation, and A time series ⁇ D (t) ⁇ of reference values (for example, average values) of quantities is predicted.
- the standard value of the power generation amount of each of the solar power generation panels 101 to 106 within the planning period is predicted.
- Prediction is a solar panel capability value PV ⁇ (i) for converting solar radiation into electric energy (i is the unit number assigned to the photovoltaic power generation panels 101 to 106, and information on each PV ⁇ (i) is sent to the facility profile management unit 408. It is determined by adding a correction based on a change in characteristics such as temperature to the reference value of the recording) and estimating the amount of solar radiation.
- the maximum value of the amount of solar radiation to the photovoltaic power generation panel is Equation 1.
- Equation 1 represents the amount of direct solar radiation, but in addition to this, when the photovoltaic power generation panel is tilted or the incident light such as reflected light is large, the amount of solar radiation on the inclined surface instead of Equation 1, A number giving the total solar radiation amount may be used.
- the solar panel output is obtained by multiplying the solar radiation value (sin (h (t))) by the transmitted solar radiation rate C, which is the conversion rate to the solar radiation amount that actually reaches the solar panel through clouds. That is, the time series ⁇ PV (t) ⁇ of the photovoltaic power generation output is calculated by Equations 2 and 3.
- PV_i (t) PV ⁇ (i) ⁇ C ⁇ sin (h (t)) (power generation output kW of each panel),
- the transmitted solar radiation amount coefficient C is stored in the facility profile management unit 408 as a statistical value on the annual calendar day. Further, the transmitted solar radiation amount coefficient C may be corrected by a value obtained by multiplying an image of an external camera viewing a cloud in the sky or cloud thickness data obtained by a radar by a predetermined coefficient. From the ⁇ D (t) ⁇ and ⁇ PV (t) ⁇ thus calculated, a time series of ⁇ D (t) ⁇ PV (t) ⁇ , which is a reference value of the amount of power that must be supplied by the DEG, is calculated.
- the planning period is, for example, 24 hours from the present time, and the demand power amount and the photovoltaic power generation amount can be predicted as a time series in increments of 30 minutes, but the present invention is not limited to this example.
- the planning period may be set in accordance with the time constraint on parallel or disconnection with a power supply system such as a solar power generator (for example, when parallel or disconnection operation can be performed only once in 48 hours) , Planning period is 48 hours).
- the prediction error prediction unit 402 for demand / solar power output includes a reference value (or a sum of both reference values) of demand, that is, a daily assumed load reference value and a daily solar power output reference value, and an instantaneous value. Errors in demand power and solar power output that will occur instantaneously (mainly short-term fluctuation components that deviate from the long-term fluctuation components of demand power and solar power output, which are the predicted reference values ( Prediction regarding the occurrence of error is performed for fringe component)).
- data relating to prediction error occurrence prediction statistical occurrence tendency data that can be expected to be reproducible, such as the frequency and size of fringes, is calculated.
- the planning period is divided into predetermined consideration periods (in the above example, the planning period is 24 hours from the present time, and each time zone in 30-minute increments is the consideration period).
- One consideration period starting from time t is referred to as a consideration period t for simplicity.
- the consideration period is 30 minutes
- the consideration period from time t to time t + 30 minutes is referred to as the consideration period t for simplicity.
- the maximum magnitude ⁇ Dup (t) ⁇ and the average and variance ⁇ _Dup_count of the load equipment activation times, the maximum magnitude ⁇ Ddown (t) ⁇ of the power demand decrease due to the load equipment shutdown and the variance and average Processing to calculate is performed.
- the system control device when the system control device has means for directly measuring the load facility start or stop event, the system control device realizes this processing by recording the start and stop events. If there is no means to directly measure the load facility start or stop event from the system controller, it is considered as a load facility start event if the load curve of the total demand power increases rapidly, and if the load curve decreases rapidly, Processing may be performed by regarding it as a stop event.
- the solar power generation panels 101 to 106 in the time zone of each consideration period on the same calendar day (preferably the past day when the solar altitude is the same considering leap years etc.) corresponding to the planning period.
- the maximum amount of decrease ⁇ PVdown (t) ⁇ in the short-term decrease (instantaneous decrease) in the solar power output fluctuation of the power generation amount output from the output, and the average E_PVdown_count and variance ⁇ _PVdown_count of the number of occurrences are calculated.
- the maximum magnitude ⁇ PVup (t) ⁇ of the increase in the short-term increase in the solar power output of the power generation output fluctuation and the average E_PVup_count and variance ⁇ _PVup_count of the number of occurrences are calculated.
- the system control device records and holds data obtained by measuring the output of solar power generation, and the above values are calculated based on the past data.
- the values of Equations 2 and 3 obtained by setting the transmitted solar radiation rate C to the theoretical maximum value (1.0 or the like), and the reference prediction value ⁇ PV (t) of the photovoltaic power generation output described above. ⁇ May be ⁇ PVup (t) ⁇ . In this case, it is possible to execute from the beginning of the system introduction in which past data is not accumulated.
- the prediction error prediction unit 402 for demand / solar power output uses the current data of the external camera or radar that observes the clouds in the sky, the past data, and the number of clouds in the sky and the width of the clouds. , Calculating cloud thickness, cloud moving speed, estimating the variation of transmitted solar radiation coefficient C and using Equations 2 and 3, ⁇ PVdown (t) ⁇ , E_PVdown_count, variance ⁇ _PVdown_count, ⁇ PVup (t) ⁇ , E_PVup_count and variance ⁇ _PVup_count may be calculated.
- the prediction error prediction of demand / solar power output described above is to accurately predict when the fringe will occur, when the load equipment is activated or stopped, or incident This is equivalent to predicting at which moment the solar radiation increases or decreases, and is difficult to realize, but statistical generation tendency data is easy to calculate.
- the present invention is not limited to this embodiment.
- the fringe may be predicted non-statistically based on the operation control schedule of the power facility or direct observation of the daily weather phenomenon.
- the remote control devices 71 to 75 may accept the load equipment activation reservation. Good.
- the system controller 9 can more accurately predict ⁇ Dup (t) ⁇ , which is a short-term fluctuation of the demand power amount.
- the probabilistic optimum power activation amount determination unit 403 performs the following processing in order to determine the target value of the sum of the rated outputs of the DEG groups to be activated and the interconnection amount to the microgrid of the photovoltaic power generation panel.
- Equation 4 the maximum amount of increase in short-term demand power, which is information on demand power and photovoltaic power generated in each consideration period t, obtained in block 401 ⁇ Dup (t) ⁇ , the maximum amount of short-term decrease in photovoltaic power output ⁇ PVdown (t) ⁇ , the amount of electricity output Pdeg (t) to be borne by the DEG in each consideration period t [KW] is calculated as shown in Equation 4.
- Mup_E_ ⁇ is set to be large when the tail of the frequency distribution function of occurrence of a decrease in photovoltaic power generation output is wide, that is, when the value of ⁇ _PVdown_count is large. Therefore, a comparison table of ⁇ _PVdown_count and Mup_E_ ⁇ may be created. Further, when ⁇ _Dup_count is large, Mup_E_ ⁇ may be set to a large value, and the comparison table may be created. In this way, a comparison table may be created in advance, and information on Mup_E_ ⁇ may be extracted from the comparison table during the calculation process for calculating Pdeg (t).
- the lower limit value of Mup_E_ ⁇ for securing the output reserve necessary for avoiding the voltage drop and frequency drop of the microgrid system due to the lack of DEG output is determined by the prototype environment and computer simulation. Can be optimized in advance.
- the dispersion ⁇ _ ⁇ (t) of the fringe size generated in each period (the set of Dup_i depending on the fringe size ⁇ Dup_i due to the activation of the load facility or the decrease in the photovoltaic power generation output during the period t) ⁇ Is expressed as ⁇ _ ⁇ (t)), Mup_E_ ⁇ may be increased.
- the operation of DEG can be performed well even when the probability of the size of fringe reduction is uncertain.
- the determination of the connection amount of the solar power connection amount photovoltaic power generation panel to the micro grid is performed as follows.
- the amount of DEG output that can be instantaneously reduced is equal to or greater than the maximum amount of “photovoltaic power output increase + factory electrical load decrease” within the consideration period. Therefore, the minimum output of the DEG group needs to satisfy Equation 5.
- Equation 5 Pdeg (t) ⁇ ⁇ PVup (t) + ⁇ Ddown (t) ⁇ ⁇ Mdown_E_ ⁇
- Mdown_E_ ⁇ in Equation 5 is a safety coefficient related to ensuring the amount of DEG output reduction possible (instantaneous suppression force) against the decrease in the DEG output sharing request due to fringe, and is usually set to a value of 1.0 or more.
- Mdown_E_ ⁇ is a dispersion value of a set ⁇ Ddown_i ⁇ of Ddown_i due to the size of the fringe due to the suspension of the load facility or the increase in the photovoltaic power generation output during the period t. Try to take.
- a comparison table of ⁇ _ ⁇ down (t), count, and Mdown_E_ ⁇ may be created.
- a comparison table may be created in advance, and information on Mdown_E_ ⁇ may be extracted from the comparison table during the calculation process for determining Equation 5, and the calculation process may be performed.
- the value of Mdown_E_ ⁇ for ensuring the amount of output reduction necessary for avoiding obstacles such as system voltage disturbance in the creation of the comparison table is optimized in advance by a prototype environment and computer simulation. be able to.
- the panel number set J linked to the microgrid of the photovoltaic power generation panel is reduced until Expression 5 is satisfied. (If the installation conditions of each photovoltaic panel are the same here, it goes without saying that the number of photovoltaic panels and ⁇ PVup (t) are proportional). In addition, according to the determined number set J of the photovoltaic power generation panels linked to the microgrid, the processes of the above blocks 401 to 403 are performed again.
- the DEG unit selection unit 404 preferentially selects a DEG that satisfies the DEG startup amount determined above, with priority given to a fuel-efficient DEG.
- the DEG unit selection corresponds to Pdeg (t) even if the largest rated output among the selected DEGs stops the accident Select DEG until output is available.
- the fuel efficiency of DEG refers to the fuel efficiency in the central load region. That is, R in Equation 6 is obtained as an approximate number of load factors that are constantly applied to DEG.
- DEG units may be selected in order of good fuel efficiency at the rated output of DEG. This is an effective method when the fuel efficiency characteristic at the partial load output of DEG is unknown.
- R is smaller than a predetermined threshold (for example, 0.3 or less)
- the number of photovoltaic power generation panels connected to the microgrid is reduced (J is reduced) so that the value of R is increased.
- the processing from the block 401 may be performed again.
- R is small, that is, when the DEG is operated for a long time at a low output, the black in the exhaust gas generated by the incomplete combustion phenomenon of the fuel in the DEG caused by the decrease in combustion in the cylinder of the DEG. An increase in smoke component (fuel unburned component) can be avoided.
- a predetermined threshold value for R may be provided for each magnitude of Pdeg (t) (for example, 0.3 if Pdeg (t) is less than 1000 kW, and 0.3 if Pdeg (t) is 1000 kW or more. 4).
- Pdeg (t) for example, 0.3 if Pdeg (t) is less than 1000 kW, and 0.3 if Pdeg (t) is 1000 kW or more. 4.
- a DEG that has been activated once may be corrected so that it is given priority so that it can be activated continuously in the next consideration period.
- the number of times of starting and stopping the DEG is reduced, and the fuel required for warming up the DEG is reduced.
- the photovoltaic power generation interconnection distribution unit 405 opens the section of the photovoltaic power generation interconnection switch so that the required interconnection amount is obtained according to the number set J of the photovoltaic power generation panels linked to the microgrid. To decide. Thereby, for example, even if the output of DEG is set to zero, it is possible to suppress an increase in the AC frequency of the microgrid and an abnormal voltage increase that occur when the power supply exceeds.
- the economic load distribution 207 block is a DEG economic load distribution that determines an economical output distribution from each fuel consumption characteristic of the DEG determined by the power supply start / stop plan 206 that is connected in parallel to the microgrid system. Part 406.
- the economic output distribution of each DEG by the equal incremental fuel cost method is determined as the economic load distribution.
- the lambda value is given by Equation 7 for the DEG i machine.
- the equipment characteristic identification 208 block provides equipment profile information necessary for each block of the power supply start / stop plan 206, economic load distribution 207, and operation simulation 209.
- the equipment profile includes output characteristics of power equipment, output variability, responsiveness, fuel consumption characteristics, fuel increment characteristics, fringe characteristics (load equipment operation stop frequency, rated input, etc., and occurrence of incident solar radiation related to photovoltaic power generation Frequency and size), environmental driving time range characteristics, environmental driving load characteristics, and the like.
- the equipment characteristic identification 208 block includes equipment profile management unit 408 that retains and outputs equipment profile data, operation information of power equipment linked to the microgrid, frequency of the microgrid, information on voltage and power of the power equipment. It comprises an equipment profile learning unit 409 for online learning of profile information of each equipment from the online information.
- data contents are sequentially updated from operation data of the microgrid by learning techniques such as a system identification method, an error back propagation method, and a delta rule.
- the block of the operation simulation 209 provides the transient stability (transient-stability) and the steady-state stability (steady-state stability) in advance for the power supply configuration parallel to the microgrid determined by the block of the power supply start / stop planning unit 206.
- the stability simulation unit 410 to be evaluated, the environment evaluation simulation unit 412 to preliminarily evaluate the exhaust gas state of the DEG, the stability simulation result, and the environmental evaluation simulation result are displayed on the input / output means, and confirmation input from the operator
- the quantity planning unit 403 changes the determination so as to increase the DEG startup amount or decrease the interconnection amount of the photovoltaic power generation.
- the power generation startup amount planning unit 403 changes the determination of the DEG startup amount or the interconnection amount of photovoltaic power generation.
- the stochastic optimal power generation startup amount planning unit 403 changes the amount of interconnection of the photovoltaic power generation amount to be smaller. As a result, the load factor of DEG is increased, the fuel combustion temperature is increased, and the exhaust gas black smoke is reduced. Further, for example, when the relaxation of the sudden change in the output of the DEG is instructed, the stochastic optimal power generation startup amount planning unit 403 makes a determination again so as to change the amount of sunlight interconnection that causes the change. For example, when an instruction to alleviate the risk of instantaneous overload operation of the DEG is given, the stochastic optimum power generation startup amount planning unit 403 makes a determination again so as to increase the number of connected DEGs.
- Fig. 6 shows the equipment profile using DEG21 as an example.
- Information (properties) related to a list of electrical characteristics such as information, characteristics of connecting to a system to form an electric circuit, and electrical characteristics of an individual is described.
- dynamic electrical characteristics described above may be described by a polynomial model such as ARMA or data having response characteristics as a plot, in addition to the expression by a transfer function.
- FIG. 7 is a diagram illustrating a hardware configuration of the power supply facility 21.
- the power supply facility 21 is a diesel generator (DEG).
- the power supply device 21 includes a diesel engine 701, a governor 702 that is an engine control unit, a generator 703, and an automatic voltage regulator AVR (automatic voltage regulator) 704, and is connected to the remote control device 71.
- the governor 702 controls the engine speed (generator frequency) by adjusting the fuel injection amount to the engine 701 and changing the engine output torque under the instruction of the remote control device 71. Yes.
- the remote control device 71 instructs the set value of the frequency droop for the governor of each power generation facility.
- the governor 702 performs droop control using this frequency droop.
- FIG. 8 is a diagram illustrating that the output distribution of each DEG is adjusted by changing the setting of the frequency droop of the DEG.
- the frequency droop is set so that the rated output is generated at the rated frequency, and the load is gradually reduced to specify the difference between the frequency at the no load and the rated frequency in percentage.
- Reference numeral 801A denotes a frequency / output characteristic line at a 5% frequency droop of DEG21 having a rated output of 1000 kW.
- 802A is a frequency / output characteristic line at a 5% frequency droop of DEG22 having a rated output of 500 kW.
- Reference numeral 801B denotes a frequency / output characteristic line when the set value of the frequency droop of the DEG 21 is instructed to 7%.
- the output distribution of each of the two DEGs changes as indicated by the arrows in the figure. Based on this principle, the microgrid control system can arbitrarily control the output of each DEG.
- FIG. 9 is a diagram showing the software configuration of the microgrid control system and the relationship with the equipment I / O.
- the power grid start and stop plan 206, economic load distribution 207, and facility characteristic identification 208, which are functional processes of microgrid control, are based on facility profile information indicating DEG characteristics and facility profile information indicating load facility characteristics.
- DEG unit selection (the selected DEGs are operated in parallel and synchronously), and the frequency droop value that gives the operating conditions of the selected DEG is transmitted / received by communication software between the system controller and the remote controller.
- the interconnection of the photovoltaic power generation device to the microgrid is a configuration in which how many photovoltaic power generation devices are linked can be controlled by a command via an I / O to the circuit breaker.
- FIG. 10 is a diagram showing the effect of this embodiment.
- the present embodiment it is possible to further prevent deterioration of DEG exhaust gas components due to long-time low-load operation or the like, and to prevent a power outage due to insufficient DEG output.
- FIG. 11 is a diagram showing a change in the output distribution of the DEG when this embodiment is performed.
- the first and second units of DEG are in operation, and output is distributed between the two DEGs.
- Unit 1 rated output is 1000 kW, Unit 2 750 kW.
- Unit 1 has better fuel efficiency when it has a higher load factor than Unit 2).
- output distribution of Unit 1 and Unit 2 is performed according to ⁇ shown in Equation 7, and both units are operated at rated output at high load (total output 1750 kW), but in a low load region Then, Unit 1 will output more than Unit 2.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
記憶装置205はHDD等により構成され、電源起動停止計画206、経済負荷配分207、設備特性同定208、運転シミュレーション209、リモート制御情報送受信210の機能を実現するプログラムを格納している。
好ましくは、まず需要電力予測としてマイクログリッド内の計画期間内における電力需要の基準値である時系列データを負荷設備81~85、91~95の稼動実績情報などから予測する。特に好ましくは、負荷設備の稼動計画(いわゆる生産計画実行システム機能に相当)からの予定情報をえて、稼動が予定される各負荷設備稼働の過去の使用電力実績平均値を加算して、総需要量の基準値(例えば平均値)の時系列{D(t)}を予測する。
なお数1は直達日射量を表すが、このほかに、太陽光発電パネルが傾いて設置されているときや反射光などの入光が大きいときなどは、数1に代わり傾斜面日射量や、全天日射量を与える数を用いても良い。
ここで、フリンジによるDEG出力分担要求の増量に対応するため、DEGの出力予備量(瞬動予備力)を確保する。具体的には、「ΔPVdown(t)+ΔDup(t)」に安全係数(Mup_E_σ)を掛けることで出力予備量を確保する。この安全係数は、通常1.0以上の値を設定する。好ましくは、太陽光発電出力低下の発生の回数分布関数のすそが広い場合、すなわち、σ_PVdown_count の値が大きい場合にはMup_E_σが大きく設定する。そのため、σ_PVdown_countとMup_E_σの対照表を作成するようにしても良い。またσ_Dup_countが大きい場合にMup_E_σを大きい値にするようにし、その対照表を作成するようにしても良い。このように対照表を予め作成しておいて、Pdeg(t)を算出する計算書処理時には当対照表からMup_E_σの情報を抽出し計算処理をするようにしても良い。この方法によれば、対照表の作成時において、DEG出力不足によるマイクログリッド系統の電圧低下や周波数低下の回避に必要な出力予備量を確保するためのMup_E_σの下限値を試作環境や計算機シミュレーションにより事前に最適にすることができる。
考察期間内における最大の「太陽光発電出力上昇+工場電気負荷減少」の量と同量以上のDEG出力の瞬時引き下げ可能量が得られるようにする。そのためDEG群の最低出力は
数5を満たす必要がある。
ここで数5の中のMdown_E_σは、フリンジによるDEG出力分担要求の減少に対するDEGの出力削減可能量(瞬時抑制力)の確保に関する安全係数であり、通常1.0以上の値を設定する。Mdown_E_σは期間tに於ける負荷設備の停止もしくは太陽光発電出力の増加による、フリンジの大きさよるDdown_iの集合{Ddown_i}の分散値をσ_δdown(t)が大きいときには大き目の値(例えば1.2)をとるようにする。そのためのσ_σdown(t)とcountとMdown_E_σの対照表を作成するようにしても良い。
このように対照表を予め作成しておいて、数5を判定する計算書処理時には当対照表からMdown_E_σの情報を抽出し計算処理をするようにしても良い。この方法によれば、対照表の作成において、系統の電圧乱すなどの障害を回避するために必要な出力削減可能量を確保するためのMdown_E_σの値を試作環境や計算機シミュレーションにより事前に最適にすることができる。
なお決定したマイクログリッドへ連系する太陽光発電パネルの番号集合Jに従い、上記のブロック401から403の処理を再度行うようにする。
このRの負荷率での運転(DEG固有の定格出力kWに対してRの割合で出力する)での各DEGの燃費(リットル/時)、設備プロファイル408に記載の各DEG固有の燃費特性式をもとに算出し、その値が小さいDEG号機(燃焼消費が少なく好適なDEG号機)から順に選択する。すなわち、DEG号機の選択を、選ばれたDEG号機の定格出力の合計が、上記のPdeg(t)を上回るまで順にDEG号機選択する。これにより、太陽光発電出力の減少等に備えて、DEGが多数起動し、Rが小さい値運転(たとえば定格出力の50%以下)する場合にも、全DEGの全体での実行燃費が良好となる。
ここで、i:DEG号機番号、Fc(i):DEG(i号機)の燃費特性((リットル/時)/kW)、W(i):DEG(i号機)の出力である。
また、DEGからの出力の総和は数9を満たすようにすることで、計画期間における系統の需給のバランスがとれる。
6 マイクログリッド系統
9 システム制御装置
7 外部の電力系統
11~17 共用電源設備
205 記憶装置
206 電源起動停止計画の機能を実現するプログラム
207 経済負荷配分の機能を実現するプログラム
208 設備特性同定の機能を実現するプログラム
209 運転シミュレーションの機能を実現するプログラム
210 リモート制御情報送受信の機能を実現するプログラム
Claims (11)
- 複数の電力設備の動作を制御するマイクログリッド制御システムにおいて、
電源機起動停止計画部と、
前記電源設備が受け持つ負荷の配分に関わる指令値を決定する経済負荷配分部と、を備え、
前記電源機起動停止計画部は、
電源設備の出力量及び負荷設備の負荷量の予測を行う出力負荷予測機能と、
前記出力及び負荷の予測量の誤差を予測する出力負荷予測誤差予測機能と、
前記出力負荷予測機能及び前記出力負荷予測誤差予測機能の予測結果に基き、起動させる電源設備の総出力量を決定する電源起動量決定機能と、
前記決定された総出力量と前記電源設備の特性情報とに基き、起動させる電源設備を選択する電源設備選択機能と、
を備えることを特徴とするマイクログリッド制御システム。 - 請求項1に記載のマイクログリッド制御システムにおいて、
前記電源設備の特性情報は当該電源設備の燃費特性の情報であり、
前記電源設備選択機能は、前記燃費特性情報に基づき、燃費特性が良い電源設備から順に起動させる電源設備を選択することを特徴とするマイクログリッド制御システム。 - 請求項2に記載のマイクログリッド制御システムにおいて、
前記燃費特性情報は、前記電源設備の動作の中心となる負荷領域における燃費特性であることを特徴とするマイクログリッド制御システム。 - 請求項3に記載のマイクログリッド制御システムにおいて、
前記電源設備として、太陽光パネルと、ディーゼルエンジンとを備え、
前記電源設備選択機能は、前記電源設備の負荷の割合である負荷率を算出し、当該負荷率が所定の閾値を下回った場合に、前記電源設備のうち前記太陽光パネルからの出力を制限することを特徴とするマイクログリッド制御システム。 - 請求項1に記載のマイクログリッド制御システムにおいて、
前記電源設備選択機能は、現在起動している電源設備を優先的に選択することを特徴とするマイクログリッド制御システム。 - 請求項1乃至5のいずれか一項に記載のマイクログリッド制御システムにおいて、
前記電源設備の出力もしくは前記負荷設備の負荷に関する、変動性、応答性、燃費、燃費増量、環境負荷特性、環境運転時間範囲特性のいずれかの特性を学習する設備特性同定部を更に備えることを特徴とするマイクログリッド制御システム。 - 複数の電力設備の動作を制御するマイクログリッド制御方法において、
電源設備の出力量及び負荷設備の負荷量の予測を行うステップと、
前記出力及び負荷の予測量の誤差を予測するステップと、
前記2つの予測結果に基き、起動させる電源設備の総出力量を決定するステップと、
前記決定された総出力量と前記電源設備の特性情報とに基き、起動させる電源設備を選択するステップと、
前記電源設備が受け持つ負荷の配分に関わる指令値を決定するステップと、
を備えることを特徴とするマイクログリッド制御方法。 - 請求項7に記載のマイクログリッド制御方法において、
前記電源設備の特性情報は当該電源設備の燃費特性の情報であり、
前記起動させる電源設備を選択するステップは、前記燃費特性情報に基づき、燃費特性が良い電源設備から順に起動させる電源設備を選択することを特徴とするマイクログリッド制御方法。 - 請求項8に記載のマイクログリッド制御方法において、
前記燃費特性情報は、前記電源設備の動作の中心となる負荷領域における燃費特性であることを特徴とするマイクログリッド制御方法。 - 請求項9に記載のマイクログリッド制御方法において、
前記電源設備として、太陽光パネルと、ディーゼルエンジンとを備え、
前記起動させる電源設備を選択するステップは、前記電源設備の負荷の割合である負荷率を算出し、当該負荷率が所定の閾値を下回った場合に、前記電源設備のうち前記太陽光パネルからの出力を制限することを特徴とするマイクログリッド制御方法。 - 請求項7に記載のマイクログリッド制御方法において、
前記起動させる電源設備を選択するステップは、現在起動している電源設備を優先的に選択することを特徴とするマイクログリッド制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013520329A JP5789662B2 (ja) | 2011-06-17 | 2011-06-17 | マイクログリッド制御システム |
US14/126,730 US9742189B2 (en) | 2011-06-17 | 2011-06-17 | Microgrid control system |
PCT/JP2011/003461 WO2012172616A1 (ja) | 2011-06-17 | 2011-06-17 | マイクログリッド制御システム |
EP11867900.0A EP2722960B1 (en) | 2011-06-17 | 2011-06-17 | Microgrid control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/003461 WO2012172616A1 (ja) | 2011-06-17 | 2011-06-17 | マイクログリッド制御システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012172616A1 true WO2012172616A1 (ja) | 2012-12-20 |
Family
ID=47356644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/003461 WO2012172616A1 (ja) | 2011-06-17 | 2011-06-17 | マイクログリッド制御システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US9742189B2 (ja) |
EP (1) | EP2722960B1 (ja) |
JP (1) | JP5789662B2 (ja) |
WO (1) | WO2012172616A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103412526A (zh) * | 2013-07-12 | 2013-11-27 | 国家电网公司 | 一种供热机组在线负荷的调度方法与系统 |
WO2014170311A3 (de) * | 2013-04-17 | 2015-07-23 | Sma Solar Technology Ag | Verfahren und vorrichtung zum betrieb eines neben brennkraftgeneratoren an ein begrenztes stromnetz angeschlossenen photovoltaikkraftwerks |
WO2016021179A1 (ja) * | 2014-08-04 | 2016-02-11 | 日本電気株式会社 | 分散電源システム、局制御装置、制御方法およびプログラムが記憶された記憶媒体 |
JP2016093049A (ja) * | 2014-11-10 | 2016-05-23 | 東京電力株式会社 | 需給制御装置及び需給制御方法 |
WO2016189756A1 (ja) * | 2015-05-27 | 2016-12-01 | 日本電気株式会社 | 発電制御装置、制御装置、制御方法および記録媒体 |
WO2017029756A1 (ja) * | 2015-08-20 | 2017-02-23 | シャープ株式会社 | 電力供給システム、出力制御装置、出力制御方法、及び、記録媒体 |
WO2017037889A1 (ja) * | 2015-09-02 | 2017-03-09 | シャープ株式会社 | 電源システム、出力制御装置、出力制御方法、及び、記録媒体 |
US9728972B2 (en) | 2014-08-20 | 2017-08-08 | Qfe 002 Llc | Alternative energy bus bar by pass breaker, methods of use and installation |
KR20180031767A (ko) * | 2015-08-17 | 2018-03-28 | 캐타필라 인코포레이티드 | 다수의 엔진 간의 부하 분담 관리 |
JP2019004536A (ja) * | 2017-06-12 | 2019-01-10 | ジャパンマリンユナイテッド株式会社 | 電力供給システム及び電力供給方法 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101259728B1 (ko) * | 2011-12-14 | 2013-05-07 | 제주대학교 산학협력단 | 마이크로그리드 운전 제어 시스템 및 방법 |
JP5957073B2 (ja) * | 2012-04-20 | 2016-07-27 | 株式会社日立製作所 | 電力監視装置及び電力監視方法 |
US8963353B1 (en) * | 2013-09-19 | 2015-02-24 | General Electric Company | System and method to minimize grid spinning reserve losses by pre-emptively sequencing power generation equipment to offset wind generation capacity based on geospatial regional wind conditions |
US20150333491A1 (en) * | 2014-05-13 | 2015-11-19 | Paul Cruz | Alternative energy bus bar by pass breaker |
US11070058B2 (en) * | 2014-10-26 | 2021-07-20 | Green Power Labs Inc. | Forecasting net load in a distributed utility grid |
SG10201502972VA (en) * | 2015-04-15 | 2016-11-29 | Sun Electric Pte Ltd | Method and system for operating a plurality of photovoltaic (pv) generating facilities connected to an electrical power grid network |
KR101724893B1 (ko) * | 2015-09-08 | 2017-04-07 | 한국전력공사 | 독립형 마이크로그리드 자율제어 시스템 및 방법 |
JP6600516B2 (ja) * | 2015-09-14 | 2019-10-30 | 株式会社東芝 | アグリゲーション管理装置及び方法 |
WO2017089402A1 (en) * | 2015-11-26 | 2017-06-01 | Abb Schweiz Ag | Hybrid power system including gensets and renewable energy resources, and method of control |
US10061283B2 (en) | 2015-12-07 | 2018-08-28 | Opus One Solutions Energy Corp. | Systems and methods for integrated microgrid management system in electric power systems |
EP3214718B1 (de) * | 2016-03-01 | 2019-12-04 | Siemens Aktiengesellschaft | Verfahren und system zum betrieb eines autarken energieversorgungsnetzes |
WO2017203610A1 (ja) * | 2016-05-24 | 2017-11-30 | 三菱電機株式会社 | 発電量推定装置、配電系統システムおよび発電量推定方法 |
US20170371306A1 (en) * | 2016-06-27 | 2017-12-28 | Ecole Polytechnique Federale De Lausanne (Epfl) | System and Method for Dispatching an Operation of a Distribution Feeder with Heterogeneous Prosumers |
US10651656B2 (en) | 2016-09-14 | 2020-05-12 | Texas Tech University System | UDE-based robust droop control for parallel inverter operation |
EP3487027B1 (en) * | 2017-11-21 | 2022-04-27 | Schneider Electric Industries SAS | Method for controlling a microgrid |
DE102018001763A1 (de) * | 2018-03-06 | 2019-09-12 | Senvion Gmbh | Verfahren und System zum Warten einer Windenergieanlage aus einer Gruppe von Windenergieanlagen |
US10878450B1 (en) * | 2018-04-01 | 2020-12-29 | Facebook, Inc. | Pacing content campaigns by adjusting probability of bidding |
FR3095067A1 (fr) * | 2019-04-11 | 2020-10-16 | Total Solar | Procédé d'évaluation de la production d’énergie photovoltaïque et unité d’évaluation et de gestion mettant en œuvre le procédé |
CN109995091B (zh) * | 2019-04-26 | 2022-11-29 | 太原理工大学 | 一种考虑预测误差的交直流混合微电网经济调度方法 |
CA3079882A1 (en) * | 2019-05-01 | 2020-11-01 | Battelle Memorial Institute | Monitoring and controlling the status of frequency-managed electric devices from frequency history |
JP7625575B2 (ja) | 2019-07-29 | 2025-02-03 | エンフェーズ エナジー インコーポレイテッド | マイクログリッド中のサイクル動作負荷の自動インターリーブのための方法および装置 |
CN111339689B (zh) * | 2020-03-30 | 2023-02-07 | 广东工业大学 | 建筑综合能源调度方法、系统、存储介质及计算机设备 |
CN111884258B (zh) * | 2020-07-31 | 2023-08-01 | 三峡大学 | 考虑负荷重要等级的多微网被动并离网平滑切换方法 |
CN112531699B (zh) * | 2020-12-04 | 2023-08-18 | 广东电网有限责任公司电力调度控制中心 | 一种微电网自治能管系统能量调度方法和系统 |
US11936184B2 (en) * | 2021-08-19 | 2024-03-19 | Caterpillar Inc. | Systems and methods for operating hybrid power system by combining prospective and real-time optimizations |
US11962156B2 (en) | 2021-08-19 | 2024-04-16 | Caterpillar Inc. | Systems and methods for constrained optimization of a hybrid power system that accounts for asset maintenance and degradation |
RO137478A3 (ro) * | 2022-12-08 | 2024-06-28 | Tokyo Market S.R.L. | Sistem inteligent pentru monitorizarea şi capitalizarea energiei verzi produse de panourile fotovoltaice |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002044870A (ja) | 2000-07-27 | 2002-02-08 | Nippon Telegr & Teleph Corp <Ntt> | 分散型エネルギーコミュニティーシステムとその制御方法 |
JP2006304402A (ja) * | 2005-04-15 | 2006-11-02 | Nippon Telegr & Teleph Corp <Ntt> | 分散型エネルギーシステムの制御装置、制御方法、プログラム、および記録媒体 |
JP2008054385A (ja) * | 2006-08-23 | 2008-03-06 | Mitsubishi Electric Corp | 系統安定化装置 |
JP2011050133A (ja) * | 2009-08-25 | 2011-03-10 | Toshiba Corp | 電力系統の需給制御装置、需給制御プログラム及びその記録媒体 |
JP2011114900A (ja) * | 2009-11-25 | 2011-06-09 | Fuji Electric Systems Co Ltd | マイクログリッドの需給制御装置およびマイクログリッドの需給制御方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3780838B2 (ja) * | 2000-09-26 | 2006-05-31 | 株式会社日立製作所 | グリーン電力供給システム及びグリーン電力供給方法 |
GB0207396D0 (en) * | 2002-03-28 | 2002-05-08 | Bg Intellectual Pty Ltd | A power distribution/generation system |
US7454270B2 (en) * | 2003-05-13 | 2008-11-18 | Siemens Power Transmission & Distribution, Inc. | Dynamic economic dispatch for the management of a power distribution system |
US7233843B2 (en) * | 2003-08-08 | 2007-06-19 | Electric Power Group, Llc | Real-time performance monitoring and management system |
JP4154373B2 (ja) | 2004-08-06 | 2008-09-24 | 株式会社日立製作所 | 電力供給事業リスク管理支援システム |
US9771834B2 (en) * | 2004-10-20 | 2017-09-26 | Emerson Process Management Power & Water Solutions, Inc. | Method and apparatus for providing load dispatch and pollution control optimization |
CN101154815B (zh) * | 2006-09-29 | 2012-08-29 | 霍尼韦尔(中国)高科技有限公司 | 动态经济负荷分配 |
JP4864803B2 (ja) * | 2007-04-23 | 2012-02-01 | 株式会社東芝 | 電力需給制御装置およびその方法 |
US7952306B2 (en) * | 2007-06-01 | 2011-05-31 | Progress Rail Services Corp | Power system with multiple generator units |
US7991512B2 (en) * | 2007-08-28 | 2011-08-02 | General Electric Company | Hybrid robust predictive optimization method of power system dispatch |
JP4412413B1 (ja) * | 2008-07-31 | 2010-02-10 | パナソニック電工株式会社 | 配電システム |
US8706650B2 (en) * | 2009-01-14 | 2014-04-22 | Integral Analytics, Inc. | Optimization of microgrid energy use and distribution |
US9093840B2 (en) * | 2010-07-02 | 2015-07-28 | Alstom Technology Ltd. | System tools for integrating individual load forecasts into a composite load forecast to present a comprehensive synchronized and harmonized load forecast |
US8972070B2 (en) * | 2010-07-02 | 2015-03-03 | Alstom Grid Inc. | Multi-interval dispatch system tools for enabling dispatchers in power grid control centers to manage changes |
US8566266B2 (en) * | 2010-08-27 | 2013-10-22 | Mitsubishi Electric Research Laboratories, Inc. | Method for scheduling the operation of power generators using factored Markov decision process |
JP5101675B2 (ja) * | 2010-09-09 | 2012-12-19 | 株式会社東芝 | 需給バランス制御装置 |
US8831788B2 (en) * | 2011-04-20 | 2014-09-09 | General Electric Company | Systems, methods, and apparatus for maintaining stable conditions within a power grid |
US8996185B2 (en) * | 2011-06-03 | 2015-03-31 | Mitsubishi Electric Research Laboratories, Inc. | Method for scheduling power generators based on optimal configurations and approximate dynamic programming |
-
2011
- 2011-06-17 US US14/126,730 patent/US9742189B2/en active Active
- 2011-06-17 JP JP2013520329A patent/JP5789662B2/ja not_active Expired - Fee Related
- 2011-06-17 WO PCT/JP2011/003461 patent/WO2012172616A1/ja active Application Filing
- 2011-06-17 EP EP11867900.0A patent/EP2722960B1/en not_active Not-in-force
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002044870A (ja) | 2000-07-27 | 2002-02-08 | Nippon Telegr & Teleph Corp <Ntt> | 分散型エネルギーコミュニティーシステムとその制御方法 |
JP2006304402A (ja) * | 2005-04-15 | 2006-11-02 | Nippon Telegr & Teleph Corp <Ntt> | 分散型エネルギーシステムの制御装置、制御方法、プログラム、および記録媒体 |
JP2008054385A (ja) * | 2006-08-23 | 2008-03-06 | Mitsubishi Electric Corp | 系統安定化装置 |
JP2011050133A (ja) * | 2009-08-25 | 2011-03-10 | Toshiba Corp | 電力系統の需給制御装置、需給制御プログラム及びその記録媒体 |
JP2011114900A (ja) * | 2009-11-25 | 2011-06-09 | Fuji Electric Systems Co Ltd | マイクログリッドの需給制御装置およびマイクログリッドの需給制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2722960A4 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014170311A3 (de) * | 2013-04-17 | 2015-07-23 | Sma Solar Technology Ag | Verfahren und vorrichtung zum betrieb eines neben brennkraftgeneratoren an ein begrenztes stromnetz angeschlossenen photovoltaikkraftwerks |
CN103412526B (zh) * | 2013-07-12 | 2016-03-16 | 国家电网公司 | 一种供热机组在线负荷的调度方法与系统 |
CN103412526A (zh) * | 2013-07-12 | 2013-11-27 | 国家电网公司 | 一种供热机组在线负荷的调度方法与系统 |
JPWO2016021179A1 (ja) * | 2014-08-04 | 2017-05-25 | 日本電気株式会社 | 分散電源システム、局制御装置、制御方法およびプログラムが記憶された記憶媒体 |
WO2016021179A1 (ja) * | 2014-08-04 | 2016-02-11 | 日本電気株式会社 | 分散電源システム、局制御装置、制御方法およびプログラムが記憶された記憶媒体 |
US9728972B2 (en) | 2014-08-20 | 2017-08-08 | Qfe 002 Llc | Alternative energy bus bar by pass breaker, methods of use and installation |
JP2016093049A (ja) * | 2014-11-10 | 2016-05-23 | 東京電力株式会社 | 需給制御装置及び需給制御方法 |
WO2016189756A1 (ja) * | 2015-05-27 | 2016-12-01 | 日本電気株式会社 | 発電制御装置、制御装置、制御方法および記録媒体 |
KR20180031767A (ko) * | 2015-08-17 | 2018-03-28 | 캐타필라 인코포레이티드 | 다수의 엔진 간의 부하 분담 관리 |
JP2018533334A (ja) * | 2015-08-17 | 2018-11-08 | キャタピラー インコーポレイテッドCaterpillar Incorporated | 複数のエンジン間の負荷分担管理 |
KR102543460B1 (ko) * | 2015-08-17 | 2023-06-15 | 캐타필라 인코포레이티드 | 다수의 엔진 간의 부하 분담 관리 |
KR20230091192A (ko) * | 2015-08-17 | 2023-06-22 | 캐타필라 인코포레이티드 | 다수의 엔진 간의 부하 분담 관리 |
KR102593792B1 (ko) * | 2015-08-17 | 2023-10-25 | 캐타필라 인코포레이티드 | 다수의 엔진 간의 부하 분담 관리 |
WO2017029756A1 (ja) * | 2015-08-20 | 2017-02-23 | シャープ株式会社 | 電力供給システム、出力制御装置、出力制御方法、及び、記録媒体 |
WO2017037889A1 (ja) * | 2015-09-02 | 2017-03-09 | シャープ株式会社 | 電源システム、出力制御装置、出力制御方法、及び、記録媒体 |
JP2019004536A (ja) * | 2017-06-12 | 2019-01-10 | ジャパンマリンユナイテッド株式会社 | 電力供給システム及び電力供給方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5789662B2 (ja) | 2015-10-07 |
JPWO2012172616A1 (ja) | 2015-02-23 |
US20140252855A1 (en) | 2014-09-11 |
EP2722960A4 (en) | 2015-03-11 |
EP2722960A1 (en) | 2014-04-23 |
EP2722960B1 (en) | 2016-08-17 |
US9742189B2 (en) | 2017-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5789662B2 (ja) | マイクログリッド制御システム | |
US11594888B2 (en) | Methods and systems for adjusting power consumption based on a fixed-duration power option agreement | |
US20210312574A1 (en) | Computing component arrangement based on ramping capabilities | |
US11201491B2 (en) | Method for balancing frequency instability on an electric grid using networked distributed energy storage systems | |
US9824409B2 (en) | Energy management system, server, energy management method, and storage medium | |
WO2017142241A1 (ko) | 신재생 에너지 연계형 ess의 전력 관리 방법 | |
US9438041B2 (en) | System and method for energy distribution | |
US10069300B2 (en) | Methods and apparatus for dispatching electrical energy from distributed energy resources | |
JP6664680B1 (ja) | 電力制御装置、電力制御方法、双方向インバータ、及び電力制御システム | |
GB2592218A (en) | A method for managing an energy system | |
US20140070617A1 (en) | Method and apparatus for stabalizing power on an electrical grid using networked distributed energy storage systems | |
WO2017007692A1 (en) | Distributed energy system edge unit | |
JP5531156B2 (ja) | 設備システム制御装置 | |
EP2973932A1 (en) | System and method for energy distribution | |
JP2015035941A (ja) | エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム | |
KR102503382B1 (ko) | 신재생 에너지 발전설비와 연계된 에너지 저장시스템의 관리방법 | |
JP7512916B2 (ja) | 電力管理システム、サーバおよび電力需給の調整方法 | |
JP2017050903A (ja) | エネルギ管理システム、エネルギ管理装置およびエネルギ管理方法 | |
Lukianenko et al. | Development and Utilization of a Quasi-dynamic Model for Power System Analysis | |
AU2016306224A1 (en) | Electricity storage control system, instruction control system, electricity storage control device, electricity storage control method, and program | |
JP7616645B2 (ja) | 蓄電池管理装置及び蓄電池管理方法 | |
Corbus et al. | Oahu wind integration and transmission study: Summary report | |
WO2025085174A1 (en) | Systems and methods for microgrid asset dispatch | |
WO2025099853A1 (ja) | 電力管理システム、電力管理方法、電力管理システム用プログラムおよび記録媒体 | |
WO2025070325A1 (ja) | 制御方法、制御装置及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11867900 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013520329 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011867900 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011867900 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14126730 Country of ref document: US |